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ABSTRACT

Synaptic connections in many brain areas have been found to fluctuate significantly, with substantial
turnover and remodelling occurring over hours to days. Remarkably, this flux in connectivity persists
in the absence of overt learning or behavioural change. What proportion of these ongoing fluctuations
can be attributed to systematic plasticity processes that maintain memories and neural circuit function?
We show under general conditions that the optimal magnitude of systematic plasticity is typically less
than the magnitude of perturbations due to internal biological noise. Thus, for any given amount of
unavoidable noise, 50% or more of total synaptic turnover should be effectively random for optimal
memory maintenance. Our analysis does not depend on specific neural circuit architectures or plasticity
mechanisms and predicts previously unexplained experimental measurements of the activity-dependent
component of ongoing plasticity.
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INTRODUCTION
Learning depends systematic changes to the connectivity and strengths of synapses in neural circuits. This
has been shown across experimental systems (Moczulska et al., 2013; Lai et al., 2012; Hayashi-Takagi
et al., 2015) and is assumed by most theories of learning (Hebb, 1949; Bienenstock et al., 1982; Gerstner
et al., 1996).

Neural circuits are required not only to learn, but to retain previously learned information. One might
therefore expect synaptic stability in the absence of an explicit learning signal. However, many recent
experiments in multiple brain areas have documented substantial ongoing synaptic modification in the
absence of any obvious learning or change in behaviour (Attardo et al., 2015; Pfeiffer et al., 2018;
Holtmaat et al., 2005; Loewenstein et al., 2015; Yasumatsu et al., 2008; Loewenstein et al., 2011).

It is natural to ask whether this apparently irreducible flux in neural connectivity is due to random
biochemical noise, or due to systematic plasticity processes that have not been accounted for. A number of
experimental studies have attempted to dissect and quantify both systematic and random synaptic changes
at the level of synaptic physiology, either by directly interfering with synaptic plasticity or by correlating
changes to circuit-wide measurements of ongoing physiological activity (Nagaoka et al., 2016; Quinn
et al., 2019; Yasumatsu et al., 2008; Minerbi et al., 2009; Dvorkin and Ziv, 2016). Consistently, these
studies find that the total rate of ongoing synaptic change is reduced by only 50% or less in the absence of
neural activity. Similarly, systematic processes that are correlated across synapses only account for less
than 50% of ongoing changes. Thus the bulk of ongoing synaptic fluctuations seem to be due to internal
biological noise.

Put another way, these experimental findings imply that at steady state, systematic plasticity processes exert
a weaker effect on synaptic strength than random fluctuations. This is surprising, because maintenance
of neural circuit properties and learned behaviour would intuitively require random fluctuations to be
dominated by systematic plasticity. To our knowledge, there is no theoretical account or model prediction
that explains these observations.
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In this study we consider neural circuits attempting to optimally retain previously learned information
through some active, systematic plasticity process, in the presence of unavoidable, learning-independent,
synaptic fluctuations. We conduct a first-principles mathematical analysis that is independent of specific
plasticity mechanism and circuit architectures. We find that the magnitude of systematic plasticity should
not exceed those of the intrinsic fluctuations, in direct agreement with experimental data. Furthermore,
these fluctuations should dominate when systematic plasticity mechanisms are relatively precise, sug-
gesting that random fluctuations will often dominate synaptic dynamics in neural circuits that exhibit
learning-related plasticity. We validate these theoretical predictions in simulations. Together, our results
provide a simple and general theory that explains a number of convergent but puzzling experimental
findings, and suggest that synaptic plasticity mechanisms are optimised for the dynamic maintenance of
stored information.

RESULTS
We begin with a brief survey of quantitative, experimental measurements of synaptic dynamics. We
focused on studies that measured ‘baseline’ synaptic changes that occur outside of any behavioural
learning paradigm, and which controlled for stimuli that induce widespread adaptive changes in synaptic
strength.

Reference Experimental system Total baseline synaptic change % synaptic change that
is random / learning-
independent

Pfeiffer et al.
(2018)

Adult mouse hippocampus 40% turnover over 4 days NA

Loewenstein et al.
(2011)

Adult mouse auditory cor-
tex

> 70% of spines changed size by > 50% over
20 days

NA

Zuo et al. (2005) Adult mouse (barrel, pri-
mary motor, frontal) cortex

3−5% turnover over 2 weeks for all regions.
73.9±2.8% of spines stable over 18 months
(barrel cortex)

NA

Nagaoka et al.
(2016)

Adult mouse visual cortex 8% turnover per 2 days in visually deprived
environment. 15% in visually enriched envi-
ronment. 7−8% in both environments under
pharmacological suppression of spiking.

≈ 50% (turnover)

Quinn et al.
(2019)

Glutamatergic synapses,
dissociated rat hippocam-
pal culture

28.2±3.7% of synapses formed over 24 hour
period. 28.6± 2.3% eliminated. Activity
suppression through tetanus neurotoxin -light
chain. Plasticity rate unmeasured.

≈ 75% (turnover)

Yasumatsu et al.
(2008)

CA1 pyramidal neurons,
primary culture, rat hip-
pocampus

Measured rates of synaptic turnover and
spine-head volume change. Baseline condi-
tions vs activity suppression (NMDAR in-
hibitors). Turnover rates: 32.8±3.7% gener-
ation/elimination per day (control) vs 22.0±
3.6% (NMDAR inhibitor). Rate of spine-
head volume change:

≈ 67 ± 17%
(turnover). Size-
dependent, but
consistently > 50%
(spine-head volume)

Dvorkin and Ziv
(2016)

Glutamatergic synapses
in cultured networks of
mouse cortical neurons

Partitioned commonly innervated (CI)
synapses sharing same axon and dendrite,
and non-CI synapses. Quantified covariance
in fluorescence change for CI vs non-CI
synapses to estimate relative contribution of
activity histories to synaptic remodelling

62−64% (plasticity)

Minerbi et al.
(2009)

Rat cortical neurons in pri-
mary culture

Created “relative synaptic remodeling mea-
sure” (RRM) based on frequency of changes
in the rank ordering of synapses by fluores-
cence. Compared baseline RRM to when neu-
ral activity was suppressed by tetrodotoxin
(TTX). RRM: 0.4 (control) vs 0.3 (TTX) after
30 hours.

