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Abstract

Recent advances in reinforcement learning (RL) have successfully addressed sev-
eral challenges, such as performance, scalability, or sample efficiency associated
with the use of this technology. Although RL algorithms bear relevance to psy-
chology and neuroscience in a broader context, they lack biological plausibility.
Motivated by recent neural findings demonstrating the capacity of the hippocampus
and prefrontal cortex to gather space and time information from the environment,
this study presents a novel RL model, called spacetime Q-Network (STQN), that
exploits predictive spatiotemporal encoding to reliably learn highly uncertain
environment. The proposed method consists of two primary components. The
first component is the successor representation with theta phase precession im-
plements hippocampal spacetime encoding, acting as a rollout prediction. The
second component, called Q switch ensemble, implements prefrontal population
coding for reliable reward prediction. We also implement a single learning rule to
accommodate both hippocampal-prefrontal replay and synaptic homeostasis, which
subserves confidence-based metacognitive learning. To demonstrate the capacity
of our model, we design a task array simulating various levels of environmental
uncertainty and complexity. Results show that our model significantly outperforms
a few state-of-the-art RL models. In the subsequent ablation study, we showed
unique contributions of each component to resolving task uncertainty and com-
plexity. Our study has two important implications. First, it provides the theoretical
groundwork for closely linking unique characteristics of the distinct brain regions
in the context of RL. Second, our implementation is performed in a simple matrix
form that accommodates expansion into biologically-plausible, highly-scalable,
and generalizable neural architectures.

1 Introduction

One of the key challenges of reinforcement learning (RL) is to resolve environmental uncertainty
and complexity with limited resources. In spite of the recent developments in machine learning to
deal with complex problems [1–9], RL algorithms often have a hard time learning simple tasks that
efficiently learnt by animals [10].
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One common criticism is that a majority of learning algorithms based on deep learning have little
biological relevance, though one can find some commonalities at the conceptual level [8, 9, 11–14].
Furthermore, our understanding of how the biological system implements learning is limited to simple
tasks. A few working theories successfully explain the biological principles of each part of the brain,
but they do not yet account for the ways in which interactions between different brain regions lead to
optimal learning of the environment. Another limitation is that biological models for investigating
high-level brain functions, such as context or memory, are not tightly linked with biological processes
at the single-neuron level or accompany many biological constraints that limit their applicability.

To reconcile the discrepancies between RL algorithms and biological RL, here we explore biological
processes that potentially contribute to efficient learning. Based on recent neural findings explaining
the ability of the hippocampus and prefrontal cortex to efficiently glean space and time information
from the environment, we propose a novel RL model to reliably learn a highly uncertain environment.
This paper is structured as follows.

• First, we propose a novel spacetime encoding method by combining successor representation with
theta phase precession. This module acts as a rollout prediction.

• Second, we implement prefrontal population coding for reliable reward prediction, called Q switch
ensemble, that exploits the spacetime information of the episodes from the first module.

• Third, to further improve learning efficiency, we propose a single biological learning rule, ac-
commodating both hippocampal-prefrontal replay and synaptic homeostasis. This learning rule
subserves confidence-based metacognitive learning.

• Finally, we designed a task array simulating different levels of environmental uncertainty and
complexity to demonstrate the capacity of our model, called spacetime Q-Network (STQN). We
also ran systematical ablation analyses to show the unique contributions of each component to
resolving task uncertainty and complexity.

2 Related Works and Neural Basis

The successor representation (SR) is a concept that represents the temporal proximity between the
current, past, and future state of the environment [15]. As it captures the proximity of two events
being relational, it has become a valuable tool in various fields, such as human reinforcement learning
[16], robotic control [17], and visual navigation [18]. Recently, SR has gained significant attention
in deep reinforcement learning [19, 20]. However, it has so far been used as a subordinate tool; for
example as the realization of the posterior sampling [21], the utility for feature representation with a
set of expectations [22], or the intermediate for inference using a nonparametric Dirichlet process
mixture model [23]. In this regard, they have limited biological relevance.

