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Abstract 
 
Primates excel at categorization, a cognitive process for assigning stimuli into behaviorally 
relevant groups. Categories are encoded in multiple brain areas and tasks, yet it remains 
unclear how neural encoding and dynamics support cognitive tasks with different demands. We 
recorded from parietal cortex during flexible switching between categorization tasks with distinct 
cognitive and motor demands, and also studied recurrent neural networks (RNNs) trained on 
the same tasks. In the one-interval categorization task (OIC), monkeys rapidly reported their 
decisions with a saccade. In the delayed match-to-category (DMC) task, monkeys decided 
whether sequentially presented stimuli were categorical matches. Neuronal category encoding 
generalized across tasks, but categorical encoding was more binary-like in the DMC task and 
more graded in the OIC task. Furthermore, analysis of the trained RNNs supports the 
hypothesis that binary-like encoding in the DMC task arises through compression of graded 
feature encoding by population attractor dynamics underlying short-term working memory.   
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Introduction 
 
Visual categorization is a cognitive process in which continuous visual stimuli are associated 
with discrete groups according to their behavioral relevance. Visual categories are encoded in 
multiple brain regions in the primate, including the posterior parietal cortex (PPC) (Freedman 
and Assad, 2006), prefrontal cortex (PFC) (Freedman et al., 2001; Swaminathan and 
Freedman, 2012), and inferotemporal cortex (ITC) (Freedman et al., 2003; Meyers et al., 2008) 
with single neuron activity showing distinct responses to stimuli in different categories. Yet, the 
format of neural category representations differs between these brain areas. Whereas PPC and 
PFC encode categories in an abstract or binary-like format with nearly identical firing rates to all 
stimuli within a category (Freedman et al., 2006; Swaminathan and Freedman, 2012), ITC 
neurons encode categories with more graded firing rates to stimuli within a category, thus 
‘mixing’ abstract category signals with sensory feature encoding (Freedman et al., 2003; Meyers 
et al., 2008). These two formats of category encoding – binary or graded – reflect a tradeoff 
between sensory feature encoding and abstract category encoding, yet the mechanistic origins 
of this tradeoff remain unknown.  
 
Category signals have been studied through behavioral tasks that divide a continuous range of 
sensory stimuli into two or more discrete categories by an arbitrary category boundary 
(Freedman et al., 2001; Freedman and Assad, 2006). Further, these tasks decouple categorical 
decisions from animals’ motor responses by using delayed matching paradigms which require 
comparing sequentially presented stimuli separated by a delay (Freedman et al., 2001; 
Freedman and Assad, 2006). For example, in the delayed match-to-category (DMC) task, 
monkeys must release a manual touch-bar if a test stimulus matches the category of a 
previously presented sample. During DMC tasks, neurons in PFC and lateral intraparietal area 
(LIP) of PPC (Freedman and Assad, 2006; Swaminathan and Freedman, 2012), show binary-
like categorical encoding of motion-dot stimuli, and LIP activity in particular correlates with 
animals’ categorical choices on a trial-by-trial basis (Swaminathan and Freedman, 2012). 
Recent work using reversible cortical inactivation demonstrated a causal role for LIP in visual 
categorical decisions (Zhou and Freedman, 2019). These binary-like category signals have 
mostly been observed in tasks with a short-term memory-delay period which helps dissociate 
sensory signals from decision and motor signals. However, the delay also imposes additional 
mnemonic demands, that are not directly related to categorization per se. Thus, it remains 
unknown if these binary-like category signals evident in LIP emerge because of the cognitive 
demands of delayed matching paradigms (e.g. short-term memory or matching) predominantly 
used in previous categorization studies. This raises two related questions – 1) does LIP’s role in 
categorical decisions generalize across tasks with different task demands and 2) does the 
format of category encoding depend on changing task demands? 
 
Here, we examine whether LIP plays a generalized role in categorical decisions across different 
categorization task paradigms, and whether categorical encoding is modulated by task 
demands. We devised a cued task switching paradigm in which monkeys alternated in blocks 
between two motion categorization tasks that varied in their task demands. In both tasks, 
monkeys grouped 360° of motion directions into two categories according to the same arbitrary, 
learned category boundary. The first task was a one-interval categorization (OIC) task, in which 
monkeys rapidly reported their categorical decisions with a saccade to a red (category one) or 
green (category two) target. The second task was a DMC task which required monkeys to 
compare sequentially presented sample and test stimuli that were separated by a delay, and 
report whether they matched in category with a manual response. The tasks varied in: - (i) the 
report of direct (OIC) versus sequential (DMC) category judgments, (ii) associative mappings 
between the stimulus category and saccade target colors (OIC) and working memory and 
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sequential comparison (DMC) and (iii) the effector for the motor response of eye (OIC) versus 
hand movements (DMC). 
 
Single neurons and populations in LIP showed strong and similar category encoding in both 
tasks, indicating that LIP plays a generalized role in categorical decision-making. However, the 
format of categorical encoding was more abstract with binary-like neural activity in the DMC task 
but more mixed with graded neural activity in the OIC task. Furthermore, categorical encoding 
was more temporally stable and sustained in the DMC task. We hypothesize that this binary-like 
format of category encoding in the DMC task is generated by population attractor dynamics 
required to maintain stimulus information over memory delay periods. Because only the DMC 
task requires maintaining category information in working memory, attractor dynamics appears 
to compress category-related information to a simpler, binary format by collapsing all directions 
within a category towards a single population state. We validated this hypothesis using recurrent 
neural networks trained to perform both tasks and found that analysis of the fixed-point structure 
of these RNNs revealed that following stimulus onset, sample categories produce stable 
attractors in the DMC, but not in the rapid OIC task. Thus, the binary-like categorical responses 
observed in DMC tasks may not be necessary for categorization per se, but may instead arise 
from the network dynamics underlying the storage of stimulus information in working memory. 
More broadly, our approach of incorporating flexibility in behavioral tasks facilitates the 
understanding of how neural activity patterns support diverse cognitive computations and 
distinguishes between task-specific encoding underlying categorization and working memory. 
 
Results 
 
Categorization task switching behavior 
 
Two monkeys alternated between the OIC and DMC tasks in which they categorized the same 
random-dot motion stimuli in blocks of 20 or 30 correct trials in monkey B or M, respectively 
(Figure 1a). In both tasks, 360° of motion directions were divided into two categories based on 
an arbitrary learned category boundary, with 5 motion directions in each category (Figure 1b). 
On every trial, after a 500 ms fixation period, one sample stimulus was presented for 500 ms in 
the OIC task, and for 650 ms in the DMC task in the neuron’s receptive field (RF). Both tasks 
were visually identical until 500-ms from sample onset (the shared sample period) after which 
they diverged. In the OIC task, saccade targets (red and green squares) appeared at 500 ms 
after sample onset and monkeys reported their categorical decisions with a saccade to either 
the red or the green target to indicate category one or two, respectively. Importantly, the target 
position varied randomly on every trial between two possible locations – one inside the RF and 
the other diametrically opposed to the RF. This ensured a dissociation between the categorical 
decision (red versus green) and the motor responses (saccade towards versus away from the 
RF). In the DMC task, the sample stimulus was followed by a one second delay and a test 
stimulus, and monkeys reported whether the test stimulus was a categorical mech to the 
previously presented sample stimulus by releasing a touch bar. Each test stimulus was 
randomly sampled from among the ten possible motion directions (five in each category).  
 
