
 1 

BART3D: Inferring transcriptional regulators associated with differential 

chromatin interactions from Hi-C data 

 

Zhenjia Wang1, Yifan Zhang1,2, Chongzhi Zang1,2,3* 

 

1 Center for Public Health Genomics, 2 Department of Biomedical Engineering, 3 Department of 

Public Health Sciences, and Department of Biochemistry and Molecular Biology, University of 

Virginia, Charlottesville, VA 22908, USA  

* To whom correspondence should be addressed: zang@virginia.edu 

 

ABSTRACT 

Identification of functional transcriptional regulators (TRs) associated with chromatin interactions 

is an important problem in studies of 3-dimensional genome organization and gene regulation. 

Direct inference of TR binding has been limited by the resolution of Hi-C data. Here, we present 

BART3D, a computational method for inferring TRs associated with genome-wide differential 

chromatin interactions by comparing two Hi-C maps, leveraging public ChIP-seq data for human 

and mouse. We demonstrate that BART3D can detect target TRs inducing chromatin 

architecture changes from dynamic Hi-C profiles with TR perturbation. BART3D can be a useful 

tool in 3D genome data analysis and functional genomics research. 
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INTRODUCTION 

The three-dimensional (3D) organization of eukaryotic genomes affects transcriptional gene 

regulation [1-3]. Although topologically associating domains (TADs) appear to be conserved 

across cell types at the level of cell populations [4-6], chromatin architecture is highly dynamic 

during development and cell differentiation [7,8], and can be disrupted in disease states [1]. 

Transcriptional regulators (TRs), including transcription factors and chromatin regulators, are 

required for the establishment and maintenance of chromosomal architecture [9-11]. 

Identification of functional TRs associated with chromatin dynamics can help unravel the spatial 

organization of the genome and the impact of 3D architecture on gene regulation. The 3D 

organization of the genome can be measured using chromosome conformation capture-based 

methods such as Hi-C [12] and in situ Hi-C [5]. Chromatin interaction events can be detected by 

inferring loop structures from signal enrichment in Hi-C contact maps [5,13]. However, limited by 

the restriction enzyme digestion and ligation procedure in experiments and highly dependent on 

the sequencing depth, the resolution of Hi-C maps is typically 104-105 bp, or can be as high as 

103 bp for ultra-deep in situ Hi-C [5]. It is still difficult to reach the sub-nucleosomal resolution of 

TR binding events (101-102 bp). HiChIP [14] and PLAC-seq [15] can reach higher resolution for 

easier association with TR binding but require additional experimental steps to use a 

preselected protein factor as an anchor, limiting the feasibility for an unbiased TR association 

analysis. A computational method to identify TR binding directly from lower-resolution Hi-C data 

is necessary for functional analysis of 3D genome data.  

 

Most computational methods for differential Hi-C data analysis, including diffHic [16], FIND [17], 

HiCcompare [18], and Selfish [19], focus on detecting changes in chromatin interaction events 

on the locus-to-locus level by comparing Hi-C data generated in two biological states. Few 

methods aim to generate a profile of differential interaction across the whole genome to 

associate with TR binding profiles. TR inference from collected genomic binding profiles is a 
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more powerful approach than conventional DNA sequence motif search [20-22]. We previously 

developed BART [20], an algorithm for inferring TRs whose binding profiles associate with a 

query genomic profile, leveraging over 13,000 human and mouse ChIP-seq datasets collected 

from the public domain. Here, we present BART3D, a new bioinformatics tool for 3D genome 

data analysis built upon the BART algorithm. BART3D integrates Hi-C maps with public ChIP-

seq data to infer TRs associated with genome-wide changes in chromatin interactions. 

 

RESULTS 

Overall design of BART3D 

Starting with two Hi-C-type 3D genome contact maps as input, BART3D first generates a 

genomic differential chromatin interaction (DCI) profile by comparing the two contact maps, then 

uses the BART algorithm [20] to identify transcriptional regulators (TRs) whose binding sites are 

associated with either increased or decreased chromatin interactions (Fig. 1). BART3D can 

accept three formats of unnormalized genomic contact maps as input: 1) raw count matrices 

from HiC-Pro [23], 2) .hic format files from Juicer [24], and 3) .cool format files [25]. The output 

is a ranked list of TRs with a series of statistical measurements. 