≈ 75% (plasticity)

Ziv and Brenner
(2018)

Literature review across
multiple systems

“Collectively these findings suggest that the
contributions of spontaneous processes and
specific activity histories to synaptic remodel-
ing are of similar magnitudes”

≈ 50%

Table 1. Synaptic plasticity rates across experimental models, and the effect of activity suppression

Table 1 shows a breakdown of measured baseline synaptic modifications from multiple studies and brain
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preparations. We note that there is large heterogeneity in the rates of baseline synaptic turnover across
preparations and experimental conditions. For example, the expected lifetime of synapses in adult mouse
hippocampus was estimated as 1−2 weeks Attardo et al. (2015); Pfeiffer et al. (2018), while > 70% of
synapses in mouse barrel cortex persisted over 18 months Zuo et al. (2005).

It is reasonable to assume that some component of the total ongoing synaptic changes measured in these
experiments arise from unavoidable, noisy fluctuations. Left unchecked, such random perturbations would
eventually disrupt circuit function and erase any memories stored in the synaptic weight distribution. This
suggests that there should be an additional, systematic component of ongoing plasticity that compensate
for the deleterious effect of such fluctuations.

In order to isolate and quantify these components, several experiments in Table 1 blocked known synaptic
plasticity pathways, reduced environmental stimuli or statistically factored out the effect of ongoing
neural activity. Intriguingly, the rates of ongoing synaptic change remained high. Moreover, the relative
reduction in synapse dynamics was remarkably consistent: across multiple brain regions, in vivo and in
vitro, and despite large methodological differences, these studies consistently reported that at least half of
ongoing synaptic change persisted.

These surprising observations motivated the central question that we address in this study:

how much systematic plasticity is expected in a neural circuit that needs to maintain overall
function on a previously learned task while being subjected to unavoidable, task-independent
synaptic fluctuations?

We emphasize that our goal is not to explain the source of the intrinsic synaptic fluctuations, the mechanism
of systematic plasticity, nor the total magnitude of ongoing synaptic change. Our goal is to derive a
general relationship between the sources of ongoing change in synapses, and in doing so explain why
random synaptic fluctuations seem to dominate.

For generality, we wanted to make minimal assumptions about the mechanisms of synaptic plasticity, as
well as circuit architecture and function. The problem we are considering is outlined in Figure 1a. A
neural network can perform some learned task. The level of task performance depends on the the state of
various network parameters, such as synaptic connections strengths, and intrinsic neuron properties. Our
results are independent of which kinds of parameters are involved, so we name them ‘synaptic weights’ for
convenience. Task performance can be quantified in terms of an error function, F [w(t)], which depends
upon the vector w(t) of synaptic weights at time t.

We assume that at least some ongoing plasticity processes are ‘task-independent’, and collectively refer
to these processes as ‘synaptic fluctuations’. Our definition of a task-independent process is one for
which the probability of the process increasing or decreasing a particular synaptic weight, in a small
time window, is independent of whether such a change is beneficial to task performance. One such
process would be molecular noise affecting synaptic connection strengths. Another might be homeostatic
mechanisms internal to each neuron. These perturb the weights in a direction ε[w(t)]. Our definition of
‘task-independent’ implies that such changes are on average uncorrelated with the direction of change in
w(t) that would elicit maximal improvement in task performance, namely −∇F [w(t)]. For this reason,
we will often refer to them as ‘random’ or ‘noise’ components, even though they may have a deterministic
origin. By definition, we have:

E[ε[w(t)]T ∇F [w(t)]] = 0. (1a)

Intuitively, one would expect random fluctuations to degrade task performance. To formalise this, we
will say that the network is in a partially trained state if a small, random change in synaptic weights
satisfying equation (1a), degrades memory quality in expectation. Mathematically (see SI section 1.2),
this is equivalent to the following condition:

Tr(∇2F [w(t)])> 0. (1b)

The intuition for (1b) is as follows. We conceptualise F as a landscape, where w are the coordinates
of a point on the landscape, and F [w] is the height of the landscape at w (Figure 1b). Improving task
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Figure 1. a: A learned task corresponds to an enforced input-output transformation for a neural circuit.
This depends on the configuration of network parameters such as synaptic connection strengths, which
change over time. Some changes arise from task-independent sources (e.g. molecular noise in the
dynamic processes maintaining synapses). Unchecked, these processes will degrade task performance.
Therefore some systematic ‘relearning’ term must nullify their functional effect. The combination of
synaptic processes results in stable task performance, even as network parameters change systematically
(e.g. see synapse labelled with red star). b: We represent task performance as a ‘landscape’. Lateral
co-ordinates represent the values of network parameters (only two are visualised). Height represents task
error, so lower regions correspond to better performing configurations of network parameters. Ongoing
change in the network parameters corresponds to ‘wandering’ across the landscape. Near the bottom
(high task performance), task-independent dynamics will tend to move upwards on the landscape.
Systematic plasticity moves doenwards, since it improves task performance. c: Eventually, a steady state
is reached at which the effect of the two competing terms on memory quality cancel out. The network
parameters wander over a level set of the landscape. d: For a fixed magnitude of task-independent
synaptic fluctuations, what magnitude of systematic plasticity maximises memory quality (i.e. gives us
the ‘best level set’ on the landscape)? e: Individual synapses may experience large, systematic changes at
this steady state.
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performance corresponds to moving downhill on the landscape. Equation (1b) says a randomly chosen
direction on the landscape exhibits upward curvature on average. This is because each eigenvector of
∇2F [w] corresponds to a direction on the landscape with curvature specified by the associated eigenvalue.
If the sum of eigenvalues is positive (i.e. equation (1b)), then positive curvature is more prevalent than
negative. For an isolated (local) minimum of the loss function, all eigenvalues are positive.

What is the relevance of curvature in determining the effect of random weight changes? A weight
perturbation satisfying equation (1a) will be biased neither uphill nor downhill. We can pick a two-sided
vector v along which to perturb w (Figure 2b). Moving in the downhill direction of v improves (decreases)
F [w]. However, upward curvature diminishes the degree of improvement. On the other hand, moving in
the uphill direction increases F [w], and this increase is magnified by upward curvature. Thus a random
fluctuation along v, biased in neither the positive or negative direction of v, will decrease task performance
(increase F [w]) in expectation. Equation (1b) follows by averaging over all possible directions v in a
partially trained network.

