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Abstract   

Although   much   effort   has   been   devoted   to   identifying   coding   mutations   across   cancer  
types,   regulatory   mutations   remain   poorly   characterized.   Here,   we   describe   a  
framework   to   identify   non-coding   drivers   by   aggregating   mutations   in   cell-type   specific  
regulatory   regions   for   each   gene.   Application   of   this   approach   to   2,634   patients   across  
11   human   cancer   types   identified   60   pan-cancer,   22   pan-breast   and   192   cancer   specific  
candidate   driver   genes   that   were   enriched   for   expression   changes.   Analysis   of  
high-throughput   CRISPR   knockout   screens   revealed   large,   cancer   specific   growth  
effects   for   these   genes,   on   par   with   coding   mutations   and   exceeding   that   for   promoter  
mutations.   Amongst   the   five   candidate   drivers   selected   for   further   analysis,   four   ( IPO9 ,  
MED8 ,    PLEKHA6 ,   and    OXNAD1)    were   associated   with   survival   across   multiple   cancer  
types.   These   studies   demonstrate   the   power   of   our   cell-type   aware,   convergent  
regulatory   framework   to   define   novel   tissue   specific   cancer   driver   genes,   considerably  
expanding   evidence   of   functional   non-coding   mutations   in   cancer.    

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.21.239954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.239954
http://creativecommons.org/licenses/by-nc-nd/4.0/


/

 
 

3  

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

Introduction   

To   date,   much   effort   has   been   devoted   to   the   analysis   of   coding   regions   within   the  
human   genome   to   define   somatic   alterations   associated   with   tumor   growth   and  
progression    (Bailey   et   al.,   2018;   Lawrence   et   al.,   2014;   Zehir   et   al.,   2017) .   While   many  
recurrent   clonal   coding   mutations   have   been   defined,   non-coding   elements   (including  
promoters   and   enhancers)   implicated   in   malignancy   have   been   far   more   elusive   due   to  
the   need   for   large   cohorts   with   whole   genome   sequencing   (WGS)   data   and   new   analytic  
approaches.   Indeed,   attempts   to   locate   regulatory   elements   enriched   for   functional  
mutations    (Araya   et   al.,   2016;   Feigin   et   al.,   2017;   Melton   et   al.,   2015;   Weinhold   et   al.,  
2014;   Zhu   et   al.,   2020)    have   revealed   only   a   handful   of   target   genes,   most   of   which   are  
associated   with   core   promoter   variants.   An   example   is   the   canonical   oncogene    TERT ,  
where   promoter   mutations   can   induce   c-Myc   activation   and   telomeric   immortalization  
(Berger   et   al.,   2012;   Huang   et   al.,   2013;   Wu   et   al.,   1999) .   However,   the   vast   majority   of  
genes   are   regulated   by   promoters   as   well   as   proximal   and   distal   enhancer   elements  
(Schmidt   et   al.,   2010) ,   suggesting   that   the   latter   may   harbor   as   of   yet   undiscovered  
mutations.   Indeed,   the   long   non-coding   RNA   (lncRNA)   gene    PVT1    was   recently  
identified   as   a   tissue-specific   tumor   suppressor   DNA   boundary   element   that   regulates  
MYC    transcription    (Cho   et   al.,   2018) ,   demonstrating   a   role   for   regulatory   sequences   of  
lncRNAs   in   malignancy.   A   recent   paper    by   Rheinbay   et   al   identified   a   small   number  
(4–5)   of   driver   mutations   when   combining   coding   and   non-coding   genomic   elements   per  
cancer   genome.   However,   even   in   this   most   recent   study,   analyses   suggest   that  
discovery   of   noncoding   mutations   and   driver   genes   is   far   from   complete     (Rheinbay   et  
al.,   2020) .  

 
The   tissue-specific   epigenomic   landscape   of   a   cell   dictates   its   response   to   oncogenic  
cues   and   influences   the   selection   of   somatic   alterations   during   tumor   initiation  
(Lawrence   et   al.,   2014;   Lowdon   and   Wang,   2017;   Sack   et   al.,   2018) .   Accordingly,   we  
reasoned   that   tissue-specific   annotations   may   increase   the   power   and   interpretability   of  
cancer   driver   gene   discovery.    As   evidenced   by   their   enrichment   in   genome-wide  
association   studies   (GWAS),   expression   quantitative   trait   loci   (eQTLs),   and  
cross-species   conservation   analyses,   sequence   alterations   in   regulatory   elements   are  
associated   with   functional   changes   in   the   expression   of   downstream   target   genes   and  
disease   phenotypes    (Maurano   et   al.,   2012;   Schaub   et   al.,   2012;   Zhou   et   al.,   2020) .  
Meanwhile,   putative   regulatory   element   mutations   have   been   shown   to   affect   cancer  
driver   gene   expression   in   relevant   tissues    (Takeda   et   al.,   2018;   Zhang   et   al.,   2018) .  
Therefore,   the   systematic   analysis   of   regulatory   variants   within   active   elements   of   the  
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corresponding   cell   type   of   origin   may   improve   the   power   to   detect   non-coding   cancer  
associated   mutations.   
 
Here,   we   leverage   these   principles   to   develop   a   generalizable   analytic   framework   to  
characterize   cell-type-specific   regulatory   landscapes   and   non-coding   mutational   burden  
across   2,634   patients   spanning   11   cancer   types   (Supplemental   Table   1).   We   focused   on  
regulatory   variants   within   active   elements   in   the   cell   type   of   origin,   defined   by   the  
chromatin   state   of   the   corresponding    enhancer    or    promoter .   To   increase   the   power   to  
detect   disease-associated   variants,   we   aggregated   regulatory   information   across   all  
elements   for   each   gene,   similar   to   recent   work   examining   the    ESR1    locus   in   breast  
cancer    (Bailey   et   al.,   2016)    and   prostate   cancer    (Sallari   et   al.,   2017) .   Using   this  
approach,   we   found   both   known   and   novel   recurrently   mutated   regulatory   regions,   the  
majority   of   which   were   associated   with   dysregulated   expression   of   nearby   genes   and  
differential   survival   outcomes.   In   particular,   we   identify    IPO9    as   a   novel   regulatory   driver  
mutation   in   breast   cancer.   Using   high-throughput   CRISPR   screen   data   across   cancer  
cell   lines    (Meyers   et   al.,   2017) ,   we   demonstrate   that   genes   harboring   recurrent  
regulatory   mutations,   including    IPO9,   GUK1,   MED8,    and    OXNAD1,    were   associated  
with   larger    in   vitro    growth   effects   on   average   than   genes   enriched   for   coding   mutations.  
Together,   these   results   highlight   the   power   of   aggregating   regulatory   information   and   the  
use   of   cell-type-aware   models   to   define   novel   oncogenic   drivers   across   diverse   cancers.   

Results  
Analytical   Framework   
 
We   reasoned   that   the   power   to   discover   novel   regulatory   regions   as   well   as   driver  
genes   would   be   improved   by   combining   regulatory   information   for   each   gene,  
analogous   to   burden   tests   aggregating   exonic   information   for   coding   sequences   (Figure  
1A).   In   order   to   capture   information   relevant   for   each   cancer   type,   we   used   cell   type  
specific   epigenetic   data   available   from   the   ENCODE   and   Roadmap   Epigenome  
projects.   We   estimated   mutational   enrichment   within   regulatory   regions   of   each   gene   by  
permutation   testing   (Methods).   To   implement   this   approach,   we   first   linked   the   distal  
enhancer   elements   defined   by   the   Roadmap   Epigenomics   Consortium    (Roadmap  
Epigenomics   Consortium   et   al.,   2015)    to   each   of   the   18,729   GENCODE   genes   using  
the   correlation-based   links   from   Roadmap   (Figure   1B).   Each   distal   element   can   be  
assigned   to   one   or   more   genes.   To   verify   the   quality   of   these   enhancer-promoter   links,  
we   counted   the   number   of   linked   genes   present   at   each   enhancer   element  
(Supplemental   Figure   1C).   Each   distal   element   linked   to   ~5   genes   on   average,  
consistent   with   other   studies    (Fishilevich   et   al.,   2017) .  
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To   assess   the   quality   of   our   regulatory   links,   we   next   intersected   these   links   with  
chromatin   states   from   the   corresponding   cell   type,   producing   a   canonical  
enhancer-enriched   distribution   of   regulatory   activity   (Supplemental   Figure   1D,  
Supplemental   Table   2).   We   compared   the   chromatin   state   annotations   within   each  
cancer   type   on   each   side   of   a   regulatory   link   and   discovered   an   enrichment   of  
repressed   regulatory   elements   linked   to   repressed   promoters   and   active   regulatory  
elements   linked   to   active   promoters,   consistent   with   expectations   of   domain-level  
activation    (Rao   et   al.,   2014)    (Supplemental   Figure   1E).   These   results   indicate   that   both  
chromatin   states   and   enhancer-gene   links   are   stable   and   high   quality.  
 
To   evaluate   mutational   enrichment   in   regulatory   regions   of   all   genes,   we   used   SNV   and  
indel   calls   from   WGS   data   from   the   International   Cancer   Genome   Consortium   (ICGC)  
focusing   on   11   cancer   types   with   a   minimum   of   n=90   individuals   and   tissue   matched  
epigenetic   data   (Figure   1C,   Supplemental   Table   1).   In   addition,   the   breast   cancer   cohort  
was   sufficiently   large   to   enable   evaluation   of   the   etiologically   distinct   Basal,   Luminal,  
and   HER2+   subgroups    (Nik-Zainal   et   al.,   2016) .   The   variants   from   each   cohort   were  
normalized   for   regional   patient   mutation   rate   (Methods),   chromatin   state,   and   cancer  
type,   intersected   with   each   gene’s   aggregated   regulatory   regions   and   evaluated   for  
mutational   enrichment.   Enrichment   was   assessed   by   permutation   testing   (as   in    (Sallari  
et   al.,   2017) ;   5000+   iterations),   where   a   matching   background   set   of   regulatory  
elements   were   randomly   assigned   to   each   gene   (maintaining   mutation   rate   and  
chromatin   state)   and   the   number   of   mutations   scored   (Methods).   
 
