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Abstract 

Activation heat capacity is emerging as a crucial factor in enzyme 

thermoadaptation, as shown by non-Arrhenius behaviour of many natural 

enzymes1,2. However, its physical origin and relationship to evolution of catalytic 

activity remain uncertain. Here, we show that directed evolution of a 

computationally designed Kemp eliminase introduces dynamical changes that give 

rise to an activation heat capacity absent in the original design3. Extensive 

molecular dynamics simulations show that evolution results in the closure of 

solvent exposed loops and better packing of the active site with transition state 

stabilising residues. Remarkably, these changes give rise to a correlated dynamical 

network involving the transition state and large parts of the protein. This network 

tightens the transition state ensemble, which induces an activation heat capacity 

and thereby nonlinearity in the temperature dependence. Our results have 

implications for understanding enzyme evolution (e.g. in explaining the role of 

distal mutations and evolutionary tuning of dynamical responses) and suggest that 

integrating dynamics with design and evolution will accelerate the development of 

efficient novel enzymes. 
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Tailor-made enzymes promise to be transformative for the ‘green’ synthesis of 

pharmaceuticals and fine chemicals, and for achievement of a circular economy4-6. 

Increasingly, de novo computational design of catalytic residues and ligand binding 

pockets into protein scaffolds can afford incipient, yet generally modest, activity7,8. Such 

‘designer enzymes’ can be significantly improved by directed evolution, which enhances 

activity by several orders of magnitude in the best cases3,9-12. This is now an effective way 

to develop new protein catalysts, but also demonstrates the limitations of current design 

protocols. Designed active sites often require fine-tuning by evolution to precisely 

position catalytic residues and tightly pack ligands3,9-12, increase electrostatic 

preorganization13-16, and reduce non-productive conformations17-22. What is less clear is 

how evolution acts on the overall protein scaffold, particularly its dynamics, to boost 

catalysis.  

 

Evolution of a negative activation heat capacity 

The base-promoted Kemp elimination of benzisoxazoles is a valuable model for the 

catalysis of an elementary reaction23,24, and has become an exemplar for designed 

biological catalysis of a ‘non-natural’ reaction3,11,12,25,26. We previously subjected the 

computationally designed Kemp eliminase 1A53-2 to directed evolution (Fig. 1)3. 

Evolution boosted activity 104-fold by introduction of six mutations during optimization 

of the first-shell residues only. The binding pocket of the resulting evolved variant 

1A53-2.5 exhibits improved shape complementarity to the substrate and TS by virtue of 

several space-filling substitutions3. Introduction of the A157Y mutation furthermore 

enhances activity by restricting the conformational freedom and tuning the pKa of the 

catalytic base Glu178. 
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Fig. 1 | Activity gains during directed evolution of 1A32-2 coincided with the emergence of a 

negative 𝚫𝐂𝒑
‡ . a, The general base Glu178 deprotonates 6-nitrobenzisoxazole. b, Six mutations (blue 

spheres) were introduced during active site optimization (ligand and base, orange carbons)3. c, The Eyring 

plot of 1A53-2 (red) is linear, whereas that of the evolved variant 1A53-2.5 (blue) is curved, signalling 

emergence of a negative ΔC𝑝
‡3. Dashed lines indicate a linear Eyring fit, solid lines show the macromolecular 

rate theory fit including ΔC𝑝
‡2. 

 

Unexpectedly, activity gains in 1A53-2.5 coincided with the emergence of a curved 

temperature-dependence (Fig. 1c)3. This curvature is not due to protein unfolding or a 

change in mechanism. Rather, it can be attributed to temperature-dependent activation 

enthalpies and entropies due to an apparent activation heat capacity (∆C𝑝
‡ , Equation 1). 