This reasoning explains why synaptic fluctuations are expected to degrade task performance in a partially
trained network. If such fluctuations are unavoidable but task performance is maintained, then a systematic
plasticity term must counteract the fluctuations. We will denote this term c[w(t)]. For notational clarity,
we will subsequently omit explicit dependence on w(t), i.e. c[w(t)] and ε[w(t)] become c(t) and ε(t).
Overall synaptic dynamics can now be written as

ẇ(t) = c(t)+ ε(t). (2)

Note that many studies attempt to model the distribution of fluctuations ε(t). For instance, Statman et al.
(2014); Yasumatsu et al. (2008); Loewenstein et al. (2011) identify the importance of synapse size, age,
and morphology in determining fluctuation magnitude. Our study is agnostic to such considerations, as
long as fluctuations are memory independent (i.e. satisfy (1a)).

The systematic plasticity term c(t) lumps together the contribution of all synaptic plasticity mechanisms
that dynamically maintain the learned task. These might be referred to as ‘learning rules’ but we emphasize
that most of our interest lies in the steady-state maintenance of a learned task, i.e. when no additional
learning is occurring.

Consider the plasticity rates of c(t) and ε(t) over a small time interval, ∆t. We define:

∆c :=
∫ t+∆t

t∗
c(t ′)dt ′ and ∆ε :=

∫ t+∆t

t∗
ε(t ′)dt ′.

∆c represents the cumulative effect of systematic plasticity and ∆ε the cumulative effect of fluctuations
over the time interval ∆t. Now consider the change in memory quality during this time, ∆F := F [w(t∗+
∆t)]−F [w(t∗)]. A second order Taylor approximation of ∆F gives:

∆F = ∆ε
T

∇F [w(t∗)]+∆cT
∇F [w(t∗)]

+
1
2

∆cT (
∇

2F [w(t∗)]
)
∆c+

1
2

∆ε
T (

∇
2F [w(t∗)]

)
∆ε

+∆cT (
∇

2F [w(t∗)]
)
∆ε +O(‖∆c+∆ε‖3

2).

(3)

We can choose ∆t sufficiently small that the higher order terms in O(‖∆c+∆ε‖3
2) can be ignored. We do

not make specific assumptions on the mechanism by which the learning rule produces synaptic changes
∆c. By definition, however, the effect of ∆c is to improve task performance. For ∆c to have such an effect
on ∆F , equation (3) shows that we require

∆cT
∇F [w(t∗)]+

1
2

∆cT (
∇

2F [w(t∗)]
)
∆c < 0. (4a)

Indeed for a sufficiently small ∆t, we additionally require that

∆cT
∇F [w(t∗)]< 0. (4b)
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This shows that ∆c must be anticorrelated with the gradient ∇F [w]. Additionally, it might exploit
information on ∇2F [w]. Geometrically, ∆c points in a descending direction on the loss landscape of
F [w].

Our first task is to find what magnitude of systematic plasticity (i.e. ‖∆c‖2) optimises the degree of
learning ∆F , assuming any fixed direction ∆ĉ. We use hats to denote normalised variables (i.e. x̂ = x

‖x‖2
).

We will make extensive use of the following operator:

Qw[v] = v̂T
∇

2F [w]v̂.

Geometrically, Qw[v] represents the relative degree of upward curvature of the loss landscape of F at the
point w, in the direction v. This is shown graphically in Figure 2c. Note also that Q is scale invariant, i.e.
Qw[v] = Qw[kv] for any scalar k ∈ R. It depends on the direction, not the magnitude, of v.

We can rewrite equation (3), using the operator Q and omitting higher order terms (as previously
justified):

∆F = ∆ε
T

∇F [w(t∗)]+∆cT
∇F [w(t∗)]

+
1
2
‖∆c‖2

2Qw(t∗)[∆c]+
1
2
‖∆ε‖2

2Qw(t∗)[∆ε]

+∆cT (
∇

2F [w(t∗)]
)
∆ε.

(5)

Since ∆ε consists of memory-independent processes, we can consider them as coming from some
unknown probability distribution that is uncorrelated, in expectation, with the derivatives of F . Thus, any
term in equation (3) that is linear in ∆ε disappears in expectation. In particular,

E[∇F [w(t∗)]T ∆ε] = 0. (6a)

E[∆cT (
∇

2F [w(t∗)]
)
∆ε] = 0, (6b)

which collectively imply

E[∆F ] = ∆cT
∇F [w(t∗)]+

1
2
‖∆c‖2

2Q[∆c]+
1
2
‖∆ε‖2

2Q[∆ε]. (7)

The requirement for assumption (6b) can be removed (see SI section 1.1). We can differentiate equation
(7) in ‖∆c‖2, to get:

dE[∆F ]

d‖∆c‖2
= ∆ĉT

∇F [w(t∗)]+‖∆c‖2Q[∆c].

The root of this derivative gives a global minimum of the equation (7) in ‖∆c‖2, as long as Q[∆c]≥ 0
holds (justified in SI section 1.2). We get

‖∆c‖∗2 =
−∆ĉT ∇F̂

Q[c]
‖∇F‖2, (8)

which defines the magnitude of systematic plasticity that minimises ∆F , and thus maximises task perfor-
mance at time t∗+∆t.

If the memory improved over the interval ∆t, then we would have ∆F < 0. However, we are interested in
the special case of memory maintenance, where improvements from ∆c are cancelled out by decrements
from ∆ε , and we have E[∆F ] = 0. Substituting this into equation (7), we get

0 = ∆cT
∇F [w(t∗)]+

1
2
‖∆c‖2

2Qw(t∗)[∆c]+
1
2
‖∆ε|22Qw(t∗)[∆ε].