 

We employ an innovative approach to quantify the difference between two Hi-C contact 

matrices under different conditions, e.g., treatment and control. To account for the negative 

correlation between intra-chromosomal interaction frequency and genomic distance 

(Supplementary Fig. S1) [12] and to extract chromatin architecture information, we first 

normalize the contact matrix of each chromosome using a distance-based approach, where the 

read count in each bin pair is normalized by the average read count across all bin pairs at the 

same genomic distance (Supplementary Fig. S2). For any region in a chromosome, we consider 

the intra-chromosomal interactions between this region and its flanking regions within a certain 

genomic distance, e.g., 500 kb, quantified by an array of contact scores in a column/row of the 
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contact matrix, represented by the dashed, blue, 45-degree boxes in Fig. 1a. We assess the 

DCI for this region by comparing the arrays of contact scores from the two conditions, e.g., 

treatment and control (Fig. 1a). The DCI score is calculated as the paired t-test statistic between 

the two sets of contact scores: 

!"# =
%̅

'!/√*
 

where %̅ and '! are the mean and the standard deviation, respectively, of {%"}, . = 1,… , *, 

defined as the difference in contact scores between treatment and control, calculated by 

subtracting the paired elements from the two arrays, and n is the length of the contact score 

arrays. Positive or negative DCI scores represent increased or decreased chromatin 

interactions, respectively, from control to treatment. We generate a genome-wide DCI profile by 

scanning all chromosomes to calculate DCI scores for every non-overlapping bin across each 

chromosome (Fig. 1b).  

 

We then infer TRs whose genome-wide binding profiles are associated with the DCI profile 

derived from Hi-C contact matrices (Fig. 1c,d). We map the genomic DCI profile to the union 

DNaseI hypersensitive sites (UDHS), a curated dataset representing all putative cis-regulatory 

elements (CREs) in the genome [26], and generate a cis-regulatory profile in which the score for 

each candidate CRE is set to equal the DCI score of the genomic region in which the CRE is 

located. We use the BART algorithm [20] to infer TRs that preferentially bind at CREs with a 

high score, representing increased chromatin interactions. Then we flip the DCI profile and 

perform BART analysis again to infer TRs whose binding are associated with decreased 

chromatin interactions (Fig. 1e).  

 

Performance of distance-based normalization 
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We first evaluated the feasibility and performance of the distance-based normalization method 

used in BART3D. By targeting a specific factor of interest, HiChIP signals are enriched at the 

target-bound loci [14]. With appropriate normalization, the HiChIP target factor should be 

inferred from a static HiChIP dataset. Using this measure, we collected 84 HiChIP datasets 

targeting different TRs and tested how different normalization methods affect the inference of 

the HiChIP target factor. For each HiChIP dataset, we generated genomic contact maps at 5kb 

resolution without normalization, with ICE normalization [23], and with distance-based 

normalization. We then generated a genomic profile from each contact map, in which each 5kb 

bin across the genome is scored as the sum of interaction signals between this bin and all of its 

flanking bins within 500 kb. We used BART to infer TRs associated with this genomic interaction 

profile. As a control, we also ran BART analysis on the HiChIP sequence read pile-up profile 

and used the rank of the target factor as a reference. Overall, the distance-based normalization 

yielded high ranks of the HiChIP factors comparable to the HiChIP profile control, higher than 

either unnormalized or ICE normalized approaches (Fig. 2). This result indicates that the 

distance-based normalization is an optimal approach for quantifying Hi-C matrices for BART3D 

analysis. 

 

BART3D can identify perturbed TRs from dynamic Hi-C data 

To demonstrate the performance of BART3D, we calculated DCI profiles and inferred TRs for 

several published Hi-C experiments comparing wild type (WT) with DNA-associating factor 

knockout (KO) models in mouse cells. The KO targets include transcription factor Ctcf [27] and 

cohesin complex component Rad21 [28], known to function cooperatively to induce DNA 

looping and maintain TAD structures [29]; as well as Nr1d1 [30], and Smchd1 [31], both of 

which have repressive effects on transcriptional regulation and chromatin architecture. As 

expected, genomic regions containing binding sites of CTCF or RAD21 exhibit decreased 

chromatin interaction levels after KO (Fig. 3a,b), while those containing NR1D1 or SMCHD1 
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sites associate with increased chromatin interactions after KO in their corresponding samples 

(Fig. 3c,d). This result indicates that the DCI profile can connect perturbed protein binding sites 

with differential chromatin interaction. Indeed, the BART3D results show that the KO factors are 

always among the top-ranked TRs inferred to be associated with the corresponding decreased 

or increased chromatin interactions for all four cases (Fig. 4, labeled in red). These results show 

that BART3D can successfully infer TRs that induce chromatin interaction changes from Hi-C 

data. 