Such nonlinear temperature dependence is seen in many natural enzymes1,2, and is 

probably involved in thermoadaptation (Equation 2)2. Moreover, the pronounced ∆C𝑝
‡  of 

some enzymes, including mesophiles, suggests a general relevance for enzyme catalysis1-

3. A negative ∆C𝑝
‡  indicates that enthalpic fluctuations (Δ〈δH2〉‡) are reduced in the 

transition state ensemble compared to the enzyme-substrate complex27. Molecular 

dynamics (MD) simulations can probe this thermodynamic effect, and give ∆Cp
‡  values in 

good agreement with experiment for two natural enzymes (Equation 3)1.  

 𝑙𝑛 (
𝑘ℎ

𝑘BT
) = −

[ΔHT0
‡ +ΔC𝑝

‡ (T−T0)]

RT
+

[ΔST0
‡ +ΔC𝑝

‡ 𝑙𝑛(T/T0)]

R
 (1)  

 Topt ≈ T0 −
ΔHT0

‡

ΔC𝑝
‡  (2) 
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 ΔC𝑝
‡ =

δ(∆H‡)

δT
=

Δ〈δH2〉‡

𝑘BT2
 (3) 

(𝑘B: Boltzmann constant, T: Temperature, ℎ: Planck constant, ΔHT0
‡  and ΔST0

‡  activation 

enthalpy and entropy at reference temperature T0, Topt: Temperature optimum)2. 

 

Here, we show that evolution of 1A53-2 reshaped its dynamics, driving the emergence 

of a negative ΔC𝑝
‡ . Strikingly, emergent correlated movements in the transition state 

ensemble of 1A53-2.5 span the protein and link the active site with the protein scaffold 

through a dynamical network. This network enhances catalytic preorganization and 

helps to explain the role of distal mutations that arise during further evolution.  

 

Energetic fluctuations  

We performed 5 μs of MD simulations each for the designed and evolved variant in 

complex with a ground state (GS, Michaelis complex) and transition state model (TS, 

Extended Data Fig. 1). The designed and the evolved variants showed significantly 

different dynamical responses to the transition state. The energy distribution of 1A53-2.5 

was notably narrower in the TS than in the GS. In contrast, no significant differences were 

observed for 1A53-2 (Extended Data Tab. 1+2, Extended Data Fig. 2a+b). The change in 

energetic fluctuations upon moving from GS to TS determines ΔC𝑝
‡ , which we calculated 

from a moving average over the simulations using validated methods (Extended Data Fig. 

2c)1. Rigidification of the TS ensemble in 1A53-2.5 results in a calculated negative ΔC𝑝
‡  

(−19.7 ± 3.1 kJ∙mol−1K−1), whereas 1A53-2 shows no activation heat capacity 

(0.4 ± 3.2 kJ∙mol−1K−1). This is consistent with the experimentally observed linear and 

nonlinear temperature dependence for the designed and evolved catalysts, respectively, 

and demonstrates the dynamical origin of ΔC𝑝
‡ . 
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The differences between the designed and evolved catalysts are significant. Errors for 

ΔC𝑝
‡  were calculated by cross-validation leaving out individual trajectories, and 

demonstrate the statistical significance of our calculations. Also, independent simulations 

using a transition state model with the transferring proton residing on the base (TS2, 

Extended Data Fig. 1) instead of the ligand gave similar results, supporting our findings 

(see Extended Data Tab. 1+2 and Extended Data Fig. 1,2,6-11 for TS2). We directly 

calculate ΔC𝑝
‡  without fitting to experimental data from the difference in energetic 

fluctuations between GS and TS, after removal of bulk solvent. Our calculations predict a 

sizable negative ΔC𝑝
‡  for the evolved protein, but the contributions of solvent likely reduce 

the magnitude of this effect substantially1 to yield the modest but still negative 

experimental value (−1.17 kJ∙mol−1K−1). Also, slow loop movements, which cannot be 

exhaustively sampled on a reasonable timescale, may mix into the fluctuations at longer 

window sizes. In short, comparison of the designed and the evolved catalysts shows that 

the non-linear temperature dependence of the evolved variant is due to a ΔC𝑝
‡  arising 

from dynamical differences between its GS and TS complex.  