Next, we substitute in our optimal reconsolidation magnitude (equation (8)). This gives

0 =−1
2
‖∆c‖2

2Q[∆c]+
1
2
‖∆ε|22Q[∆ε].
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Figure 2. a: Two different error surfaces. Shaded patches are probability distributions of changes to w.
The distributions are uncorrelated, in expectation, with the gradient. We see this as half the probability
density lies on each side of the dotted line denoting the level set. The concave (convex) surface on top
(bottom) curves downwards (upwards) in all directions, which means that a random change in w
following the probability distribution will decrease (increase) error in expectation. If a network state is
such that random changes, uncorrelated with ∇F [w], increase error in expectation, then the error surface
curves upwards along the probability distribution more than it curves downwards. b: Geometrical
intuition behind the operator Qw. The operator charts the degree to which a direction lifts off the tangent
plane (grey). In other words, the relative upward curvature of the surface in a given direction. The green,
shaded areas are proportional to Qw[v1], and Qw[v2]. Note that the operator considers normalised
directions, so does not take account the magnitude of either of these vectors. c: The weights of a
networks change due to memory-independent ‘intrinsic dynamics’, as well as systematic plasticity that
acts to reconsolidate the memory. What is the optimal magnitude of systematic plasticity, relative to the
magnitude of the intrinsic dynamics? As Qw[∆c] increases and/or Qw[∆ε] increases, the optimal
magnitude of systematic plasticity increases.
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Therefore,

‖∆c‖2
2

‖∆ε‖2
2
=

Q[∆ε]

Q[∆c]
, (9)

and moreover,

Q[∆c]≥Q[∆ε] (10)

implies that the magnitude of synaptic fluctuation should outcompete that of systematic plasticity for
optimal memory maintenance.

Note that an alternative derivation of equation (9) (see SI section 1.1) removes the need for assumption
(6b). Equation (9) is valid when the numerator and denominator of the right hand side are both positive.
The converse is unlikely in a partially trained network, and impossible in a highly trained network (see SI
section 1.2).

Now let us provide more intuition for equation (9). Recall from Figure ?? that Qw[∆c] represents the
relative upward curvature of F [w] in the direction ∆c (and the same for ∆ε). Therefore we can interpret
(9) as follows:

Draw two unit-length lines on the loss function landscape, both starting at w(t∗), and in the directions
∆ĉ and ∆ε̂ respectively. Measure the upward curvature of the loss function along both of these lines. If
the curvature is greater (or equal) for line ∆ĉ, then optimal memory retention over ∆t requires ‖∆c‖2

2 ≤
‖∆ε‖2

2.

Geometric intuition can give a glimpse into why equation (10) should generically hold, although we also
demonstrate this mathematically (SI section 1.3). ∆ĉ is a descent direction on the loss landscape, since it
acts to improve memory quality (see equation (4)). Descent directions will generically have high upwards
curvature in highly trained states (i.e. when F [w] is close to a minimum). In other words, a cross section
of the loss landscape along such a descent direction will be U-shaped. For this to be false, F would have
to consistently decrease along the cross section. However, the degree to which this decrease can occur is
limited by the already low value of F [w]. On the other hand, arbitrary directions (such as ∆ε) may not act
to decrease F , and thus may not have U-shaped cross sections.

We have intuitively justified why (10) should hold. This equation implies that systematic plasticity should
generically be outcompeted by synaptic fluctuations, for optimal memory retention. We can justify the
same assertion analytically by quantifying Q[∆ε] and Q[∆c].

First note that Q[∆ε] is task-independent. Thus, it should have no systematic relationship with directions
of curvature at F [w]. In other words, it should project unbiasedly onto the different eigenvectors of
∇2F [w]. This assumption implies (see SI section 1.2)

E[Q[∆ε]] =
Tr(∇2F [w])

N
. (11)

Note that the RHS of the above equation corresponds to the mean of the eigenvalues of ∇2F [w].

We now turn to quantifying Q[∆c]. Regardless of the mechanism generating systematic plasticity, it must
act to improve task performance. This constraint gave us equation (4): ∆c must anticorrelate with the
gradient ∇F [w], and it can also benefit from information on ∇2F [w]. We can consider two extremal
cases:

1. ∆c is computed with perfect access to ∇F [w], and (possibly) ∇2F [w].

2. The quantity of information on ∇F [w] available with which to compute ∆c tends towards zero.

In the SI (section 1.3), we show that synaptic fluctuations outcompete/equal systematic plasticity in both of
these extremal cases, and intermediately by interpolation. We therefore suggest that in biological systems
maintaining a memory through reconsolidation, the appropriate null hypothesis is that the magnitude of
synaptic fluctuations outcompetes the magnitude of reconsolidation plasticity.
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Another interesting phenomenon follows from the calculations of SI section 1.3, in the case that only
information on ∇F [w] is avilable. If ∆c can perfectly access ∇F [w], then ∆c ∝ −∇F [w] optimally
decreases F [w]. This corresponds to perfect implementation of backpropagation (i.e. gradient descent) by
∆c. In this case, (9) is smaller than one, and intrinsic fluctuations outcompete systematic plasticity. As
we decrease the accuracy of backpropagation (i.e. corrupt access to ∇F [w] with task-independent noise),
(9) increases towards one: the optimal magnitude of systematic plasticity increases. In other words, a
less precise systematic plasticity mechanism has to do ‘more work’ to optimally counteract intrinsic
fluctuations. This is demonstrated numerically in Figures 4 and 3.

We now verify our conclusions in simulations. We consider simple, feedforward, rate-based neural
networks. We emphasise that the results do not depend on a particular choice of network model, learning
rule, or task. Our aim is to verify the ratios of systematic to intrinsic plasticity that result in optimal
steady-state performance on a particular learned task.

The task we provide our neural networks is to maintain their initial input-output behaviour over time
as well as possible, even as individual weights fluctuate due to systematic and intrinsic plasticity. This
models maintenance of a previously learned task. Initial network behaviour is set by randomly setting
the initial neural network weights. We ‘save’ the initial network behaviour by keeping a fixed copy of
the network at time zero, with fixed weights. We call this fixed network the ‘teacher’, and the adaptive
network the ‘student’. Our learning problem then recreates the student-teacher framework described in
e.g. Levin et al. (1990); Seung et al. (1992).