Excess   mutational   burden   in   aggregate   distal   regulatory   regions   in   breast   cancer  
 
We   first   evaluated   this   approach   in   a   WGS   dataset   composed   of   560   breast   cancers  
stratified   by   three   major   subtypes:   Basal   (n   =   167),   Luminal   (n   =   320),   and   HER2+   (n   =  
73)    (Nik-Zainal   et   al.,   2016) .   We   performed   enrichment   tests   on   57,534  
FANTOM-derived   promoters   for   20,209   Ensembl-annotated   genes,   where   promoters   for  
the   same   gene   were   concatenated   when   evaluating   enrichments   (Methods).   Consistent  
with   previous   results,   we   observed   an   enrichment   in   mutations   in   the   shared   promoter  
of    RMRP    and    CCDC107    across   the   individual   breast   cancer   cohorts    (Nik-Zainal   et   al.,  
2016;   Rheinbay   et   al.,   2017) .   Combining   p-values   across   the   three   breast   cancer  
subtypes   via   Fisher’s   method   revealed   enrichment   of   promoter   mutation   in    TP53    and  
CCDC107 ,   as   previously   reported.   When   considering   only   active   promoter   elements,   we  
identify   enrichments   in    WDR74 ,    ZNF143 ,    MFSD11 ,    SRSF2 ,    VMA21,   CDC42BPB,    and  
TMEM189    (Supplemental   Table   3).   Thus,   analysis   of   single   regulatory   elements   reveals  
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excess   mutational   burden   in   numerous   previously   identified   drivers,   as   well   as   novel  
candidate   drivers.  
 
We   hypothesized   that   aggregating   distal   regulatory   elements   would   yield   increased  
power   to   detect   candidate   driver   genes.   For   each   of   the   18,729   GENCODE   genes   we  
aggregated   the   promoter-interacting   regulatory   elements   and   tested   for   an   excess   or  
overburdening   of   distal   mutations.   In   order   to   resolve   cell-type-specific   effects,   we  
examined   combinations   of   different   chromatin   states   that   represent   the   regulatory   profile  
of   mammary   epithelial   cells   (e.g.   poised   enhancers,   active   enhancers,   promoters,  
Supplemental   Table   2).   Using   this   approach,   we   identify   22   putative   distal   regulatory  
driver   genes   with   FDR   <   10%,   spanning   numerous   regulatory   states.   These   candidates  
included   known   driver   genes   such   as    MSL3     (Leiserson   et   al.,   2013)    and    HLE     (Osborne  
et   al.,   2010)    (Supplemental   Table   4).   In   addition,   we   found   significant   enrichment   for  
mutations   in   regulatory   regions   of   17   novel   genes,   most   notably    IPO9 ,   which   was  
specifically   enriched   in   enhancer   marked   chromatin   (Figure   2C).   Mutations   in   regulatory  
regions   of    IPO9    were   significantly   overburdened   in   basal   subtype   tumors   where   15  
patients   harbored   16   mutations,   compared   to   an   expectation   of   ~3.6   patients   (4.2-fold  
enrichment,   permutation   p-value   <   3.2e-6,   Methods).   An   additional   3   patients   across   the  
other   subgroups   exhibited   IPO9   mutations,   bringing   the   total   to   18   (Fisher   combined,  
FDR   adjusted   q-value   across   all   three   breast   cancer   subtypes   =   0.068).   Additionally,  
PYCR2    exhibited   an   excess   of   regulatory   mutations   (23   mutations   across   22   patients,  
q-value   =   0.002)   in   active   promoter   &   strong   enhancer   (H3K4me3)-marked   regions,   as  
did    SDE2    (18   mutations   across   17   patients,   q-value   =   0.023),    SRP9    (24   mutations   in   23  
patients,   q-value   =   0.02),   and    PLEKHA6    (22   mutations   in   21   patients,   q-value   =   0.04,  
Supplemental   Figure   2C).    PYCR2    catalyzes   the   last   step   of   proline   synthesis   from  
glutamate   in   the   mitochondrion    (De   Ingeniis   et   al.,   2012) ;    SDE2    is   a   telomere   repair  
gene   implicated   in   cell   cycle   regulation    (Jo   et   al.,   2016) ;    SRP9    binds   and   inhibits    Alu  
element   translation    (Chang   et   al.,   1996) ;   and    PLEKHA6    is   poorly   characterized.   Also   of  
note,   luminal   tumors   comprise   a   heterogeneous   group   that   can   be   stratified   based   on  
genomic   features    (Rueda   et   al.,   2019) ,   hence   it   is   not   surprising   that   mutational  
enrichment   is   weaker   than   observed   in   Basal   and   HER2+   tumors   (Figure   2D).  
 
We   further   evaluated   mutational   burden   in   topological   domains   from   the   progenitor  
human   mammary   epithelial   (HMEC)   cells,   the   closest   normal   breast   cell   type   with  
comprehensive   epigenomic   data   (Rao   et   al.   2014)   and   observed   a   significant  
enrichment   in   promoter   variants   for   the   topological   domain   containing    PLEKHA6  
(Supplemental   Figure   2D).   The   differences   between   the   enhancer-gene   linked  
enrichments   and   topological   domain   enrichments   is   likely   because   many   regulatory  
regions   in   a   given   topological   domain   do   not   contribute   globally   to   the   expression   of  
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genes   that   reside   within   that   domain    (Degner   et   al.,   2012;   Gasperini   et   al.,   2019;  
Kasowski   et   al.,   2013;   Kilpinen   et   al.,   2013;   McVicker   et   al.,   2013) .  
 
Identification   of   IPO9   as   a   putative   breast   cancer   oncogene  
 
We   next   sought   to   evaluate   whether   individuals   with   mutations   in    IPO9    regulatory  
regions   had   altered    IPO9    expression.    IPO9    was   highly   expressed   in   MCF-7,   which  
contains   a   mutation   in   the    IPO9    regulatory   region,   but   not   in   HMEC   cells,   consistent  
with   its   dysregulation   in   malignancy.   In   the   independent   METABRIC   cohort,    IPO9  
expression   was   higher   in   Basal   subtype   tumors   (Supplemental   Figure   3A).   Additionally,  
IPO9    (1q32)   is   amplified   in   26%   of   early   stage   breast   cancers   in   the   METABRIC   cohort  
and   22%   of   advanced   breast   cancers   in   the   Metastatic   Breast   Cancer   Project   (Figure  
3A).   Among   the   560   breast   cancer   patients   with   WGS   data,   only   a   subset   (n=268)   had  
matched   RNA-seq   data,   four   of   which   had    IPO9    mutations.   While   underpowered   to  
detect   an   eQTL   signal,    IPO9    expression   was   higher   in   patients   with    IPO9    regulatory  
mutations   (Supplemental   Figure   3B).   In   addition,   when   examining   three   validation  
cohorts   of   whole   genome   sequenced   tumors,   we   observed   an   additional   19   individuals  
mutated   in   DNase   regions   of   enhancer-marked   chromatin   at    IPO9    (Figure   3B).  
Collectively,   these   data   suggest   that   increased    IPO9    expression   can   occur   through   a  
variety   of   mechanisms,   including   gene   amplification,   distal   regulatory   mutations,   and  
proximal   mutations   at   the   promoter,   consistent   with   known   oncogenes.  
 
The   epigenetic   landscape   of   breast   cancer   surrounding   the    IPO9    locus   is   complex   and  
includes   large   open   chromatin   regions   (defined   using   DNase-seq),   actively   transcribed  
genes   (RNA-seq),   and   regulatory   elements   (H3K27ac   ChIP-seq;   Figure   3C).   Hi-C   data  
from   HMEC   cells   (Rao   et   al.   2014)   suggests   that    IPO9    lies   at   the   boundary   of   two  
topological   domains,   similar   to   that   reported   for   other   regulatory   mutations   in   cancer  
(Flavahan   et   al.,   2016;   Hnisz   et   al.,   2016) .   We   next   examined   individual   regulatory  
elements   containing   mutations.   One   such   highly   mutated   element   was   located   in   an  
intron   of    NAV1 ,   approximately   50Kb   away   from   the    IPO9    promoter   and   120Kb   away  
from   the    NAV1    promoter   (Figure   3D).   This   element   contains   a   CTCF   binding   site,   active  
H3K27ac   and   H3K4me1   marks,   as   well   as   a   number   of   conserved   regions   and   DNase  
hypersensitivity   sites.   Across   all   tumors   with   WGS,   there   were   four   breast   cancer  
patients   each   with   a   single   mutation   in   this   enhancer:   one   mutation   located   in   a  
conserved   region   ~800bp   away,   a   second   located   directly   adjacent   to   the   CTCF   binding  
site,   and   two   more   with   mutations   located   in   the   DNase   hypersensitivity   site   that   is  
associated   with     increased   STAT3   and   FOS   binding   upon   estrogen   stimulation   in  
MCF-10A   cells    (ENCODE   Project   Consortium,   2012) .   A   similar   trend   was   observed   in  
the    IPO9    UTR,   where   four   regulatory   mutations   were   also   present   (Supplemental   Figure  
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3C).   Together,   these   data   implicate   somatic   alterations   in    IPO9    regulatory   elements   in  
breast   cancer   pathogenesis,   as   further   explored   below.   

