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A healthy voice is crucial for verbal communication and hence
in daily as well as professional life. The basis for a healthy voice
are the sound producing vocal folds in the larynx. A hallmark
of healthy vocal fold oscillation is the symmetric motion of the
left and right vocal fold. Clinically, videoendoscopy is applied
to assess the symmetry of the oscillation and evaluated subjec-
tively. High-speed videoendoscopy, an emerging method that
allows quantification of the vocal fold oscillation, is more com-
monly employed in research due to the amount of data and the
complex, semi-automatic analysis. In this study, we provide a
comprehensive evaluation of methods that detect fully automati-
cally the glottal midline. We use a biophysical model to simulate
different vocal fold oscillations, extended the openly available
BAGLS dataset using manual annotations, utilized both, sim-
ulations and annotated endoscopic images, to train deep neu-
ral networks at different stages of the analysis workflow, and
compared these to established computer vision algorithms. We
found that classical computer vision perform well on detecting
the glottal midline in glottis segmentation data, but are outper-
formed by deep neural networks on this task. We further sug-
gest GlottisNet, a multi-task neural architecture featuring the
simultaneous prediction of both, the opening between the vo-
cal folds and the symmetry axis, leading to a huge step forward
towards clinical applicability of quantitative, deep learning-
assisted laryngeal endoscopy, by fully automating segmentation
and midline detection.
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Introduction
Many effective, biological moving sequences are based on
symmetric processes, such as walking, running and the gen-
eration of voice. The latter is characterized by a passive,
symmetric oscillation of the two vocal folds in the larynx
(Fig. 1a,b). During healthy phonation, the vocal folds are
moving symetrically in regular cycles to the center towards
a thought midline where they are touching and then burst
outwards (Fig. 1c, Supplementary movie 1). Typical oscil-
lation frequencies are in the range of 80–250 Hz for normal,
adult speaking voice (1). If this symmetrical oscillation is
impaired, the affected are suffering from a weak, dysfunc-
tional voice (1). Disturbances in symmetry can be caused by
organic disorders, such as polyps or nodules. These can be
diagnosed easily by normal endoscopy. However, functional
disorders are not easily to diagnose properly as there are no
visible anatomical changes of the vocal folds. The gold stan-
dard of diagnosis, laryngeal stroboscopy, is also not able to
catch irregular oscillation patterns due to its underlying stro-
boscopic principle (2). High-speed videoendoscopy (HSV),
a promising tool to quantify the oscillation behavior on a sin-

gle cycle level, is theoretically able to determine the degree
of symmetry of the two vocal fold oscillation patterns (2, 3).
The glottal area is typically utilized as a proxy for vocal fold
oscillation (4–7) and is extracted from the endoscopy image
using various segmentation techniques (e.g. (8–10), as shown
in Fig. 1c). To assign a fraction of the glottal area to the left
or the right vocal fold, a symmetry axis, or midline, is defined
to split the glottal area in two areas (Fig. 1d). This midline
detection approach is commonly performed after segment-
ing the glottal area (11). The glottal area for the individual
vocal fold allows a sophisticated analysis of the vocal fold-
specific glottal area waveform (GAW), and the phonovibro-
gram (PVG), a two-dimensional representation of the oscil-
lation behavior and symmetry ((11, 12), see Fig. 1d).
As a symmetric vocal fold oscillation pattern is a hallmark of
healthy phonation. Previous studies used several methods to
define the glottal midline to describe the symmetry. Many
works set the glottal midline manually (13, 14), e.g. be-
tween the anterior commissure and the arytenoids (13). Re-
cently, the midline was automatically detected using linear
regression and interpolation techniques (15) or using princi-
pal component analysis (16) to describe vocal fold-specific
dynamics. Linear regression, however, potentially underes-
timates the midline slope, as it by definition only minimizes
only residuals in one direction. Phonovibrograms that rely
strongly on the midline computation originally use only the
top-most and bottom-most point, defined as posterior and an-
terior point, respectively, identified in the segmentation mask
when the glottis is maximally opened (11, 12). Despite the
fact that these methods were intensively validated on clinical
data, they were only compared to a manual, subjective label-
ing. A judgement on an objective ground-truth, e.g. using
well-defined synthetic data, would be advantageous. Addi-
tionally, if the glottis is not completely visible in the footage,
both methods are prone to under- or overestimate the glottal
midline. As these methods are based on glottis segmenta-
tions, the segmentation itself can have huge impact on the
midline prediction, and thus, the laryngeal dynamics inter-
pretation.
The symmetric oscillation of the vocal folds have already
been described in the first two mass model introduced in (17).
Lumped mass models have been shown to be able to model
asymmetric oscillation patterns (18–22) and can potentially
be used as a source to not only create single mass trajectories
as shown before, but also to generate time-variant synthetic
segmentation masks. With that, one is able to generate GAWs
with by design known properties, such as the glottal midline,
and posterior and anterior point. However, no such applica-
tions has been reported to our knowledge so far.
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Fig. 1. The glottal midline is crucial to compute clinically relevant dynamic left-right symmetry parameters. a) High-speed videoendoscopy examination setup, b) top view
onto the vocal folds during high-speed videoendoscopy c) a single HSV oscillation cycle from a healthy individual together with its corresponding glottis segmentation mask.
Note the symmetry to the yellow dashed midline. d) State-of-the-art workflow to determine the glottal midline. HSV footage gained from examination is first segmented and
converted to a glottal area waveform. On local maxima, the midline is predicted via the posterior (P) and anterior points (A). Using the midline, the GAW for each vocal fold
and the phonovibrogram (PVG) can be computed.