Next, the hippocampal replay, specifically when awake, is the high-frequency neural activity inside
the envelope of a sharp wave ripple (SWR) that occurs during resting or receiving a reward. SWR has
long been considered as the bridge between short- and long-term memory consolidation [24]. There
are several studies on this relationship; however, most of them have focused on relating the generative
and terminative mechanism of the hippocampal replay to various synaptic properties [25, 26]. One
study attempted to interpret the replay as iterative executions of Bellman backup and showed that
their model can imitate some basic properties of the hippocampal replay [27]. However, this study
neither examines the correspondence between their model and the prefrontal-hippocampal network
nor explains the biological mechanisms of initiating, proceeding, and terminating replay.

Third, the synaptic homeostasis is a consistent synaptic operation needed to maintain the stability
of neural networks undergoing rapid spike timing dependent plasticity (STDP), to properly store or
process information [28]. This demand is because of the exponential property of the STDP network;
the amounts of weight updates depend on the weight itself. This characteristic sometimes leads to
destructive forgetting, masking of useful information the agent had learned, under the pathological
conditions [29]. While a few studies have investigated the effect of synaptic homeostasis on learning
[30–32], none of them are sufficient to carry real-time regulations during complex learning.

2

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.260844doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.08.21.260844doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260844
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2020.08.21.260844
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Methods

3.1 Spacetime Encoding

To build an effective encoder, we combined two concepts; successor representation (SR) and theta
phase precession. To model the spatial properties of the place cell, successor representation is a
rational choice as it can explain the irregular modulations of its receptive field [33] and be simulated
by the spiking neural network [34]. Moreover, recent observations show that place cells can represent
locations of the other animals enable the SR matrix to encode the target object [35, 36].

Next, we assume that the theta phase precession sharpens the spatial coding by adding temporal
context to the place cell firing sequences. This hypothesis is reinforced by various experiments. For
instance, it is observed that the hippocampal theta sequence tends to proceed toward the current
goals [37]. The theta phase can divide the trajectory that an animal had passed and will pass into
temporal bins [38] support this idea. Moreover, our assumption is assisted by an experiment that
shows that pharmacological inhibitions of the lateral septum (LS), the major source of hippocampal
theta wave, extinguish the ability to navigate without disturbing the intact place cell activities [39] or
an experiment that shows that LS extends the egocentric firing of place cells to the entire environment
located by the animal [40], which is an invaluable tool for planning and tackling further situations
inside the complex spatial learning [41].

3.1.1 Successor Representation for Predictive Coding

Assume that there are NH place cells cH , which have the center of their receptive fields XH ⊂
RNH×2. To represent the correlational relationship between the place cells, we used SR to represent
the correlational relationship between the place cells. The SR matrix M encodes the expected and
discounted future occupancy of the cell c′H along a trajectory starting from the cell cH :

M(cH , c
′
H) = E

∑
t=0

γtI(ctH = c′H)|c0H = cH

 ,
where I(ctH = c′H) = 1 if ctH = c′H , otherwise 0 [15]. To update the SR matrix, we group the place
cells whose receptive fields contain an external stimuli (e.g., a ball in Pong game) inside. Specifically,
if the Euclidean distance between the center xH of the place cell cH and the location of the input
stimulus xt

I ∈ R2 is smaller than the update distance lU , the cell cH is in the candidate set,

St
U =

{
cH | d(xH , xtI) ≤ lU

}
,

If St
U and St+1

U are not empty, the update begins. For every cell pairs (ctH , c
t+1
H ) from ctH ∈ St

U and
ct+1
H ∈ St+1

U , we do TD online learning for those pairs [42]:

M̂t+1(ctH , cH) = M̂t(c
t
H , cH) + η

[
I(ctH = cH) + γM̂t(c

t+1
H , cH)− M̂t(c

t
H , cH)

]
,

where η is a learning rate, γ is a discount factor, respectively.
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3.1.2 Theta Phase Precession for Spacetime Encoding

It is known that the theta phases inside the CA1 and PFC align in a regular manners [43]. To imitate
this systematic modulation, we divide the single period of theta wave, between two peaks, into four
equal parts. Then, we allocate the first, second, and third parts, respectively, to the past, current, and
future place cells individually. The firing of PFC cells locates at the peak behind; therefore, the firing
sequences of future cells become closest among the place cells. The sign of the cosine value is the
criteria used to divide the past and future cells among all fired place cells. Assume that the input
stimulus is located at xI with a velocity of #»v . After defining the vector from the center xH of place
cell cH to xI , we can discern whether or not the moving stimulus had already passed the center xH .