 
Pan-cancer   aggregate   regulatory   analysis   discovers   functional   driver   genes  
 
We   next   expanded   our   analyses   to   catalogue   pan-cancer   regulatory   driver   mutations.  
We   first   individually   examined   the   same   20,209   genes   used   in   the   breast   cancer  
analysis.   As   a   baseline,   when   considering   all   chromatin   states   rather   than   restricting   to  
active   states,   canonical   non-coding   variants   in   the    TERT    promoter   were   observed,   as  
previously   reported    (Horn   et   al.,   2013;   Huang   et   al.,   2013;   Vinagre   et   al.,   2013) .  
Enrichment   was   even   stronger   when   analyses   were   restricted   to   active   promoters   for  
the   cancer   type   of   interest   (28-fold   versus   14.9-fold   enriched).   Therefore,   for   each  
cancer   type   we   examined   the   mutational   enrichment   in   the   TSS   regions   using   the  
corresponding   active   chromatin   state   information   for   that   type   of   cancer   (Methods).   This  
analysis   revealed   enrichment   in   the   promoters   of   the   canonical   oncogenes    BCL2 ,    TP53 ,  
TERT ,   and    CXCR4 .   We   also   aggregated   the   enrichment   information   across   cancer  
types,   which   revealed   an   overlapping,   but   distinct,   set   of   promoters,   including   those   for  
BTG1 ,    CCL15 ,    TERT ,   and    TP53    (Supplemental   Figure   4C).   Thus   aggregating   promoter  
mutations   across   cell   types   validates   canonical   driver   genes,   including    TP53     and    TERT .   
 
We   subsequently   performed   an   aggregated   distal   regulatory   element   analysis,   where  
we   initially   employed   a   parametric   approximation   (Methods)   and   then   validated  
significant   results   with   permutation   testing.   In   contrast   to   methods   that   focus   exclusively  
on   canonical   promoter   mutations,   by   aggregated   distal   regulatory   state-specific  
mutations,   we   identify   numerous   novel   associations,   including   both   cancer-specific   (n   =  
183)   and   pan-cancer   (n   =   40)   mutated   gene   landscapes   (Figure   4A,   FDR   of   10%,  
Supplemental   Tables   5-6).   For   genes   with   at   least   one   cancer-specific   enrichment,   we  
quantified   the   significance   across   more   than   one   cancer   type   via   increasingly   stringent  
FDR   cutoffs   (Figure   4B).  
 
One   example   of   a   hypermutated   distal   region   was   a   segment   associated   with    OXNAD1  
and    GALNT15 ,   located   30kb   apart.   The   aggregated   distal   regions   for   these   genes   were  
specifically   overburdened   by   mutations   in   CLL   and   melanoma   (enrichment   =   4.5   and  
1.63-fold,   FDR-adjusted   q-value   =   0.058   and   0.078),   and    OXNAD1    was   previously  
reported   to   be   overburdened   with   promoter   mutations   in   melanoma    (Denisova   et   al.,  
2015) .   Additionally,   regulatory   elements   of   the   non-coding   RNA   transcript   AC090953.1  
located   within   an   intron   of    GALNT15    was   also   overburdened   with   mutations   (enrichment  
=   2.76,   q-value   =   0.078),   though   the   enhancers   overlap   substantially   with   that   of  
OXNAD1    (Supplemental   Table   7).   Similar   to   germline   expression   QTLs    (Tong   et   al.,  
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2017) ,   co-regulation   might   mediate   this   shared   enrichment   signal.   The    TCERG1    gene  
similarly   harbored   more   mutations   (n=27)   than   expected   by   chance   (n=3.8;   q   <   0.094)  
across   diverse   cancer   types,   with   enrichment   in   melanoma,   esophageal,   and   ovarian  
cancers.    TCERG1    is   a   pro-apoptotic   transcriptional   elongation   factor    (Montes   et   al.,  
2015)    implicated   in   cancer   progression    (Bailey   et   al.,   2018;   Forbes   et   al.,   2017;   Gao   et  
al.,   2013)    with   two   mutational   hotspots   in   nearby   coding   regions   of   the   gene  
(Supplemental   Figure   4G).   
 
We   further   noted   that   the   distribution   of   mutations   varied   significantly   between   promoter  
and   distal   elements   for   putative   drivers.   For   instance,    OXNAD1    primarily   harbored  
promoter   state   mutations,   whereas    IFI16    and    PYHIN1    share   an   enhancer   element  
(chr1:158968600-158969600)   with   mutations   in   11   esophageal   cancer   patients  
(Supplemental   Table   8).   Both   of   these   sites   would   likely   be   detected   with   methods   that  
examine   individual   regulatory   elements.   However,   other   genes,   such   as    BRCA1 / NBR2  
(Figure   4E)   and    CDH13    (Figure   4F),   were   overburdened   with   variants   distributed   across  
multiple   elements   (e.g.   promoters   and   distal   elements),   and   hence   would   be   overlooked  
using   conventional   approaches,   including   those   put   forth   in   recent   state-of-the-art   single  
element   analyses    (Rheinbay   et   al.,   2020) .   
 
We   further   sought   to   evaluate   whether   our   aggregated   non-coding   cell-type   aware  
driver   discovery   method   can   also   recover   known   pan-cancer   drivers   of   disease   in  
coding   regions   and   UTRs.   To   this   end,   we   focused   on   mutations   in   the   “transcribed”  
chromatin   state,   corresponding   to   active   genes    (Joshi   and   Struhl,   2005) .   After   removing  
genes   for   which   the   whole   gene   body   lacked   H3K36me3,   and   using   Fisher’s   method   to  
combine   p-values   across   cancer   types,   we   confirmed   the   significant   enrichment   of  
mutations   in   known   driver   genes    TP53 ,    BRAF ,    NRAS ,    SMAD4 ,   and    MUC3  
(Supplemental   Figure   4C,   Supplemental   Table   9-11,   all   but   MUC3   reported   in   Rheinbay  
et   al.,   2020).   We   also   observed   associations   the   UTR   of    NOTCH1    in   CLL    (Lobry   et   al.,  
2011)    (4   patients,   48-fold   enriched,   q   <   0.055),   and    AHSA2    and    USP34    in   pediatric  
brain   cancers   (7   and   6   patients,   20.5-fold   and   41-fold   enriched,   q   <   0.0248   and   q   <  
0.0245).   Overall,   driver   genes   discovered   using   a   cell   type   aware   model   overlapped  
with   those   reported   previously,   but   represent   only   a   subset   of   those   discovered   using  
aggregated   noncoding   elements,   highlighting   the   power   of   our   method   to   expand   the  
non-coding   mutational   landscape   of   cancer.   
 
Recurrently   mutated   regulatory   regions   are   associated   with   cell   growth   defects  
 
Our   regulatory   mutation   analysis   revealed   a   novel   set   of   genes   implicated   in   cancer.    To  
determine   whether   these   genes   are   important   for   cell   proliferation,   we   used  
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genome-wide   CRISPR   screen   data   from   Project   Achilles    (Meyers   et   al.,   2017) .   These  
analyses   indicate   that   genes   enriched   for   distal   mutations   tend   to   be   highly   deleterious  
(Figure   5A).   Although   both   distal-   and   promoter-mutated   genes   were   enriched   for  
deleterious   effects   (Figure   5B,   Supplemental   Table   12),   knockout   of   genes   with   distal  
regulatory   mutations   had   effects   on   cell   growth   comparable   to   coding   mutations.   Some  
genes   were   essential   in   nearly   all   cancer   cell   lines,   including    MED8,   GUK1,    and    SDE2  
(Figure   5C),   whereas   others   had   cancer   type   specific   growth   effects   (mostly  
deleterious).   For   example,    TMEM189    had   severe   growth   defects   in   leukemia   (intercept  
-0.2   across   all   lines;   leukemia   average   -0.52,   p   =   0.038,   Supplemental   Table   13)   and  
MAPK1    was   less   deleterious   in   myeloma   and   kidney   cell   lines   (intercept   -0.36   across   all  
lines;   kidney   average   0.044,   p   =   0.049   and   myeloma   average   0.12,   p   =   0.038,  
Supplemental   Table   14).   Others   were   subtype   specific   -   most   notable   was    PAX5 ,   where  
the   intercept   across   cell   lines   was   0.04   (p   =   0.70),   but   in   lymphoid   neoplasms,   the  
regression   effect   was   -0.40   (p   =   1.8e-18,   Supplemental   Table   15).   In   fact,   putative  
drivers   were   both   more   primary   cancer   type   specific   (Wilcoxon   rank-sum   test   W   =  
708190,   p   =   0.037)   and   had   greater   dependency   scores   (median   dependency   of   -0.125  
vs   -0.06,   Wilcoxon   rank-sum   test   W   =   754210,   p   =   0.009)   than   other   genes.  
 
This   suggests   that   the   genes   identified   through   aggregate   regulatory   mutation   analysis  
have   strongly   deleterious   phenotypic   consequences   and   confer   selective   advantages  
through   altered   gene   regulation   commensurate   with   that   of   coding   variants.   While  
strong   pan-cancer   tumor   suppressor   genes,   such   as    PTEN    and    OXNAD1    (newly  
discovered)   (Supplemental   Figure   5C),   exhibited   positive   effects   on   growth,   there   were  
very   few   regulatory   genes   with   positive   effects,   whereas   many   genes,   such   as    IPO9    and  
the   canonical   oncogene    MTOR ,   showed   consistent   negative   growth   effects   across   all  
cell   lines   in   Avana   (Figure   5D).  
 
Fine-mapping   at   the   IPO9   locus   implicates   RNA   splicing   and   processing  
 
IPO9    knockouts   exhibited   dramatically   reduced   proliferation   and   this   gene   was  
pan-essential   in   both   the   GeCKO   and   Avana   screens.   Indeed,   the   effect   of    IPO9  
knockout   on   proliferation   was   far   larger   than   other   genes   in   the   region   (Figure   6A)   and  
persisted   across   cell   types   in   the   independent   GeCKO   screens   (Supplemental   Figure  
6A).   A   similar   decrease   in   proliferation   was   noted   for    TIMM17A    in   pleural   and   upper  
digestive   cancers   (Supplemental   Figure   6B).  
 
This   essentiality   is   further   supported   by   the   ExAC   database    (Lek   et   al.,   2016) ,   where  
there   was   a   significant   depletion   of   missense   variants   (z   =   3.11)   in    IPO9    and   the  
germline   probability   of   loss   of   function   intolerance   (pLI)   was   1.0.   Motivated   by   this  
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observation,   we   looked   for   rare   cancer-associated   regulatory   variants   at   the   locus   using  
the   Oxford   Brain   Imaging   Genetics   Server    (Elliott   et   al.,   2018) ,   and   found   a   variant,  
rs150641471,   in   an   intron   of    NAV1    50kb   from   the    IPO9    promoter,   which   was   associated  
with   malignant   thyroid   neoplasm   (OR   =   1.05,   p   =   3e-22),   diffuse   large   cell   lymphoma  
(OR   =   1.1,   p   =   6.6e-12),   and   leukaemia   (OR   =   1.004,   p   =   2.2e-6).   This   is   consistent   with  
transposon   screens   in   mice,   which   have   implicated    IPO9    in   hematopoietic   malignancy  
(Guo   et   al.,   2016) .  
 