In this study, we explore which methods are able to predict
the glottal midline accurately in clinical and synthetic data.
We further compare which data source, endoscopic images
or segmentation masks are the best suited source for mid-
line estimation, and how classical computer vision techniques
compare to state-of-the-art deep neural networks. We found
that computer vision methods are competitive in predicting
the glottal midline in segmentation masks with deep neural
networks. Incorporating time information further improves
prediction accuracy in both, neural networks and computer
vision algorithms. We suggest a novel multi-task architec-
ture, that predicts both, glottal midline and glottis segmenta-
tion simultaneously in endoscopic footage.

Results
A biophysical model creates symmetric and asym-
metric time-variant segmentations. An objective perfor-
mance evaluation of any algorithm or neural network is,
for example, a comparison to ground-truth data. As this
is not unequivocally possible directly in endoscopic images
(see also later paragraphs), we investigated if we can utilize
lumped mass models that have previously been shown to ac-
curately model vocal fold oscillation physiology (17, 18, 23)
in order to generate high-quality, time-variant segmentation
masks. By design, the model defines a midline and thus,
a ground truth. We optimized a previously published, es-
tablished six mass model (6MM, (18)) and simplified it to
gain glottal area segmentation masks (Fig. 2a) and GAWs

(Fig. 2b). In contrast to the original model described in (18),
our adjusted model does not feature negligible movement in
the longitudinal direction (24, 25), resolves issues with the
damping formulations and has a corrected term for the dis-
tance of the masses (see Methods). Using our 6MM imple-
mentation, we are able to produce symmetric and asymmet-
ric oscillation patterns (Fig. 2b,c and Supplementary Movie
2) together with translational and rotational motion over time
to simulate examination motion artifacts. Additionally, we
introduced noisy pixels to the segmentation mask contour to
generate segmentation uncertainty. We created a synthetic
evaluation dataset featuring 2500 simulations with by design
known gottal midline allowing to objectively judge the per-
formance of methods that use segmentation masks to predict
the glottal midline.
To test algorithms on in vivo data, we used the Benchmark for
Automatic Glottis Segmentation (BAGLS) dataset (10). We
extended BAGLS by manually annotating the training and
the test dataset of single endoscopic images using anatomical
landmarks, such as anterior commissure and arytenoid carti-
lages (see Methods).

Computer vision methods accurately predict midline
in symmetric oscillations. In previous studies, the anterior
and posterior point is predicted from the segmentation masks
in each opening-closing cycle, where the glottis is maximally
opened (Fig. 3a), e.g. (12). Therefore, we first focused
on segmentation mask-based midline prediction methods fol-
lowing this approach. We evaluated classical computer vision
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Fig. 2. The six mass model (6MM). a) an example glottal area, split into left (dark gray) and right (light gray) using the glottal midline connecting posterior (P) and anterior (A)
point. The six movable masses (m1-m6) are arranged left and right from the glottal midline. The posterior point can be divided into two fixed masses (p1 and p2) inducing a
posterior gap, as seen in healthy female individuals (see also panel b), whereas the anterior point (a) is a fixed mass. b) Symmetric oscillation of the left and right masses
result in symmetric glottal area waveforms (GAWs) indicated in the same gray color as shown in panel a). Glottal area model output is shown for an example cycle. c) same
arrangement as in b), however, with an asymmetric oscillation pattern. Note the right vocal fold insufficiency leading to an always partially open glottis on the right side.

methods in this study, which do not rely on previous (learned)
knowledge in contrast to popular deep neural networks. We
found that orthogonal distance regression (ODR), principal
component analysis (PCA), Image Moments and Ellipse Fit-
ting are potentially able to predict the glottal midline (table 3
and Methods) and compared them to previously described
methods, i.e. top most and bottom most points (TB) and
linear regression (LR) as described in (15) and (12), respec-
tively. An overview of the computer vision algorithms and
their working principle is shown in Supplementary Fig. 1
and explicitly described in the Methods. Briefly, ODR fits a
linear equation by minimizing residuals in both dimensions,
in contrast to LR, where only residuals in one dimension are
minimized. PCA is converting the image space to a princi-
pal component space, where the first principal component is
along the highest variance and thus, approximates the mid-
line. Moments are a common principle in mathematics and
used in fields such as classical mechanics and statistical the-
ory, but have been applied intensively to the image processing
field since the 1960s (26, 27), and describe the midline using
the center of mass of the image and a direction vector. Last,
by fitting an ellipse to the glottal area outline, the major axis
can be interpreted as equivalent to the midline.

We analyzed the performance of the various algorithms in
terms of midline prediction accuracy and speed. We mea-
sured accuracy in two ways: first, the relative euclidean
distance, as measured by the mean absolute percentage er-
ror (MAPE), between prediction and the ground-truth pos-
terior and anterior point, and second, the mean intersection
over union (mIoU) for the left and right glottal area us-
ing the prediction and the corresponding ground truth (see
Methods and Supplementary Fig. 2). The use of both met-
rics is particularly important, because small MAPE scores

