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Adaptive cognition is fostered by knowledge about the structure
and value of our environment. Here, we hypothesize that these
two kinds of information are inherently intertwined as value-
weighted schemas in the medial prefrontal cortex (mPFC).
Schemas (e.g., of a social network) emerge by extracting com-
monalities across experiences and can be understood as graphs
comprising nodes (e.g., people) and edges (e.g., their relation-
ships). We sampled information about unique real-life environ-
ments (i.e., about personally familiar people and places) and
probed the neural representations of their schemas with fMRI.
Using representational similarity analysis, we show that the
mPFC encodes both, the nodes and edges of the schemas. Crit-
ically, the strength of the edges is not only determined by expe-
rience and centrality of a given node but also by its value. We
thus account for the involvement of the mPFC in seemingly dis-
parate functions and suggest that valuation emerges naturally
from encoded memory representations.

� paulus@cbs.mpg.de

Introduction

Our rich knowledge of the past allows us to readily make
sense of the present. It also facilitates adaptive planning for
the future, for example by supporting simulations of prospec-
tive events (1–5). Critically, these capacities are not ex-
clusively dependent on individual memories of unique past
experiences. Instead, they are also based on generalized
knowledge about our environment that is derived from mul-
tiple experiences (e.g., about relationships between familiar
people)(3, 6).

A type of such generalized knowledge structures are mem-
ory schemas (7–9). These representations of our environment
can be understood as graphs comprising information about
nodes (e.g., individual people) and their edges (i.e., their re-
lationships) (8, 10–12). Schemas are formed by extracting
commonalities across related events (7, 8, 13). They thereby
reduce the complexity of our experience into simplified mod-
els of the world (e.g., about the people we know or about the
locations we frequently visit) (8, 14). Such models, in turn,
foster planning and facilitate adaptive decisions (15–17).

However, beyond a representation of the environment’s struc-
ture, adaptive cognition also requires a representation of
what’s valuable within that environment (18). Here, we test
the hypothesis that these two kinds of information are inher-

ently intertwined in the rostral and ventral medial prefrontal
cortex (mPFC) (19–22). As detailed below, this proposal ac-
counts for the involvement of this region in two seemingly
disparate functions: representing memory schemas and affec-
tive value.

Evidence from humans (23, 24) and rodents(20, 25) indicates
a critical role for the mPFC in mediating memory schemas
(26, 27). Activity patterns in this region have been shown
to code for individual nodes of the environment, such as for
familiar people (19, 28) and places(19, 29). However, it re-
mains unclear whether the mPFC encodes representations of
the nodes in isolation or whether these representations also
entail information about their edges (i.e., their relationships
to other nodes).

A largely independent line of research has associated the
mPFC with the representation of affective value (21, 30–32).
Activity in this region tracks the value of objects, people, or
places that we currently perceive or imagine (19, 30, 33–35).
Moreover, in humans, focal lesions disrupt value judgements
(36, 37). The mPFC has thus been argued to represent value
in a common currency that allows for flexible decision mak-
ing in a wide range of contexts (30, 31, 38). Notably, evi-
dence from human neuroimaging (1, 19, 33, 35, 39) and ro-
dent single cell-recordings (20, 22) has shown that represen-
tations of memories and of affective value are supported by
overlapping parts of the mPFC. We thus reconcile the com-
mon attribution of these functions by hypothesizing that the
schemas encoded by this region are shaped by affective value.

Specifically, we propose that the mPFC encodes represen-
tations of individual nodes (e.g., individual familiar people)
and that the representations also entail information about
their edges (e.g., the overall associations between the people).
Critically, we suggest that nodes that are more important for
a person exhibit stronger edges.

We hypothesize that the importance of a given node is jointly
determined by three features: Given that schemas build up
with experience (8), we first expect that more familiar nodes
should be more prominently embedded in the overall graph
(33). Secondly, for the same reason, we expect stronger em-
bedding of nodes that are more central to the respective en-
vironment (11). Finally, given the role of the mPFC in affect
and valuation (21, 30), we propose the strength of the edges
are also weighted by each node’s affective value (19, 20, 40).
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The encoded schemas would thus emphasize connections of
behaviorally relevant elements of the environment, reminis-
cent of the hippocampal weighting of rewarded locations
(41, 42).

Here, we test this hypothesis by probing the neural repre-
sentations of two distinct and individually unique schemas:
about people’s social networks and about places from their
everyday environment. This allows us to examine whether
the suggested coding principles generalize across these indi-
vidual schemas. Participants provided names of people and
places they personally know and arranged these names in
circular arenas according to their associations (43) (Fig. 1
d). This allowed us to quantify the centrality of each exem-
plar (e.g., a person) to its respective schema (e.g., the social
network). Participants also indicated their familiarity with
each person and place (as an index of experience) and their
liking of each of these exemplars (as an index of affective
value). In a subsequent session, we measured their brain ac-
tivity using functional magnetic resonance imaging (fMRI)
while they imagined interacting with each person and being
at each place. We took the ensuing activity patterns to assess
the neural representations of the individual nodes and their
edges using representational similarity analysis (RSA) (44).

