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ABSTRACT 

Given the negative trajectories of early behavior problems associated with 

Attention-Deficit/Hyperactivity Disorder (ADHD), early diagnosis of ADHD is considered 

critical to enable early intervention and treatment. To this end, the current investigation 

employed machine learning to evaluate the relative predictive value of parent/teacher 

ratings, as well as behavioral and neural measures of executive function in predicting 

ADHD diagnostic category in a sample consisting of 162 young children (53.7% ADHD, 

ages 4 to 7, mean age 5.55, 67.9% male, 82.6% Hispanic/Latino). Among all the target 

measures assessed in the study, teacher ratings of executive function were identified as 

by far the most important measure in predicting ADHD diagnostic category. While a 

more extensive evaluation of neural measures, such as diffusion-weighted imaging, 

may provide more information as they relate to the underlying cognitive deficits 

associated with ADHD, the current study indicates that commonly used structural 

imaging measures of cortical thickness, as well as widely used cognitive measures of 

executive function, have little incremental value in differentiating typically developing 

children from those diagnosed with ADHD. Future research evaluating the importance 

of such measures in predicting children’s functional impairment in academic and social 

areas would provide additional insight into their contributing role in ADHD. 
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a developmental disorder, 

characterized by a person’s difficulty to pay attention and control impulsive behavior 

(see Mahone & Denckla, 2017 for a historical overview).  The National Resource Center 

on ADHD (NCR) currently lists fifteen million individuals as having ADHD in America. 

ADHD has a worldwide prevalence of 7.2% in children (Wolraich et al., 2019). Early 

identification and treatment of ADHD is considered critical due to the serious 

consequences of ADHD, including but not limited to academic/school and social 

difficulties (Hoza, 2007; Moffitt et al., 2002; Ros & Graziano, 2018; Shaw et al., 2003). 

Previous ADHD research implicates the important role of executive function (EF) 

processes (Barkley, 1997; Sergeant, 2000; Sonuga-Barke, 2002), with strong observed 

links between EF deficits and academic (Biederman et al., 2004; Blair & Razza, 2007; 

Clark et al., 2010) and social difficulties (Hill, 2004; Riggs et al., 2006).  Machine 

learning techniques can leverage these important measures as a means to help identify 

1) the most important predictors critical for successful classification of ADHD, and 2) 

provide objective measures of the relative clinical utility of target predictors.  To this end, 

the current study evaluated the predictive utility of EF measures in three categories, 

namely parent/teacher ratings of EF, behavioral performance in EF tasks, and neural 

measures of cortical thickness in brain regions that support EF in a sample of 162 

children between ages 4-7 (mean age 5.5 years). 

An important advantage of multivariate modeling approaches in cognitive and 

translational neuroscience research has been their ability to combine information from 

data in a distributed fashion. As opposed to traditional univariate approaches, where 
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data (such as signal intensity from functional MRI) are averaged over a specific region 

of interest (ROI), and compared to the mean signal in another ROI to assess potential 

differences in magnitude of neural activation, multivariate approaches use data from 

distributed patterns of a neural measure (e.g., brain activity or anatomical properties of 

the brain), and apply computational models to the data that extend beyond conducting 

statistical analyses on averages [for reviews see (Davis & Poldrack, 2013; Haxby, 2012; 

Haxby et al., 2001; Norman et al., 2006; Yang et al., 2012)]. While computationally more 

challenging, this latter approach enables researchers to answer key questions regarding 

mental representations (e.g., what type of information is represented in different brain 

regions and at different stages of cognitive processing)  in cognitive neuroscience 

research  (Haxby et al., 2001; Kuhl et al., 2011; Liang et al., 2013; Norman et al., 2006; 

Oztekin & Badre, 2011; Polyn et al., 2005)], and provides unique opportunities for 

clinical diagnosis and prediction of disorder or symptom severity, as well as behavioral 

outcomes associated with specific disorders. Despite this promising potential for such 

computational, multivariate approaches to advance translational neuroscience, 

significant challenges and pitfalls have prevented the development of generalizable 

methods and approaches that can be applied in clinical settings [see (Arbabshirani et 

al., 2017; Kassraian-Fard et al., 2016; Varoquaux, 2018; Varoquaux et al., 2017; Woo et 

al., 2017)].  