Based on a colored cue presented at the start of each trial, monkeys switched between the OIC 
and DMC tasks in blocks. Monkeys successfully switched between the two tasks with a mean 
behavioral performance of 87.6% correct in OIC (Monkey B: 86.4%; Monkey M: 88.9%) and 
84.3% correct in DMC (Monkey B: 83.1%; Monkey M: 85.7%) (Figure 1c). Performance of both 
monkeys was significantly higher in the OIC task for the near-boundary directions that were 10° 
away from the boundary (p-value of paired t-test: 10-08).  
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LIP neurons are preferentially engaged in the OIC task 
 
We recorded from 100 LIP neurons (monkey B, N=44 single units; monkey M, N=56 single 
units) as monkeys alternated between the OIC and DMC tasks. We compared LIP responses in 
the OIC and DMC tasks to determine whether LIP neurons were preferentially engaged in one 
task over the other. We hypothesized that LIP’s well-known role in spatial attention and 
saccadic eye movements would be reflected in the firing rates in the OIC task, which requires a 
saccadic report (Gnadt and Andersen, 1988; Colby, Duhamel and Goldberg, 1996; Bisley and 
Goldberg, 2010). On the other hand, LIP’s well-known role in spatial functions might be distinct 
from its role in visual motion categorization, as suggested by a previous study in which spatial 
signals and category signals independently influenced LIP activity, when the saccadic report 
and the categorical report were behaviorally not linked (Rishel, Huang and Freedman, 2013). To 
compare firing rates between the OIC and DMC tasks, we focused on neural responses during 
the first 500 ms of the sample period during which monkeys were fixating and stimulus 
presentation was identical, henceforth referred to as the shared sample period. Out of 100 
recorded neurons, 82 neurons showed significant differences in firing rates between the OIC 
and DMC tasks in the shared sample period. Among the 82 neurons that showed significant 
firing rate differences between the two tasks, 73.2% (60/82) of individual LIP neurons 
responded with higher mean firing rates in the OIC task (unpaired two sample t-test, p<0.01). 
Further, firing rates of individual neurons in the OIC task were positively correlated with firing 
rates in the DMC task (Figure 2c, 2d, r2 = 0.95, p<10-4) and these values were well fit by a linear 
model (R2 = 0.90) with positive slope 1.13 (95% confidence intervals: (1.05,1.22)) and intercept 
2.7 (95% confidence intervals: (-0.56,6.06)), indicating that OIC firing rates were significantly 
higher than DMC firing rates in the LIP population.  
 
Higher average firing rates in the OIC than DMC task could result from multiple factors that vary 
between the two tasks, such as differences in motor response modality, task difficulty, task 
demands or expected value of reward. While we cannot isolate the factor(s) which contributes 
towards higher firing rates in OIC, we test one candidate. Because of LIP’s known involvement 
in saccadic eye movements, we hypothesized that LIP responses could be modulated by prior 
information about the motor modality used to report decision. Even before sample onset on 
each trial, the color of the fixation point indicated which task (and subsequently, effector) is 
relevant during that block. If LIP neurons were modulated by prior knowledge about the task or 
motor modality, we would expect fixation period firing rates to be higher in the OIC than DMC 
task. Out of 100 recorded neurons, 57 neurons showed significant differences in firing rates 
between the OIC and DMC tasks in the fixation period, of which 68.4% (39/57) showed greater 
activity in the OIC task (unpaired, two sample t-test, p<0.01). These observations suggest that 
LIP neurons could be preferentially engaged (i.e. have higher firing rates) when the task 
requires a saccadic (OIC) versus manual (DMC) report. It is possible that task difficulty 
influences firing rates such that differences in behavioral performance between the OIC and 
DMC tasks could explain firing rate differences. We controlled for task difficulty by considering a 
subset of task conditions, motion directions that were 30° away from the boundary, that were 
matched in accuracy and thus, were equally difficult in both tasks. For these accuracy matched 
conditions, we found that mean firing rates were significantly higher in the OIC task, suggesting 
that task difficulty cannot explain differences in the magnitude of firing rates between tasks 
(unpaired two sample t-test, p<0.01). However, as the OIC and DMC tasks differ in other 
aspects besides motor response modality, we cannot be certain which factors account for this 
activity difference. For instance, since OIC trials are shorter than DMC trials, monkeys received 
more reward per unit time during the OIC blocks than DMC blocks. This difference in reward 
frequency could have led to increased motivation in the OIC task which in turn could have led to 
increased firing rates.  
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LIP neurons simultaneously encode multiple task-relevant variables 
 
We next asked how encoding of task-relevant variables differed between tasks. We compared 
the fractions of cells that encoded the variables shared across tasks – sample motion direction 
and sample category. Since motion direction is nested within motion category as any given 
motion direction is associated with either category one or two but not both, we used a two-level 
nested ANOVA to quantify direction and category selectivity independently of each other. In the 
OIC task, 65% of recorded neurons were selective for motion direction (two-level nested 
ANOVA with direction nested within category, p<0.01) during the sample period while 50% were 
selective during the saccade epoch. Similarly, during the DMC task, 51% of recorded neurons 
were motion direction selective during the sample period and 25% were selective during the 
delay period. In addition to encoding motion direction, LIP neurons also encoded motion 
category throughout the trial. While 56% of cells were category selective during the OIC sample 
period, 63% of cells were category selective during the DMC sample period. In both tasks, many 
single neurons were category selective – responding similarly to directions within a category but 
distinctly to directions in different categories (example neurons in Figure 2a, 2b). Further, 40% 
of single neurons were direction selective in both tasks and 47% of neurons were category 
selective in both tasks. Finally, LIP neurons also encoded choice – i.e. saccade towards versus 
away from the RF in OIC and match versus non-match in DMC; 64% of neurons encoded 
saccade direction in OIC and 61% of neurons encoded match versus non-match in DMC. Thus, 
LIP activity multiplexes a variety of behaviorally relevant sensory (motion direction), decision 
(motion category), and motor (saccade direction and touch bar release) variables. 
 
Neural populations show stronger category representations in the DMC task 
 
While single neurons encoded combinations of task-relevant variables in both tasks, we 
wondered whether population level category representations were also encoded similarly 
between tasks, since both tasks relied on the same category rules (i.e. category boundary). 
Specifically, we asked whether the strength and timing of category signals differed between the 
OIC and DMC tasks by quantifying category selectivity in two ways – (i) a category tuning index 
(CTI) applied to single neurons (Freedman and Assad, 2006) and (ii) linear decoders to classify 
motion category at the population level (Swaminathan, Masse and Freedman, 2013; Sarma et 
al., 2015).  
 