could have a tremendous effect on the resulting glottal areas,
whereas points that are moved along the midline can show
large MAPE scores, but still result in highly overlapping glot-
tal areas with the ground-truth.
We first tested all algorithms on a toy dataset consisting of an
ellipse as rough approximation of a segmented glottis rotated
by a defined angle to ensure correct implementation of each
algorithm and to determine the valid range of rotation angles
(Supplementary Fig. 3, Supplementary movie 3). Our data
suggests that TB and LR are prone to under- or overestimate
the midline of a perfect symmetric object, and that ODR,
PCA, Image Moments and Ellipse Fitting perfectly identify
the midline with almost zero relative distance (Supplemen-
tary Fig. 3b,c,d). Further, using this toy dataset, the mIoU
score for ODR, PCA, Image Moments and Ellipse Fitting is
always close to 1, whereas the mIoU score for TB and LR
varies tremendously (Supplementary Fig. 3e). Especially ro-
tation angles beyond ± 30° cause severe artifacts in TB and
LR (Supplementary Fig. 3b,c,e). The BAGLS dataset that
contains representative clinical data shows that typical rota-
tion angles as determined by rectifying the glottis using PCA
are ranging from -30 to +30 degrees (Supplementary Fig. 4)
and appear to be Gaussian distributed (6.98 ± 10.1 degrees).
The non-zero mean may be caused by the high prevalence of
right-handed examiners. Taken together, ee include TB and
LR in further analyses and apply a random rotation of [-30°,
30°] to our synthetic dataset for data augmentation purposes
and mimic a realistic clinical setting.
We calculated the GAWs from all 2500 simulations that were
generated by our 6MM and detected the local maxima in each
GAW (Fig. 3a). For each local maximum, the glottal mid-
line was predicted by each algorithm from the corresponding
segmentation mask (Fig. 3b). We found that all algorithms
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Fig. 3. Performance of computer vision algorithms. a) Evaluation procedure. GAWs are computed from 6MM simulations. Maxima were found and respective image frames
were analyzed by computer vision algorithms. b) Midline predictions of computer vision algorithms (red lines) compared to ground-truth (green) on exemplary 6MM data.
c) Cumulative mIoU scores across the synthetic dataset for all algorithms tested. The ideal curve is indicated as gray dashed line. d) Distribution of the mean absolute
percentage error (MAPE) for posterior (cyan) and anterior (green) point across the synthetic dataset for all algorithms tested. e) Computation time of new algorithms tested.
TB and LR required virtually no computation time.

are able to predict an accurate glottal midline in symmetric
cases as exemplary shown in Fig. 3b. However, especially in
the important asymmetric cases, these algorithms have prob-
lems in properly predicting the glottal midline (Supplemen-
tary Fig. 5), leading to low mIoU scores (Fig. 3c). Inter-
estingly, methods that are not equally accounting x and y,
i.e. TB and LR, are superior to other methods, such as ODR,
PCA, Image Moments and Ellipse Fitting (Fig. 3c). A similar
trend is visible in the MAPE scores (Fig. 3d), where TB has
lower scores, whereas the distributions of the other methods
are not differing from each other.
The computation time across algorithms is heterogeneous
(Fig. 3e). The TB and the LR algorithms are computed al-
most instantaneously (< 1 ms) and are therefore not repre-
sented in the Figure. PCA, Image Moments and Ellipse Fit-
ting are also highly efficient and their computation in most
cases takes less than 1 ms. On roughly 1% of the images,
however, PCA took longer than the very efficient Image Mo-
ments and Ellipse Fitting routines (2 ms and 1 ms) with a
maximum duration of 20 ms compared to 14 ms and 16 ms
for Image Moments and Ellipse Fitting, respectively. How-
ever, ODR was significantly slower and the algorithm took
229 ms on average to finish, but 7% of the images took more
than 500 ms to converge (Fig. 3c).
In summary, all methods are able to predict an accurate mid-
line in many cases, however, TB is outperforming the others
in terms of accuracy (Fig. 4c,d) and computational efficiency.
ODR has similar performance as PCA, Image Moments and
Ellipse Fitting, however, needs way longer to be computed,
suggesting that ODR is inferior.

Providing temporal context increases performance of
computer vision algorithms. The established approach of
using only the segmentation mask when the glottis is max-
imally opened, has the downside that the temporal context
and hence, important oscillation behavior is lost. Together
with the underlying principles of PCA, Image Moments, El-
lipse Fitting and ODR, a symmetric distribution of the data
is assumed. We therefore evaluated the computer vision al-
gorithms on images that not only contain the segmentation
mask of the maximum opened glottis, but also prior and
succeeding frames (Fig. 4a, left panel). By using different
ranges, the real midline, i.e. oscillation center, is also visu-
ally more apparent and easier to determine compared to a sin-
gle frame (compare different ranges in Fig. 4a, right panel).
When using a range of up to 21 frames (ten frames on each
side of the peak and the frame containing the peak), the cu-
mulative mIoU scores improved across all methods, except
TB (Fig. 4b). Interestingly, Image Moments is slightly bet-
ter than the other methods in terms of median mIoU scores
when considering a total of 7, 11 and 21 frames (Fig. 4b,
Fig. 4d). All methods are further able to accurately predict
the anterior point (Fig. 4c, median MAPE = 0.042, 0.048,
0.045, 0.044, 0.043 and 0.042 for TB, LR, ODR, PCA, Im-
age Moments and Ellipse Fitting, respectively), in contrast
to the single frame prediction (Fig. 3d). However, the pos-
terior point is still best predicted by the TB method (me-
dian MAPE=0.039), and worse, but similar predicted by the
other methods (median MAPE=0.072, 0.082, 0.082, 0.069
and 0.0.080 for LR, ODR, PCA, Image Moments and Ellipse
Fitting, respectively).
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In summary, a single frame is sufficient for the TB method to
outperform other algorithms in terms of mIoU. However, by
providing temporal context, i.e. more frames (> 7), to the al-
gorithms, they reach similar performance (LR, ODR, PCA,
Ellipse Fitting) or are even outperforming the TB method
(Image Moments).