 

Structural fluctuations  

The decrease in energetic fluctuations associated with the reaction in 1A53-2.5 is 

accompanied by reduced structural fluctuations in the TS ensemble (Extended Data Fig. 

7). In 1A53-2.5, several solvent-exposed loops covering the active site (residues 53-65, 

84-92, and 181-192) become less mobile in the TS ensemble, as indicated by decreased 

root-mean square fluctuations (∆RMSF) between GS and TS. Cluster analysis (Fig. 2a and 

Extended Data Fig. 8) and principal component analysis (Extended Data Fig. 9) of these 

loops shows that the scaffold interconverts between an open and a closed state. Notably, 
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evolution increases the population of the closed state while also decreasing its radius of 

gyration (Extended Data Fig. 8), suggesting that pressure may modulate the fluctuations 

in 1A53-2.5 similar to temperature28. 

 
Fig. 2. | Global dynamics in the evolved enzyme are modulated by a local tightening of the active site 

associated reaction. a, Distance-based cluster analysis of the rigidifying loops (tubes) in 1A53-2 (red) and 

1A53-2.5 (blue) reveals a conformational equilibrium between open (dark colors) and closed (light colors) 

states, as indicated e.g. by the Cα distance between residues 58 and 188 (spheres). The closed state becomes 

more populated as a result of evolution (see Extended Data Fig. 8+9). b, Evolution introduces six mutations 

at the active site (red/blue sticks, G211 as sphere) which enhance the interactions of Trp110, Glu178, 

Arg182 and Trp210 (grey sticks) with the TS in the closed state. As a result, the closed TS ensemble of 

1A53-2.5 is more constrained than its GS ensemble, as reflected by reduced fluctuations (∆RMSF) of many 

active site residues between the two states. 

 

Loop closure affects active site preorganization in many enzymes, e.g. by desolvation 

and packing of ligands and catalytic residues29-31. In 1A53-2.5, the active site is tightly 
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packed due to space-filling mutations such as A157Y and L184F3. Loop closure further 

enhances that packing as indicated by changes in the solvent accessible surface area of 

the ligand and base (Extended Data Fig. 11). This is partially achieved by expelling water 

from the active site, which is not observed for 1A53-2. Hydrogen bonding of Tyr157 with 

Glu178 in 1A53-2.5 additionally restricts the relative movement between the ligand and 

base. Notably, per-residue interaction energies with the TS indicate that the residues 

mutated during evolution do not directly provide additional TS stabilization (Fig. 2b). 

Instead, the mutations appear to strengthen interactions of the TS with other active site 

residues such as the catalytic base Glu178, Trp110 and Trp210 which sandwich the 

ligand, and Arg182 which stabilises the nascent oxyanion by long-range electrostatic 

interactions. In 1A53-2.5, this tightening is reflected by the ∆RMSF of several active site 

residues that are less mobile in the TS than in the GS. Evolution of these tight and ordered 

interactions enhanced active site preorganization, which we show here to be associated 

with the rigidification of the protein scaffold in the TS ensemble that causes the negative 

ΔC𝑝
‡ . 

 

Evolution of a dynamical network 

Dynamical correlations in the evolved TS ensemble connect local reorganization of the 

active site with the protein scaffold. The change in cross correlation between GS and TS 

was calculated for all backbone Cα atoms and the ligand, with the protein in the closed 

state (Fig. 3 and Extended Data Fig. 10). These correlations therefore reflect differences 

between the GS and TS, and do not involve conformational changes between the open and 

closed states. In the closed state of 1A53-2.5, large parts of the backbone move in a more 

correlated manner in the TS compared to the GS ensemble. Shortest pathway maps19 

show that these increased correlations are communicated via neighbouring residues and 
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indicate that evolution introduces a dynamical network that centres on the ligand and 

spans the protein (Fig. 3 and Extended Data Fig. 10). Only two mutations introduced 

during evolution are significantly involved in the network. Q211G introduces a flexible 

residue that potentially tunes the dynamic response of the scaffold, and L184F enhances 

packing by connecting neighbouring solvent-exposed loops. Instead of directly 

contributing to the network, the mutations apparently facilitate the global dynamical 

response to the TS by tightening its interactions with other active site residues (Trp110, 

Glu178, Arg182 and Trp220) as described above. 