 

In addition to the KO factor itself, we also found other TRs highly ranked in the BART3D results 

from the KO/WT Hi-C comparisons (Fig. 4). For Ctcf or Rad21 KO (Fig. 4a,b), several top 

inferred TRs, including SMC1A, SMC3, and STAG1 are all components of the cohesin complex 

[32]. For Nr1d1 KO (Fig. 4c), other top-ranked TRs are either co-regulators (PPARA, HNF4A, 

and FOXA2) or a target (ARNTL) of NR1D1, which regulates metabolic and circadian pathways 

[33-36]. For Smchd1 KO (Fig. 4d), SUZ12, EZH2, BMI1, and RNF2 are all related to polycomb 

group (PcG) factors, which have been shown to interact with SMCHD1 [37] and have repressive 

effects on transcription and chromatin state. These results indicate that BART3D can help 

identify novel TRs with biological relevance by mining Hi-C data.  

 

DISCUSSION 

We developed BART3D for differential analysis of Hi-C data and to infer functional TRs 

associated with changes in chromatin interactions. BART3D overcomes the relatively low 

resolution of Hi-C data and connects chromatin interactions on the multi-kb to Mb level to cis-

regulatory events on the nucleosomal or base-pair level by accounting for statistical differences 

in Hi-C signals within a large distance range and using a predefined genomic CRE set. BART3D 

uses a distance-based normalization approach, which can remove cross-sample biases 

(Supplementary Fig. S2) and outperforms ICE normalization [23] in detecting local chromatin 
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interactions (Fig. 2). We use dynamic Hi-C datasets from TR KO experiments to show that 

BART3D can accurately infer TRs inducing chromatin architecture changes as well as other 

TRs with biological relevance.  

 

In the framework of BART3D, we assume that differential chromatin interaction is mainly caused 

by changes in genomic binding of transcriptional regulator proteins, which act primarily in cis. 

Other events that can also result in pattern changes on Hi-C maps such as structural variations 

in the genome are not considered in BART3D. Under this assumption, we focus on intra-

chromosomal interactions within a certain range of chromosomal distance and completely 

ignore inter-chromosomal interactions. The default genomic distance is set as 200 kb, but users 

can adjust this parameter in exploratory studies for optimizing discovery power, as different TRs 

may associate with chromatin interactions at different genomic ranges (Fig. 5). There are not 

many other tunable parameters. The bin size should be consistent with the Hi-C contact maps 

under interrogation and is restricted to the Hi-C data resolution. Replicates of Hi-C data are not 

accounted for in the DCI calculation but can be used to generate a background control for TR 

inference, i.e., TRs inferred from comparing replicates of Hi-C data from the same biological 

condition are likely due to technical variations and can be considered as false positive. Such 

TRs should be discarded if they also appear in results from cross-condition Hi-C comparisons. 

 

Although developed for Hi-C data analysis, BART3D can also be applied to other 3D-genome 

data, such as ChIA-PET [38], HiChIP [14], and PLAC-seq [15]. When analyzing HiChIP or 

PLAC-seq data using BART3D, one may notice that the ChIP factor tends to appear on the top 

of the inferred TR list. Because HiChIP/PLAC-seq signals are always enriched at genomic 

binding sites of the ChIP factor regardless of chromatin interaction changes, the inference of a 

ChIP factor and its known co-factors should be considered false positives and removed for 

result interpretation. We plan to account for this effect and develop an extended version for 
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analyzing HiChIP/PLAC-seq data in the future. In addition, TR inference in BART3D is limited to 

collected ChIP-seq data, which currently include 918 human TRs and 565 mouse TRs but still 

grow rapidly and require regular updates and maintenance. Nevertheless, BART3D provides a 

framework for accurate inference of TRs associated with differential chromatin interactions and 

has broad applications in making biologically meaningful inferences and generating hypotheses 

from 3D genome data. 

 

CONCLUSIONS 

In conclusion, our results demonstrate that BART3D can infer functional TRs associated with 

dynamic chromatin interactions from differential Hi-C data, despite the resolution of Hi-C data is 

lower than most TR binding patterns. BART3D is a useful tool for differential analysis of Hi-C 

data and can help provide biological insights from 3D genome profiles. 

 

METHODS 

Data collection 

Hi-C, HiChIP, and ChIP-seq data were collected from NCBI GEO [39] in fastq format. Detailed 

information including accession numbers of all samples used in this work can be found in 

Supplementary Tables S1-S3. 