Deep neural networks outperform classical methods
on asymmetric oscillations. We next investigated how
deep neural networks compare to classical methods. We
evaluated several state-of-the-art architectures that have been
used for feature extraction and are established in the field.
In particular, we evaluated the ResNet (28), Xception (29),
InceptionV3 (30), NasNet (31), EfficientNet (32), Mo-
bileNetV2 (33) and VGG19 (34) architectures (overview ta-
ble 1. Additionally, we tested the U-Net encoder (35). The
rationale for using the U-Net encoder is that the U-Net itself
has been shown to perform well on glottis segmentation tasks
(36). We found that we could optimize the filter structure in
the U-Net encoder to gain a lean and fast, yet high performing
model (MidlineNet, see Methods) that we additionally evalu-
ate in this study.
We first tested how neural networks perform on the same
two tasks (single or multiple frames combined in one im-
age, Fig. 5a, upper panel). Using only the frame of the
GAW maximum, we found that there are apparent perfor-
mance differences across architectures (overview of all archi-
tectures in Supplementary Fig. 6). Consistently, the VGG19
architecture resulted in the worst median mIoU score (0.691,
Fig. 5b and table 1), followed by NasNet-Mobile (0.804) and
InceptionV3 (0.812). As shown in Fig. 5b,c and table 1,
MidlineNet, MobileNetV2, U-Net encoder, EfficientNetB0
and the Xception architecture are outperforming classical
computer vision methods operating on a single frame. The
ResNet-50 architecture is also outperforming computer vi-
sion methods, however, due to the large parameter space and
similar performance as the MidlineNet architecture (Fig. 5h),
we decided not to follow up on this architecture. We found
similar results for the MAPE metric, where almost all ar-
chitectures expect VGG19 and NasNet-Mobile outperformed
the best computer vision method (Supplementary Fig. 7a,b).
We next investigated if the top performing neural networks
further increase their performance when also providing adja-
cent frames similar to Fig. 4. Indeed, when trained on mul-
tiple frames overlaid, networks tend to show superior per-
formance (Fig. 5d,h). For some configurations, we observe
small performance drops, for example for 7 or 21 frames
overlaid in EfficientNet, that is maybe due to variations for
individual seeds. Especially the MidlineNet architecture ben-
efits from the additional time information, achieving almost
the same performance as more sophisticated architectures:
the mIoU score for 21 overlaid frames is 0.941, which is
an increase of 7.6%. We show that the Xception architec-
ture consistently outperforms other architectures (best mIoU
= 0.974), indicating that the Xception architecture utilizes its
higher parameter space. The already low MAPE scores (<
0.1 for a single frame) were slightly lowered in some cases
(Xception and MidlineNet), in other cases, the temporal con-

Fig. 4. Introducing time increases performance in most algorithms. a) Maximum
is detected in GAW. The respective frame together with a pre-defined range is
summed over time. An example of summing multiple frames over different ranges
are shown on the right. b) Cumulative mIoU scores for algorithms tested when con-
sidering a total of 21 frames. c) MAPE scores of algorithms for posterior (cyan) and
anterior (green) points when considering 21 frames. d) Median mIoU scores for dif-
ferent algorithms compared to the amount of frames summed around the detected
maximum peak. Same color scheme as in b).

text did not consistently improve the MAPE score (Supple-
mentary Fig. 7c,d), indicating that low MAPE scores alone
do not fully reflect the midline prediction accuracy.
For time-series forecasting, recurrent neural networks are
typically applied (37). In a recurrent setting, single frames
for each time step are provided and analyzed, in contrast
to the aforementioned approach where frames were summed
over time, losing the frame-by-frame resolution. We use our
MidlineNet as an example neural architecture to showcase
the effect of ConvLSTM2D layers. Here, it is straightfor-
ward to adapt MidlineNet to a recurrent convolutional neural
network by changing the Conv2D layers to ConvLSTM2D
layers, in contrast to other architectures studied in this con-
text. ConvLSTM2D layers are recurrent layers that inter-
nally use convolutions, important for processing 2D data,
such as images, instead of matrix multiplications (38). We
first performed a hyperparameter search investigating appro-
priate settings for ConvLSTM2D filters and frames fed to the
network. We found that 15 to 21 frames together with 128
to 256 filters provided the best performance with an median
mIoU of greather than 0.9 (Fig. 5f). When comparing the
ConvLSTM2D-variant to its static counterpart, we found that
the recurrent variant performs significantly better (Fig. 5g,
p<0.05, Student’s t-test), indicating that further research us-
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neural network median mIoU parameters
VGG19 0.691 20.0M
NasNet-Mobile* 0.804 4.2M
InceptionV3 0.812 21.8M
MidlineNet 0.874 0.1M
ResNet-50 0.878 23.5M
MobileNetV2 0.884 2.2M
U-Net encoder 0.931 9.4M
EfficientNetB0 0.936 4.0M
Xception 0.960 20.8M

Table 1. Comparison of different neural network architectures to predict glottal mid-
line in segmentation masks. *We also tested NasNet-Large, but it did not converge.

ing ConvLSTM2D-based architectures is important. How-
ever, directly integrating the time information into the im-
age by overlaying the frames shows even higher performance
(Fig. 5d,g,h).
In summary, we found that deep neural networks have vary-
ing performance on midline prediction, where the Xception
architecture consistently achieved good results (Fig. 5b,c,d).
We introduced time in two different ways, i.e. overlaying
multiple frames and provide the merge to a convolutional
neural network, and providing single, adjacent frames to a
recurrent neural network. We found that both ways have
improved performance compared to the single static image.
Despite the fact that recurrent neural networks are able to
continuously predict the midline, we find that summing prior
and succeeding frames is easier to implement, allows to use
a higher variety of architectures, and yields even greater per-
formance.

GlottisNet predicts midline and segmentation mask
simultaneously. Similar to earlier studies (11, 15), we fo-
cused on detecting the glottal midline based on the glottal
area segmentation that is typically derived from endoscopic
images (sequential path, Fig. 6a). However, other studies al-
ready estimated the midline manually in endoscopic images
(13, 14) to ensure an unbiased view given the anatomical en-
vironment. This also has the advantage that anterior and pos-
terior point are defined as real anatomical landmarks and not
as upper and lower intersection of the glottal midline with
the segmentation mask. We therefore investigated the fully
automatic prediction of the glottal midline directly in endo-
scopic images to avoid a prior segmentation step. To an-
swer this question, we utilized the openly available BAGLS
dataset (36), and annotated manually the anatomical ante-
rior and posterior point in all 59,250 images (Supplemen-
tary Fig. 8), and thus, defining the glottal midline. We fo-
cused on encoder-decoder architectures, as these have been
shown to reliably segment the glottal area (9, 36), and inte-
grated the anterior and posterior point prediction into the ar-
chitecture. As baseline we use the U-Net architecture ((35),
Fig. 6b). With that, we introduce a novel multi-task architec-
ture, that simultaneously provides both, glottal area segmen-
tation and anterior/posterior point prediction (simultaneous
path, Fig. 6a,b).