#»v =
#            »

xt−1I xtI , cos θ =
#»v · #        »xHxI
‖ #»v ‖‖ #        »xHxI‖

.

If the cosine value is negative, we can state that the cell cH lies on the past trajectory of the input
stimulus and vice versa. However, the dot product above can only separate past and future cells, not
current cells. To compensate for this limitation, we define the current cell as cells closer to the input
stimulus than the others. Mathematically, a set of current cells is:

St
C =

{
cH | d(xH , xtI) ≤ lC

}
,

where lC is a new parameter, the current distance.

3.1.3 SR Firing Rate for Online Learning

The agent needs a channel to transfer processed spatiotemporal information. One of the biologically-
plausible candidates is the firing sequence from the presynaptic to the postsynaptic neurons, which is
supported by the LS [44]. However, based on our knowledge, there are no trials or attempts to use SR
as the basis for modeling real-time activity of place cells during complex learning, specifically, not as
an alternative representation of the abstract "state." Therefore, we defined the firing rate for the SR
matrix in online learning. From a set of current place cells, we define the firing rates of individual
place cells. One way is to average the column vectors of current place cells in the SR matrix M :

rH =
1∣∣St
C

∣∣ ∑
cH∈St

C

M̃(:, cH) =
1∣∣St
C

∣∣ ∑
cH∈St

C

M̂(:, cH)∥∥∥M̂(:, cH)
∥∥∥
∞

, r̃H =
rH

‖rH‖∞
, (1)

where
∣∣St

C

∣∣ is the number of current place cells, M̃ is normalized SR matrix obtained by dividing
each column of the learned SR matrix by its maximum element. After comparing the rate vector rH
to the uniform random vector, we build fH , binary firing vector of all place cells.

3.2 Q Switch Ensemble

Q switch ensemble consists of two components: PFC cells and their population coding for reward
prediction. In this study, our PFC cell model is based on the experiment that shows showing that
individual PFC cells represent the difference between Q values of two options (left or right) to its
firing rate while solving the Markov decision problem [45]. Based on this observation, we generalize
PFC cell activity to binary Q classifiers, continuously updating its Q value and firing when it predicts
a specific event will happen, of which firing rate is the function of Q value. Based on the recent
evidence on dopaminergic neurons having different criteria of reward feedback [46] and the capability
of PFC cells to encode spatial information [43], we represent the reward prediction in the form of
population coding. Similar to the experimental data [43], each PFC cells inherit only the least spatial
information, acting as a decision center. The PFC cells fire when it forecasts that the reward event
will occur above the center of decision, then the agent compiles the votes to predict the location.
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3.2.1 Phase Distance for an Effective Weight Representations

Based on our assumption of the theta phase precession, there exists a relative attenuation of the
neuronal signal intensity of the early (past) spikes, when compared to the late (future) spikes.
Therefore, we calculated the effective coefficients following cable theory [47] and spike timing
dependent plasticity (STDP) [48]. Specifically, using the equal phase distances between past-current,
current-future, and future-PFC, we proposed the following weighting scheme:

wE = exp
[
−∆T̃

]
= exp

[
−∆T/τ

]
,

where T̃ is a time distance divided by time constant τ , to convert the exponents to the integer.

3.2.2 PFC Cell Population Coding for Binary Q Classification

To use the transferred temporal contexts by the phase distance, we multiplied the binary firing vector
fH with the effective weight wE , element-wisely, producing effective firing vector f∗H . The PFC cells
receive and combine f∗H linearly through the weight matrix WP ⊂ RNP×NH , making the Q values,

Q = WP f∗H = WP (fH � wE) . (2)

The firing rate of each PFC cell is a sigmoid function of the Q value. To separate the activity of PFC
cells maximally, we used the mid-range of Q as the offset. To compute the firing rate of PFC cells rP :

Q̄ = (min Q + max Q)/2, rP = σ(T−1 ·
(
Q− Q̄

)
), (3)

where T−1 is the inverse temperature of the sigmoid function σ .