 
Fig. 3. | Directed evolution introduces an extended correlated network in the transition state 

ensemble. a+b, Evolution of 1A53-2 (red, left) to 1A53-2.5 (blue, middle) increases the correlated 

movements in the closed TS ensemble. Cross correlations that increase between GS and TS by ≥20% are 

indicated as lines on the structures (See Extended Data Fig. 10). d+e, Shortest pathway maps19 calculated 

from the increased cross correlations demonstrate evolution of a network centred on the chemical TS that 

spans the closed state of the protein. The sizes of the edges (black lines) and vertices (red/blue spheres: 

protein, orange spheres: ligand) indicate the strength of the network. c+f, The mutations in 1A53-2.5 (blue 

spheres), those found during further evolution using error-prone PCR (white spheres), and those in the 

final variant 1A53-2.9 (black spheres) cluster around the correlated movements (c) and network (e, yellow 

mesh) in 1A53-2.5, indicating fine-tuning of its dynamics by remote mutations. 
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1A53-2.5 was evolved by optimization of first shell residues only. During its further 

optimization by error-prone PCR, several distal mutations were identified that give an 

additional 3-fold activity improvement3. These mutations cluster around the increased 

cross correlations and the network in 1A53-2.5 (Fig. 3c+f), suggesting that these distal 

mutations modulate the dynamical network to enhance activity. The limited 

improvements achieved during these last rounds of evolution indicate that further fine-

tuning would require many more mutations to reprogram the global dynamics encoded 

in the scaffold. While this may be challenging for laboratory evolution, Nature probably 

evolved similar networks to tailor activity, as indicated by phylogenetic analyses that 

revealed sectors of spatially proximal coevolving residues32-34. Notably, these sectors can 

also show correlated dynamics35, hinting at a catalytically relevant role of the underlying 

networks. Other allosteric effects apparently also rely on similar networks36-38, which 

may enhance preorganization, reduce non-productive conformations, and tune global 

scaffold flexibility for thermoadaptation17-20,39.  

 

Implications for catalysis and design 

The co-emergence of catalytic power and ΔC𝑝
‡  raises the intriguing question of the 

connection between transition state tightening (and the associated dynamical network) 

and catalysis40. While deciphering this cause-and-effect relationship will require further 

research, exquisite catalytic preorganization certainly requires ordering at the active 

site15. The evolved 1A53-2.5 achieves improved catalysis by increased TS stabilization, 

and its negative ΔC𝑝
‡  shows that the protein scaffold responds to the TS with significantly 

altered dynamics. We note that this does not imply that protein dynamics ‘drive’ the 

reaction on the timescale of the chemical bond making and breaking, which is supported 

by our QM/MM umbrella sampling simulations that reproduce the improvements 
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achieved during evolution (Extended Data Fig. 3). Instead, effective TS stabilization 

involving exquisite active site preorganization is a function of the cooperative response 

of the whole protein scaffold. The transition from a flexible GS to a rigid TS, could thus 

lead to activity gains, albeit at the expense of introducing curved temperature-

dependencies and therefore a loss of activity at elevated temperatures. ΔC𝑝
‡  is apparently 

a signature of the superior catalytic efficiency achieved by the more ‘enzyme-like’ 

1A53-2.5. Furthermore, ΔC𝑝
‡  signals the ability of the scaffold to adapt to the chemical TS, 

which may relate to the evolvability of enzyme dynamics. 