The latent space is best suited for midline prediction. Be-
cause endoscopic images feature higher variability than bi-
nary segmentation masks, we first evaluated which loss is
suitable for training. For a preliminary evaluation, we chose
the U-Net encoder backbone. We found that any of the tested
losses, i.e. mean average error (MAE), mean squared error
(MSE), Huber loss and Log-Cosh loss (see Methods), are
able to train the network, however, MAE and MSE consis-
tently yielded the best score on the validation data without
any sign of divergence (Supplementary Fig. 9). We thus de-
cided to use the MSE loss in any further training procedure.
We further found that network convergence in terms of key-
point prediction is best when using the latent space or layers
in the decoder as input (Supplementary Fig. 10). We found
that the multi-task optimization does not negatively affect the
segmentation performance (Supplementary Fig. 10). For fur-
ther experiments, we decided on using the latent space as in-
put for A and P point prediction and as entry point for the
segmentation decoder (Fig. 6b).

GlottisNet is a powerful multi-task architecture. As the U-
Net is based on an encoding-decoding network (Fig. 6b), we
tested if changing the encoder backbone can yield improve-
ments in performance. In particular, we evaluated the vanilla
U-Net encoder architecture (35), together with the high per-
forming networks from Fig. 5, namely the MobileNetV2, the
EfficientNetB0, and the Xception architecture. We found that
all encoder combinations yielded similar, high IoU scores for
the segmentation task, but varied largely in their performance
predicting A and P point (Fig. 6c,d). Interestingly, all archi-
tectures have very similar performance on training and val-
idation set for the segmentation task. However, in terms of
A and P point prediction, the U-Net encoder is consistently
worse in both, training and validation (Supplementary Fig.
11). Further, the segmentation task is easily learned after only
a few epochs (Fig. 6d), the A and P point prediction task takes
around 100 epochs to converge to satisfying performance lev-
els (Fig. 6c, Supplementary Fig. 11). In general, we found
that the EfficientNetB0 backbone provides a good converging
behavior (as shown as converging, concentric point clouds
over time, Fig. 6e and Supplementary Fig. 12a), whereas the
other backbones show distinct translational displacement to-
wards the center (Supplementary Fig. 12b-d). We tested all
four networks on the BAGLS test dataset and found that the
EfficientNetB0 backbone has the best performance (median
MAPE = 7.79, mIoU = 0.746), followed by the Xception ar-
chitecture (9.26, 0.778), MobileNetV2 architecture (13.56,
0.751) and the vanilla U-Net encoder (14.84, 0.777). Our
results indicate that the vanilla U-Net encoder is performing
well on the segmentation task (similar level as the sophisti-
cated Xception architecture). However, it performs poorly on
regression tasks. In contrast, the EfficientNetB0 architecture
has a good performance on both tasks. As recently shown
(39), all test IoU scores are of sufficient quality. Our Glot-
tisNet architecture with the EfficientNetB0 backbone shows
visually reasonable prediction behavior on most images and
videos (Fig. 6f, Supplementary Movie 3), and despite the rel-
ative large deviation in the MAPE score on the test dataset
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Fig. 5. Deep neural networks outperform classical computer vision methods. a) Overview of prediction methods. Either a neural network architecture directly predicts anterior
and posterior point coordinates from the maximum opened glottis (and a range of adjacent frames, optionally), or it uses a history-based approach together with LSTM cells
to predict continuously posterior and anterior point coordinates. b) Distribution of median mIoU scores across different neural network architectures and seeds on the test
set. c) Average cumulative mIoU scores on the test set for selected neural architectures shown in d). Shaded error indicates standard deviation. d) Median mIoU scores
for different neural architectures and varying temporal context. e) Average cumulative mIoU scores of the U-Net encoder and its ConvLSTM-variant. Shaded error indicates
standard deviation. f) Colormap of median mIoU scores depending on sequence length and ConvLSTM2D filters. g) Distribution of median mIoU scores U-Net encoder
and its ConvLSTM-variant across different seeds. h) Overview of neural network performance depending on size. Gray circles indicate baseline performance (single frame
inference) and blue circles indicate temporal context by summing frames. Yellow circle indicates the MidlineNet ConvLSTM-variant.

(Fig. 6g), suggesting that both, visually inspection and quan-
titative metric should be taken into account.

Overall, we found that using the EfficientNetB0 architecture
as backbone for the GlottisNet architecture, we achieve best
performance in A and P point prediction and very good per-
formance in glottal area segmentation. This combination al-
lows the successful, simultaneous prediction of both, glottal
midline and glottis segmentation, on endoscopic images.

Discussion

In this study, we provide a comprehensive analysis of meth-
ods to estimate the glottal midline from either endoscopic im-
ages or segmentation masks. For endoscopic images, we sug-
gest a novel multi-task architecture named GlottisNet that al-
lows the simultaneous prediction of both, glottal midline and
segmentation mask. We show that both, classical algorithms
and state-of-the-art deep neural networks are able to predict
accurate glottal midlines on segmentation masks. Further, we
show that our modified six mass model (6MM) is a valid tool

Kist et al. | bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.20.257428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.257428
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT
Fig. 6. GlottisNet is a multi-task architecture that predicts simultaneously both, glottal midline and area. a) Comparison of sequential (upper panel) and simultaneous
prediction (lower panel) of the glottal midline. Note the differences of P and A points. b) General GlottisNet architecture consisting of an encoder-decoder network with an
additional AP predictor. c) Convergence of MAPE across training epochs for different encoding backbones. d) Convergence of IoU score across training epochs for different
encoding backbones. e) X-Y accuracy of P and A point prediction. f) Example images of endoscopic images with glottal midline ground-truth and prediction. g) Distribution
of MAPE scores across validation and test dataset for GlottisNet with Xception backbone.