3.2.3 PFC Cell Population Coding for Reward Prediction

We interpreted the learning as a population process, starting from the binary Q classifier. We assume
that there are NP PFC cells cP , and their center of decision is xP ⊂ RNP . If the PFC cell predicts
that the reward event will occur above its center of decision, it fires. Otherwise, when it forecasts that
the reward will occur below its center, it does not fire. We then define the level of confidence, which
quantifies the amount by which the single cell is confident with its decision,

CQ = |rP − 0.5| .

Here, the reward prediction is formalized in population coding. If the PFC centered at xP fires, it
indicates that the reward event was predicted to occur anywhere above the center of decision of the
PFC cell. To compress the continuous domain of the prediction, we choose points arbitrarily for
discretization. In our simulations, we select the midpoints between every decision centers and build a
set xA ⊂ RNP+1. We refer to this set as the action set. The certainty CQ now becomes a poll value.
For a single action point xA , the firing of the single PFC cell centered at xP provides the following:

P̂
(
xA|fP = 1

)
=

{
0.5 + CQ, xA ≥ xP
0.5− CQ, xA < xP

, P̂
(
xA|fP = 0

)
=

{
0.5− CQ, xA ≥ xP
0.5 + CQ, xA < xP

,

where fP ∈ fP is a Boolean variable whether or not this PFC cell mentioned above fired and
CQ ∈ CQ is a corresponding individual confidence of the cell. After summing all the votes for the
midpoints and then normalizing them, a discrete probability distribution over xA can be obtained.
The coordinate x∗A becomes the target; if the agent locates below x∗A, the agent moves up and so on.

P (xA) =
∑

cP∈CP

P̂
(
xA|fP

)
, x∗A = arg max

xA∈xA
P (xA) .
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3.3 Learning with HPC-PFC Replay

In this study, we view the HPC-PFC replay as a recursive TD learning process. First, we establish a
hypothesis reasoned from optogenetic manipulation, in which the sharp wave ripples modulate the
synaptic weights [49]. Furthermore, this view is supported by the evidence that the relative progress
of task learning systemically modulates the trend of replay [50], and it actively selects the highly
rewarded event [51]. When the trial ends, the agent receives the reward information (e.g., the actual
location at which the ball arrived). From this spatial information, every PFC cell receives its distinct
rewards via the dopaminergic pathway [52]. Then, the learning process is initiated and proceeds
recursively, underpinned by recurrent, interlamellar connections inside the hippocampus [53].

When the action point xB is the closest to the one associated with reward (e.g., the location at which
the ball arrived), the initial feedback signal for learning is simply the logical result of comparison;
whether or not the point ball arrived was above the decision center of each PFC cell:

F = u (xB − xD) ,

where u (·) is the unit step function. Then, the changes of synaptic weights are linear to the difference
between the feedback and the firing rate of each PFC cell [42]. Moreover, to present the mechanism
by which various phenomena seemingly contribute to the learning, we designed two simple functions;
H (·) is the entropy learning rate function, γ (·) is the synaptic stability function (The details are in
the supplementary material). With these utilities, the equation becomes:

dWP

WP
=
[
H (rP )� γ (Q)� [F− rP ]

]
⊗ f∗H , (4)

where f∗H is the effective firing vector. After the learning is initiated, the agent must prepare the next
interactions not just a right in front, but from a few steps behind. We assume that the HPC-PFC
network achieves this by relaying the Q values and attempting to narrow the gap between adjacent
decisions via weight modulation. Following the statistics and properties of the hippocampal replay,
we implement the recursive algorithm to simulate such a behavior (supplementary material).

4 Simulation Result

4.1 Architecture of STQN

Figure 1: Concept Diagram of STQN

Our model consists of two components. First, the spacetime SR models the spatiotemporal encoding
of the hippocampus by combining the successor representation as the spatial processor with the theta
phase precession as the temporal channel. This module receives the current coordinate of the external
input xI and outputs the firing sequence of the relevant place cells. Next, it integrates the temporal
order by multiplying the effective weight element-wise for the theta phase precession. Second, the
Q switch ensemble receives the processed firing sequence and outputs the most probable reward
location. After receiving the reward, the recursive TD learning updates the weights WP , with respect
to the difference between the decision certainty of each PFC cell and the relative feedback signal.
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4.2 Novel task design varying the degree of uncertainty and difficulty level