One commonly recognized obstacle is small sample size, which leads to 

overfitting. Overfitting refers to the modeling of noise in the data rather than the 

underlying pattern of interest, which results in good performance on the training data, 

but poor performance on previously unseen data. Accordingly, overfitting is a major 
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obstacle in generating a valid predictive model that can produce generalizable results 

for clinical diagnosis, and which can be used across a variety of clinical settings 

(Arbabshirani et al., 2017; Foster et al., 2014; Kassraian-Fard et al., 2016; Pulini et al., 

2019; Varoquaux, 2018; Varoquaux et al., 2017; Woo et al., 2017). Indeed, most 

neuroscience studies suffer from small sample sizes (Arbabshirani et al., 2017; Foster 

et al., 2014; Kassraian-Fard et al., 2016; Pulini et al., 2019; Varoquaux, 2018). Notably, 

the current investigation leveraged a data set with a larger sample size (162 

participants) that provided a unique opportunity to leverage predictive modeling that 

utilized a machine learning approach. 

Another salient pitfall centers around the selection of features in the model. Two 

important factors stand out with respect to this obstacle (Arbabshirani et al., 2017; 

Foster et al., 2014; Woo et al., 2017). The first is unbiased feature selection. In their 

critical review of predictive modeling approaches for clinical diagnosis, Arbabshirani et 

al. (Arbabshirani et al., 2017) and Woo et al. (Woo et al., 2017) point out that it is 

common for predictive modeling studies to use a group analysis over the whole dataset 

to select appropriate features for the classifier. This, however, constitutes “double 

dipping” and produces biased results. In our approach, our feature selection was 

performed a priori, based on the ADHD literature that highlights the importance of 

executive function for ADHD, and prior research on the neurobiology of executive 

function. The second obstacle is the need for theoretical motivation for selection of 

features. In addition to selecting features in an unbiased manner, several critique 

articles (Foster et al., 2014; Kassraian-Fard et al., 2016; Woo et al., 2017) have put 

forth the importance of theoretical relevance of the features in the model, especially in 
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the context of clinical diagnosis. Accordingly, in the current investigation, we limited our 

features to those that are theoretically relevant, namely the cognitive and 

neurobiological measures of executive function. 

 

Current Study 

The ADHD Heterogeneity of Executive Function and Emotion Regulation Across 

Development (AHEAD) study aims to characterize the heterogeneity of well-established 

predictors of ADHD among young children (ages 4-to-7, mean age 5.5 years) across 

multiple levels of analysis. It thus uniquely provides multiple measures of executive 

function, which we focus in the current investigation, at both behavioral/cognitive and 

neural levels at an age-range where early diagnosis of ADHD is critically important. 

Notably, several research groups have previously applied machine learning to better 

characterize the heterogeneity of the behavioral profile in ADHD [for instance see 

(Karalunas et al., 2019; Qureshi et al., 2016)]. However, to date, none of the attempts 

have been adapted for clinical diagnosis in children with early diagnosis—i.e., in the 

pre-K age range during which initial contact with educators and clinicians typically 

occurs. Our AHEAD study provides a unique data set with the potential for a significant 

contribution in this domain. The AHEAD study is among the first to scan children with 

ADHD as young as 4–7 years. The age range in existing studies is usually 9 or older, 

with only a few studies sampling an age range of 7 and above (Fair et al., 2012; 

Karalunas et al., 2014; Karalunas et al., 2019; Qureshi et al., 2017). Given that early 

diagnosis of ADHD is critical, the current investigation provides a unique opportunity to 

assess whether predicting ADHD from scans is feasible in this age range. 
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Executive Function and ADHD. Importantly, previous research points to the 

critical role of executive function (EF) processes in ADHD (Barkley, 1997; Sergeant, 

2000; Sonuga-Barke, 2002). Crucially, a strong relationship has been noted between 

EF deficits and academic (Biederman et al., 2004; Blair & Razza, 2007; Clark et al., 

2010), as well as social difficulties (Hill, 2004; Riggs et al., 2006). With respect to the 

neurobiological markers that support EF, previous research notes the functional 

interactions among lateral frontal, inferior frontal/insular (Aron et al., 2004), medial 

frontal/anterior cingulate/pre-SMA (Aron et al., 2004; Bunge & Wright, 2007; Fedota et 

al., 2014; Miller & Cohen, 2001; Rushworth et al., 2005), lateral parietal (Corbetta & 

Shulman, 2002), and dorsal striatal (Morein-Zamir & Robbins, 2015) regions of the brain 

(Hart et al., 2014). Accordingly, our machine learning approach in this investigation 

exclusively focuses on the cognitive behavioral and neural measures of executive 

function, with the primary goal of assessing the utility of predicting ADHD diagnostic 

category from the target measures of executive function.  Within this overarching goal, 

we pursued two aims: 1) to evaluate the predictive value of behavioral and neural 

correlates of executive function, and 2) to determine the relative importance of each 

measure in predicting ADHD diagnostic category. Given the implicated importance of 

executive function in ADHD, we hypothesized that our models can successfully predict 

ADHD diagnostic category.  