Source Method Advantage Disadvantage

Endoscopy image Deep neural network
Direct midline estimation,
not restricted to segmentation Subjectivity in anatomical landmarks

Segmentation Computer vision alg. Universal and fast Issues with asymmetric conditions,
underestimate glottis lengthDeep neural network Can be trained on synthetic data

Table 2. Overview of midline estimation procedures and their respective advantages and disadvantages

to generate synthetic, yet realistic, time-variant segmentation
masks, needed for an objective evaluation of segmentation-
based algorithms. We were further able to show that adding
the oscillation history improves the performance significantly
(Fig. 4, Fig. 5), similar to previous reports (9).

Definition of glottal midline. As symmetry is a hallmark
for healthy oscillation behavior (1), the definition of the sym-
metry axis, i.e. the glottal midline, is of great importance for
an accurate diagnosis. An anatomical derivation is the most
appropriate, yet hard to unequivocally define (13, 14) and
maybe a source for inter-annotator variability (40). Defining

the glottal midline from a simpler representation, i.e. glot-
tal area segmentations, is easier and potentially more robust
(compare Fig. 3, Fig. 4 and Fig. 5 to Fig. 6), than directly pre-
dicting the glottal midline in endoscopy images. However,
since recently it has been very challenging to even find these
anatomical landmarks automatically in endoscopy footage
due to technical limitations and limited availability of labeled
data. In our study, we overcome these limitations by extend-
ing an open available dataset (36) with manual annotations
and combining it with state-of-the-art deep neural networks
Fig. 6 to yield GlottisNet. However, our approach is based
on single frames and lacks the oscillation behavior to poten-
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tially further improve the prediction accuracy (as suggested
in Fig. 4 and Fig. 5). Extending GlottisNet into a recurrent
neural network is not trivial, we therefore suggest a recurrent
version of GlottisNet for a subsequent study.

Synthetic data to train deep neural networks. Super-
vised training of deep neural networks is highly dependent
on large, annotated data (41). Acquiring and annotating the
data is time-consuming and expensive. Using synthetic mod-
els that can closely mimic real data is therefore cost-effective
and flexible. With our six mass model, we not only produce
high quality segmentation masks that closely resemble seg-
mentations derived from real endoscopic footage, but also
by design know the oscillation center, i.e. the glottal mid-
line, resembling the perfect ground truth. By using manu-
ally annotated data, we would introduce an annotator’s bias,
that we circumvent with our strategy. By having ultimate
control over the model parameters, we are able to identify
strengths and weaknesses of the algorithm, such as perfor-
mance in varying environments (Supplementary Fig. 3, 5 and
Fig. 3, Fig. 4). Already with six moving masses and appro-
priate post-processing, 6MM-based glottis segmentations are
producing exceptional results. However, by using more mov-
ing masses and different post-processing steps, one can po-
tentially further improve the synthetic data quality. Addition-
ally, we envision that other ways of generating synthetic data,
by using Generative Adversial Networks (GANs, (42, 43)) or
Bayesian variational autoencoders (VAEs, (44)) maybe suit-
able for generating synthetic data.

Classical computer vision algorithms are worse, but
not bad. Since the advent of deep learning methods, clas-
sical computer vision algorithms seem to be succeeded by
neural networks in several computer vision tasks (41, 45).
However, we find that classical computer vision algorithm in-
deed perform well on our task (Fig. 3, Fig. 4). Notably, these
methods can be implemented straight without the need of la-
beled data or any training procedure. Computer vision algo-
rithms are highly general and show a predictable behavior,
whereas the behavior of neural networks on unknown data
that may lay outside the training data distribution is rather
unpredictable. Interestingly, on a single image the simple
heuristic TB performs better than VGG19, NasNet-Mobile
and InceptionV3, and across several images all computer vi-
sion methods outperform these deep neural networks (com-
pare Fig. 4, Fig. 5 and table 1).

Clinical impact. Quantitative, symmetry axis prediction de-
pendent parameters, have an impact on diagnosis and treat-
ment options (46–48). Especially clinically relevant phonovi-
brograms are dependent on the correct detection of the
midline (11). As phonovibrograms are based on the ex-
tent of the segmentation, they are highly biased towards
the maximum opened glottal area, neglecting the total ex-
tent of the vocal folds. Incorporating the real anatom-
ical conditions to phonovibrograms via the glottal mid-
line prediction in endoscopic images (e.g. via GlottisNet,
Fig. 6), a normalized phonovibrogram would allow better

comparability across subjects and may positively influence
phonovibrogram-derived disease classifications and quanti-
tative parameters.
In many areas deep neural networks have shown their usabil-
ity in guiding clinicians and diagnosing diseases and the great
potential of artificial intelligence (49–51). With our study,
we provide a comprehensive, high-quality toolbox to allow a
fully automatic detection of the glottal midline essential for
determining clinical relevant parameters. By combining the
glottal midline detection together with the glottis segmenta-
tion, we overcome the main bottlenecks of clinical applica-
bility of HSV and hence are able to bring quantitative HSV a
huge step closer towards clinical routine.