The CTI quantifies category selectivity for each neuron by comparing firing rates between pairs 
of motion directions within the same category (within category difference or WCD) versus 
different categories (between category difference or BCD). To measure the strength of category 
selectivity, we constructed the CTI by taking the difference between BCD and WCD and dividing 
by their sum. CTI values range from -1 to +1 with 1 indicating “binary-like” responses to 
categories (large differences in firing rate for directions in different categories) and -1 indicating 
zero differences between categories (large differences in firing rate for directions within each 
category). In both tasks, mean CTI values during the shared sample period were shifted 
towards positive values (indicating categorical tuning) and were significantly greater than values 
during the fixation-epoch (Figure 3a; OIC: sample CTI = 0.13 versus fixation CTI = 0.01; DMC: 
sample CTI = 0.19 versus fixation CTI = -3x10-3; paired t-test p<0.005 in both OIC and DMC). 
Further, we examined the relationship between the strength of category selectivity in the OIC 
and DMC tasks. If individual neurons encoded category signals in one task, but not the other, 
we might find a negative correlation between CTI measures across the population. Instead, we 
found a positive correlation between CTI values of neurons in both tasks (Figure 3d; r2 = 0.68, 
p<10-4), indicating that the strength of category selectivity covaries between tasks.  
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Next, we compared the time course of category signals for all direction selective neurons in both 
tasks by calculating CTI in 200-ms windows stepped every 10 ms during fixation and shared 
sample periods. We found that mean CTI values were significantly greater in the DMC than OIC 
task during the late sample period, indicating stronger category representations in the DMC task 
(Figure 3b). Further, category selectivity was maintained through the delay period in the DMC 
task (Figure 3b – right panel). We also compared the time course of category signals when firing 
rates were aligned to response onset instead of sample onset, aligning neural responses to 
saccade onset in the OIC task and touch bar release in the DMC task (Figure 3c). We found 
that mean CTI values were greater in the DMC than OIC task even in the motor response-
aligned condition. Interestingly, the time course of the response-aligned CTI monotonically 
increased to reach its maximum value just before movement onset in both OIC and DMC tasks, 
indicating that categorical tuning peaks immediately prior to the motor response, independent of 
the motor modality used to report the decision (eye versus hand).  
 
We also used a population-level decoding approach to confirm our findings from the single-
neuron CTI measure. We quantified the amount of category information in the LIP population 
using linear support vector machine (SVM) (Cortes and Vapnik, 1995) classifiers trained to 
decode whether population responses were elicited by stimuli from category one or category 
two. This analysis revealed strong and similar category decoding in both tasks (Figure S1, 
category decoder: DMC 99.4%, OIC 97.8%, bootstrap, p<0.001 compared to chance). However, 
this category decoder measured category selectivity without controlling for motion direction 
selectivity, an inherent property of LIP neurons, thus potentially overestimating the amount of 
explicit category information in the population. To reduce the influence of direction tuning on our 
measure of category selectivity, a different linear classifier was trained and tested on subsets of 
motion direction pairs with equivalent angular distances in each category. This direction-
independent category decoder revealed higher category information in the DMC task as both 
the mean and time course of decoding accuracy were significantly greater in the DMC task 
(Figure 3e, 3f, category decoder: DMC 95.9%, OIC 85.5%, bootstrap, p<0.001 compared to 
chance). In sum, both the single-neuron CTI measure and the population-level decoders reveal 
that category selectivity is higher in the DMC task.  
 
Neural populations show stronger within-category direction representations in the OIC 
task 
 
Greater category selectivity in the DMC task was unexpected because firing rates in the DMC 
task were lesser than in the OIC task. To understand which aspects of tuning accounted for 
greater category selectivity in the DMC than OIC task, we separately examined the BCD and 
WCD measures that were used to construct the category tuning index. This revealed that, while 
BCD values were comparable in both tasks, WCD values were significantly greater in the OIC 
than DMC task, indicating greater tuning for directions within a category in the OIC task (Figure 
4a). Hence, the increase in CTI during the late sample of the DMC task is a direct consequence 
of more uniform firing rates among the within-category directions, i.e., within-category 
compression, resulting in a tendency for more binary-like category selectivity in the DMC task.  
 
Greater WCD in the OIC task predicts that neural populations would encode more within-
category direction information in the OIC than DMC task. Using category-independent direction 
decoders trained to classify motion directions within a category, we confirmed greater within-
category direction information in the OIC task (Figure 4b, direction decoder: DMC 65.1%, OIC 
73.9%, bootstrap, p<0.01 compared to chance). The time-course of direction decoding also 
showed higher accuracy for within-category direction information in the OIC than DMC task, 
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particularly in the late sample period (400-500 ms from sample onset, Figure 4c). In contrast to 
the sustained category information present through the delay period in the DMC task, within-
category direction information decreased during the same delay epoch, suggesting that 
behaviorally-relevant categorical information is stored in a low-dimensional, categorical 
representation instead of a high-dimensional, directional representation during the delay period 
(Figure 4a, 4c). Our results suggest that stronger category tuning in the DMC task is due to 
tighter clustering of responses to directions within each category that leads to larger differences 
between categories. 
 
Neural populations show more temporally stable category representations in the DMC 
task 
 
Our results so far reveal stronger category representations in the DMC than OIC task. However, 
it remains unclear whether shared or distinct neural subpopulations encode category in the two 
tasks. In other words, are the same neurons contributing towards categorical judgments in a 
similar manner in both tasks? We employed a “cross-task” population decoding approach to 
directly compare the extent of overlap in population level representations in both tasks. We 
trained category decoders on population firing rates from one task (e.g. OIC) and tested the 
decoder on trials from the other task (e.g. DMC). The cross-task decoder reliably decoded 
category well above chance during the shared sample period in both tasks (Figure 5a, 5b, 
category cross-decoder testing on: DMC 77.6% (trained on OIC), OIC 81.4% (trained on DMC), 
bootstrap, p<0.01 compared to chance), indicating that the LIP population encoded categorical 
information in a similar manner using highly overlapping pools of neurons in the two tasks. In 
both tasks, the time-course of category decoding was nearly identical to the case in which the 
decoder was trained and tested on the same task (i.e. a “within-task” decoder) in the early 
sample period (0-250 ms from sample onset), but diverged in the late sample period (250-500 
ms from sample onset). These findings suggest that category computations are supported by a 
common subpopulation of neurons in the early sample period and different subpopulations of 
neurons or different readout mechanisms in the late sample period. 
 
We then sought to understand in more detail how representations differed in the late sample 
period. The late sample period is contextually distinct between the two tasks. In the OIC task, it 
is followed by a saccade for reporting sample category. In the DMC task, it is followed by an 
additional 150 ms of sample presentation, one second memory delay period, one or more test 
stimuli and a manual release of the touch bar. We wondered whether the differences in 
categorical encoding between the two tasks could be explained by the working memory 
demands during the delay period of the DMC task. Previous studies have found that during the 
delay period, neurons stably maintain their firing rates through persistent activity even after the 
stimulus is no longer present (Gnadt and Andersen, 1988; Funahashi, Bruce and Goldman-
Rakic, 1989; Goldman-Rakic, 1995). Since firing rates remain stable over time during the delay 
period, encoded stimulus information at one time point can be used to infer stimulus information 
at a different time point during the delay, thus leading to temporally stable representations. 
Consequently, we hypothesized that the requirement to maintain information during the delay in 
the DMC task would lead to persistent, temporally stable activity in anticipation of the upcoming 
delay period as the network gets ready to store the sample category. We therefore predicted 
that delay-dependent persistent activity in the DMC task would lead to greater temporal stability 
in the DMC task even before the delay, i.e. during the shared sample period. To ascertain 
whether categories are stored in more temporally stable format in the DMC task, we evaluated 
the temporal stability of category decoding using SVM decoders that were trained at one time 
point and then tested at all other times points in the shared sample period. The cross-temporal 
decoders revealed greater stability in the DMC than OIC task in the late sample epoch, as 
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shown by higher decoding accuracies in the DMC task when decoders were trained and tested 
at different time points (Figure 5c).  
 