 

MATERIALS AND METHODS 

Participants and Recruitment 

Children and their caregivers were recruited from local schools and mental health 

agencies via brochures, radio and newspaper ads, and open houses/parent workshops. 
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Legal guardians contacted the clinic and were directed to the study staff for screening 

questions to determine eligibility. For the ADHD sample, if the parent (1) endorsed 

clinically significant levels of ADHD symptoms (six or more symptoms of either 

Inattention or Hyperactivity/Impulsivity according to the DSM-5 OR a previous diagnosis 

of ADHD), (2) indicated that the child is currently displaying clinically significant 

academic, behavioral, or social impairments as measured by a score of 3 or higher on a 

seven-point impairment rating scale (Fabiano et al., 2006), and (3) were not taking any 

psychotropic medication, the parent and child were invited to participate in an 

assessment to determine study eligibility. For the typically developing sample, if the 

parent (1) endorsed less than 4 ADHD symptoms (across either Inattention or 

Hyperactivity/Impulsivity according to the DSM-5), (2) less than 4 Oppositional Defiant 

Disorder (ODD) symptoms, and (3) indicated no clinically significant impairment (score 

below 3 on the impairment rating scale), the parent and child were invited to participate 

in an assessment to determine study eligibility. Participants were also required to be 

enrolled in school during the previous year, have an estimated IQ of 70 or higher, have 

no confirmed history of an Autism Spectrum Disorder, and be able to attend an 8-week 

summer treatment program prior to the start of the next school year (ADHD groups 

only).   

During intake, ADHD diagnosis (and comorbid disruptive behavior disorders) was 

assessed through a combination of parent structured interview (Computerized-

Diagnostic Interview Schedule for Children (Shaffer et al., 2000) and parent and teacher 

ratings of symptoms and impairment (Disruptive Behavior Disorders Rating Scale, 

Impairment Rating Scale (Fabiano et al., 2006) as is recommended practice (Pelham et 
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al., 2005). Dual Ph.D. level clinician review was used to determine diagnosis and 

eligibility. The final sample included 162 children (87 with ADHD, and 75 healthy 

developing controls). Among the participants with ADHD, 61 (70%) had comorbid ODD 

diagnosis. Parental consent and assent was obtained in accordance with the Office of 

Research Integrity at Florida International University. 

 

Measures of Executive Function (EF) 

1. Parent/Teacher Ratings of EF. We utilized the Emergent Metacognition Index 

(MCI) t-score from the Behavior Rating Inventory of Executive Function (BRIEF, BRIEF-

P, Gioia, Espy & Isquith, 2003) for our measure of parent and teacher ratings of 

executive function. The MCI is thought to reflect the ability to maintain information 

and/or activities in working memory, as well as to plan and organize problem-solving 

approaches. In the BRIEF Preschool, The MCI is composed of the Working Memory 

and Plan/Organize scales. In the BRIEF Child, the MCI is composed of the Initiate, 

Working Memory, Plan/Organize, Organization of Materials, and Monitor scales.  In our 

sample, BRIEF-P was completed for 115 of our participants (ages 4-5; Chronbach’s 

alpha for MCI .976 for BRIEF-P Teacher and .970 for BRIEF-P Parent), and BRIEF 

Child was completed for 47 of our participants (ages 6-7; Chronbach’s alpha for MCI 

.724 for Teacher and .978 for Parent).  

2. Behavioral/Cognitive Measures of EF. Our dataset allowed us to evaluate 

performance in three tasks that measure executive function:  

i). The Flanker Task. The Flanker Task of Inhibitory Control and Attention is part of the 

EF assessments utilized in the NIH Toolbox- Cognition battery 
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(http://www.nihtoolbox.org). This task measures the participant’s responses under 

conditions where the surrounding stimuli and target are either congruent or incongruent.  

ii). The Dimensional Change Card Sorting Task (DCCS). The DCCS is also part of the 

Cognition battery of the NIH Toolbox. Participants sort objects by color or shape. 