To   further   characterize   the   role   of    IPO9    in   cancer   progression,   we   correlated   the  
gene-level   growth   effects   for    IPO9    with   all   other   genes   (Figure   5G-H)   following  
normalization,   as   previously   described    (Boyle   et   al.,   2018)    (Methods,   Supplemental  
Table   16).   Gene   ontology   (GO)   analysis   of   the   168   genes   for   which   proliferation   across  
cell   lines   had   a   correlation   greater   than   0.3   with    IPO9    revealed   the   striking   enrichment  
of   non-coding   RNA   metabolic   processes   (7.29-fold,   FDR   adjusted   q   =   7.55e-16,  
Supplemental   Table   6)   and   catalytic   activity   on   RNA   (5.32-fold,   q   =   1.02e-4).   Meanwhile,  
the   most   negatively   correlated   genes   include   those   involved   in   mRNA   splicing   via  
transesterification   (4.24-fold   enriched   in   1000   most   negatively   correlated   genes,   q   =  
1.36e-16;   Figure   5I).   These   results   implicate    IPO9    in   RNA   splicing   and   processing.  
 
Recurrently   mutated   regulatory   regions   are   associated   with   patient   outcomes  
 
Since   mutations   in   regulatory   regions   often   result   in   gene   expression   changes,   we   next  
examined   the   association   between   the   expression   of   genes   with   recurrently   mutated  
regulatory   regions   and   clinical   outcome.   We   evaluated   the   specificity   of   survival  
associations   across   27   cancer   types   with   sufficient   clinical   information   and   follow-up  
duration   from   the   TCGA   Pan-Cancer   Atlas,   the   largest   compendium   of   cancer   genomes  
that   did   not   overlap   with   our   non-TCGA   ICGC   discovery   cohort    (Bailey   et   al.,   2018;   Liu  
et   al.,   2018)    (Supplemental   Figure   6G).   In   order   to   limit   the   number   of   hypotheses  
tested,   we   only   evaluated   the   association   between    IPO9 ,    MED8 ,    OXNAD1 ,    PLEKHA6 ,  
and    GUK1    expression   and   survival.   While   the   trends   varied   between   cancer   types,  
IPO9    (expression-increasing,   risk-increasing),    MED8    (expression-increasing,  
risk-increasing),   and    OXNAD1    (expression-increasing,   risk-decreasing)   were   associated  
with   survival   across   multiple   cancer   types   (Figure   7A-D,   Supplemental   Tables   17-18,  
Supplemental   Figure   7F,H-I,   after   adjusting   for   key   clinical   covariates   and   copy   number  
at   that   locus,   Methods).   In   addition,   increased    PLEKHA6    expression   was   protective   in  
bladder   cancer   and   lung   squamous   cell   cancer,   and   risk-increasing   in   clear   cell   renal  
cell   cancer.  
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Next,   we   sought   to   evaluate   cell-type   specific   driver   effects   and   their   prognostic  
associations.   We   initially   focused   on   breast   cancer,   given   the   large   sample   size   and  
long-term   clinical   follow-up   available   in   the   METABRIC   cohort    (Curtis   et   al.,   2012;  
Rueda   et   al.,   2019) .    IPO9    expression   was   significantly   associated   with   relapse   free  
survival   (RFS)   in   Kaplan   Meier   analysis   (p   <   0.0001)   and   remained   significant   in   a   Cox  
proportional   hazard   analysis   adjusted   for   age,   tumor   grade   and   size,   subtype,   and   copy  
number   (HR   =   1.31   [1.03,   1.7],   p   =   0.027,   Supplemental   Figure   7D,   Supplemental  
Tables   19-22)   (Methods).   We   further   evaluated   this   association   after   stratifying   for  
breast   cancer   subgroups,   revealing   an   even   more   striking   relationship   between   IPO9  
expression   and   relapse-free   survival   in   luminal   breast   cancers   (HR   =   1.80   [1.29,   2.51],   p  
<   0.001,   Figure   7E,   Supplemental   Figure   7E,   Supplemental   Tables   23-26).  
 
Encouraged   by   this   result,   we   evaluated   the   association   between   the   expression   of   all  
genes   (n   =   50)   harboring   recurrent   regulatory   or   coding   mutations   from   TCGA   and  
outcome   in   the   METABRIC   breast   cancer   cohort,   for.   A   clear   inflation   of   p-values   is  
noted,   suggesting   a   number   of   genes   are   associated   with   survival.   In   the   METABRIC  
cohort   (Supplemental   Figure   7F-H),    IPO9    was   the   fourth   most   significant   gene,   with  
SDE2 ,   which   also   exhibited   large   CRISPR   growth   effects,   being   the   most   significant  
distal   association.   Of   note,    IPO9    expression   was   most   strongly   associated   with   relapse  
free   survival   in   luminal   cases   (Figure   7F).   The   distribution   was   similar   for   overall  
survival,   disease   specific   survival,   and   distant   relapse   (Supplemental   Figure   7A-C).  
These   findings   indicate   that   genes   harboring   recurrent   regulatory   mutations   are  
associated   with   patient   prognosis,   cementing   their   relevance   in   human   cancers.  
 
Discussion  
 
Here   we   present   a   powerful   framework   to   identify   non-coding   cancer   driver   genes  
based   on   two   key   principles:   aggregation   of   cell   type   specific   regulatory   elements   and  
cell   type   specific   activity   to   identify   novel   non-coding   driver   gene   mutations   across  
diverse   cancer   types.   This   approach   defines   driver   mutations   in   multiple   regulatory  
elements   simultaneously.   Indeed,   many   regions   and   associated   genes   were   not  
identified   previously.   We   demonstrate   that   mutations   in   the   promoter   of    OXNAD1    are  
likely   oncogenic,   consistent   with   previous   claims    (Denisova   et   al.,   2015) .   Further,   we  
identify   a    IPO9 ,   a   nuclear   actin   transporter,   implicated   in   mRNA   metabolism   and  
alternative   splicing,   as   a   putative   oncogene   in   breast   cancer,   melanoma,   bladder  
cancer,   and   mesothelioma.   In   addition   to    IPO9 ,   other   newly   identified   regulatory   driver  
genes,   including    SRSF2    and    TCERG1 ,   also   modulate   alternative   splicing    (Koedoot   et  
al.,   2019;   Montes   et   al.,   2015;   Pearson   et   al.,   2008) ,   suggesting   a   shared   functional  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.21.239954doi: bioRxiv preprint 

https://paperpile.com/c/vxwjqG/i0uZ+r69g
https://paperpile.com/c/vxwjqG/i0uZ+r69g
https://paperpile.com/c/vxwjqG/Cc6m
https://paperpile.com/c/vxwjqG/NFhc+Zs6pR+QEJg
https://paperpile.com/c/vxwjqG/NFhc+Zs6pR+QEJg
https://doi.org/10.1101/2020.08.21.239954
http://creativecommons.org/licenses/by-nc-nd/4.0/


/

 
 

13  

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

basis   for   these   enrichments,   similar   to   that   also   seen   for   alternative   splicing   in   coding  
mutations    (Watson   et   al.,   2013) .  
 
Previous   work   has   implicated    IPO9    in   nuclear   actin   remodeling   and   adherence   of  
keratinocytes    (Sharili   et   al.,   2016) ,   as   well   as   in   transcriptional   control    (Dopie   et   al.,  
2012)    and   interferon   signaling    (Matsumiya   et   al.,   2013) .   More   recently,   nuclear   actin   has  
been   implicated   in   the   transport   of   homologous   recombination   double   stranded   breaks  
to   the   periphery,   where   they   can   be   efficiently   repaired    (Caridi   et   al.,   2018) .    In   addition,  
nuclear   actin   dynamics,   mediated   by    IPO9    and    XPO6 ,   have   the   potential   to   modulate  
mRNA   splicing   through   disruption   of    SMN2    (Viita   et   al.,   2019) .   Alternative   splicing   and  
other   co-transcriptional   metabolic   processes   acting   on   RNA   are   important   for   cancer  
development    (David   and   Manley,   2010;   Koedoot   et   al.,   2019) ,   suggesting   a   multitude   of  
direct   targets   in   promoting   the   hallmarks   of   cancer    (Hanahan   and   Weinberg,   2011) .  
These   diverse   roles   of   nuclear   actin   in   cellular   proliferation   and   transcription   are  
consistent   with   our   findings   of   mutational   enrichment   in    IPO9    regulatory   regions   and   the  
association   between   elevated   expression   of    IPO9    and   shorter   relapse-free   and   overall  
survival   in   multiple   cancer   types.   Together,   this   motivates   further   investigation   of   the  
mechanism   and   diversity   of   nuclear   actin   as   a   class   of   oncogenes   using   high-content  
imaging   platforms   with   drug   libraries   and/or   CRISPR   tools.  
 
More   broadly,   our   method   has   uncovered   a   unique   set   of   recurrently   mutated   genes   not  
identified   through   conventional   means,   including   recent   large-scale   non-coding  
analyses    (Rheinbay   et   al.,   2020) .   The   observation   that   aggregated   regulatory   signals  
harbor   enrichment   not   evident   from   the   analysis   of   individual   elements   is   reminiscent   of  
progress   in   exome   testing.   Initial   studies   first   evaluated   individual   coding   variants,   and  
later   found   increased   power   in   gene-level   burden   tests.   This   suggests   that   applying  
novel   approaches   to   the   analysis   of   non-coding   regions,   including   the   development   of  
specific   driver   detection   tools,   is   of   value.  
 