 

The dynamical network in 1A53-2.5 was evolved by introduction of only a few active-

site mutations. Though computational design commonly targets active-site residues, the 

design of such networks will require accounting for dynamical changes associated with 

TS stabilization. Notably, our QM/MM simulations revealed that the improved catalytic 

environment that leads to these dynamical changes already takes effect at short 

timescales (<60 ps, Extended Data Fig. 3). Short, computationally efficient, MD 

simulations may thus reveal how mutations affect catalytic preorganization without the 

need to dissect the underlying dynamical networks. Furthermore, protein folds have 

highly conserved intrinsic dynamics41 that can be rapidly analysed for correlated sites42, 

with rigid anchor-points for catalytic residues43, and first-shell residues with high 

mobility and mutability44. Combining existing design algorithms with atomistically-

detailed MD1 and rapid, approximate methods to model protein dynamics42,45 may thus 

help to attain tight communication with the scaffold’s dynamics and the exquisite 

precision required to achieve excellent TS complementarity and catalytic 

preorganization. 
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Conclusion 

Our atomistic molecular dynamics simulations and statistical thermodynamic analysis 

demonstrate how evolution of catalytic activity shapes protein dynamics. The 

catalytically superior 1A53-2.5 uniquely shows a correlated network and reduced 

fluctuations in the TS ensemble, which give rise to a negative ΔC𝑝
‡ . This finding suggests a 

connection between the cooperative response of the protein scaffold and TS stabilization 

at the active site. The results altogether imply that ΔC𝑝
‡  may be an indicator of successful 

catalytic preorganization and perhaps relates to evolvability. Integrating protein 

dynamics into design and evolution strategies may thus be essential for developing 

artificial enzymes that truly rival their natural counterparts.  

 

AUTHOR INFORMATION 

Corresponding Author 

*Adrian.Mulholland@bristol.ac.uk 

 

ORCID  

H. Adrian Bunzel: 0000-0001-6427-368X  

Ross Anderson: 0000-0002-6796-0482 

Donald Hilvert: 0000-0002-3941-621X 

Vickery L. Arcus: 0000-0001-5082-2414  

Marc W. van der Kamp: 0000-0002-8060-3359 

Adrian J. Mulholland: 0000-0003-1015-4567 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.21.260885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260885


 

12 
 

AUTHOR CONTRIBUTIONS 

HAB, MWvdK and AJM devised the simulation and analysis. HAB performed the 

simulations and analysis. HAB, RA, DH, VLA, MWvdK, and AJM wrote the manuscript. 

 

COMPETING INTERESTS 

The authors declare no competing financial interests. 

 

ACKNOWLEDGMENTS 

HAB and AJM thank EPSRC (EP/M013219/1 and EP/M022609/1) and with JRA BBSRC 

(BB/M000354/1) for funding. MWvdK is a BBSRC David Phillips Fellow 

(BB/M026280/1). VLA and AJM thank the Marsden Fund of New Zealand (16-UOW-027). 

VLA is a James Cook Research Fellow (Royal Society of New Zealand). DH thanks the Swiss 

National Science Foundation. This work was conducted using the computational facilities 

of the Advanced Computing Research Centre, University of Bristol. We thank Rory Crean 

and Silvia Osuna for help with and providing a script for performing the shortest-path 

analysis. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.21.260885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260885


 

13 
 

REFERENCES 

1 van der Kamp, M. W. et al. Dynamical origins of heat capacity changes in enzyme-
catalysed reactions. Nat. Commun. 9, 1177 (2018). 

2 Arcus, V. L. et al. On the temperature dependence of enzyme-catalyzed rates. 
Biochemistry 55, 1681-1688 (2016). 

3 Bunzel, H. A. et al. Emergence of a negative activation heat capacity during 
evolution of a computationally designed enzyme. J. Am. Chem. Soc. 141, 11745-
11748 (2019). 

4 Arnold, F. H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel 
Lecture). Angew. Chem. Int. Ed. 58, 14420-14426 (2019). 

5 Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 
185-194 (2012). 

6 Tournier, V. et al. An engineered PET depolymerase to break down and recycle 
plastic bottles. Nature 580, 216-219 (2020). 

7 Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. 
Curr. Opin. Chem. Biol. 17, 221-228 (2013). 

8 Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational 
enzyme design. Angew. Chem. Int. Ed. 52, 5700-5725 (2013). 