Both the Flanker and DCCS tasks have been validated with children as young as age 3 

(Zelazo et al., 2013).  

iii). Head-Toes-Knees-Shoulders (HTKS) Task. HTKS (Cameron Ponitz et al., 2008) is a 

brief and widely-used task with young children ages 4-7 that assesses multiple aspects 

of EF. This task implements pairings of behavioral rules: “touch your head” and “touch 

your toes”, “touch your shoulders” and “touch your knees”. The children first respond 

naturally, and then are asked to switch the rules by responding in the opposite manner. 

Graziano and colleagues (Graziano et al., 2015) have previously established the 

ecological validity of this task in young children with ADHD.   

3. Neurobiological Measures.  

All imaging was performed using a research-dedicated 3 Tesla 

Siemens MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil located on 

the university campus. Children first completed a preparatory phase using realistic mock 

scanner in the room across the hall from the magnet. Here they were trained to 

stay still, and were also acclimated to the enclosed space of the magnet, the back 

projection visual presentation system, and to the scanner noises (in this case, 

presented with headphones). When they were properly trained and acclimated, they 

were moved to the magnet. In the magnet, during the structural scans, children watched 
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a child-friendly movie of their choice. Ear protection was used, and sound was 

presented through MRI compatible headphones.  

Structural MRI scans were collected using a 3D T1-weighted sequence (axial; 1 x 

1 x 1 mm) with prospective motion correction (Siemens vNAV; Tisdall et al., 2012), 

according to the Adolescent Brain and Cognitive Development (ABCD) protocol (Hagler 

et al., 2019). Cortical thickness measures were extracted in target regions that support 

executive function. To provide a semi-automated parcellation of the cerebral cortices 

and volume of subcortical structures, we constructed two-dimensional surface 

renderings of each participant's brain using FreeSurfer (Dale et al., 1999; Fischl & Dale, 

2000). We computed cortical thickness as part of the standard FreeSurfer 

reconstruction pipeline (Rohde et al., 2004), as this has been shown to have high 

correspondence to histological measurements of cortical thickness (Yeh et al., 2010). 

Quality Control of Magnetic Resonance Imaging Scans 

 Movement artifacts in T1-weighted MRI scans are common, especially in 

pediatric populations in this age range, and especially in children with ADHD. 

Fortunately, FreeSurfer is robust to movement-related artifacts, as, except in extreme 

cases, the program is able to accurately identify intensity differences between white 

matter and grey matter inherent in the T1-weighted image. In some cases, however, 

manual intervention is necessary. In this manual intervention, each individual MRI scan 

is inspected, and in cases where the program does not adequately identify the 

appropriate regional boundaries, manual edits are employed. We also visually rated 

each T1-weighted image on a seven-point scale ranging from “Poor = 1” to “Excellent = 

4”, with allowances for half-points (e.g., 3.5). Scans for both groups were generally 
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rated “Very Good” to “Excellent”, with an average of 3.61 for the ADHD group, and 3.54 

for the typical control group. There were no significant group differences for the quality 

of the scans, t(145.46) = -0.72, p = 0.47. 

Machine Learning Approach 

Features. Following the strong link between ADHD and executive function 

observed in prior research, our features constitute parent/teacher ratings of executive 

function (the Emergent Metacognition Composite score from BRIEF), performance in 

the three tasks that measure executive function (Flanker task, Dimensional Card Sorting 

task, HTKS task), and cortical thickness measures in the subregions of the frontal 

(superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus- pars opercular, 

inferior frontal gyrus- pars triangularis, inferior frontal gyrus- pars orbitalis, insula, 

anterior cingulate, middle-anterior cingulate, middle-posterior cingulate, rectus) and 

parietal (superior parietal lobule, intraparietal and transverse parietal sulci, angular 

gyrus, supramarginal gyrus, and precuneus) cortices in both hemispheres. In addition to 

our target features, we also evaluated two demographic features, namely age and 

gender.  

Model Construction and Assessment. We employed the scikit-learn (https://scikit-

learn.org/stable/) open source machine learning platform for constructing our models. In 

order to evaluate feature importance from classifier coefficients, we adapted a Support 

Vector Machine classifier with a linear kernel. For model validation, we leveraged the 

built-in cross-validation function of the scikit-learn library. Performance was then 

evaluated with the commonly employed accuracy scores, as well as F1 scores obtained 

across the cross-validation indices for each model. F1 scores are a classification 
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performance metric that is calculated based on the precision (p) and recall (r), 𝐹1 = !"#
"$#

. 