We designed our task based on the classic Atari game Pong. To incorporate both the structural
complexity and state-transition uncertainty into the task, we added three walls to test the learning
performance of various agents. First, we doubled the width and height of the Pong table, four times
larger than the OpenAI gym Pong [54], without modifying the parameters of the agent behavior.
Next, we varied the amount of uncertainty in ball bouncing, by making the trajectory of the ball
difficult to predict. After the ball bounces off the wall, a uniform noise is added to the angle of the
velocity vector. This noise is bounded by the "variation angle" θV . Using θV , we can incorporate
the uncertainty in a controllable, natural manner. Additionally, the environment is modulated in a
dynamic manner, from regular oscillation to the chaotic Brownian motion. Lastly, we implemented
the opponent with an ideal agent. For this, we assumed that the agent has complete access to the
environmental structure (e.g., the exact location where the ball will arrive, given the current position
and velocity vector of the ball). At every single frame, the opponent (ideal agent) receives the future
location of arrival, but it contains additive white Gaussian noise. The task difficulty can be varied by
manipulating the probability with which the opponent makes mistakes (standard deviation of this
noise σw). The difficulty level allows us to assess the capacity of the agent since the lesser mistakes
the opponent makes, the longer the rally length becomes (Details are in supplementary material).

We set two hyperparameters, the "variation angle" θV and the standard deviation of opponent noise
σw. Subsequently, we built six tasks by combining two hyperparameter sets; σ̂w = {0.1, 0.2}, and
θV = {0◦, 10◦, 30◦} where σ̂w is the normalized standard deviation of the opponent, σw divided by
the half-height of the Pong table. For simplicity, we hereinafter refer to the conditions σ̂w = {0.1, 0.2}
as EASY and HARD, and θV = {0◦, 10◦, 30◦} as LOW, MID, and HIGH uncertainties, respectively.

4.3 Performance Comparison

To examine the way in which various deep RL agents deal with the aforementioned dynamic environ-
ments, we chose DQN [55], IQN [56], PPO [57], A3C-LSTM [12] as the representative comparison
models. Notably, we found that our model is the only one that achieved guaranteed performances over
the broad spectrum of uncertainty and complexity (Table 1) without the requirement of fine-tuning.

Table 1: Benchmark test (5M episodes)
Score Rally length (100 Frames)

Uncertainty LOW MID HIGH LOW MID HIGH

Difficulty EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD

DQN -11.2 -10.5 -10.7 -8.09 -14.1 -18.1 0.74 1.01 0.76 1.23 0.80 0.80
IQN -14.9 -15.8 -15.7 -17.64 -14.0 -16.7 0.86 1.06 0.84 0.91 1.01 1.04
PPO -18.5 -19.2 -18.6 -19.51 -18.0 -19.2 0.61 0.62 0.61 0.62 0.68 0.69

A3C-LSTM -9.4 -14.2 -10.0 -14.66 -11.0 -15.1 1.15 1.33 1.18 1.35 1.17 1.30
STQN* 15.2 10.2 14.1 9.1 14.1 9.2 3.99 6.36 4.51 6.59 4.44 6.84

There are a few key points to note in RL learning. First, the score tended to decrease as the task
difficulty increased, except for DQN. This is because DQN is unstable and it generally failed, but the
minor (<15%) succeed to learn (supplementary material). Second, PPO failed to learn completely
and this deficiency correlates significantly to task difficulty (supplementary material). The third is
the reliability of the meta-RL agent (A3C-LSTM). To test its long-term learning, we increased the
training episodes to 20M; however, we found that the effects are marginal (supplementary material).
We used the rally length to quantify the capacity of the RL agents (see Table 1). When the capacity
of the learning agent was comparable to that of the ideal agent (opponent), the rally length was
observed increase abruptly, since there were no mistakes to terminate the rally. We were able to
identify this effect in our model (>100%), regardless of the task uncertainty. It clearly demonstrated
the high capacity of our model and also implied that the policy of our model is near-optimal with the
scoreboard. However, this effect was not very pronounced in the other models (<20%) and tended to
disappear under high uncertainty conditions, thereby indicating incomplete learning in these models.
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4.4 Role of Predictive Spacetime Encoding in Learning (Ablation Study)

To examine the unique roles of individual components, we conducted the ablation study. More
details on analyses and discussions are provided in Supplementary material. First, we quantified the
degree of contribution of theta phase precession on task performance. Next, we examined how place
cell encodes information and supports complex prediction by modulating the two hyperparameters;
the update distance lU and the current distance lC based on successor representation. In here, we
introduce two different measures, the "error" E and the "accuracy" RC (see Figure 3). In-depth
performance analysis and discussions about biological implications are provided in the supplementary
material.