The   strong   growth   phenotypes   of   these   genes   identified   via   CRISPR/Cas9   screens  
suggests   that   they   might   be   constrained   for   coding   variation,   and   that   distal   regulatory  
elements   with   slight   expression-altering   mutations   might   jointly   control   expression   at  
multiple   loci,   akin   to   polygenic   models   in   genome-wide   association   studies.   These  
findings   also   highlight   the   power   of   large   scale   genetic   screens   to   inform   driver   gene  
discovery   and   we   identify   an   excess   number   of   mutated   genes   with   large   deleterious  
growth   effects.   It   is   worth   noting,   however,   that   loss   of   large-effect   tumor   suppressors  
during   serial   passaging   is   anticipated,   and   such   genes   would   not   be   identified   in   this  
analysis.   Finally,   we   illustrate   how   loss   of   function   genetic   screens   can   be   used   to   fine  
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map   causal   genes,   evaluate   cancer   type   specificity   and   determine   functional  
mechanisms,   including   direct   annotation   of   pathways.   
 
In   sum,   we   present   a   general   approach   to   identify   regulatory   regions   enriched   for  
mutations   while   simultaneously   correcting   for   background   mutation   rates.   The  
application   of   this   approach   to   WGS   data   from   11   cancer   types,   lead   to   the   identification  
of   multiple   novel   non-coding   driver   genes,   supported   by   orthogonal   validation   of   their  
pan-cancer   growth   effects   and   prognostic   associations.   Of   note,   these   findings   likely  
represent   just   the   beginning,   and   we   anticipate   that   additional   non-coding   drivers   will   be  
identified   through   the   application   of   this   new   cell-type   aware,   analytic   framework   to   the  
increasing   number   of   WGS   cancer   datasets   being   generated   with   implications   for  
personal   genome   interpretation   and   prognosis.   Together,   we   believe   that   improved  
methods   like   these,   as   well   as   additional   genomic   and   other   omics   data,   will   begin   a  
new   large-scale   effort   to   discover   and   interrogate   regulatory   drivers   in   cancer.  
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Supplemental   Tables  
Supplemental   Table   1:    Tumor   samples   included   in   the   discovery   cohort .   The   list   of   all  
tumors   used   for   initial   discovery   of   driver   mutations,   including   the   aggregated   tumor   type   used  
for   these   analyses,   the   original   cohort   from   ICGC,   and   the   donor   ID.   Cancer   type,   cohort   name,  
and   donor   ID   are   listed.  
 
Supplemental   Table   2:    Chromatin   state   definitions .   The   abbreviated   names,   equation   (used  
internally   for   specifying   the   definition),   chromatin   states,   and   DNase   status   of   aggregated   active  
chromatin   used   for   the   analysis.  
 
Supplemental   Table   3:    BRCA   combined   putative   driver   list .   List   of   all   putative   driver   genes  
discovered   in   breast   cancer   using   the   fisher-combined   p-values   across   cohorts,   including   the  
chromatin   state   tested;   resolution   of   tile   resampling   employed;   mutation   rate   window;   set   of  
chromatin   loops   evaluated;   and   expected   mutation   count   across   permutations,   number   of  
observed   mutations,   and   likewise   for   number   of   patients   mutated,   as   well   as   the   empirical  
p-value   and   FDR-adjusted   q-value.   Only   genes   with   a   patient   q-value   <   0.1   are   reported.  
 
Supplemental   Table   4:    BRCA   combined   active   promoter   and   all   promoter   genes .   List   of   all  
genes   putatively   enriched   in   promoter   mutations,   either   including   all   chromatin   states   or   only  
promoter   chromatin   annotations   (active).  
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Supplemental   Table   5:    Single-cancer   coding   driver   genes .   List   of   all   genes   putatively  
enriched   in   coding   mutations   in   each   single   cohort.   Mutation,   number   of   mutations   observed;  
patient,   number   of   patients   with   mutations;   permutations,   number   of   permutations   run   to  
evaluate   significance;   mean_mutation,   average   number   of   mutations   in   permutations;  
mean_patient,   average   number   of   patients   mutated   in   permutations;   gtmutation,   number   of  
permutations   with   mutation   count   exceeding   the   observed;   gtpatient,   number   of   permutations  
with   patient   count   exceeding   the   observed;   p.pt,   empirical   p-value   of   patient   mutations;   q.pt  
empirical   FDR-adjusted   p-value   of   patient   mutations.  
 
Supplemental   Table   6:    Pan-cancer   combined   coding   drivers .   List   of   all   putative   coding   genes  
discovered   in   the   pan-cancer   analysis   using   the   fisher-combined   p-values   across   cohorts.   FDR  
cutoff   of   10%   was   used   to   report   genes,   and   each   gene   was   assessed   using   the  
permutation-based   approach.  
 
Supplemental   Table   7:    Pan-cancer   combined   coding   active   drivers .   List   of   all   putative   coding  
genes   discovered   in   the   pan-cancer   analysis   using   the   fisher-combined   p-values   across  
cohorts,   but   only   using   mutations   located   in   actively   transcribed   regions.   An   FDR   cutoff   of   10%  
was   used   to   report   genes,   and   each   gene   was   assessed   using   the   permutation-based  
approach.  
 
Supplemental   Table   8:    Parametric   single-cancer   putative   drivers.    List   of   all   putative  
single-cancer   aggregate   regulatory   drivers   discovered   using   the   parametric   models.   Cancer,  
cancer   type;   links,   regulatory   element   links   used;   state,   chromatin   state   tested;   rmr,   window   size  
(bp)   for   calculating   regional   mutation   rate;   mutated,   number   of   mutations   observed,   mean,  
number   of   mutations   expected;   z,   z-score   based   test   statistic;   log10pois,   log   of   the   p-value   for  
the   poisson   test;   log10chi,   log   of   the   p-value   for   the   chi   squared   test;   log10z,   log   of   the   test  
statistic   for   the   Z   test;   qchi,   FDR-adjusted   q-value   for   the   chi   square   test;   qpois,   FDR-adjusted  
q-value   for   the   poisson   test;   qz,   FDR-adjusted   q-value   for   the   z   test.  
 
Supplemental   Table   9:    Pan-cancer   combined   putative   drivers .   List   of   all   putative   driver   genes  
discovered   in   the   pan-cancer   analysis   using   the   fisher-combined   permutation   p-values   across  
cohorts.   Only   genes   that   were   validated   with   the   permutation-based   approach   are   reported.  
State,   chromatin   state   tested;   mutations,   number   of   observed   mutations;   patients,   number   of  
mutated   patients.   QC   is   marked   “FAIL”   for   histone,   immunoglobulin,   and   RNA   genes   excluded  
from   downstream   analysis.  
 
Supplemental   Table   10:    OXNAD1/GALNT15   MELA   mutated   elements.    List   of   mutations   from  
the   linked   regulatory   regions   of   OXNAD1,   GALNT15,   and   the   nearby   non-coding   RNA.   Each  
row   represents   a   mutation-gene   combination,   with   the   corresponding   chromatin   state   and  
regulatory   region   annotated.  
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Supplemental   Table   11:    Mutations   in   a   PYHIN1-IFI16   shared   enhancer .   List   of   individual  
mutations   located   in   the   enhancer   element   shared   by   PYHIN1   and   IFI16   across   the   esophageal  
cancer   cohort.  
 
Supplemental   Table   12:    Essentiality   comparison   across   genes .   The   fraction   of   gene   effects  
labeled   essential   for   genes   associated   with   coding   mutations   from   TCGA    (Bailey   et   al.,   2018) ;  
coding,   promoter,   enhancer,   or   UTR   mutations   from   PCAWG    (Rheinbay   et   al.,   2020) ;   and  
aggregated   regulatory   regions   in   either   breast   cancer   or   the   pan-cancer   cohort   (this   study).  
 
Supplemental   Table   13:    Cancer   type   specificity   of   TMEM189 .   Regression   specification   for   the  
cancer   type   specificity   of   TMEM189,   adjusted   for   olfactory   gene   essentiality   principal  
components   1-5;   gender;   and   source.  
 
Supplemental   Table   14:    Cancer   type   specificity   of   MAPK1 .   Regression   specification   for   the  
cancer   type   specificity   of   MAPK1,   adjusted   for   olfactory   gene   essentiality   principal   components  
1-5;   gender;   and   source.  
 
Supplemental   Table   15:    Cancer   subtype   specificity   of   PAX5 .   Regression   specification   for   the  
cancer   type   specificity   of   PAX5,   adjusted   for   olfactory   gene   essentiality   principal   components  
1-5;   cancer   type;   gender;   and   source.  
 
Supplemental   Table   16:    Essentiality   correlation   with   IPO9 .   Table   of   pairwise   batch-corrected  
correlations   between   each   of   the   genes   evaluated   in   the   Avana   screen   and   IPO9   across   all   485  
cell   lines   in   the   Avana   dataset.  
 
Supplemental   Table   17:    TCGA   per   cancer   type   hazard   ratios .   Across   each   of   the   33   cancer  
types   in   the   PanCanAtlas,   the   hazard   ratio   of   expression   changes   for   each   of   the   five   genes   we  
selected   for   downstream   analysis   ( IPO9,   PLEKHA6,   GUK1,   MED8,    and    OXNAD1 ).  
 
Supplemental   Table   18:    TCGA   combined   hazard   ratios   across   cancer   types .   Combined  
hazard   ratio   for   the   five   genes   evaluated   in   multiple   cancer   types   with   adequate   sample   size.  
 
Supplemental   Table   19:    Overall   survival   hazard   ratios   in   METABRIC.    Hazard   ratios,   for   each  
putative   breast   cancer   driver   gene,   of   expression   against   overall   survival   when   adjusted   for  
standard   clinical   covariates.  
 
Supplemental   Table   20:    Disease   specific   survival   hazard   ratios   in   METABRIC.    Hazard   ratios,  
for   each   putative   breast   cancer   driver   gene,   of   expression   against   disease   specific   survival  
when   adjusted   for   standard   clinical   covariates.  
 