These observations highlight two findings: first, neural activity and representations supporting 
sensory stimulus evaluation are similar between different tasks (OIC versus DMC) in the early 
sample period; second, neural population representations diverge following the initial evaluation 
of the sample stimulus, as the two tasks begin to differ in their behavioral demands. Notably, the 
population-level representations are governed by a stable, persistent categorical code in the 
DMC task, but a less temporally stable, more dynamic categorical code in the OIC task.  
 
RNN models recapitulate task-specific neural codes for category representations 
 
Our analyses of LIP neural data showed greater category selectivity in the DMC task that was 
achieved by compressing variability among directions within a category. Further, category 
representations in the DMC task were characterized by greater temporal stability in the late 
sample period, thus resulting in a stable categorical code across time. In contrast, during the 
same shared sample period, OIC category representations exhibited more graded responses to 
directions within a category. Further, they were characterized by more transient encoding 
resulting in a more dynamic categorical code. What explains the differences between the 
underlying neural codes in the OIC and DMC tasks? We hypothesized that cognitive demands, 
specifically working memory demands, differentially modulate neural activity and dynamics to 
produce distinct neural codes. Since the sample category needs to be maintained in short-term 
memory during the delay period, we reasoned that the format of delay-period stimulus encoding 
would be affected by attractor dynamics which are thought to govern persistent activity 
generated by neural networks (Hopfield, 1982). The attractor dynamics pull neural activity into 
one of two states (corresponding to the two categories in the DMC task), which might reformat 
or compress category-related information to a simpler, binary format by collapsing all directions 
within a category to a single uniform category representation.  
 
Inspired by recent approaches using artificial neural network models to understand task-related 
neural encoding and dynamics (Mante et al., 2013; Chaisangmongkon et al., 2017; Masse et al., 
2019), we tested whether recurrent neural networks trained to perform the OIC and DMC tasks 
reflected attractor-like dynamics that leads to compressed category representations in the DMC 
task. We trained 10 recurrent neural networks to solve the OIC task and 10 additional networks 
to solve the DMC task with the sequence of task events matched to the tasks used in the neural 
recording experiments (Figure 6a). These models received input from 36 motion-tuned neurons 
that projected to one recurrent layer consisting of 100 hidden neurons (80 excitatory + 20 
inhibitory neurons). The excitatory neurons in the recurrent layer projected to three output units. 
The first output is a fixation neuron that was trained to remain active until response time which 
was 500 ms after sample onset in the OIC task and test stimulus onset in the DMC task. The 
other two output units in the OIC task reported category identity (category one or category two), 
while in the DMC task, they reported match or non-match status of test stimuli.  
 
Trained networks successfully learned to optimize the desired output functions and the 
responses of the neurons in the hidden layer of these networks showed patterns of selectivity 
and dynamics which appeared similar to real neural data from LIP in these tasks. Applying the 
same category tuning analysis used for the LIP data on the artificial units from the RNN, we 
found OIC and DMC model neurons encoded category with similar responses to directions 
within a category and dissimilar responses to directions between categories (Figure 6b). We 
calculated individual units’ values of the category tuning index (CTI) which measured the degree 
to which units’ activity showed binary-like category selectivity. This revealed greater CTI values 
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in networks trained on the DMC than OIC task, indicating more binary-like selectivity in the DMC 
task, akin to LIP neural populations (Figure 7a, 7c). Furthermore, we compared BCD and WCD 
values that were used to compute the CTI values and found that BCD values were similar in 
networks trained on both tasks, but WCD values were significantly greater in the networks 
trained on the OIC than DMC task, suggesting greater compression of activity among direction 
within categories in the DMC task (Figure 7b). Thus, stronger binary selectivity could result from 
greater within-category compression, as a result of attractor dynamics underlying short-term 
memory needed to bridge the delay period in the DMC task. This suggests that differences in 
memory-dependent cognitive demands between tasks could produce task-specific differences in 
the format of underlying neural codes.  
 
To understand whether different neural codes reflect different computational mechanisms, we 
explored model dynamics through the analysis of fixed points in state space. Fixed points (small 
black dots, Figure 7c) correspond to neural activity patterns that are stable when external 
sensory inputs are turned off. A recent study performed fixed point analysis on RNN models 
trained on the DMC task and found that the dynamical mechanisms consisted of stable states at 
the end of the sample period, followed by a dynamic, high-velocity trajectory during the delay 
period (Chaisangmongkon et al., 2017). Similarly, in the absence of external input, we also 
found stable states associated with each category at the end of the sample period in the DMC 
task. In addition, we also found a stable state in the fixation period. This dynamical analysis 
revealed that in a delay-based categorization task, stable states that may reflect attractors 
emerge as sample categories need to be maintained in working memory. Indeed, at the end of 
the sample period, population activity for all motion directions within a category converges 
towards the corresponding stable category state, resulting in compression of stimulus 
representations in anticipation of the upcoming delay period. In contrast, category-based stable 
states were not present in networks trained to perform the OIC task in which there are no 
explicit working memory demands. Instead, in the absence of input, there was one stable state 
that coincided with the fixation period. These results suggest that attractor dynamics underlying 
working memory could contribute to stronger within-category compression in the DMC task.  
 
Discussion 
 
We examined the neural correlates of abstract categories during flexible task switching between 
two categorization tasks which varied in their behavioral demands. Both tasks required monkeys 
to categorize visual motion stimuli according to the same category boundary. However, the 
tasks varied in whether category judgments were reported immediately (OIC) or whether they 
were based on sequential comparisons of sample and test categories (DMC). The tasks also 
varied in their motor response mappings, demands on short-term memory, and the effector (eye 
or hand movement) used for the decision report. Despite these differences in task demands, the 
categorization requirements of each task during the sample presentation are similar. We 
examined whether LIP plays a general role across both tasks, or whether LIP is more 
specialized for task-specific demands, such as working memory, sequential comparison, or 
motor response modality.  
 
We found that LIP activity robustly encodes motion categories using a common coding scheme 
in both tasks with stronger category representations evident in the DMC task. In the DMC task, 
neurons exhibited stronger within-category compression by responding with more 
homogeneous firing rates for directions within each category. By contrast, neurons in the OIC 
task responded with more graded patterns of activity for directions within each category. This 
produced more binary-like or abstract category representations in the DMC task, and more 
mixed encoding of direction and category in the OIC task. Furthermore, during the shared 
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sample period in the DMC task, categorical encoding was more temporally stable and 
sustained, presumably reformatting category encoding in preparation for maintaining information 
in the imminent delay period. In contrast, categorical encoding during the OIC task was more 
transient, presumably as sensory and decision information is rapidly routed to motor circuits in 
that task. In sum, our results suggest that LIP circuits contribute to flexible task switching 
through generalized category representations that are rapidly reconfigured and specialized to 
meet task demands.  
 