As before, we model weight change over a time interval T as

∆wt = ∆ct +∆εt ,

where the index t defines the number of previously elapsed intervals. We model ∆εt , which represents
integrated intrinsic fluctuations over the time interval, as a scaled, i.i.d, white-noise process at each
synapse:

∆εt ∼N (0,γ3I),

for some scaling factor γ3 > 0. In order to describe ∆ct we first have to define an error function F [w] for
the student network. We take

F [w] =
1
|U | ∑

u∈U
‖y(w,u)− y∗(u)‖2

2,

where U is a set of inputs with cardinality |U |, y∗(u) is the output of the teacher for input u ∈U , and
y(w,u) is the output of the student, with weights w. We generated inputs u ∈U as i.i.d Gaussian vectors,
and took U as a set of 1000 such vectors.

We model the systematic plasticity term ∆ct as a noise-corrupted gradient descent term. Any such term
must anticorrelate to some degree with the gradient (see equation (4) and surrounding discussion, as well
as Raman et al. (2019)). So we take

∆ct = γ1∇F̂ [w]t + γ2ν̂t ,

where νt ∼N (0,I) models imperfections in the approximation of the gradient, and γ1,γ2 > 0 are scaling
parameters. By changing the ratio γ1

γ2
, we can interpolate between high and low quality learning rules.

Meanwhile
√

γ2
1 + γ2

2 represents the overall magnitude of systematic plasticity in the time interval, which
can be compared with γ3, the magnitude of intrinsic fluctuations.

We ran simulations of a sigmoidally nonlinear multilayer perceptron with a single hidden layer, tuning
the vector γ of hyperparameters to investigate different qualities of learning rule, and different ratios of
systematic to intrinsic fluctuations (see Figure 3). Under all conditions, optimal steady state performance
was achieved when the magnitude of systematic plasticity was less or equal to the level of intrinsic
fluctuations, corroborating analytical calculations.
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Figure 3. The relationship between steady state task performance and the ratio of systematic
plasticity to intrinsic fluctuations in a nonlinear network. We consider multilayer perceptrons with
12 inputs, 10 outputs, and 20 neurons in the hidden layer. Each neuron has a sigmoidal nonlinearity.
Weight dynamics are described in the ’simulations’ section. Each subgraph in the top pane shows steady
state error over 8 repeats, with standard deviation over the repeats shaded. The x-axis of each subgraph is

equivalently
√

γ2
1+γ2

2
γ3

. The bottom pane depicts sample trajectories of task error over time, for different
choices of hyperparameters γ1, γ2, and γ3.
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Figure 4. The relationship between steady state task performance and the ratio of systematic
plasticity to intrinsic fluctuations in a linear network. We consider linear networks with output
y(w,u) =Wu, where W ∈ R12×10 is a matrix representation of the weight vector w. Weight dynamics are
described in the ‘simulations’ section. We ran the dynamics for 8000 training cycles, to allow task
performance to settle to a steady state. Each subgraph in the top pane shows steady state error over 8
repeats, with standard deviation over the repeats shaded. Imperfect learning rules (columns 2-4): The

x-axis of each subgraph is equivalently
√

γ2
1+γ2

2
γ3

. The bottom pane depicts sample trajectories of task error
over time, for different choices of hyperparameters γ1, γ2, and γ3. Perfect learning rule (top row): The
systematic learning rule updates weights with the Newton step (∆ct ∝ (∇2F [w]t)

−1F [w]t ), which
becomes (in the linear case): ∆ct ∝ w∗−w. Overall weight dynamics are ∆wt = ∆ct +∆εt , as before.
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DISCUSSION
A long-standing question in neuroscience is how neural circuits optimally maintain memory of a learned
task while being buffeted by synaptic fluctuations from noise and other task-independent processes
(Fusi et al., 2005). There are several hypotheses that offer potential answers, none of which is mutually
exclusive. One possibility is that fluctuations only occur in a subset of volatile connections that are
relatively unimportant for learned behaviours Moczulska et al. (2013); Chambers and Rumpel (2017);
Kasai et al. (2003). Following this line of thought, circuit models have been proposed that only require
stability in a subset of synapses for stable function Clopath et al. (2017); Mongillo et al. (2018); Susman
et al. (2018). Another hypothesis is that any memory degradation due to fluctuations is counteracted by
restorative, systematic plasticity processes that allow circuits to continually ‘relearn’ stored associations.
The source of information for the systematic plasticity term could come from an external reinforcement
signal Kappel et al. (2018), from interactions with other circuits Acker et al. (2018), or spontaneous,
network-level reactivation events Fauth and van Rossum (2019). A final possibility is that we rarely
observe behavioural states in which an animal is not learning, and that unobserved behavioural changes
account for apparent fluctuations in brain connectivity in any given experiment.

Our work does not argue exclusively for or against any of these three broad hypotheses. Rather, we
extracted logical consequences from assuming that all hypotheses are viable to some extent. An important
caveat to our work is that we do make specific assumptions whose validity depends on the state of current
knowledge, and might vary depending on the organism or brain area in question. Most crucially, we
assumed that not all fluctuations in synaptic strength are explained by behavioural adaptation and learning.
To the extent that this is true, the residual fluctuations must come from ongoing, endogenous processes
and irreducible noise that continually perturb synaptic strengths. Our analysis then proceeded by assuming
that learned information does not decay appreciably over time, which requires degradation from these
task-independent processes to be counteracted by systematic plasticity mechanisms.

Several predictions follow immediately from our analysis. Foremost among these, we predict that for
optimal retention of circuit function and learned behaviour, the systematic plasticity contribution should
not outcompete task-independent fluctuations. This prediction is somewhat unsettling yet it is borne out
across a number of experimental studies (Nagaoka et al., 2016; Quinn et al., 2019; Yasumatsu et al., 2008;
Minerbi et al., 2009; Dvorkin and Ziv, 2016). It is intuitively clear that memories should degrade when
systematic plasticity is far weaker than noise. It is far less intuitive that maintenance of learned behaviours
will also suffer if a learning rule outcompetes task-independent fluctuations at steady state.

By parameterising all possible qualities of systematic plasticity - from precise to highly inaccurate - we
also show that a larger task-independent component of ongoing synaptic change predicts a more accurate
systematic plasticity mechanism. In other words, sophisticated learning rules need to do less work to
overcome the damage done by task-independent synaptic fluctuations. Experimental estimates (see Table
1) suggest task-independent fluctuations often outcompete systematic changes in synaptic strength. Our
theory implies that this is consistent with relatively precise learning rules in biological synapses that can
approximate the gradient of task error relatively well.