 

Data processing 

Hi-C (Supplementary Table S1) and HiChIP (Supplementary Table S3) sequence reads were 

aligned to the human (hg38) or mouse (mm10) reference genomes and processed using HiC-

Pro [23]. Contact matrices were generated at a resolution of 5kb and normalized as described in 

Normalization of contact matrices. ChIP-seq (Supplementary Table S2) reads were aligned to 

the mouse reference genome (mm10) using BWA [40]. Sam files were then converted into bam 

files using samtools [41]. MACS2 [42] was used to call peaks under the FDR threshold of 0.05. 
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Normalization of contact matrices 

Given a Hi-C contact matrix 1 = {2"#}, the observed read count 2"# represents the interaction 

frequency between a pair of genomic bins . and 3. To account for the negative correlation 

between the intra-chromosomal interaction frequency and the genomic distance between the 

bin pair [12], we normalized the contact matrix of each chromosome as follows: for any given 

genomic distance %$ = 4 ∗ 6, where 6 is the bin size (data resolution), we employed a 

normalization factor 7̅!! as the average read count across all bin pairs with the same genomic 

distance %$ in this chromosome, i.e., 7!̅! = (∑ 2"##%"&$ )/*, where n is the total number of bin 

pairs with distance %$. The read count 2"# 	of the bin pair with distance %$ was normalized by 7!̅! 

as 2"#' =	2"# 7!̅!⁄ . The matrix 1 was normalized into 1′ = {2"#' } for each chromosome. 

 

Detection of differential chromatin interactions 

We denoted the normalized Hi-C contact matrices as > = {?"#} for the Treatment condition and 

" = {@"#} for the Control condition, respectively, and ℬ = {1, 2, … , ⌊D/6⌋} representing all equal-

sized non-overlapping bins within a chromosome, where D is the length of the chromosome and 

6 is the bin size. For a given genomic region F ∈ ℬ and a pre-defined range of genomic distance 

H, the interaction frequencies between F and its flanking regions with genomic distance up to H 

were collected, as #> = {?($}	from > and #" = 	 {@($} from ", respectively, where 4 ∈ ℬ, F − H/6 ≤

4 ≤ F + H/6. The differential chromatin interaction (DCI) score at F was calculated as the paired-

sample t-test statistic between the two arrays of interaction frequencies #> and	#" as follows:  

%($ =	 ?($ −	@($ , 

!"# =
%̅

'!/√*
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where %($ is the difference in interactions between each paired element in #> and	#"; %̅ and '! 

are the mean and standard deviation of {%($}, respectively; *	is the length of each array. Here 

we have * = 2H/6 + 1. 

 

Inference of TRs associated with differential chromatin interactions 

We used previously curated union DNaseI hypersensitive sites (UDHS), which include 

2,723,010 unique non-overlapping DNase-seq peaks for human and 1,529,448 for mouse, to 

represent all putative cis-regulatory elements (CREs) in the genome [26]. A genome-wide DCI 

profile was generated by calculating the DCI score of every bin across each chromosome. The 

DCI profile was mapped to UDHS such that the score for each candidate CRE is set to be equal 

to the DCI score of the genomic bin where the CRE is located. 

 

We used the BART algorithm to infer TRs associated with differential chromatin interactions 

[20]. The analysis was done twice, for inferring TRs associated with increased and decreased 

chromatin interactions separately. For increased chromatin interactions, we ranked all CREs 

decreasingly by their scores, i.e., CREs with high positive scores would be ranked at the front. 

We calculated an association score between the CRE profile and each TR binding profile for all 

ChIP-seq datasets. The association score is defined as the area under the ROC curve (AUC) 

using the DCI score on CRE as the predictor for TR binding, set as a binary value indicating 

whether the CRE is overlapped with a peak of that TR from the ChIP-seq dataset. To account 

for multiple ChIP-seq datasets for the same TR, the Wilcoxon rank-sum test was then applied to 

assess each TR's significance by comparing the association scores from all ChIP-seq data for 

this TR with those from all other ChIP-seq datasets, and a background model was used to 

detect the specificity of each TR. A series of quantification scores with statistical assessments 

were included for a final ranked list of inferred TRs. For decreased chromatin interactions, the 

CRE profile was flipped, so that the lowest DCI scores representing CREs the most decreased 
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chromatin interactions are ranked at the front, and the BART analysis was then performed in the 

same way. 