Previous studies in LIP have focused on perceptual decisions, often employing behavioral 
paradigms with relatively simple stimulus-response (S-R) mappings in which noisy sensory 
stimuli are mapped directly to motor responses (Gold and Shadlen, 2007; Antzoulatos and 
Miller, 2011). Recent studies have also investigated more flexible mappings between stimuli and 
motor responses (Gold and Shadlen, 2003; Bennur and Gold, 2011). Other studies have 
employed multiple response modalities to report the same decisions (de Lafuente, Jazayeri and 
Shadlen, 2015) or modulated behavioral demands in both cued (Mante et al., 2013; Siegel, 
Buschman and Miller, 2015; Kumano, Suda and Uka, 2016) and un-cued (Snyder, Batista and 
Andersen, 1997; Asaad, Rainer and Miller, 1998) scenarios. Flexible decisions have also been 
studied in PFC and PPC by training animals to alternate between tasks with different sensory 
stimuli, different decisions and different motor responses in order to understand how circuits 
route information according to shifting behavioral demands. In both the OIC and DMC tasks in 
our study, the category decision is decoupled from the eventual motor action, allowing us to 
delineate LIP’s role in decision-making and response selection. In contrast to earlier work 
finding no impact of LIP inactivation on a motion discrimination task during simple S-R decisions 
(Katz et al., 2016), a recent study found that inactivation of LIP neurons indeed impairs 
perceptual decisions in a task with flexible S-R mappings (Zhou and Freedman, 2019). Although 
incorporating cognitive flexibility in tasks might engage new and task-specific neural 
mechanisms that might not generalize to simpler tasks, this study suggests that introducing 
flexibility in classical task structures can provide a more nuanced understanding of decision-
making circuits.  
 
Abstract, categorical signals have been observed in multiple brain regions including PFC 
(Freedman et al., 2001; Swaminathan and Freedman, 2012), PPC (Freedman and Assad, 
2006), and IT cortex (Freedman et al., 2003). Recent studies found that both PFC and ITC show 
category-correlated encoding during a shape DMC task; however, PFC neurons encode shape 
categories in a more abstract, binary format whereas ITC encoding was in a more mixed format 
in which categorical information was mixed with visual feature information (Meyers et al., 2008). 
These results bear a striking resemblance to the task-specific coding schemes we find in this 
study, with LIP encoding revealing abstract, binary category representations in DMC and mixed, 
graded category representations in OIC. While these previous studies suggest that different 
brain regions might support distinct formats of categorical encoding, our results demonstrate 
that behavioral task demands can also produce different encoding formats within a single brain 
region. Previous categorization studies have proposed that the abstract category signals 
observed in the DMC task are the output of a neural computation that transforms sensory 
representations into explicit, binary category encoding, which explicitly represents the learned 
stimulus categories (Freedman and Assad, 2006, 2016). However, the results from this study 
present an alternative interpretation that the specific format of category signals – abstract and 
binary – observed in the DMC task may be a consequence of – (i) short-term memory demands 
of delayed matching tasks, and (ii) the dynamics of neural population activity in brain regions 
that support working memory.  
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Several studies finding abstract categorial encoding have also employed behavioral tasks that 
have a working memory requirement. One study found that, in addition to motion categories, LIP 
also encodes learned shape associations in an abstract format in a delayed pair association 
task (Fitzgerald, Freedman and Assad, 2011). Interestingly, the neurons showing strong delay-
period encoding of motion categories in that task also often showed strong delay-period shape-
pair encoding. PFC neurons also show abstract categorical encoding in a shape DMC task with 
three categories (as opposed to two), suggesting that abstract category signals can also extend 
to multiple groups or attractor states (Freedman et al., 2002). Another study found binary-like 
encoding of task rules as rule-cue stimuli (both auditory and visual) evoked similar patterns of 
neural activity when they were associated with the same rule (Wallis, Anderson and Miller, 
2001). Recent work also examined learned associative representations in LIP and found that 
across multiple tasks with a memory delay period, nearly all recorded neurons had a similar 
order of preference among associated stimuli, thus creating biased representations (Fitzgerald 
et al., 2013). Such biased neural representations are predicted from a recent recurrent neural 
network model of LIP developed to explain the origins of persistent memory delay activity 
(Ganguli et al., 2008). The model proposes that over long timescales, local LIP activity is one-
dimensional such that the network dynamics relax to a single firing-rate mode as the firing rate 
stabilizes after a transient input, such as during a memory-delay period. Our results also 
suggest that such network dynamics compress directions within a category to a single point-
attractor in the DMC task, but not OIC task. Working memory demands also restructure neural 
encoding and dynamics in the motor system as neural populations in the motor cortex achieve a 
low-dimensional preparatory state during delayed reaches, but bypass this step during non-
delayed reaches (Ames, Ryu and Shenoy, 2014). Collectively, these observations suggest that 
the requirement to maintain task-relevant information in working memory could reformat 
stimulus representations, specifically through within-category compression to a single neural 
state or attractor. 
 
Our study indicates that both abstract and mixed category encoding schemes coexist within LIP 
in a task-dependent manner with a role for recurrent dynamics in compressing neural 
categorical encoding to appear more abstract and binary. It is likely that this phenomenon is 
mediated by interactions among different brain regions involved in the OIC and DMC tasks. 
Indeed, LIP is connected with the dorsolateral prefrontal cortex (DLPFC) (Chafee and Goldman-
Rakic, 1998), frontal eye fields (FEF), and superior colliculus (SC) (Blatt, Andersen and Stoner, 
1990; Lewis and Van Essen, 2000), all of which exhibit persistent activity during memory-delay 
periods. Furthermore, in concert with FEF and SC, LIP plays a significant role in oculomotor 
planning and spatial attention, and we predict that FEF and SC neurons would also be selective 
during target selection, saccade planning and initiation in the OIC task. Future studies with 
recordings in LIP, FEF, SC, and PFC will elucidate the roles of these different nodes in 
categorical decision-making, working memory and response selection. 
 
This study examines how flexible cognitive demands such as working memory interact with 
neural encoding and dynamics to produce task-specific neuronal representations. We propose 
that attractor dynamics underlying short-term working memory reorganizes graded stimulus 
representations into binary-like categorical encoding during delayed matching tasks. This 
advances our understanding of the interactions between neural feature selectivity and 
dynamics, and how cognitive demands flexibly affect these dynamics in order to support flexible 
task performance.   
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Methods 
 
Behavioral task and stimulus display 
Two male monkeys (Macaca mulatta) were trained to alternate between a one-interval 
categorization (OIC) task and a delayed match-to-category (DMC) task in blocks of 20 trials 
(monkey B) or 30 trials (monkey M) based on a colored cue presented at the start of a trial. In 
both tasks, monkeys were trained to categorize the same random-dot motion stimulus into one 
of two categories. Stimuli were circular patches (~5° diameter) of ~100 high-contrast dots that 
moved with 100% coherence at a speed of 12°/s. Motion stimuli were created by dividing 360° 
of motion directions into two categories based on an arbitrary learned category boundary 
(Figure 1b). Six evenly spaced motion directions (60° apart; 15°, 75°, 135°, 195°, 255°, 315°) 
were used as sample and test stimuli in addition to four directions that were 10° away (35°, 55°, 
215°, 235°) from the category boundary. In OIC, monkeys indicated the category membership of 
a sample stimulus by making an eye movement to a colored target associated with the 
category. In DMC, monkeys indicated whether sequentially presented sample and test stimuli 
matched in category by releasing or holding a manual touch-bar for match or non-match trials 
respectively.  
 