We must qualify the meaning of ‘relatively precise’ in this conclusion. We conceptualised memory quality
as a landscape whose height denotes error. We noted that any systematic plasticity mechanism should act
to increase memory quality, and therefore change the weights in a downhill direction on the landscape.
Therefore it must have at least some local information on the slope (gradient) and possibly curvature
(hessian) of the landscape. We parameterised precision by the quality of access to these quantities. The
assertion of the previous paragraph assumed no access to the curvature, as is consistent with biologically
plausible learning rules we have seen in the literature (e.g. Williams (1992); Mazzoni et al. (1991); Seung
(2003); Lillicrap et al. (2016); Sussillo and Abbott (2009)).

If it were the case that biological learning rules could perfectly access both the gradient and second
derivative of the landscape, then the optimal contributions of systematic plasticity and intrinsic fluctuations
would in fact be equal (SI section 1.3.2). This would correspond to the systematic plasticity mechanism
directly undoing any synaptic changes induced by task-independent fluctuations. We suggest that this is
not biologically realistic. First, it is widely believed that even accurate gradient-based learning rules are
biologically implausible. Second, there is widespread evidence that neural circuit reconfiguration occurs
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in the absence of learning and that many synapses have finite lifetimes, indicating that synapses do not
continually revert to some learned state.

There are important caveats to how our results should be interpreted in light of existing experimental
data. It is technically difficult to experimentally isolate systematic and random components of synaptic
change. Approaches often rely on reduced preparations where ‘learning’ and ‘behaviour’ have no direct
relationship to neural circuit dynamics. On the other hand, in in vivo studies it is extraordinarily difficult to
accurately measure synaptic changes and to control for confounding changes in behaviour or physiology.
We may therefore simply take these measurements as the best available data and assume that at least some
ongoing synaptic dynamics are noise-driven.

Thus, while our results offer a surprising agreement with a number of experimental observations, we
believe it is important to further replicate measurements of synaptic turnover and synaptic modification in
a variety of settings, both in vivo and in vitro. To this end, we hope our results provide an impetus for this
difficult experimental work, because it offers a principled framework for understanding the surprising
volatility of connections in neural circuits.
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1 SUPPLEMENTAL METHODS
1.1 Alternative derivation of equation (9)
We provide an alternative derivation of equation (9) that removes the need for assumption (6b). We did
not put this main derivation in the main text as we perceive it to have less clarity.

The derivation proceeds identically to that given in the main text until equation (5). We can then use (6a)
to simplify equation (5). We get

E[∆F ] = ∆cT
∇F [w(t∗)]

+
1
2
‖∆c‖2

2Qw(t∗)[∆c]+
1
2
‖∆ε‖2

2Qw(t∗)[∆ε]

+∆cT (
∇

2F [w(t∗)]
)
∆ε.

E[∆F ] = ∆cT
∇F [w(t∗)]

+
1
2

∆cT (
∇

2F [w(t∗)]
)
∆c+

1
2

∆ε
T (

∇
2F [w(t∗)]

)
∆ε

+∆cT (
∇

2F [w(t∗)]
)
∆ε.

Recall that expectation is taken over an unknown probability distribution from which ∆ε is drawn, which
satisfies equation (6a).

We then assume that we are in a phase of stable memory retention, so that E[∆F ] = 0. Now if the
magnitude of systematic plasticity ‖∆c‖2 is tuned to minimise steady state error F , then any change to
‖∆c‖2 will result in an increase in E[�F]. So E[∆F ] is locally minimal in ‖∆c‖2. This implies

dE[∆F ]

d‖∆c‖2
= 0.

We also claim that local minimality implies

dE[ ∆F
‖∆c‖2

]

d‖∆c‖2
= 0. (12)

Why? E[∆F ] = 0 implies that E[ ∆F
‖∆c‖2

] = 0. If a small change to ‖∆c‖2 results in E[∆F ]≥ 0, then it also

results in E[ ∆F
‖∆c‖2

]≥ 0, since ‖dC‖2 is non-negative.
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Expanding the LHS of equation (12), we get

d
d‖∆c‖2

{
∆ĉT

∇F [w(t∗)]+
1
2
‖∆c‖2∆ĉT (

∇
2F [w(t∗)]

)
∆ĉ

+
1
2

∆εT
(
∇2F [w(t∗)]

)
∆ε

‖∆c‖2
+∆ĉT (

∇
2F [w(t∗)]

)
∆ε

}
= 0.

Differentiating, we get

1
2

∆ĉT (
∇

2F [w(t∗)]
)
∆ĉ =

1
2

∆εT
(
∇2F [w(t∗)]

)
∆ε

‖∆c‖2
2

.

⇒Q[∆c] =
‖∆ε‖2

2

‖∆c‖2
2
Q[∆ε],

from which (9) follows.

1.2 Positivity of the numerator and denominator in equation (9)
Equation (9) of the main text asserts that

‖∆c‖2
2

‖∆ε‖2
2
=

Q[∆ε]

Q[∆c]

holds as long as both the numerator and denominator of the RHS are positive. Here we describe sufficient
conditions for positivity.

The inequality ∇2F [w]� 0 must hold in some neighbourhood of any minimum w∗. Recall that we referred
to such a neighbourhood as a highly trained state of the network in the main text. In such a state, our
assertion follows immediately, as Q[v] := 1

‖v‖22
vT (∇2F [w])v≥ 0, for any vector v. Therefore Q[∆ε]≥ 0

and Q[∆c]≥ 0.

We now consider a partially trained network state, which we defined in the main text as any w satisfying
Tr(∇2F)≥ 0. Note that

F [w+∆ε] = F [w]+∇F [w]T ∆ε +
1
2

∆ε
T

∇F [w]∆ε +O(‖∆ε‖3
2).