Methods
In this study, we aim to find the best line that splits the glottal
area in two areas representing the oscillation behavior of the
left and the right vocal folds. We define the line using a linear
equation (Eq. S (1)) that connects both, posterior and anterior
point. As some methods are predicting first the slope and
intercept, the posterior point and anterior point are defined as
the first and last intersection between line and segmentation
shape, respectively.

y =m ·x+ b (1)

Biophysical model. Our biophysical model consists of two
fixed (p and a), and six moving masses (m1 to m6) as shown
in Fig. 2a. In women, a small gap at the P point is physio-
logical. We acknowledge this by choosing a random offset
between p1 and p2. The moving mass positions, and thus,
the vocal fold dynamics, are described through a system of
ordinary differential equations and are derived from (18):

ms,iẍs,i = F as,i+F vs,i+F ls,i+F cs,i+F ds,i (2)

where F as,i is the anchor spring force, F vs,i the vertical cou-
pling force, F ls,i the longitudinal coupling force, F cs,i the
force due to collision and F ds,i the driving force. Exact de-
scriptions and mathematical equations of the forces imple-
mented here are shown in Supplementary Data 1. We solve
the differential equations by iterative Runge-Kutta methods
(52) for a total of 150 ms simulation time.
Because the linear connection of the masses produces hard
corners and thus, non-natural segmentations, we used the
Chaikin’s corner cutting algorithm to produce smooth (more
physiological) glottal areas (53). As the model uses six de-
grees of freedom as initial parameters (Q1 to Q6, similar to
(17, 54)), we draw the values for all Qs from a uniform, ran-
dom distribution within a physiological range (54) to gen-
erate a variety of different time-variant segmentation masks.
The boundaries were [0.5, 2] for Q1-Q4 (mass and stiffness),
[1.0, 4.0] for Q5 (subglottal pressure) and [0.5, 6] for Q6 (col-
lision force). Asymmetric values for Q1-Q4 result in asym-
metric oscillations. The first 85 simulated ms were discarded
as the model starts in a transient state. The remaining 65 ms
were stored for further evaluation. We generated a total of
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2500 oscillating models. Models that do not oscillate due to
unsuitable initial parameters were discarded.

Endoscopy data labeling. The BAGLS dataset (36) was la-
beled manually on each of the 59,250 images using a custom
written annotation tool in Python (Supplementary Fig. 8).
Locations are stored as (x,y) coordinates for posterior and
anterior point, respectively. The data is saved in JavaScript
Object Notation (JSON) format. Upon publication, we pro-
vide the Github repository.

Classical computer vision methods. All classical com-
puter vision method principles and how they predict the sym-
metry axis is shown in Supplementary Fig. 1. These methods
operate on binary segmentation masks, where pixels belong-
ing to the glottis have a value of 1, otherwise 0.

Top and bottom most (TB). In TB, the top and bottom most
point of the segmentation mask in y is selected as posterior
and anterior point, respectively. The line connecting the two
points is taken as midline (Supplementary Fig. 1a). The fol-
lowing equations generalize the procedure:

top = min
y

with I(x,y) = 1 (3)

botom = max
y

with I(x,y) = 1 (4)

where I(x,y) is the intensity of the binary segmentation
mask with given height (y) and width (x). If there are multi-
ple px at the same y location, the center of mass is used.

Linear regression (LR). Linear regression is a typical oper-
ation to fit a line (Eq. S (1)) with a given slope m and an
intercept b to a point cloud by minimizing the residuals in y
by comparing the true y values to the predicted line ŷs (see
also Supplementary Fig. 1b):

min
m,b

n∑
i=1

(yi− ŷi)2 =
n∑
i=1

(yi−m ·xi− b)2 (5)

As we are interested in a vertical orientation, we transpose
the image, perform linear regression and are using the func-
tion inverse to describe the midline. For linear regression,
we are using the curve_fit implementation from the Python
scipy.optimize library.

Orthogonal Distance Regression (ODR). In ODR, the total
least squares of both, x and y, are minimized, in contrast
to linear regression, where only the distance of a given point
(x,y) in y is minimized (55), see also Eq. S (5) and compare
Supplementary Fig. 1b and c. This results in minimizing
the perpendicular distance d from a given point (x,y) to the
prediction line, which results in point (x∗,y∗):

di = (yi−θ0−θ1 ·x∗)2 + (xi−x∗i )2 (6)

This is computed for all (xi,yi) pairs, resulting in the sum
of individual perpendicular distances (S), that will be mini-
mized with respect to θ0, θ1 and x∗i :

S =
n∑
i=1

di→ min
θ0,θ1,x∗

i

S (7)

In this study, we use the Python library scipy.odr to inter-
face ODRPACK written in FORTRAN-77 that uses a modi-
fied Levenberg-Marquardt algorithm to minimize S (55).

Principal Component Analysis (PCA). Here, we utilize an or-
thogonal linear transformation to translate the image space
to a principal component space. As we provide only two di-
mensions, the first two principal components do fully repre-
sent the image data. The first principal component shows the
direction of highest variance, i.e. the desired midline vector
(Supplementary Fig. 1d).
We first centered our image using the empirical mean for each
feature vector, i.e. x and y, revealing the centroid of our im-
age. We next computed the covariance matrix of x and y,
which was used to find the respective eigenvalues and eigen-
vectors of the covariance matrix using eigenvalue decompo-
sition. This reveals the first and second principal component.
The orientation of the first principal component is used to
compute the slope θ1:

θ1 = PC1,y
PC1,x

(8)

The intercept θ0 is calculated via the previously revealed cen-
troid of the image.