In the OIC block, every trial started with a yellow colored fixation point (0.12° radius) at the 
center of the screen. After gaze fixation was maintained for 500 ms (within a 2°-radius fixation 
window), a sample stimulus was presented for 500 ms in the receptive field (RF) of the recorded 
neuron. At 500 ms after sample onset, two colored targets (red and green squares) appeared – 
one in the RF of the recorded neuron and the other 180° opposite to the RF. Once the targets 
appeared, the monkeys made a saccade and maintained fixation for 300 ms on the red target or 
the green target to indicate the category of the sample stimulus as category 1 or category 2 
respectively, in order to receive a juice reward. Critically, on every trial, the red and green 
saccade target locations were counterbalanced between the two possible locations (inside RF 
or outside RF). This ensured that the saccade directions were not correlated with the category 
of the sample stimulus, thus, allowing us to disambiguate sensory and/or decision signals from 
motor signals in the sample period.  
 
In the DMC block, every trial started with a white colored fixation point (0.12° radius) at the 
center of the display. After gaze fixation and touch-bar press was maintained for 500 ms (within 
a 2°-radius fixation window), a sample stimulus was presented for 650 ms in the receptive field 
of the recorded neuron, followed by a 1000 ms delay and a test stimulus presented for 650 ms. 
If the sample stimulus and the test stimulus matched in category, the monkeys released a 
manual touch-bar using a hand movement, in order to receive a juice reward. If the sample and 
the test stimulus did not match in category, a second test stimulus appeared, which was always 
a category match to the sample, and the monkeys were required to release the touch-bar.  
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Gaze positions were measured using an Eyelink 1000 optical eye tracker (SR Research) at a 
sampling rate of 1 KHz and stored for offline analysis. Task events, stimulus display, timings 
and reward delivery were controlled via a MATLAB-based toolbox, MonkeyLogic. Stimuli were 
displayed on a 21-inch color CRT monitor (1280x1024 resolution, 75 Hz refresh rate, 57 cm 
viewing distance).  
 
Electrophysiological recoding 
Two male monkeys were implanted with a headpost and a recording chamber. The recording 
chamber was implanted over the intraparietal sulcus centered ~3 mm posterior to the inter-aural 
line. Stereotaxic coordinates were determined from anatomical MRI scans obtained prior to 
headpost and chamber implantation. All surgical procedures were in accordance with the 
University of Chicago’s Animal Care and Use Committee and US National Institutes of Health 
guidelines. 
 
LIP recordings were conducted using 75-µm tungsten microelectrodes (FHC), a dura-piercing 
27 Ga guide tube and an electronic micromanipulator (NAN Instruments). Neurophysiological 
signals were amplified, digitized, and stored for offline spike sorting (Plexon) to verify the quality 
and stability of neuronal isolation within a recording session.  
 
RF mapping and stimulus placement 
In every recording session, we tested and recorded the activity of well-isolated neurons during 
the delayed memory-guided saccade (see below). We identified the lateral intraparietal cortex 
(LIP) based on the presence of neurons that showed spatially selective, delay, and/or peri-
saccadic activity during the delayed memory-guided saccade task. The spatial location on the 
screen that elicited the highest activity was identified as the receptive field (RF). Stimuli in the 
OIC and DMC tasks were always presented inside the RF of the recorded neuron(s). The 
eccentricity of stimulus placement for LIP recordings ranged from 5-9°. The depth of LIP 
recordings ranged from 4-11 mm from the surface of the dura.  
 
Delayed memory-guided saccade task 
In this task, every trial started with a white colored fixation point (0.12° radius) at the center of 
the display. After gaze fixation was maintained for 500 ms (within a 2°-radius fixation window), a 
white square was presented for 300 ms at a fixed eccentricity in one of eight possible peripheral 
locations. The brief target flash was followed by a 1000 ms delay after which the fixation point 
disappeared, cueing the monkey to make a saccade to the remembered location.  
 
Data analysis 
All analyses were conducted on correct trials, excluding trials with incorrect responses, fixation 
breaks, and early responses. Unless otherwise stated, all our results were qualitatively and 
quantitatively similar in both monkeys. Thus, we combined datasets from both monkeys for all 
analyses.  
 
Epoch-based analysis 
The fixation period was a 500-ms epoch prior to sample onset in both the OIC and DMC tasks. 
The sample period was a 500-ms epoch in the OIC task and a 650-ms epoch in the DMC task, 
both epochs offset by 80 ms to account for neuronal response latency. Since the length of the 
sample period was different in the two tasks, we analyzed all comparisons between the OIC and 
DMC tasks during the shared sample period which was a 500-ms epoch after the sample 
stimulus onset in both tasks. Early and late sample periods were defined as 250-ms epochs 
beginning at 80 ms and at 330 ms after stimulus onset. In the OIC task, the saccade/choice 
period was a 250-ms epoch starting at saccade target onset which was 500 ms after sample 
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stimulus onset. In the DMC task, the delay period was a 1000-ms epoch beginning at sample 
stimulus offset and the match/non-match or choice period was a 250-ms epoch starting at test 
stimulus onset.  
 
Category tuning index (CTI) 
We quantified category selectivity for individual neurons through a category tuning index that 
compared neuronal responses for motions directions in the same versus different categories. 
The CTI index was computed as the difference between two quantities – the between category 
difference (BCD) and the within category difference (WCD). BCD was measured as the average 
firing rate difference between pairs of motion directions in different categories. Similarly, WCD 
was measured as the average firing rate difference between pairs of motion directions within the 
same category. To account for the inherent motion direction tuning of LIP neurons, we 
considered only pairs of directions for which the angular difference was equal in BCD and WCD. 
Out of 25 (5x5 directions per category) possible direction pairs for BCD and 20 (2 categories x 
5C2) possible direction pairs for WCD, the angular difference of 12 motion direction pairs were 
equal in BCD and WCD. CTI values ranged between -1 (directions within a category are much 
more distinct from each other compared to directions between categories) to +1 (directions in 
different categories are much more distinct from each other compared to directions within 
categories). 
 
Population decoding  
We constructed linear population decoders using support-vector machine classifiers that were 
trained and tested to classify task-relevant variables including motion direction and motion 
category. Because the neural data were collected through single-electrode recordings and any 
individual recording session had 1-3 units, we concatenated units across sessions to create a 
larger pseudo-population of 100 neurons. In all the population decoding analyses, we used a 
four-fold cross-validation approach in which 75% of the data was used for training and the 
remainder for testing. The detailed methods used in the decoding analysis have been described 
previously and are briefly explained in the following sections(Sarma et al., 2015).  
 
Category-independent direction decoder: We measured direction information independently of 
category by constructing separate direction decoders for each category and averaging 
performance across both decoders. We randomly sampled with replacement 20 trials for each 
direction in a category and used an SVM multi-class classifier(Chang and Lin, 2011) (one 
versus one) to classify one among five directions within a category (chance performance is 
20%).  
 
Direction-independent category decoder: We measured category information independently of 
direction by constructing category decoders in which training and testing sets consisted of 
motion directions with equal angular distance from the boundary in both categories. We 
constructed different classifiers for each of the two motion directions within a category that were 
30° and 10° away from the boundary and their diametrically (and hence categorically) opposite 
sample directions. These classifiers were trained on trials from the remaining sample directions 
in each category which have the same angular distance from the directions in the testing set, 
and then tested on the sets of opposing directions in the test set. For each motion direction, we 
randomly sampled 20 trials with replacement and trained the classifier to classify test response 
vectors as responses for category 1 or category 2 (chance performance = 50%). For the cross-
task category decoding analysis, we constructed category decoders that were trained on trials 
from one task (e.g., OIC) and tested on trials from the other task (e.g., DMC).  
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For both the direction and category decoders, we repeated the resampling procedure 10,000 
times for each epoch in all epoch-based analyses and 100 times for each time point in all sliding 
window analyses.  
 