Supplemental   Table   21:    Relapse   free   survival   hazard   ratios   in   METABRIC.    Hazard   ratios,   for  
each   putative   breast   cancer   driver   gene,   of   expression   against   relapse   free   survival   when  
adjusted   for   standard   clinical   covariates.  
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Supplemental   Table   22:    Disease   and   relapse   free   survival   hazard   ratios   in   METABRIC.  
Hazard   ratios,   for   each   putative   breast   cancer   driver   gene,   of   expression   against   disease-   and  
relapse-free   survival   when   adjusted   for   standard   clinical   covariates.  
 
Supplemental   Table   23:    Overall   survival   hazard   ratios   in   METABRIC,   luminal   cases   only.  
Hazard   ratios,   for   each   putative   breast   cancer   driver   gene,   of   expression   against   overall   survival  
when   adjusted   for   standard   clinical   covariates,   among   luminal   cases   only.  
 
Supplemental   Table   24:    Disease   specific   survival   hazard   ratios   in   METABRIC,   luminal  
cases   only.    Hazard   ratios,   for   each   putative   breast   cancer   driver   gene,   of   expression   against  
disease   specific   survival   when   adjusted   for   standard   clinical   covariates,   among   luminal   cases  
only.  
 
Supplemental   Table   25:    Relapse   free   survival   hazard   ratios   in   METABRIC,   luminal   cases  
only.    Hazard   ratios,   for   each   putative   breast   cancer   driver   gene,   of   expression   against   relapse  
free   survival   when   adjusted   for   standard   clinical   covariates,   among   luminal   cases   only.  
 
Supplemental   Table   26:    Disease   and   relapse   free   survival   hazard   ratios   in   METABRIC,  
luminal   cases   only.    Hazard   ratios,   for   each   putative   breast   cancer   driver   gene,   of   expression  
against   disease-   and   relapse-free   survival   when   adjusted   for   standard   clinical   covariates,  
among   luminal   cases   only.  

Methods  
 

Variant   calls   and   sample   inclusion  

Tumor   types   with   whole   genome   sequencing   as   part   of   the   International   Cancer   Genome  
Consortium   for   which   a   minimum   of   90   individuals   were   profiled   and   for   whom   matched  
epigenomic   data   was   available   from   the   ENCODE   and   RoadMap   Epigenome   projects   were  
selected   for   inclusion.   Germline   filtered   somatic   mutational   calls   based   on   whole   genome  
sequencing   were   used   for   downstream   analyses   where   individuals   with   fewer   than   100   somatic  
mutations   were   excluded   (due   to   limitations   in   defining   chromatin-state-specific   mutational  
effects).   Each   cancer   type   was   treated   as   a   single   cohort,   with   the   exception   of   breast   cancer  
(BRCA)   where   additional   stratified   analyses   were   performed   according   to   major   subgroups  
(Luminal,   ERBB2/Her2-positive,   and   triple   negative   breast   cancers   (TNBC)).   The   full   list   of  
ICGC   donor   IDs   and   cohorts   is   included   in   Supplemental   Table   1.   A   total   of   2634   individuals  
were   included   across   all   cancer   types.  
 
METABRIC   expression,   CNA,   clinical,   and   survival   data   were   downloaded   from   European  
Genome-Phenome   Archive   (EGA).   Data   from   The   Cancer   Genome   Atlas   were   utilized   for  
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expression-survival   validation    (Liu   et   al.,   2018)    and   CRISPR   analyses    (Bailey   et   al.,   2018)    and  
PCAWG   was   used   for   CRISPR   analyses    (Rheinbay   et   al.,   2020) .  
 

Defining   chromatin   state   and   open   chromatin   regions  

Chromatin   state   annotations   for   all   cancer   types   except   prostate   were   downloaded   from   the  
Roadmap   Epigenomics   Project   integrated   analyses   while   DNase   hypersensitivity   peaks   for   all  
cancer   types   except   prostate   were   downloaded   from   the   ENCODE   portal.   For   prostate   cancer,  
annotations   were   obtained   from   GEO:GSE63094   and   quantized   to   chromatin   states   in   100bp  
windows   using   ChromHMM,   and   used   as   annotation   sources   as   described   previously    (Sallari   et  
al.,   2017) .  
 
We   used   a   stringent   filtering   step   based   on   sequence   uniqueness   to   avoid   miscalling   of  
chromatin   states.   In   brief,   three   filters   were   combined   to   eliminate   regions   that   might   have  
artifactual   annotations   or   missing   genotype   calls   as   a   result   of   mappability   bias.   First,   the  
ENCODE   blacklist   regions   and   UCSC   hg19   genome   assembly   gaps   were   merged   together,  
followed   by   looking   in   umap    (ENCODE   Project   Consortium,   2012)    and   removing  
non-uniquely-mappable   regions.   This   results   in   approximately   one   third   of   the   genome   (mostly  
centromeric   and   telomeric   regions)   being   masked   of   repetitive   regions.  
 

Regional   mutation   rate   estimation   and   null   model   mutation   distribution  
 
While   replication   timing   data   are   available   in   some   relevant   cell   types   through   ENCODE,   the  
vast   majority   of   cancer   types   have   no   annotations   available.   As   such,   the   regional   mutation   rate  
was   used   as   an   estimate   of   replication   timing,   given   their   high   correlation   and   reproducible  
effects   on   mutational   spectrum    (Stamatoyannopoulos   et   al.,   2009) .   Two   distinct   windows   of  
mutation   counts   were   used   --   25kb   and   250kb   --   and   the   counts   were   summed   across   patients  
normalized   by   patient   count   (so   that   rates   are   comparable   between   cancer   types),   total   number  
of   mutations   in   the   patient,   and   the   window   size   (to   achieve   comparable   distributions   for   both  
25kb   and   250kb   windows).  
 
At   every   nucleotide   in   the   genome,   on   a   per-cancer-type   basis,   covariates   were   estimated   as  
the   chromatin   state   (reduced   to   7   states:   promoter,   enhancer,   transcribed,   repressed,   bivalent,  
heterochromatin,   and   quiescent),   DNase   hypersensitivity   peaks,   and   estimated   regional  
mutation   rate,   the   calculation   of   which   is   described   above.  
 
To   ensure   the   robustness   of   results,   all   models   were   repeated   with   multiple   regional   mutation  
rate   windows   and   nucleotide   fragment   sizes.   For   the   single   nucleotide   model,   we   ran   models  
corrected   for   stranded   trinucleotide   context    (Alexandrov   et   al.,   2013) .   Using   these   distributions,  
we   tested   for   the   enrichment   of   mutations   across   active   chromatin   states.   We   focused   on   active  
regulatory   regions   as   these   have   previously   been   implicated   in   cancer   development  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.21.239954doi: bioRxiv preprint 

https://paperpile.com/c/vxwjqG/75WJ
https://paperpile.com/c/vxwjqG/qSNB
https://paperpile.com/c/vxwjqG/K5fk
https://paperpile.com/c/vxwjqG/R9Zx
https://paperpile.com/c/vxwjqG/R9Zx
https://paperpile.com/c/vxwjqG/DJbo
https://paperpile.com/c/vxwjqG/i3fa
https://paperpile.com/c/vxwjqG/r41x
https://doi.org/10.1101/2020.08.21.239954
http://creativecommons.org/licenses/by-nc-nd/4.0/


/

 
 

20  

692
693
694

695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

712

713
714
715
716
717
718
719
720
721
722
723

724

725
726
727
728
729
730

(Sabarinathan   et   al.,   2016) ,   and   because   epigenetic   alterations   in   the   cell   of   origin   are   thought  
to   potentiate   cancer   development   via   loss   of   tumor   suppression    (Garinis   et   al.,   2002) .  
 

Mapping   regulatory   elements   to   genes  

Regulatory   elements   were   mapped   to   genes   using   Hi-C   links,   described   above,   as   well   as   with  
correlation-based   links    (Rheinbay   et   al.,   2020)    that   utilize   modules   of   co-activated   enhancers  
and   co-expressed   genes   across   the   Roadmap   RNA-seq   profiled   samples.   In   addition,   the   core  
promoter   region   was   added   to   the   tests   as   relevant,   using   annotations   from   the   FANTOM5  
consortium    (FANTOM   Consortium   and   the   RIKEN   PMI   and   CLST   (DGT)   et   al.,   2014) .   Histone   I  
genes,   immunoglobulin   genes,   HLA   genes,   non-coding   “AC”   genes,   and   RNA   genes   were  
excluded   from   further   analyses   due   to   either   their   repetitive   structure   or   lack   of   adequate  
annotation   coverage,   respectively.  
 
Promoter   elements   (n   =   57,534)   were   defined   based   on   the   FANTOM5   consortium   CAGE  
sequencing    (FANTOM   Consortium   and   the   RIKEN   PMI   and   CLST   (DGT)   et   al.,   2014) .   Promoter  
BED   region   defintions   were   then   aggregated   within   each   protein   coding   gene   and   intersected  
with   chromatin   state   annotations.   Any   elements   overlapping   with   collapsed   promoter/strong  
enhancer   (Tss   or   TssFlnk)   chromatin   states   were   labeled   as   active   promoters   in   downstream  
analysis.   
 

Estimation   of   mutational   overburdening  

Four   tests   were   employed   to   estimate   the   overburdening   of   mutations.   In   the   first   approach,   a  
resampling   strategy   replaced   each   tile   (a   region   of   consecutive   bases,   between   1bp   and   100bp)  
in   the   aggregate   regulatory   landscape   with   one   that   has   the   same   reference   nucleotide   context,  
regional   mutation   rate,   chromatin   state,   and   open   chromatin   level.   Then   the   number   of  
mutations   is   assessed   and   the   significance   is   calculated   through   the   empirical   p-value   relative   to  
the   genomic   background   null   distribution.   This   is   exact   and   gives   uninflated   quantile-quantile  
plots,   but   is   computationally   intensive   to   calculate,   and   thus   all   associations   were   first   run   using  
the   parametric   models   described   below,   and   marginally   significant   associations   were   replicated  
using   the   permutation   test   as   a   final   filter.   For   evaluation   of   coding   gene   effects,   q-values   for  
enrichment   of   putative   cancer-mutated   genes    (Lawrence   et   al.,   2014)    were   downloaded   and  
ordered   by   their   pan-cancer   q-value.  
  