We assumed in the main text (equation (1a)), that ∆ε is uncorrelated with the gradient ∇F [w] in expectation,
since ∆ε is realised by memory-independent processes. Similarly we can assume that ∆ε is unbiased in
how it projects onto the eigenvectors of ∇2F [w]. In other words,

E[v̂T
i ∆ε] = E[v̂T

j ∆ε],

for any normalised eigenvectors vi, v j of ∇2F [w]. In expectation, we can therefore simplify to

E[F [w+∆ε]] = F [w]+E
[
∇F [w]T ∆ε +

1
2

∆ε
T

∇F [w]∆ε

]
+O(‖∆ε‖3

2).

= 0+‖∆ε‖2
2

Tr(∇2F [w])

N
+O(‖∆ε‖3

2),

where N is the dimensionality of the vector w. So a partially trained network is one for which small,
memory-independent weight fluctuations (such as ∆ε , or white noise) are expected to decrease memory
quality.

Now recall that Q[∆ε] = 1
‖∆ε‖22

∆εT ∇2F [w]∆ε . So we have

E
[
Q[∆ε]

]
=

Tr(∇2F [w])

N
> 0,
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where the positivity constraint comes from being in a partially trained network.

We now consider why Q[∆c] should be generically positive in a partially trained network. Suppose
Q[∆c]< 0 holds. We can rewrite this as ∆cT ∇2F [w]∆c≤ 0. In this case, maintaining the same systematic
plasticity direction ∆c over the time interval [t∗+∆t, t∗+2∆t] would result in increased improvement in
loss, as

∇F [w+∆c]T ∆c = ∇F [w]T ∆c+∆cT
∇

2F [w]∆c+O(‖∆c‖2
2).

Effectively, memory improvement due to systematic plasticity ∆c would be in an ‘accelerating’ direction,
and maintaining the same direction ∆c of systematic plasticity would lead to ever faster learning. However,
by assumption, we are in a regime of steady state task performance, where

E[F(t∗+2∆t)−F(t∗+∆t)] = E[F(t∗+∆t)−F(t∗)] = 0.

1.3 Optimal plasticity ratios in specific learning rules
1.3.1 Noise-free learning rules (first-order)
Let us first consider the case where ∆c can be computed with perfect access to the gradient ∇F [w], but
without access to ∇2F [w]. Such a ∆c is known as a first-order learning rule, as it has access only to the
first derivative of F Polyak (1987). Imperfect access is considered subsequently. In this case, the optimal
direction of systematic plasticity is

∆c ∝−∇F [w].

In other words, ∆c would implement perfect gradient descent on F [w]. The condition (10) for synaptic
fluctuations to outcompete reconsolidation plasticity evaluates to

Q[∇F [w]]≥Q[∆ε].

To what extent can we quantify Q[∇F [w]]? First let us relate the gradient and Hessian of F [w]. Let w∗
be an optimal state of the network (i.e. one where F is minimised). Let us parameterise the straight line
connecting w with w∗:

γ(s) = sw∗+(1− s)w, s ∈ [0,1].

Then

∇F [w] = (w−w∗)T M, where

M =
∫ 1

0
∇

2F [γ(s)] ds.

This gives

Q[∇F [w]] =
(w−w∗)T MT ∇2F [w]M(w−w∗)

(w−w∗)T MT M(w−w∗)
.

First let us rewrite

(w−w∗) :=
N

∑
i

civi,

M(w−w∗) :=
N

∑
i

divi

where (λi,vi) is the ith eigenvalue/eigenvector pair of ∇2F (sorted in ascending order of λi), and ci, di are
some scalar weights. Now

Q[∇F [w]] =
∑

N
i=1 d2

i λi

∑
N
i=1 d2

i
. (13)
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The value of Q[∇F [w]] now depends upon the distribution of mass of the sequence {di}. If later elements
of the sequence are larger (i.e. M(w = w∗) projects more highly onto eigenvectors of ∇2F [w]) with large
eigenvalue), then Q[∇F [w]] becomes larger, and the optimal magnitude of reconsolidation plasticity
decreases, relative to the magnitude of synaptic fluctuations. The opposite is true if earlier elements of the
sequence are larger.

Guaranteed bounds on the value of equation (13) are vacuous. If we do not restrict M, then we can tailor
the sequence {di} as we like, and we end up with λ1 ≤Q[∇F [w]]≤ λN . However, pragmatic bounds are
much tighter. Let us now consider two plausibly extremal cases.

First consider the simplest case of a network that linearly transforms its outputs, and which has a quadratic
loss function F [w]. In this case ∇2F is a constant, (independent of w), positive-semidefinite matrix, and
M = ∇2F . This means that

di = ciλivi

Q[∇F [w]] =
∑

N
i=1 c2

i λ 3
i

∑
N
i=1 c2

i λ 2
i
.

Condition (10) then becomes

Q[∇F [w]]≥Q[∆ε] ⇔ ∑
N
i=1 c2

i λ 3
i

∑
N
i=1 c2

i λ 2
i
≥ ∑

N
i=1 λi

N
. (14)

A conservative sufficient condition for (14), using Chebyshev’s summation inequality, is that

c2
i λ

2
i ≥ c2

i−1λ
2
i−1, for all i ∈ {1, . . . ,N}. (15)

Under what conditions would a plausible reconsolidation mechanism choose to ‘outcompete’ synaptic
fluctuations, in this linear example? For Q[∇F [w]]< Q[∆ε] to even hold, (15) would have to be broken,
and significantly so due to conservatism in the inequality. In other words, w−w∗ must project quite
biasedly onto the eigenvectors of ∇2F with smaller-than-average eigenvalue. If the discrepancy between
w and w∗ were caused by fluctuations (which are independent of ∇2F), then this would not be the case, in
expectation. Even if this were the case, the reconsolidation mechanism would have to know about the
described bias. This requires knowledge of both w∗ and ∇2F , and is thus implausible.

Now let us consider the case of a generic nonlinear network. At one extreme, if ‖w−w∗‖2 is small, then
M ≈ ∇2F [w], and the discussion of the linear case is valid. This corresponds to the case where steady
state error is close to the minimum achievable by the network. As ‖w−w∗‖2 increases (i.e. steady state
error gets worse), the correspondence between M and ∇2F [w] will likely decrease. Thus the optimal
magnitude of reconsolidation plasticity, relative to the level of synaptic fluctuations, will rise.