Following the recommended practice in the field, our primary assessment of statistical 

significance employed permutation tests (Combrisson & Jerbi, 2015; Noirhomme et al., 

2014; Pereira et al., 2009). 5000 permutations were employed for each evaluated 

model. Along with permutation tests, we also report two baseline accuracy levels (see 

Table 1) as additional benchmark comparisons, namely the baseline for ADHD in our 

current sample, and the baseline for ADHD in the population. Our dataset consists of 87 

participants with ADHD, and 75 typically developing (TD) children. Accordingly, the 

baseline for the present data set is .537. The population baseline, derived from the 

pooled worldwide prevalence of ADHD among children (Wolraich et al., 2019) is .072. 

 

RESULTS 

Below we assess our target measures and their predictive utility for ADHD 

classification. Our analytic plan follows a two-step approach to determine model 

performance and relative predictive utility of our target features: 1) Feature Elimination. 

To this end, we ran multiple models and compared the performance metrics across the 

models. This approach pursued four categories of models, i) a model including the 

demographics features (age and gender), ii) a model including the parent/teacher 

ratings of EF (Emergent Metacognition Composite t-score from BRIEF), iii) a model 

including the behavioral/cognitive measures of EF (including scores from HTKS, Flanker 

and Dimensional Card Sorting tasks), and iv)  neural models assessing cortical 

thickness measures in our target regions for EF. 2) Feature Importance Rankings. 

Within each model, we were able to further assess the relative importance of our 
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features for predicting diagnostic category. We utilized the coefficients of our linear SVM 

classifier as an index for the relative importance across our features within each model. 

 

Predicting ADHD diagnostic category 

For each model, a Support Vector Machine classifier with a linear kernel was 

trained to distinguish the two diagnostic categories (ADHD diagnosis absent, ADHD 

diagnosis present) using the target features. We scaled our features using the 

MinMaxScaler function built in the sci-kit machine learning library. To evaluate the 

performance of our models, we conducted cross validation across five indices (k-folds). 

Adapting five-folds follows the recommendation of Varoquax and colleagues 

(Varoquaux, 2018; Varoquaux et al., 2017), whose work suggested random splits with 

20% data yield the best cross validation results in machine learning applications in 

neuroscience research. 

 To evaluate feature importance rankings, we leveraged the magnitude of 

classifier coefficients across the target features in the model. Weights obtained from the 

resultant classifier coefficients of linear SVM classifiers can be utilized to infer feature 

importance rakings within the assessed model. Thus, the average classifier coefficients 

across the five cross-validation indices provided an index for the feature importance 

rankings for each model evaluated. Figure 1 illustrates the feature importance rankings 

and classifier performance across the four sets of models, described in more detail 

below. 

Model 1: Demographics. The demographics model included two features, age 

and gender. Across the five cross-validation indices, this model yielded an average 
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accuracy of .574 (p < .047), with gender yielding classifier coefficients of higher 

magnitude than age (see Figure 1). 

Model 2: Parent and Teacher Ratings of Executive Function. Our second model 

included the Emergent Metacognition Index t-scores from the BRIEF parent and BRIEF 

teacher ratings. This model achieved an average accuracy score of .926 (p < .001), with 

the teacher ratings yielding higher classifier coefficients compared to parent ratings 

(Figure 1). 

Model 3: Behavioral/Cognitive Measures of Executive Function. Our EF tasks 

included the DCCS, the Flanker task, and the Head-toes Knees-Shoulder Task (HTKS). 

This model leveraged the behavioral performance across the three tasks in order to 

distinguish ADHD diagnostic category. This model achieved an average accuracy score 

of .667 (p < .001), with the HTKS and Flanker tasks yielding classifier coefficients of 

greater magnitude than the DCCS task. 

Model 4: Neural Measures of Cortical Thickness. Our next set of models 

explored our neural measures of cortical thickness in target regions that support 

executive function. We first ran a model including cortical thickness measures in both 

hemispheres of the brain. Figure 1 depicts classifier performance (average accuracy 

.612, p < .016), and coefficients for the top 10 features in this model. We next ran two 

models that contained features from the left and right hemispheres respectively. The 

model assessing cortical thickness measures from the left hemisphere yielded an 

average accuracy of .612 (p < .01), while the model evaluating cortical thickness 

measures from the right hemispheres achieved an accuracy of.50 (p > .64). 

Accordingly, our current investigation points to the more pronounced importance of the 
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left hemisphere in predicting diagnostic category. In the left hemisphere, the regions 

yielding the top three classifier coefficients were the anterior cingulate, the intraparietal 

transverse sulcus, and the superior frontal gyrus (Figure 1). 