9 Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active 
artificial aldolase. Nat. Chem. 9, 50-56 (2017). 

10 Preiswerk, N. et al. Impact of scaffold rigidity on the design and evolution of an 
artificial Diels-Alderase. Proc. Natl. Acad. Sci. U. S. A. 111, 8013-8018 (2014). 

11 Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp 
eliminase. Nature 503, 418-421 (2013). 

12 Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary 
optimization of the stability and proficiency of designed Kemp eliminase KE59. 
Proc. Natl. Acad. Sci. U. S. A. 109, 10358-10363 (2012). 

13 Fuxreiter, M. & Mones, L. The role of reorganization energy in rational enzyme 
design. Curr. Opin. Chem. Biol. 21, 34-41 (2014). 

14 Jindal, G., Ramachandran, B., Bora, R. P. & Warshel, A. Exploring the development 
of ground-state destabilization and transition-state stabilization in two directed 
evolution paths of Kemp eliminases. ACS Catal. 7, 3301-3305 (2017). 

15 Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210-
3235 (2006). 

16 Bhowmick, A., Sharma, S. C. & Head-Gordon, T. The importance of the scaffold for 
de novo enzymes: A case study with Kemp eliminase. J. Am. Chem. Soc. 139, 5793-
5800 (2017). 

17 Hong, N. S. et al. The evolution of multiple active site configurations in a designed 
enzyme. Nat. Commun. 9, 3900 (2018). 

18 Bhowmick, A., Sharma, S. C., Honma, H. & Head-Gordon, T. The role of side chain 
entropy and mutual information for improving the de novo design of Kemp 
eliminases KE07 and KE70. Phys. Chem. Chem. Phys. 18, 19386-19396 (2016). 

19 Romero-Rivera, A., Garcia-Borras, M. & Osuna, S. Role of Conformational Dynamics 
in the Evolution of Retro-Aldolase Activity. ACS Catal. 7, 8524-8532 (2017). 

20 Petrovic, D., Risso, V. A., Kamerlin, S. C. L. & Sanchez-Ruiz, J. M. Conformational 
dynamics and enzyme evolution. J. R. Soc. Interface 15 (2018). 

21 Frushicheva, M. P. et al. Computer aided enzyme design and catalytic concepts. 
Curr. Opin. Chem. Biol. 21, 56-62 (2014). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.21.260885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260885


 

14 
 

22 Campbell, E. C. et al. Laboratory evolution of protein conformational dynamics. 
Curr. Opin. Struct. Biol. 50, 49-57 (2017). 

23 Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. Physical organic chemistry of 
benzisoxazoles. I. Mechanism of the base-catalyzed decomposition of 
benzisoxazoles. J. Org. Chem. 38, 2294-2301 (1973). 

24 Kemp, D. S. & Casey, M. L. Physical organic chemistry of benzisoxazoles. II. 
Linearity of the Broensted free energy relation for the base-catalyzed 
decomposition of benzisoxazoles. J. Am. Chem. Soc. 95, 6670-6680 (1973). 

25 Privett, H. K. et al. Iterative approach to computational enzyme design. Proc. Natl. 
Acad. Sci. U. S. A. 109, 3790-3795 (2012). 

26 Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme 
design. Nature 453, 190-195 (2008). 

27 Prabhu, N. V. & Sharp, K. A. Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 
521-548 (2005). 

28 Jones, H. B. L. et al. A complete thermodynamic analysis of enzyme turnover links 
the free energy landscape to enzyme catalysis. FEBS J. 284, 2829-2842 (2017). 

29 Liao, Q. et al. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and 
Shut Case. J. Am. Chem. Soc. 140, 15889-15903 (2018). 

30 van der Kamp, M. W., Chaudret, R. & Mulholland, A. J. QM/MM modelling of 
ketosteroid isomerase reactivity indicates that active site closure is integral to 
catalysis. FEBS J. 280, 3120-3131 (2013). 