As   a   pre-filter   for   the   pan-cancer   runs,   where   non-parametric   tests   are   prohibitively   time  
consuming,   a   poisson   distribution   is   used,   where   the   lambda   parameter   is   estimated   from   the  
genome-wide   distribution   of   nucleotides   that   share   the   same   covariates   (regional   mutation   rate,  
patient,   chromatin   state,   and   DNase   sensitivity).   Every   nucleotide   is   assumed   to   be   independent  
and   the   product   of   the   observed   values   is   the   overall   expectation.  
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In   order   to   capture   putative   enriched   genes   which   violate   the   poisson   assumption,   a   z-score   test  
is   used,   where   the   mean   mutation   count   was   derived   using   the   same   covariates   as   the   Poisson  
test.   Finally,   the   Cochran-Mantel-Haentzel   (CMH)   test   was   used   in   which   chromatin   state   strata  
are   simultaneously   tested   for   having   mutations   at   an   odds   ratio   other   than   one.   Together,   these  
three   tests   act   as   filters   to   identify   only   the   gene-state-cancer   type   combinations   most   likely   to  
be   enriched,   and   those   combinations   can   be   further   refined   using   the   non-parametric   models.  
 
For   the   non-parametric   models,   genomic   windows   of   size   1bp,   10bp,   or   100bp   were   stratified   by  
canonical   chromatin   states   and   the   presence   of   open   chromatin,   and   within   each,   normalized  
regional   mutation   rate   (mutations   per   megabase   per   thousand   donors)   and   reference  
trinucleotide   context   were   recorded.   To   evaluate   a   gene,   the   associated   regulatory   regions   were  
divided   into   chromatin   states,   and   the   number   of   tiles   of   a   given   size   and   parameters   were  
tallied.   Then,   for   each   permutation,   random   matched   regions   were   regenerated   and   tallied   from  
covariate-matched   regions   of   the   same   length   across   the   genome   and   summed   across   the  
regulatory   landscape.  
 
Fisher’s   method   was   used   to   combine   p-values   across   cancer   types.   Under   this   model,   we  
assume   that   the   estimates   from   the   cancer   types   are   independent   given   the   lack   of  
individual-level   overlap   between   studies   of   different   cancer   types.   
 
Bootstrap   validation   of   mutation   enrichment  
 
A   validation   of   the   mutation   selection   process   was   performed   for   the   Breast   cancer   association  
at    IPO9 .   Individuals   were   resampled   uniformly   at   random   in   the   Basal   breast   cancer   subtype  
and   the   observed   and   expected   number   of   mutations   were   recalculated.   Resampling   was  
performed   20   times   and   the   enrichment   in   both   mutation   counts   (Supplemental   Figure   2A)   and  
patient   counts    (Supplemental   Figure   2B)   were   tallied.  
 

Survival   analyses  

For   the   METABRIC   cohort,   clinical   data,   including   relapse   free   survival   was   obtained   from  
(Rueda   et   al.   Nature   2019),   and   expression   and   copy   number   from   EGA.   Expression   of    IPO9  
was   adjusted   by   copy   number   by   regressing   the   copy   number   value   from   the   expression.  
Kaplan-Meier   plots   were   generated   with   the   package   "survminer",   where   the   top   1/3   and   bottom  
1/3   expression   values   for   each   gene   were   defined   as   high   versus   low,   respectively.   Cox  
Proportional   Hazards   Models   were   generated   using   the   CoxPH   function   in   the   survival   package,  
adjusting   for   relevant   clinical   covariates,   including   age,   stage,   grade,   size,   number   of   lymph  
nodes   positive,   estrogen   and   progesterone   receptor   status,   as   well   as   HER2/ERBB2   status.  
Estrogen   receptor   (ER)   status   was   not   included   in   the   model   for   luminal   tumors   since   most   are  
ER-positive.   For   the   TCGA   outcome   analysis,   clinical   data   (overall   survival)   was   obtained   from  
(Liu   et   al.   Cell   2018),   and   expression   (FPKM,   upper   quantile)   and   copy   number   data   from  
gdc.cancer.gov.   Expression   was   log2   transformed   and   scale   normalized.   Cox   Proportional  
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Hazards   Models   were   generated   similar   to   that   for   the   METABRIC   cohort,   again   adjusting   for  
clinical   covariates   (when   available)   including   age,   stage,   gender   and   grade.   Only   tumor   types  
with   sufficient   numbers   and   follow-up   times   were   used   for   the   main   analyses    (Liu   et   al.,   2018) .  
 

CRISPR   screen   and   essentiality   analyses  

CNA-normalized   gene   effect   scores   were   downloaded   from   DepMap   for   the   Avana   and   GeCKO  
genome   wide   CRISPR-KO   screens    (Meyers   et   al.,   2017) .   These   values   represent   the  
normalized   effect   on   cell   growth   for   knockout   of   the   given   gene,   such   that   negative   values   are  
associated   with   more   lethal   knockout.   However,   potential   batch   effects   are   present   in   the  
reported   essentiality   scores    (Boyle   et   al.,   2018) ,   and   we   sought   to   adjust   for   these   in   our  
aggregated   analyses.   In   brief,   for   the   co-essentiality   testing   with    IPO9    and   driver   gene   list  
analysis,   the   whole   gene   effect   score   matrix   was   normalized   using   a   strategy   to   remove   batch  
effects    (Boyle   et   al.,   2018) .   The   matrix   was   subset   to   olfactory   receptor   genes   and   PCA   was  
performed,   followed   by   removal   of   the   top   five   principal   components   of   the   olfactory   receptor  
gene   matrix   from   the   essentiality   of   every   gene.   Driver   genes   from   aggregated   elements   were  
subset   to   those   with   at   least   three   patients   mutated   and   FDR   <   20%.   For   the   correlation  
analysis   with    IPO9,    genes   were   ordered   according   to   observed   correlation   coefficients   across  
cell   lines   (using   a   cutoff   of   0.3).  
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Figure   1:   Model   for   aggregating   mutations   in   gene-associated   regulatory   regions.  
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A. Study   overview.    Overview   of   approach   to   evaluate   aggregate   mutational   burden   in  
non-coding   regulatory   regions   across   cancer   types,   their   functional   effects,   and   clinical  
outcome   associations.  

B. Convergence   model.    Mutations   accumulate   in   coding   sequences   and   promoters,   as  
detected   in   existing   methods,   but   non-promoter   regulatory   mutations   are   likely   spread  
across   enhancer   elements.   Jointly   testing   specific   regulatory   regions   can   therefore  
increase   the   signal   of   mutational   burden   at   a   given   gene,   similar   to   an   exome   burden  
test.   Both   mutations   and   regulatory   annotations   change   between   tumor   types.  

C. Regulatory   mutation   distribution.    Ordered   distribution   of   mutation   counts   per  
individual   for   each   of   the   cancer   types   studied   in   active   and   bivalent   chromatin   state  
annotations.   (x)   axis   total   mutations   for   a   given   tumor,   and   (y)   axis   number   of   mutations  
in   a   given   chromatin   state   (promoter,   enhancer,   transcribed,   or   bivalent)   for   this   tumor.  
Each   point   represents   a   single   tumor   within   each   subplot.   For   breast   cancer,   the   three  
subtypes   analysed   separately   are   individually   plotted.  
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Figure   2:   Recurrent   regulatory   mutations   in   breast   cancer.  

 
A. Breast   cancer   promoter   enriched   genes.    Quantile-quantile   plots   of   promoter  

mutations   across   breast   subtypes   (Basal,   Luminal,   HER2+).  
B. Breast   cancer   distal   element   enriched   genes.    Quantile-quantile   plots   of   distal  

regulatory   mutations   in   each   breast   cancer   subtype.  
C. Subgroup   combined   distal   element   enriched   genes.    Quantile-quantile   plot   of  

different   regulatory   states,   combined   across   subtypes.   Only   element-level   definitions   are  
shown,   either   enhancer   and   DNase   (end),   promoter   or   enhancer   in   DNase   (pde),   or  
promoter   regardless   of   DNase   status   (pro).  
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D. Enrichment   of   mutations   across   subtypes.    Enrichment   of   significantly   associated  
states   from   the   combined   analysis.   Each   dot   within   a   given   cancer   type   represents   a  
single   significantly   associated   gene,   and   each   gene   is   repeated   across   all   three   cohorts  
to   show   relative   enrichments   of   associated   genes.   Only   element-level   definitions   are  
shown,   either   enhancer   and   DNase   (end),   promoter   or   DNase   enhancer   (pde),   or  
promoter   regardless   of   DNase   (pro).   Note   that   the   promoter   chromatin   state   is   frequently  
observed   in   highly   active   enhancer   elements   as   well   as   promoters   themselves.  
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Figure   3:    IPO9    is   recurrently   altered   in   breast   cancer.   

 
A. IPO9    is   amplified   in   breast   cancer.     IPO9    is   frequently   amplified   in   breast   cancer  

across   three   non-overlapping   cohorts:   METABRIC    (Curtis   et   al.,   2012;   Rueda   et   al.,  
2019) ,   the   Metastatic   Breast   Cancer   Project    (Wagle   et   al.,   2016) ,   and   The   Cancer  
Genome   Atlas    (Gao   et   al.,   2013;   Liu   et   al.,   2018) .   There   are   very   few   coding   mutations  
in   the   Metastatic   Breast   Cancer   Project   and   TCGA.  

B. Aggregate   regulatory   mutate   donors   in   replication   cohorts.     IPO9    regulatory   region  
mutations   were   evaluated   in   three   whole-genome   sequenced   validation   cohorts:  
BRCA-UK   and   BRCA-US   from   PCAWG    (ICGC/TCGA   Pan-Cancer   Analysis   of   Whole  
Genomes   Consortium,   2020) ,   and   BRCA-FR   (HER2+   amplified   donors)   from   ICGC  
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(Ferrari   et   al.,   2016) .   Y   axis,   fraction   of   donors   with   regulatory   mutations,   with   number   of  
mutated   donors   shown   above   each   bar.   All   three   cohorts   show   a   consistent   proportion   of  
donors   (~9%)   with   mutations   in   DNase-hypersensitive,   enhancer   marked   regions  
associated   with   the    IPO9    promoter.  