Model 5: Full Model.  Among the four sets of models evaluated, our analyses 

implicate the BRIEF Emergent Metacognition ratings (with teacher ratings ranking 

higher than the parent ratings in predicting diagnostic category) to be the most 

important sets of features. This model achieved .926 accuracy. We next evaluated 

whether the classifier’s performance could be further improved by including additional 

features from our target measures. This full model included the demographics, the 

parent/teacher ratings of MCI, cognitive measures of EF, and cortical thickness in the 

left anterior cingulate, the left intraparietal transverse sulcus and the left superior frontal 

gyrus. Across the five cross-validation indices, this full model achieved an average 

accuracy of .944 (p < .001). Table 1 summarizes the performance metrics across the 

models. 

In summary, our computational modeling approach implicates the Emergent 

Metacognition scores from the BRIEF assessment to be the most important target 

measure. More specifically, the teacher ratings were identified to be the most important 

feature. In our current set of findings, the two BRIEF ratings alone achieved an 

accuracy of .926. Adding additional features that included demographics, performance 

in EF tasks and neural measures of cortical thickness in regions identified to be 

important in predicting ADHD diagnostic category increased the classifier’s performance 

to .944. Thus, when considering different types of variables (e.g., demographics, 

parent/teacher ratings of EF, behavioral measures of EF, and neural measures of 
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cortical thickness in regions that support EF) and their relative importance for 

classification of diagnostic category, our current set of analyses point to the critical 

importance of teacher ratings of executive function for classification of ADHD diagnostic 

category. 

 

High comorbid ODD in the ADHD sample 

Recall that our ADHD sample has high (70%) comorbid ODD. As such, one 

concern that could potentially limit the implications of our results is that the high 

prevalence of ODD might have contributed to the differentiation of diagnostic category 

in our models. Unfortunately, due to the low sample size of participants with only ADHD 

diagnosis (n = 26), it was not methodologically feasible/sound to run our models to 

distinguish the 3 diagnostic categories (i.e. 1- ADHD diagnosis absent, 2- only ADHD 

diagnosis present, and 3- ADHD + ODD diagnosis present). To assess the potential 

impact/change in the performance of our models reported above, we repeated our 

analyses by excluding the 26 participants with only ADHD diagnosis. Thus, we trained 

our classifiers to distinguish ADHD diagnostic category across our typically developing 

sample and children with ADHD+ODD diagnosis. This set of models yielded similar 

results [accuracy = .918 , p < .001 for parent/teacher ratings of EF, accuracy = .711 , p 

< .001 for cognitive EF tasks, accuracy = .607 , p < .045 for the neural measures of 

cortical thickness], except for the demographics model [accuracy = .511 p >  .85] which 

was no longer significant. 

We once again acknowledge that the most ideal approach to eliminate this 

potential confound would be to run models trained to distinguish the three diagnostic 
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categories. Unfortunately, in our current data set, this was not possible due to the low 

number of participants in the ADHD-only category. Future work utilizing larger samples 

will be fundamental in thoroughly addressing comorbid ODD within the ADHD sample. 

 

DISCUSSION 

 

Given the negative trajectories of early behavior problems associated with 

ADHD, as well as its high public health cost, early diagnosis of ADHD is critical to 

enable early intervention and treatment. The current investigation aimed to evaluate the 

feasibility of predictive modeling using cognitive, behavioral and neurobiological 

measures of executive function for categorical classification of ADHD in young children. 

Notably, the current set of findings are the first to employ this approach in Pre-K 

children. The AHEAD study is among the first to scan children with ADHD as young as 

4–7 years (mean age 5.5 years) with a good sample size (n > 160). Given that early 

diagnosis of ADHD is critical, the current study provides a unique opportunity to assess 

whether predicting ADHD from scans is feasible in this age range.  

 Results from our machine learning models indicated that the full model including 

features from all sets of target features yielded a .944 performance in predicting 

diagnostic category. Crucially, most of this high performance is accounted by the 

parent/teacher BRIEF Emergent Metacognition Index scores, which alone achieved a 

performance of .926. These findings implicate the critical importance of this measure in 

predicting diagnostic category, and this has implications for clinical diagnosis. Thus, the 

current set of results suggest that the rating scales are enough to distinguish the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.257600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

presence or absence of ADHD, and that more expensive and extensive behavioral and 

neural testing might not be necessary. In particular, our models identified the teacher 

ratings to be most diagnostic in predicting diagnostic category, further suggesting that 

the functional impairments pertaining to executive function processes experienced in 

school can be clearly differentiated among children with ADHD from their typically 

developing peers.  