Temporal stability analysis  
We extended the category decoding approach to compare the amount of category information 
encoded at different time points in the trial using a 200-ms sliding window with a 20-ms step 
size. To assess if category information is maintained in population activity over time, we trained 
a direction-independent category decoder at one time point in the trial and tested it at all time 
points during the shared sample period. If the category decoders were able to decode category 
information at different time points during the shared sample period, this indicated that the 
patterns of neural activity were similar over time. A block-like structure of high decoding 
accuracy indicates stable patterns of category selectivity over the time-course of a trial.  
 
Network models 
The details of the recurrent neural network modeling used in this study have been described 
previously and are described briefly in the following section(Masse et al., 2019).  
 
Neural networks were trained and simulated using the machine learning library 
TensorFlow(Abadi et al., 2016). In both tasks, the inputs were visual motion stimuli moving in 
one of 10 equally spaced directions. Networks trained on both the OIC and DMC tasks 
consisted of 36 motion-direction tuned input neurons. Networks trained on the OIC task alone 
also contained inputs of two target units that specified the location of response targets (left/right) 
and one fixation neuron that was active until 500 ms from after sample onset. Networks trained 
on the DMC task also contained one fixation neuron that remained active until the end of the 
delay. These input neurons projected to a hidden layer consisting of 100 recurrently connected 
neurons (80 excitatory + 20 inhibitory). Networks trained on the OIC task contained three output 
neurons – one that represented the decision to maintain fixation, and two neurons that 
represented the selection of category 1/category 2. Networks trained on the DMC task also 
contained three output neurons – one neuron represented fixation, and two neurons 
represented match/non-match responses. Ten separate networks, in which the parameters of 
each network were randomly initialized, were trained on OIC and DMC tasks, with trial epochs 
that matched those performed by behaving animals. In order to make training easier, the delay 
period for the simulated DMC task was 500 ms, instead of the 1000 ms delay used in the 
neurophysiological experiments. 
 
The neural activity in the hidden layer were governed by the following equation: 

𝜏 
𝑑𝒓

𝑑𝑡
= −𝐫 + f(𝑊𝑟𝑒𝑐𝐫 +  𝑊𝑖𝑛𝒖 +  𝒃𝑟𝑒𝑐 +  √2𝜏𝜎𝑟𝑒𝑐ζ 

where 𝜏 is the neuron’s time constant, f(.) is the activation function, 𝑊𝑟𝑒𝑐 and 𝑊𝑖𝑛 are the 
synaptic weights between recurrent neurons, and between input and recurrent neurons, 
respectively, 𝒃𝑟𝑒𝑐 is a bias term, ζ is independent Gaussian white noise with zero mean and unit 
variance applied to all recurrent neurons and 𝜎𝑟𝑒𝑐 is the strength of the noise. The differential 
equation was then discretized using a first-order Euler approximation with time step of 10 ms. 
The networks were trained with the following parameters which were kept constant for both 
tasks: neuron time constant: 100 ms, time step: 10 ms, standard deviation of input noise: 0.1, 
standard deviation of recurrent noise: 0.5. gradient batch size: 256, number of batches: 2000. 
 
Initial connection weights from the input layer, projecting to the output layer, and between 
excitatory neurons were randomly sampled from a gamma distribution with shape parameter 0.1 
and scale parameter of 1. Initial connection weights projecting to or from inhibitory neurons were 
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sampled from a gamma distribution with shape parameter 0.2 and scale parameter of 1. Initial 
bias values were set to 0. The networks were trained to minimize the cross-entropy between the 
actual and target output with Adam gradient descent optimization, and the mean L2 norm of the 
recurrent neurons’ activity level. All trained networks had accuracy greater than 95%.  
 
Fixed-point analysis: For finding fixed points in the trained networks, we implemented 
FixedPointFinder(Golub and Sussillo, 2018), an open-source Tensorflow toolbox for finding 
fixed points from linearized dynamics in high-dimensional trained RNNs. Recurrent activity 
during the sample period of trained RNNs was used to find fixed points. We computed fixed 
points separately for OIC and DMC networks. They were calculated for 1024 initial points that 
were randomly sampled across trials, neurons, and time within a trial during the shared sample 
period. Joint optimization was utilized to find all fixed points simultaneously for all initial points. 
Fixed points computed during the shared sample period were visualized by overlaying then over 
trajectories of trials in PCA space. PCA was performed on the recurrent layer.  
 
Statistics 
Selectivity for various task-relevant variables including motion direction, motion category was 
computed using a two-level nested ANOVA since direction is nested in category (p<0.05). 
Saccade direction selectivity was measured using a one-way ANOVA (2 saccade directions, 
into RF versus away from RF, p<0.05) and match/non-match selectivity was also measured 
using a one-way ANOVA (match versus non-match, p<0.05). Comparisons between proportions 
of direction selective or category selective neurons were conducted using a chi-square test. 
 
The statistical significance of differences in CTI, BCD, and WCD was computed through a 
shuffle analysis. To obtain a null distribution, we shuffled the direction labels, calculated CTI and 
repeated this process 1000 times for both the OIC and DMC tasks. An CTI value was 
significantly different from 0 if it was greater than 95% of values from the null distribution. The 
statistical significance of differences in the time-course of CTI, BCD, and WCD was computed 
using a two-sided Wilcoxon rank sum test and we corrected for multiple comparisons using false 
discovery rate.  
 