C. Epigenetic   context   at   the    IPO9    locus.    ChIP-seq   of   histone   modifications   and   CTCF,  
and   open   chromatin   measured   with   DNase-seq,   in   human   mammary   epithelial   cells  
(HMECs)   are   shown,   as   well   as   the   aggregated   chromatin   state   annotations   in   the   two  
HMEC   samples   from   Roadmap.   In   addition,   the   coding   and   non-coding   elements   tested  
for   IPO9   are   also   indicated   in   red,   and   the   expression   of   genes   in   the   region   is   shown   for  
both   HMEC   cells   and   MCF-7   breast   cancer   cells,   showing   the   striking   increased  
expression   in   MCF-7.   Hi-C   of   HMEC   cells    (Rao   et   al.,   2014)    reveals   a   domain   spanning  
the   majority   of   regulatory   elements    (Zhou   et   al.,   2015) .  

D. Detailed   view   of    IPO9    enhancer   elements .   Detailed   view   of   mutational   context   at   an  
active   element   in   an   intron   of    NAV1 .   The   4-OHT   response   ChIP-seq   profiles   in   MCF-7  
cells   and   conservation   tracks   indicates   that   mutations   are   primarily   located   in   regions   of  
high   activity   or   conservation.  
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Figure   4:   Pan-cancer   regulatory   mutations   have   downstream   effects   on   gene   expression. 

 
A. Pan-cancer   putative   regulatory   driver   genes .   The   shared   landscape   of   regulatory  

alterations.   Individual   cancer   types   exhibit   some   uniquely   significant   genes,   whereas  
other   genes   are   recurrently   mutated   across   cancer   types.  

B. Multiple   cancer   associations   by   stringency .   Recurrence   of   genes   across   cancer  
types.   Even   at   increasingly   stringent   FDR   cutoffs,   many   genes   harbor   recurrent  
aggregated   regulatory   mutations   across   multiple   cancer   types.  

C. Expression   QTLs   for   recurrently   mutated   regulatory   regions .   Overall   association   of  
recurrently   mutated   genes   with   expression   changes.   The   quantile-quantile   plot   shows  
significant   changes   in   expression,   as   inferred   from   RNA-seq   expression   data   of   mutated  
versus   non-mutated   individuals.  

D. Pan-cancer   lens-and-scallop   plot   of    NBR2    mutations.    Variants   are   marked   with   red  
lines   on   the   outer   circle,   with   regions   around   mutated   regulatory   elements   shown.   Inner  
circles   depict   the   chromatin   state   annotations   corresponding   to   the   mutated   elements.  
Innermost   black   arrows   at   the   gene   locus   mark   promoters   of    BRCA1    and    NBR2 .  

E. Pan-cancer   lens-and-scallop   plot   of    CDH13    mutations.    Variants   are   marked   with   red  
lines   on   the   outer   circle,   with   regions   around   mutated   regulatory   elements   shown.   Inner  
circles   depict   the   chromatin   state   annotations   corresponding   to   the   mutated   elements.  
Intronic   elements   are   shown   on   gene   locus   for   brevity.   Innermost   black   arrow   on   gene  
locus   marks   promoter   of    CDH13 .  
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Figure   5:   CRISPR   screens   elucidate   distinct   mechanisms   of   regulatory   driver   function. 
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A. CRISPR   dependency   scores   of   distal,   promoter,   and   coding   drivers.    Effect   on  
CRISPR   growth   of   known   promoters   and   coding   drivers   versus   novel   regulatory   drivers.  
Each   distribution   is   the   effects   observed   across   cell   lines.    Essential   gene   knockouts  
have   a   median   dependency   score   of   -1.0,   while   non-essential   gene   knockouts   have   a  
median   dependency   score   of   0.  

B. Gene   dependency   distributions   for   mutated   gene   classes .   Across   all   associated  
genes,   the   knockout   dependency   scores   of   regulatory,   promoter,   and   coding   associated  
variants   relative   to   the   whole   genome   background.   The   fraction   of   gene   effects   below  
-0.5   (indicating   substantial   deleterious   effect   on   proliferation)    (Meyers   et   al.,   2017) )   are  
tallied   across   all   genes   in   the   given   set.   Coding   data   are   from   TCGA    (Lawrence   et   al.,  
2014)    and   non-aggregate   non-coding   data   are   from   PCAWG    (Rheinbay   et   al.,   2020) .  

C. Cancer   type   specificity   of   putative   regulatory   driver   genes.    Each   gene   was  
evaluated   for   cancer   type   specificity   using   an   F-test   (Methods)   and   the   resulting  
estimates   were   used   to   separate   genes   into   those   with   significant   specificity   (gold),  
non-zero   aggregate   essentiality   (orange),   both   (red),   or   neither   (black).  

D. Comparison   between    IPO9    and   known   coding   genes.    Comparison   of   coding   versus  
noncoding   effects   in   the   Achilles   screens.   Each   dot   represents   a   significant   pan-   or  
single-cancer   association   from   Lawrence   et   al   (2014).   The   red   dashed   line   and   bars   are  
the   mean   estimate   and   individual   estimates   of   effect   for    IPO9 .  

E. Positive   growth   effect   at    OXNAD1    locus.    Both    GALNT15    and    OXNAD1    have  
regulatory   regions   overburdened   with   mutations,   but   CRISPR/Cas9   screens   reveal   a  
significantly   larger   positive   dependency   score   for    OXNAD1    compared   to    GALNT15    in  
melanoma   and   other   cell   lines.  
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Figure   6:   Regulatory   and   functional   characterization   of   IPO9   using   CRISPR   screen   data.  
 

 
A. CRISPR   gene   effects   at   the    IPO9    locus .   Overall   distribution   of   growth   effect   of    IPO9  

versus   all   other   genes   at   the   locus   in   CRISPR/Cas9   gene   knockouts   across   cancer   cell  
lines    (Meyers   et   al.,   2017) .  

B. Strategy   for   estimating   shared   effects   with    IPO9    across   cell   lines .   Overall  
schematic   of   our   method   for   estimating   shared   effects   across   cell   lines,   similar   to  
previous   designs    (Boyle   et   al.,   2018) .  
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C. Distribution   of   correlations   with    IPO9    across   cell   lines.    The   observed   distribution   of  
batch-corrected   correlations   between    IPO9    and   each   other   genes   across   Avana   and   cell  
lines.   Green,   negatively   correlated   genes   and   orange,   positively   correlated   genes.  

D. GO   enrichment   for   splicing   and   RNA   binding   in   genes   correlated   with    IPO9 .  
Volcano   plots   of   enrichment   for   the   ranked   gene   list   correlation   with    IPO9 ,   showing   a  
consistent   signal   of   RNA   processing.   [inset]   Volcano   plot   of   enrichment   within   tail  
(correlation   threshold   0.3),   illustrating   a   substantial   enrichment   for   RNA   splicing   related  
genes.   Green,   negatively   correlated   genes   and   orange,   positively   correlated   genes.  
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Figure   7:   Recurrently   mutated   genes   are   associated   with   clinical   outcome.  
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A. Hazard   plot   by   cancer   type .   Forest   plot   for    IPO9,   MED8,    and    OXNAD1    from  
expression   and   relapse-free   survival   Cox   proportional   hazards   in   TCGA   across   23  
well-powered   cancer   types   (breast   was   excluded   due   to   limited   followup   duration   in  
TCGA).   Data   for    GUK1    and    PLEKHA6    are   reported   in   Supplemental   Figure   6.  

B. IPO9    relapse   free   survival   in   melanoma   (TCGA) .   Kaplan-Meier   analysis   of   the  
association   between    IPO9    expression   and   relapse   free   survival   in   the   TCGA   melanoma  
cohort.   Cox   Proportional   Hazards   Ratios   are   also   reported.   Corresponding   forest   plot   in  
Supplemental   Figure   7,   and   uncensored   counts   presented   below   the   axis   for   each  
timepoint.  

C. OXNAD1    relapse   free   survival   associations   in   uveal   melanoma   (TCGA) .  
Kaplan-Meier   analysis   of   the   association   between    OXNAD1    expression   and   relapse   free  
survival   in   the   TCGA   uveal   melanoma   cohort.   Cox   Proportional   Hazards   Ratios   are   also  
reported.   Corresponding   forest   plot   in   Supplemental   Figure   7,   and   uncensored   counts  
presented   below   the   axis   for   each   timepoint.  

D. MED8    relapse   free   survival   associations   in   kidney   papillary   carcinoma   (TCGA) .  
Kaplan-Meier   analysis   of   the   association   between    MED8    expression   and   relapse   free  
survival   in   the   TCGA   ukidney   papillary   carcinoma   cohort.   Cox   Proportional   Hazards  
Ratios   are   also   reported.   Corresponding   forest   plot   in   Supplemental   Figure   7,   and  
uncensored   counts   presented   below   the   axis   for   each   timepoint.  

E. IPO9   relapse   free   survival   associations   in   luminal   breast   cancer   (METABRIC) .  
Kaplan-Meier   analysis   of   the   association   between    IPO9    expression   and   relapse   free  
survival   in   the   METABRIC   breast   cancer   cohort.   Cox   Proportional   Hazards   Ratios   are  
also   reported.   Corresponding   forest   plot   and   forest   plot   for   all   cancers   in   Supplemental  
Figure   7,   and   uncensored   counts   presented   below   the   axis   for   each   timepoint.  

F. Luminal   breast   cancer   coding   and   aggregated   drivers .   Quantile-quantile   plot   of   gene  
expression-survival   associations   based   on   disease-free   survival   in   luminal   cases   in  
METABRIC.   The   distribution   covers   recurrently   altered   coding   variants   from   TCGA   or  
aggregated   regulatory   genes   from   our   study   (n   =   50),   revealing   enrichment   for   survival  
associations.   Corresponding   plot   for   all   tumors   in   Supplemental   Figure   7.  
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