4.4.1 Theta Phase Precession

The theta phase precession implements the idea that the temporal distance controls the relative
contribution of a single spike to the remaining process. This modulation allows the agent to take a
predictive "vector decision": one should act differently if the situation were predicted to change in the
foreseeable future. As learning proceeds, the learning agent becomes sensitive to the environmental
changes by encoding the "context". However, the effectiveness of this strategy is constrained by the
task uncertainty and the task difficulty.

Figure 2: Theta Phase Precession
HIT corresponds to the case when the agent successfully passes the ball

MISS corresponds to the case when the agent makes mistakes and receives negative reward

By comparing the time courses of learning of the agent with and without theta phase precision, we
found its significant contribution on performance (figure 2). We also found that the terminal error
difference depends on the uncertainty and the difficulty level of the task. Especially, the effect of task
uncertainty on the performance wears off in the high task difficulty conditions (Hard).

4.4.2 Successor Representation

Update distance lU is the hyperparameter that represents the number of future states that a single
current state should encode. The higher the uncertainty, the harder it is to predict future states from
the given current state; consequently, the time required to achieve a certain level of accuracy also
increases. This leads to the two distinct properties; (1) the slope of the error with respect to lU
becomes more negative proportionally (Figure 3A Amplitude), and (2) the error difference between
the agent with the normal lU and the small value increases (Figure 3A Offset) with the decrease in
the task uncertainty.

Figure 3: (A) Update Distance and (B) Current Distance
Fitting with (A) ∆E = A ·

√
l∗U − lU + C and (B) ∆RC = A · exp [τC · lC ]
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If we view the SR matrix as an encoder and the Q switch ensemble as a decoder, then the current
distance lC is translated into the factor modulating the amount of information that the encoder can
process. This provides two predictions; (P1) the agent needs more capacity in highly uncertain
environment, and (P2) the measure RC , the ratio of "correct" PFC cells, decreases when the amount
of uncertainty increases with the same lC . According to (P1), the difference ofRC between the agents
with the changed and normal lC , ∆RC , should decrease more rapidly (Figure 3B Time Constant)
since l∗C that makes ∆RC=0 decreases, where l∗C is the minimal lC that can support sufficient number
of symbols (lower bound of lC). According to (P2), the value at infinitesimal lC increases when the
amount of task uncertainty decreases (Figure 3B Amplitude).

5 Summary and discussion

Motivated by recent neural findings about space-time information processing in the hippocampus and
prefrontal cortex, we propose a novel spacetime RL framework, called spacetime Q-Network (STQN),
that reliably learns highly uncertain environment. The implications of our study are as follows. First,
our spacetime encoding allows us to examine the hypothesis that hippocampal place cells with theta
phase precession facilitate predictive encoding and learning. Second, we demonstrate that the group
of binary Q classifiers as a proxy for PFC cells can predict the complex physical processes [46].
Third, the proposed learning rule underlines a direct relevance of the homeostatic synaptic plasticity
to Q-learning [45]. In summary, our study lays the theoretical groundwork for integrating unique
properties of separate brain regions in the context of RL. In addition, our formulation of biological
processes in the form of a simple matrix offers valuable insights into biologically-plausible and
highly-scalable neural architecture designs.

Broader Impact

This work is based on the computer simulation, so there is no direct impact on animals or humans.
Therefore, there are no potential ethical issues. This work has the following potential impacts on
society: The design of novel deep learning architecture. We proposed a biologically plausible RL
model integrating unique characteristics of distinct brain regions. With taking into account a brain’s
capacity encoding the space and time information, the proposed model exploits the reliable learning
the highly uncertain and complex environment. The model was implemented in a simple matrix form,
so it is expected to accommodate expansion into highly-scalable and generalizable neural architecture.
The training process is based on simulations in the virtual (game) environment. Hence, there is no
psychological or physical harm to humans inflicted by our model.
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