 From one perspective, it is not surprising that parent-teacher ratings on one 

assessment (i.e., BRIEF) are good at predicting diagnostic category that is itself 

predicated, in part, on parent-teacher ratings on another assessment (e,g., DBD rating 

scale). Thus, for simple categorical diagnosis, collection of additional measures does 

not provide substantial improvement in the detection of ADHD. This is important 

because this study addresses some of the critical questions raised by the American 

Academy of Pediatrics Subcommittee on Children and Adolescents with ADHD. In their 

recent Clinical Practice Guideline (Wolraich et al., 2019, p. 3) asked 1) what is the 

comparative diagnostic accuracy of approaches that can be used in the primary care 

practice setting or by specialists to diagnose ADHD among children younger than 7 

years of age?; 2) what is the comparative diagnostic accuracy of EEG, imaging, or 

executive function approaches that can be used in the primary care practice setting or 

by specialists to diagnose ADHD among individuals aged 7 to their 18th birthday?; 3) 

are there more formal neuropsychological, imaging, or genetic tests that improve the 

diagnostic process? (Wolraich et al., 2019). Our results map on to the committee’s 

recommendations for young children in terms of the reliance on parent and teacher 

ratings scales for aiding clinicians in the diagnosis of ADHD.  Thus, while data from our 
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study shows that neurocognitive and imaging measures are not incrementally useful for 

simply detecting the presence or absence of ADHD, more research is needed to 

determine their utility as it relates to predicting more functional outcomes (e.g., 

academic/social impairments) as well as comorbid conditions.  

More specifically, the classifier coefficients in our models allowed us to further 

rank our target features in their relative importance for predicting ADHD diagnostic 

category. Among the executive functions measured, performance in the HTKS task 

yielded the highest coefficient in our current investigation, and the Flanker task was 

identified as more diagnostic than the DCCS. With respect to the neural measures, 

regions of the left hemisphere were more diagnostic compared to the regions in the right 

hemisphere of the brain. Among our target regions important for executive function, the 

top regions identified were the left anterior cingulate, the left superior frontal gyrus and 

the left intraparietal transverse sulcus. 

 Subparts of the cingulate cortex, including the anterior and middle-posterior 

cingulate cortex have been previously implicated in ADHD research (Rubia, 2018). This 

region has been previously associated with cognitive and impulse control, and a 

decreased connectivity between the anterior cingulate and the posterior parietal cortex 

in ADHD has been observed in prior research [see Vogt (2019) for a review]. Given its 

implication in executive function and previous ADHD research, it is not surprising that 

our classifier indicated this region as one of the top predictors among the cortical 

thickness measures evaluated in our study. 

The intraparietal sulcus is a very significant contributor to working memory 

(Chein et al., 2003; Cowan, 2016; Cowan et al., 2011; Oztekin et al., 2009; Smith & 
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Jonides, 1998; Xu & Chun, 2006), and working memory deficits have been commonly 

observed in previous ADHD research (Hammer et al., 2015; Karalunas et al., 2017; 

Palladino & Ferrari, 2013; Raiker et al., 2019; Raiker et al., 2012). Notably, this region 

has been previously implicated for its importance in supporting focus of attention during 

WM operations in healthy adults (Cowan et al., 2011; Oztekin et al., 2009). Given the 

widely-established deficits in working memory with ADHD, future research would benefit 

from a deeper investigation of the specific role of this region in potentially modulating 

ADHD related effects in working memory function. 

The superior frontal gyrus (SFG), located at the superior part of the prefrontal 

cortex is anteromedially connected to the anterior and mid-cingulate. The dorsolateral 

portion of the SFG is connected with the dorsolateral and ventrolateral prefrontal cortex, 

and the posterior portion of the SFG is part of the motor control network  (Li et al., 

2013). Therefore, it has connections to significant regions that modulate motor, 

cognitive control and executive function. In addition, it is part of a relatively recently 

identified fiber pathway, the frontal aslant tract (FAT). Recent work from our group (Dick 

et al., 2019; Garic et al., 2019) has implicated FAT to be an important potential 

moderator for ADHD related deficits in executive function. Our modeling results 

implicate SFG as a potential diagnostic region. Unfortunately, our current parcellation 

did not allow us to independently evaluate the subregion of SFG. We thus note that 

future research would benefit from a more focused assessment of this region.   