We could consider another ’extreme’ case in which M and ∇2F [w] were completely independent of each
other. In this case,

d2
i ≈

1
N

N

∑
i=1

d2
i . (16)

In other words, the projection of M(w−w∗) onto the different eigenvectors of ∇2F [w] is approximately
even. Using (13), this gives

Q[∇F [w]]≈ ∑
N
i=1 λi

N
= Q[∆ε].

In summary, we have two plausible extremes. One occurs where M = ∇2F [w], and another occurs where
M is completely independent of ∇2F [w]. In either case, Q[∇F [w]] ≥Q[∆ε], and so the magnitude of
synaptic fluctuations should optimally outcompete/equal the magnitude of reconsolidation plasticity.
Of course, there might be particular values of w where the correspondence between M and ∇2F [w]
is ’worse’ than chance. In other words, eigenvectors of M with large eigenvalue preferentially project
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onto eigenvectors of ∇2F [w] with small eigenvalue. In such cases, we would have Q[∇F [w]]≤Q[∆ε].
However, we find it implausible that a reconsolidation mechanism would be able to gain sufficient
information on M to determine this at particular points in time, and thereby increase its plasticity
magnitude.

1.3.2 Noise-free learning rules (second order)
Let us now suppose that ∆c can be computed with perfect access to both ∇F [w] and ∇2F [w]. In this case
the reconsolidation mechanism would optimally apply plasticity in the direction of the Newton step: we
would have

∇
2F [w]∆c =−∇F [w].

Note that the Newton step is often conceptualised as a weighted form of gradient descent, where movement
in weight space is biased towards direction of lower curvature. Thus we would expect Q[∆c] to be smaller,
and the optimal proportion of reconsolidation plasticity to be larger. This is indeed the case. For
mathematical tractability, we will restrict our discussion to the case in which ∇2F [w] � 0, and M � 0.
This would hold if F [w] were convex, or if w were sufficiently close to a local minimum w∗. In this case
we can rewrite

∆c =−∇
2F [w]−1

∇F [w],

which gives

Q[∆c] =
∇F [w]T

(
∇2F [w]

)−1
∇F [w]

∇F [w]T
(
∇2F [w]

)−2
∇F [w]

(17a)

=
(w−w∗)M

(
∇2F [w]

)−1M(w−w∗)

(w−w∗)M
(
∇2F [w]

)−2M(w−w∗)
(17b)

=
∑

N
i=1 d2

i λ
−1
i

∑
N
i=1 d2

i λ
−2
i

. (17c)

Once again, we first consider the case of a linear network with quadratic loss function, and hence with
constant Hessian ∇2F . This gives M = ∇2F , and

Q[∆c] =
(w−w∗)∇2F [w](w−w∗)

‖w−w∗‖2
2

=
∑

N
i=1 c2

i λi

∑
N
i=1 c2

i
.

We again assume that the reconsolidation mechanism does not have knowledge of the relative projections
of w−w∗ onto the different eigenvectors of ∇2F , which requires knowledge of w∗. Without such
information, we can use an analogous argument to that preceding (16) to argue that the approximation
c2

i ≈ 1
N ∑

N
i=1 c2

i is reasonable. This gives Q[∆c]≈Q[∆ε].

Note that the Newton step, in the linear-quadratic case just considered, corresponds to a direction w∗−w,
i.e. a direct path to a local minimum. So we could consider a systematic plasticity mechanism imple-
menting the Newton step as one directly undoing synaptic changes caused by the intrinsic flucatuations
∆ε .

We now consider the case of a nonlinear network. As before, if ‖w−w∗‖2 is small, then we have
M ≈ ∇2F [w], and the arguments of the linear network hold. As ‖w−w∗‖2 increases, the correspondence
between M and ∇2F will decrease. We again consider the plausible extreme where M is completely
uncorrelated with ∇2F [w], and so the approximation (16) holds. In this case, equation (17c) can be
simplified to give

Q[∆c]≈ ∑
N
i=1 λ

−1
i

∑
N
i=1 λ

−2
i

.

17/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.19.257220doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257220
http://creativecommons.org/licenses/by/4.0/


We assumed that ∇2F [w]� 0. Therefore, all eigenvalues are positive. This allows us to use Chebyshev’s
summation inequality to arrive at

∑
N
i=1 λ

−1
i

∑
N
i=1 λ

−2
i
≤ ∑

N
i=1 λi

N
= Q[∆ε].

So as ‖w−w∗‖2 increases, the magnitude of reconsolidation plasticity will optimally outcompete that of
synaptic fluctuations.

1.3.3 Imperfect learning rules
The previous section applied in the implausible case where a reconsolidation mechanism had perfect
access to ∇F [w] and/or ∇2F [w]. Recall, from the discussion surrounding equation (4), that at least
some information on ∇F [w] is required. What if ∆c contains a mean-zero noise term, corresponding to
imperfect access to these quantities? We will now show how such noise pushes Q[∆c] towards equality
with Q[∆ε], and thus pushes the optimal magnitude of reconsolidation plasticity towards the magnitude
of synaptic fluctuations. Let us use the model

∆c = ∆̃c+ν , (18)

where ν is some mean-zero term, and ∆̃c is the ideal output of the reconsolidation mechanism, assuming
perfect access to the derivatives of F [w]. Here ν represents the portion of systematic plasticity attributable
to systematic error in the algorithm, due to imperfect information on F [w]. This could arise due to
imperfect sensory information or limited communication between synapses. We can therefore assume, as
for ∆ε , that it does not contain information on ∇2F [w]. We therefore get

Q[ν ]≈ Tr(∇2F [w])

N
,

analogously to (11). Now the operator Q satisfies

Q[∆c] = Q[∆̃c]
(

1+
‖ν‖2

2

‖∆̃c‖2
2

)−1
+Q[ν ]

(
1+
‖∆̃c‖2

2

‖ν‖2
2

)−1
.

So depending upon the relative magnitudes of ∆̃c and ν , Q[∆c] interpolates between Q[∆̃c] and Q[ν ]. In
particular, as the crudeness of the learning rule (i.e. the ratio ‖ν‖

‖∆̃c‖ ) grows, Q[∆c] approaches equality
(from below) with Q[ν ], and thus Q[∆ε], completing our argument.
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