The statistical significance of differences in decoding accuracy for both direction and category 
information in OIC and DMC were determined using a bootstrap analysis. For the epoch-based 
decoding analysis, we constructed a null distribution by shuffling the labels for motion direction 
and then calculated decoding accuracy for the shuffled distribution. Average classification 
accuracy was considered significantly greater than chance if the value was greater than 95% 
(p<0.05) or 99% (p<0.01) of the values from the null distribution. For the time-course based 
decoding analysis, we used a bootstrap analysis to compare classification accuracies between 
OIC and DMC at each time point. Average classification accuracy was significantly different 
between OIC and DMC if 97.5% (p<0.05) or 99.5% (p<0.01) of values from one task were 
greater than the other task.  
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Figure 1. Categorization task switching and behavior. (a) Monkeys alternated between the one-interval categori-
zation (OIC) task and the delayed match-to-category task in blocks of 20 trials. On each trial, a 500 ms fixation 
period was followed by a sample period (500 ms in OIC, 650 ms in DMC) during which moving dots appeared in 
the receptive field (RF) of the recorded neuron. In OIC, colored saccade targets (red and green – see 1b) previ-
ously associated with the two motion categories appeared at 500 ms from sample onset. Once the targets 
appeared, monkeys made a saccade to the red or green target to indicate category one or two, respectively. In 
DMC, the sample stimulus was followed by a one second delay, and one or two test stimuli. If the sample and 
test stimulus matched in category, monkeys released a touch-bar, otherwise monkeys held the touch-bar until a 
second test stimulus appeared, which was always a categorical match. (b) The stimuli were random dots 
moving in one of ten possible motion directions, divided into two categories (represented by red and green 
colors) by an arbitrary category boundary (yellow dashed line). (c) Monkeys performed categorization task 
switching successfully at 87.6% correct in OIC, 84.13% correct in DMC. Performance increased with distance 
from the category boundary in both tasks. Performance in OIC was significantly greater than DMC for the easi-
est (90° away from boundary) and hardest (10° away from boundary) motion directions. Error bars indicate 
s.e.m. * p<0.05, *** p<0.001, n.s not significant, unpaired two-sample t-test. 
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Figure 2. Single-neuron LIP responses in OIC and DMC. (a) Peri-stimulus time histogram (PSTH) of an exam-
ple LIP neuron during the shared sample period in OIC (left) and DMC (center) and during the delay period in 
DMC (right). Spike trains were convolved with a Gaussian kernel (σ=30 ms). Colors represent categories and 
shade represents distance from the boundary, lighter shades refer to motion directions closer to the category 
boundary. Vertical lines at 0 indicate sample onset. Vertical lines at 650 and 1650 ms in the delay panel indicate 
delay onset and delay offset, respectively. (b) PSTH of another example neuron with plotting conventions as in 
2a. (c) Block-wise comparison of firing rates during the shared sample period (0-500 ms from sample onset, 
offset by a visual latency of 80 ms) for the single neuron shown in 2a. Error bars represent s.e.m. (d) Scatter 
plot comparing OIC and DMC firing rates of the LIP population during the shared sample period. The black line 
is the regression line for all significant neurons (black dots, p<0.05, two-sample t-test; grey dots, not significant 
(n.s)), the blue line is the reference unity line with slope=1. 
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Figure 3. Stronger category tuning in DMC than OIC task. (a) Histograms of the category tuning index (CTI) 
during fixation and shared sample epochs in OIC and DMC tasks. The black solid line represents zero and the 
colored dashed lines represent mean CTI of direction selective neurons in each task (blue for OIC, purple for 
DMC). (b) Time-course of CTI computed by aligning firing rates to sample onset (left) during the shared sample 
period in OIC and DMC and the delay period (right) in DMC. (c) Time-course of CTI computed by aligning firing 
rates to response onset in OIC (saccade onset) and DMC (touch-bar release). In 2b and 2c, purple dots repre-
sent timepoints at which traces are significantly different from each other with DMC > OIC (p<0.05, FDR-cor-
rected) and shaded error bars indicate s.e.m. (d) Scatter plot comparing CTI in OIC and DMC for individual 
neurons during the shared sample period. The black line is the regression line indicating a significant, positive 
correlation between CTI values in both OIC and DMC tasks. (e) Time-course of performance of the direction-in-
dependent category decoder trained and tested on OIC and DMC during the shared sample period (left) in OIC 
and DMC and the delay period (right) in DMC. Purple dots represent timepoints at which traces are significantly 
different from each other with DMC > OIC (p<0.05, bootstrap). Shaded error bars indicate s.d. (f) Mean perfor-
mance of the direction-independent category decoder during fixation and shared sample epochs. Error bars 
indicate s.d. ** p<0.01, *** p<0.001, bootstrap. 

50

90 ***
***

**

-500 0 500 650 1650

Shared sample period Delay Response period.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.20.259820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.259820
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b

c

Figure 4. Stronger within-category direction tuning in OIC than DMC task. (a) Time-course of between-category 
difference (BCD, top row) and within-category difference (WCD, bottom row) computed by aligning firing rates 
to sample onset (left and middle column) and response onset (right column) in OIC and DMC (200 ms sliding 
window, stepped by 10 ms). Response onset is defined as saccade initiation towards the RF in OIC and touch- 
bar release in match trials in DMC. Vertical lines indicate sample onset in the left column, delay onset and delay 
offset in the middle column and response onset in the right column. Blue dots represent timepoints at which 
traces are significantly different from each other with OIC > DMC (p<0.05, FDR-corrected). Shaded error bars 
indicate s.e.m. (b) Mean performance of the category-independent direction decoder during fixation and shared 
sample epochs in OIC and DMC. Error bars indicate s.d. *** p<0.001, bootstrap. (c) Time-course of perfor-
mance of the category-independent direction decoder trained and tested on OIC and DMC during the shared 
sample period (left) in OIC and DMC and the delay period (right) in DMC. OIC has more within-category direc-
tion information than DMC. Blue dots represent timepoints at which traces are significantly different from each 
other with OIC > DMC (p<0.05, bootstrap). Shaded error bars indicate s.d.
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Figure 5. Temporal dynamics and stability of category decoding in OIC and DMC. (a-b) Time-course of perfor-
mance of the category decoder tested on one task, but trained on data from the other task. In 5a, the category 
cross-decoder is trained on OIC or DMC, but always tested on OIC. In 5b, the category cross-decoder is trained 
on OIC or DMC, but always tested on DMC. Dots represent timepoints at which the cross-task decoder was 
significantly worse than the within-task decoder (p<0.05, bootstrap). Shaded lines represent s.d. (c) Perfor-
mance of a cross-temporal category decoder trained and tested at all time points during fixation and shared 
sample epochs in OIC (left) and DMC (right). Coordinates (x,y) on the heatmap represent x=timepoint at which 
decoder was tested, y=timepoint at which decoder was trained. 
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Figure 6. RNN model architecture and artificial unit responses in OIC and DMC. (a) Trained RNN models con-
sisted of 36 motion-direction tuned input neurons which projected to 100 hidden neurons (80 excitatory+20 
inhibitory) which in turn projected to three output units. In addition to the 36 motion-tuned units, OIC networks 
consisted of one fixation unit and two target units and DMC networks consisted of one fixation unit. In networks 
trained on OIC, output units corresponded to fixation, category one, and category two. In networks trained on 
DMC, output units corresponded to fixation, match, and non-match. (b) Peri-stimulus time histogram of two 
example RNN hidden units – one each from networks trained on OIC (left) and DMC (middle and right panel). 
Colors represent categories. Vertical lines at 0 indicate sample onset. Vertical lines at 650 and 1150 ms in the 
delay panel indicate delay onset and delay offset in DMC networks, respectively.
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a

Figure 7. Categorical encoding and dynamics in RNNs trained on OIC and DMC tasks. (a) Mean time-course 
of the category tuning index (CTI) during the shared sample period averaged over 10 RNNs trained inde-
pendently on OIC and DMC. Purple dots represent timepoints at which traces are significantly different from 
each other with DMC > OIC (p<0.05, FDR-corrected). (b) Mean time-course of between-category difference 
(BCD, top row) and within-category difference (WCD, bottom row) during the shared sample period averaged 
over the same 10 RNNs shown in 7a. Blue dots represent timepoints at which traces are significantly different 
from each other with OIC > DMC (p<0.05, FDR-corrected). In 7a and 7b, vertical line at 0 indicates sample 
onset and shaded error bars indicate s.e.m. calculated over 10 networks. (c) Fixed-point structure overlaid with 
hidden-layer neural trajectories of an example RNN model trained on OIC (left) and DMC (right) tasks sepa-
rately. Colored traces indicate PCA trajectories of the hidden layer neurons during fixation and shared sample 
epochs. Each trace corresponds to a single trial with fixation colored in gray, category one trials in red and 
category two trials in green. Black dots indicate stable fixed points of the trained networks computed on the 
hidden layer neural activity during the shared sample period. 
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Figure S1. Strong and similar category tuning in LIP in both OIC and DMC. Time course of the performance of 
a category decoder trained and tested on OIC and DMC during the shared sample period. Shaded error bars 
indicate s.d.
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