Directions for Future Research 

 The current set of findings were a first in exploring the utility of predictive 

modeling for ADHD classification in the young age-range of 4-7 years. As it relates to 
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neuroimaging, we explored cortical thickness measures which provided slightly more 

predictive power towards determining the presence of ADHD as simply knowing a 

child’s age and sex (.612 versus .574 accuracy). Thus, we acknowledge the lack of 

clinical utility of cortical thickness measures. Whether the inclusion of more structural, 

and diffusion-weighted-imaging (DWI) measures yields better clinical utility is a question 

for further research to examine. However, to date, no predictive modeling approach has 

evaluated DWI measures for classification of ADHD. Notably, most computational 

modeling and machine learning approaches in the existing literature have focused on 

functional MRI data (most commonly functional connectivity analysis of resting state 

data). Accordingly, a major criticism has been the issue of transportability (Foster et al., 

2014; Woo et al., 2017), and that the findings do not have the potential to generalize to 

or be easily applied in clinical settings. As such, the inclusion of DWI measures could 

potentially fill this important gap in the literature. 

Acknowledging that neuroimaging may yield only minimal clinical utility, there are 

still reasons to continue to pursue research within this domain.  First, a comprehensive 

modeling approach should be able to identify which neural measures are more 

diagnostic, and how they compare to non-neural measures, such as behavioral 

assessments of theoretically important constructs for ADHD, such as executive function. 

Second, the ability to derive the most diagnostic neural measures for ADHD 

classification can facilitate researchers to further investigate the direct link between 

these regions and the specificity of their functional outcomes are with respect to ADHD-

related impacts on the corresponding cognitive constructs. Complementary efforts that 

utilize and combine predictive modeling approaches with further assessments of the 
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implicated regions/neural measures in how they modulate ADHD-related functional 

outcomes can facilitate unique ways to define and understand this disorder, and may 

foster development of novel approaches to the classification and treatment of ADHD.   

Conclusion 

The AHEAD study is among the first to provide executive function measures for 

young children with ADHD (ages 4-7) at multiple levels of analysis. Providing a large 

sample size with complementary measures for both cognitive/behavioral and neural 

measures of executive function, the AHEAD study enabled the first assessment of the 

feasibility of predictive modeling and machine learning approaches in diagnosis of 

ADHD in Pre-K children. Our results suggest the critical importance of teacher ratings of 

executive function in predicting ADHD diagnostic category. Our models further allowed 

ranking of the importance of our target behavioral and neural measures of executive 

function. Among the three executive function tasks evaluated, feature importance 

rankings implicated performance in the HTKS to be the most diagnostic executive 

function measure. With respect to neural measures, our analyses focused on cortical 

thickness measures as the target neurobiological assessment.  While a more extensive 

evaluation of neural measures, such as diffusion-weighted imaging, may provide more 

information as it relates to the underlying cognitive deficits associated with ADHD, the 

current study indicates that commonly used cortical thickness measures of structural 

imaging, as well as commonly employed cognitive tasks measuring EF, might have little 

incremental value in differentiating typically developing children from those diagnosed 

with ADHD. While teacher ratings of EF are more cost effective and provided a strong 

prediction of diagnostic status, it is important to acknowledge some of the measurement 
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overlap in the EF items assessed in the BRIEF questionnaire and those present in the 

DSM-5 criteria for ADHD. Thus, it will be important for future work to not only focus on 

the utility of neural, neurocognitive, and behavioral measures of EF as it relates to 

diagnostic classification, but most importantly how they may predict children’s functional 

impairment in areas such as academic and social functioning.    
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Table 1. Model performance metrics across the four sets of target features.  

                                         Performance Metric                                  Model Evaluation 
   Models            Acc    F1 Macro    F1 ADHD   F1 TD          PT               CSB             PPB 
1. Demog. 
2. P/T Rat. 
3. EF Tasks 
4. Neural 

  .574         .551          .651         .452   
  .926         .925          .929         .921   
  .667         .666          .674         .658  
  .612         .608          .641         .575    

p < .047           .537             .072 
p < .001           .537             .072 
p < .001           .537             .072 
p < .016           .537             .072 

 
PT = Permutation Tests 
CSB = Baseline for ADHD in the current study 
PPB = Baseline for prevalence of ADHD in the population 
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Figure 1. Accuracy and feature importance rankings from the four sets of models (1-

demographics, 2-parent/teacher ratings of EF as measured by the Meta Cognition Index of the 

BRIEF assessment, 3- EF tasks, Dimensional Card Sorting. Flanker, and Head-Toes-Knees-

Shoulders tasks, 4- Neural Measures, namely cortical thickness measures (the top 10 most 

important regions are shown). 
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