31 Malabanan, M. M., Amyes, T. L. & Richard, J. P. A role for flexible loops in enzyme 
catalysis. Curr. Opin. Struct. Biol. 20, 702-710 (2010). 

32 Rivoire, O., Reynolds, K. A. & Ranganathan, R. Evolution-based functional 
decomposition of proteins. PLoS Comput. Biol. 12, e1004817 (2016). 

33 Reynolds, K. A., McLaughlin, R. N. & Ranganathan, R. Hot spots for allosteric 
regulation on protein surfaces. Cell 147, 1564-1575 (2011). 

34 Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary 
units of three-dimensional structure. Cell 138, 774-786 (2009). 

35 Lakhani, B., Thayer, K. M., Black, E. & Beveridge, D. L. Spectral analysis of molecular 
dynamics simulations on PDZ: MD sectors. J. Biomol. Struct. Dyn., 1-10 (2019). 

36 Sethi, A., Eargle, J., Black, A. A. & Luthey-Schulten, Z. Dynamical networks in 
tRNA:protein complexes. Proc. Natl. Acad. Sci. U. S. A. 106, 6620-6625 (2009). 

37 Rivalta, I. et al. Allosteric pathways in imidazole glycerol phosphate synthase. Proc. 
Natl. Acad. Sci. U. S. A. 109, E1428-1436 (2012). 

38 Goodey, N. M. & Benkovic, S. J. Allosteric regulation and catalysis emerge via a 
common route. Nat. Chem. Biol. 4, 474-482 (2008). 

39 Åqvist, J., Kazemi, M., Isaksen, G. V. & Brandsdal, B. O. Entropy and enzyme 
catalysis. Acc. Chem. Res. 50, 199-207 (2017). 

40 Williams, D. H., Stephens, E., O'Brien, D. P. & Zhou, M. Understanding Noncovalent 
Interactions: Ligand Binding Energy and Catalytic Efficiency from Ligand-Induced 
Reductions in Motion within Receptors and Enzymes. Angew. Chem. Int. Ed. 43, 
6596-6616 (2004). 

41 Zhang, S., Li, H., Krieger, J. M. & Bahar, I. Shared Signature Dynamics Tempered by 
Local Fluctuations Enables Fold Adaptability and Specificity. Mol. Biol. Evol. 36, 
2053-2068 (2019). 

42 Tiwari, S. P. & Reuter, N. Conservation of intrinsic dynamics in proteins-what have 
computational models taught us? Curr. Opin. Struct. Biol. 50, 75-81 (2018). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.21.260885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260885


 

15 
 

43 Fuglebakk, E., Echave, J. & Reuter, N. Measuring and comparing structural 
fluctuation patterns in large protein datasets. Bioinformatics 28, 2431-2440 
(2012). 

44 Echave, J., Spielman, S. J. & Wilke, C. O. Causes of evolutionary rate variation among 
protein sites. Nat. Rev. Genet. 17, 109-121 (2016). 

45 Wells, S. A., van der Kamp, M. W., McGeagh, J. D. & Mulholland, A. J. Structure and 
Function in Homodimeric Enzymes: Simulations of Cooperative and Independent 
Functional Motions. PloS one 10, e0133372 (2015). 

46 Na, J., Houk, K. N. & Hilvert, D. Transition state of the base-promoted ring-opening 
of isoxazoles. Theoretical prediction of catalytic functionalities and design of 
haptens for antibody production. J. Am. Chem. Soc. 118, 6462-6471 (1996). 

47 Alexandrova, A. N., Röthlisberger, D., Baker, D. & Jorgensen, W. L. Catalytic 
Mechanism and Performance of Computationally Designed Enzymes for Kemp 
Elimination. J. Am. Chem. Soc. 130, 15907-15915 (2008). 

48 Swiderek, K., Tunon, I., Moliner, V. & Bertran, J. Revealing the origin of the 
efficiency of the de novo designed Kemp eliminase HG-3.17 by comparison with 
the former developed HG-3. Chemistry 23, 7582-7589 (2017). 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.21.260885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260885