Image Moments. For a binary image with region Ω, the dif-
ferent momentsmpq are calculated from the individual pixels
(x,y) of Ω ∈ R2 as follows:

mpq =
∑
x,y∈Ω

xpyq (9)

The area |Ω| is defined as the zero-order moment, thus sum-
ming the individual pixels:

|Ω|=m00 =
∑
x,y∈Ω

x0y0 (10)

The centroid (x̄, ȳ) is computed using the center of mass of
the region:

x̄= 1
|Ω| ·

∑
x,y∈Ω

x1y0 (11)

ȳ = 1
|Ω| ·

∑
x,y∈Ω

x0y1. (12)

Central Image Moments are by construction translationally,
but not rotationally invariant, allowing the estimation of the
image orientation (Fig. 3c) and are computed as following:

µpq =
∑
x,y∈Ω

(x− x̄)p · (y− ȳ)q (13)

The orientation angle α, and thus the slope θ1, is computed
using the following equation:
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Method Reference Midline descriptor
Top and bottom most point (TB) (15) Line connecting top and bottom most point in y
Linear regression (LR) (12) Optimization of linear function by minimizing residuals in y
Orthogonal Distance Regression (ODR) this paper Optimization of linear function by minimizing residuals in x and y
Principal Component Analysis (PCA) this paper* 1st principal component
Image Moments this paper Center of mass and orientation vector
Ellipse Fitting this paper Major axis

Table 3. Overview of classical computer vision algorithms and their respective midline descriptor together with references where the respective algorithm was applied to
glottal midline detection. *(16) also uses PCA combined with custom optimization strategies.

tan(2α) = 2 ·µ11
µ20−µ02

(14)

θ1 = tan(α) (15)

These two features, namely centroid (x̄, ȳ) and direction vec-
tor, i.e. slope, θ1 together are predestined to estimate the
glottal midline efficiently (Supplementary Fig. 1e).

Ellipse Fitting. The glottal area can be approached as an el-
lipse. By fitting an ellipse to the contour of the segmentation,
the major axis would coincide with the midline (Supplemen-
tary Fig. 1f).
We are fitting an ellipse of the following form:

xt = xc+A · cos(α) · cos(t)−B ·sin(α) ·sin(t), (16)

yt = yc+A ·sin(α) · cos(t) +B · cos(α) ·sin(t), (17)

which results in five parameters, (xc,yc) being the centroid
of the ellipse, the magnitude of the major and minor axis
(A and B, respectively), as well as the orientation of the el-
lipse (α). As described for the moments, the centroid and
the orientation are sufficient to describe the glottal midline.
To perform the Ellipse Fitting, we used the contour finding
and Ellipse Fitting algorithms in-built in OpenCV. The fitting
procedure in OpenCV is implemented according to (56).

Deep neural networks. All networks were setup in Tensor-
Flow 1.14 with their respective implementation in Keras. All
established networks were used from their keras.applications
implementation, except EfficientNetB0, where we used the
implementation from qubvel. We tested the following loss
functions for keypoint prediction (MAE (see Eq. S (18)),
MSE (see Eq. S (19)), Huber (see Eq. S (21), as shown in
(57, 58)), Log Cosh (see Eq. S (20), as used in (59))) and for
semantic segmentation (Dice Loss Eq. S (22) (60)):

MAE(y, ŷ) = 1
n

n∑
i=1
|yi− ŷi|, (18)

MSE(y, ŷ) = 1
n

n∑
i=1

(yi− ŷi)2, (19)

Logcosh(y, ŷ) =
n∑
i=1

log(cosh(yi− ŷi)) (20)

Huberδ(y,f(x)) =
{

1
2 (y−f(x))2 for |y−f(x)| ≤ δ
δ |y−f(x)|− 1

2δ
2 otherwise.

(21)

Dice(y, ŷ) = 1− 2yŷ+ 1
y+ ŷ+ 1 . (22)

Segmentation-based networks. We trained for a maximum
of 50 epochs and used eight different starting seeds for cross-
validating training/validation and test-dataset. For each seed,
we split the total simulations in 75% for training and 25%
for testing. The training set itself was split into 90% training
and 10% validation. We used RMSprop as optimizer with 0.9
momentum, a learning rate of 10−4 and a learning rate decay
of 0.5 · 10−6. For evaluation, we used for each architecture
the network epoch that performed best on the validation set.
MidlineNet is a light-weight variant derived from the U-Net
encoder, and features four blocks of two convolutional layers
(filter=32, kernel size=3) and a max pooling layer. ReLU was
used as activation function. After the four blocks we applied
a global average pooling layer and fed this into a dense layer
predicting the x,y coordinates of the anterior and posterior
point.

Endoscopy image-based networks. We used the U-Net ar-
chitecture (35) as basis architecture as implemented previ-
ously (10). Additional to the vanilla encoder, we tested the
MobileNetV2, the EfficientNetB0 and the Xception encoder
with their implementations in Keras. We trained all networks
for 100 epochs using either the MAE, the MSE, the Huber or
the Logcosh loss for the anterior and posterior point and the
Dice loss for the segmentation. The final GlottisNet architec-
ture was trained on the MSE and the Dice loss.

Evaluation metrics. To evaluate the performance of deep
neural networks and the classical computer vision algorithms
how well they can predict the glottal midline, we use two
metrics: the mean absolute percentage error (MAPE) and the
intersection of the union (IoU).
The MAPE metric (Eq. S (23)) defines how close the pre-
dicted anterior or posterior point is in respect to the ground-
truth values.
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MAPE = 100%
n

n∑
i=1

∣∣∣∣∣Yi− ŶiYi

∣∣∣∣∣ (23)

We further use the IoU metric to indicate how much the left
and right glottal area provided by the ground-truth midline
(i.e. GT ) overlaps with the left and right glottal area pre-
dicted by any algorithm presented here (P , Supplementary
Fig. 2). We compute the IoU for each side individually and
average across both sides to gain the mean IoU (mIoU, Eq.
S (25)).

IoU(GT,P ) = GT ∩P
GT ∪P

(24)

mIoU(GT,P ) = 0.5 · [IoU(GTl,Pl)+IoU(GTr,Pr)] (25)

The IoU metric is also used to measure the segmentation per-
formance of the GlottisNet architecture. Here, GT is the
ground-truth segmentation and P the segmentation predic-
tion of the neural network.
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