 

Determination of default genomic distance parameter  

Using different genomic distance range parameters might lead to different TR inference results, 

because the acting range of different TRs vary a lot. In practice, users may try different distance 

parameters for exploratory studies. To set an appropriate default value for this parameter, we 

applied BART3D on a series of Hi-C datasets (Supplementary Table S1) comparing the wide 

type with perturbation (deletion or activation) of different TRs using different genomic distance 

ranges, i.e., 50 kb, 100 kb, 200 kb, 500 kb, and 1Mb. We compared the rank of the perturbation 

target factor in the BART3D results across different genomic distance ranges, and found that 

200 kb is where most perturbation factors were ranked on top (Fig. 5). Therefore, we set 200 kb 

as the default value for the genomic distance range parameter. 

 

Availability of data and materials 

Implemented in Python, BART3D package with source code is freely available at 

https://github.com/zanglab/bart3d 
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Figure 1. BART3D workflow. BART3D takes as input two Hi-C contact matrices 
(Control and Treatment) (a), scans each chromosome to calculate the DCI score at 
every bin by comparing the interaction counts (blue dashed boxes at 45-degree 
angle) within a certain distance boundary (black horizontal dashed lines) between the 
two conditions (b), and derives a DCI profile (c). The BART algorithm is then applied 
to associate the DCI profile with a large collection of public TR ChIP-seq data (d) for 
TR inference analysis. BART3D output is two ranked lists of all TRs associated with 
increase or decrease of chromatin interactions (e).
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Figure 2. Comparison of different normalization methods.
(a) BART results of target TRs from 84 HiChIP datasets using different normalization 
methods. For distance-based normalized (labeled as “normalized”), unnormalized, and
ICE normalized, BART was applied to a genomic region profile scored by summarizing
the interaction frequencies of each 5kb bin to its flanking bins within 500kb. For the
HiChIP profile, BART was applied to the HiChIP sequence read bam file (as positive 
control). Relative rank represents the rank of the target TR divided by the total number 
of TRs in the BART library. Center line in the box represents median.
(b-d) Comparison of the relative ranks of target TRs in the BART results generated 
from distance-based normalization against other methods: (b) HiChIP profile, (c) 
unnormalized and (d) ICE normalization. Each dot represents a dataset from the 84 
HiChIP samples. More dots located below the diagonal line indicates that distance-
based normalization (y-axis) yields to higher rank in the BART result.
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Figure 3. DCI scores at binding sites of KO TRs show significant deviations 
from the genomic background.
(a-d) Cumulative distributions of DCI scores for genomic regions with (red) and 
without (black) binding sites of KO TRs, including Ctcf KO in cardiac myocytes (a), 
Rad21 KO in olfactory sensory neurons (b), Nr1d1 KO in liver cells (c), and Smchd1 
KO in neural stem cells (d), in mouse cell samples. DCI scores were calculated for 
each 5kb bin by comparing the normalized contact frequencies with its +/-500kb 
flanking regions. P-values were calculated by Wilcoxon rank-sum test.
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Figure 4. BART3D infers TRs that induce differential chromatin interactions 
from TR knockout Hi-C data.
(a-d) BART3D results focusing on decreased (a,b) or increased (c,d) chromatin 
interactions from differential Hi-C datasets in TR KO mouse samples: Ctcf KO in 
cardiac myocytes (a), Rad21 KO in olfactory sensory neurons (b), Nr1d1 KO in liver 
cells (c), and Smchd1 KO in neural stem cells (d). P-value scores were calculated 
from rank sum using the null hypothesis under the Irwin-Hall distribution. Top ranked 
TRs were labeled, and the KO TRs were marked in red. 
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Figure 5. BART3D results on dynamic Hi-C datasets with TR perturbation under 
different genomic distance settings. The data were separated for TRs associated 
with decreased (a) and increased (b) chromatin interactions. The 1 - relative rank of
the perturbed TR in BART3D results were shown for each dataset. Higher scores
correspond to higher ranked TRs.
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Supplementary Figure S1. Hi-C read count negatively correlates with genomic 
distance between bin pairs. Average read counts and percentage of zeros in all bin pairs

at the same genomic distance in two Hi-C datasets. (a) control: GSM2790405; (b) treatment:

GSM2790406.
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Supplementary Figure S2. Effect of normalization. MA plots of averaged interaction

frequency (x-axis) and differential chromatin interaction (DCI, y-axis) with unnormalized (a)

and normalized (b) Hi-C contact matrices between treatment (GSM2790406) and control

(GSM2790405).