First, we hypothesized that the mPFC encodes unique rep-
resentations of the nodes that get reinstated during mental
simulation (19, 28, 29). We thus predicted similar activity
patterns to emerge in the mPFC whenever participants imag-
ine the same person or place. Second, we hypothesized that
the structure of neural activity patterns between nodes re-
flects the structure of their edges. We reasoned that pairs
of nodes that are more strongly connected (i.e., that exhibit
stronger edges) are encoded by more overlapping neuronal
populations (1, 45–47). This, in turn, should be reflected in
overall greater neural similarity for nodes with particularly
strong edges. As a consequence, if more important nodes
have stronger edges, they should also exhibit overall greater
neural similarity.

In addition, we further gauge the regional specificity of such
value-weighted schemas to the mPFC. Therefore, we also ex-
amine the posterior cingulate cortex and the hippocampus,
two regions that have similarly been associated with memory
(48–51) and valuation (30, 34, 52).

Results

The medial prefrontal cortex codes for the nodes of par-
ticipants’ real-life schemas. We first examined the hypoth-
esis that the medial prefrontal cortex encodes representations
of personally familiar people and places, i.e., the nodes of the
respective schemas. Whenever we simulate an event involv-
ing a particular node, its representation should get reinstated
in the mPFC. We thus took the ensuing fMRI activity patterns
as proxies of their respective neural representations (19, 53)
and examined their replicability using an RSA searchlight ap-

proach (radius = 8 mm, 4 voxels) (44).

In regions that encode the nodes of the schema, we predicted
overall greater pattern similarity for simulations featuring the
same node (same-item similarity) than for simulations fea-
turing different nodes (different-item similarity) (54). Note
that the different-item measure was only based on the sim-
ilarity of activity patterns for nodes of the same kind (i.e.,
either people or places). This ensured that the results are not
influenced by potential categorical differences in the repre-
sentation of people versus places (Fig. 1 a, b) (19, 53).

Corroborating our previous finding (19), we obtained this ef-
fect in the mPFC. This region thus yielded replicable activity
patterns that were specific to individual exemplars (Fig. 1
c, Supplement 1). Moreover, we also observed evidence for
such replicable pattern reinstatement in a number of other
brain regions that are typically engaged during the recol-
lection of past memories and the simulation of prospective
events (50, 55, 56). These regions included the posterior cin-
gulate cortex (PCC), the precuneus and parts of the lateral
parietal and temporal cortices. Notably, there was no evi-
dence for pattern reinstatement in the hippocampus.

The data thus support our hypothesis that the mPFC encodes
unique representations of individual nodes. In the following,
we further examine the edges between nodes in the mPFC and
PCC regions of interest (ROI) identified by this analysis. We
also test for these effects in the hippocampus, even though
this region showed no evidence of node coding.

Note that the subsequent analyses of the edges are based on
different parts of the neural representational similarity matrix
(RSM) than the ones used to determine node coding. Further,
they are based on comparisons of model RSMs that are also
independent of the node coding model. In the supplement,
we provide complementary and consistent results based on
anatomically defined masks (see Supplementary Tables 2 –
4; Supplementary Figure 1 and 2).

Centrality, experience, and affective value load on a com-
mon principal component that quantifies importance. We
had hypothesized that a node’s centrality, experience, and
also its affective value contribute to its importance. These
three features may thus share a common latent factor. First,
to assess centrality, participants positioned the names of the
people and places in circular arenas (Fig. 1 d). They were
instructed to arrange nodes close together if they associate
them strongly with each other and far apart if they do not
(43). We calculated the centrality of each node as the sum
of its inverse distances to all other nodes. Participants then
arranged the people and places on continuous scales provid-
ing estimates of their familiarity with each node (as an index
of experience) and of their liking (as an index of affective
value). All three features were assessed separately for people
and places.

To test whether centrality, experience, and affective value
load on a common latent factor, we z-scored each vector
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Fig. 1. Representations in the mPFC and PCC code for the nodes of participants’ real-life schemas. a We examined whether the mPFC encodes representations of the
nodes by testing for the replicability of activity patterns for the same people and places across the two functional runs. Each row and column of the representational similarity
matrix corresponds to a single simulation trial. b Regions coding for the nodes should show more similar activity patterns for the repeated simulation of the same person
or place (same-item similarity) than for simulations entailing different nodes of the same category (different-item similarity). c The searchlight analysis identified regions
coding for the nodes of real-life schemas. These entailed the mPFC and PCC. d Participants arranged the familiar people and places on circular arenas according to their
associations, thus providing a measure of centrality. Participants also provided measures of experience and affective value by indicating their familiarity with the nodes as
well as their liking. e Centrality, experience, and affective value load on a common principal component as indicated by significant positive correlations (* - p < .05, *** - p <
.001; one-tailed; df = 35). This component thus summarizes the importance of the nodes to the schema. mPFC = medial prefrontal cortex, PCC = posterior cingulate cortex,
CE = centrality, EX = experience, AV = affective value, PC = principal component.

of values separately for each category (people, places) and
within each participant. This approach prevents between-
participant variance from influencing the factor solution. We
then performed principal component analyses, separately for
the people and places. The respective first principal compo-
nent explained, across all participants, 61% of variance for
people and 46% for places.

Critically, as predicted, both of these principal components
exhibited significant positive correlations not only with ex-
perience and centrality but also with affective value (Fig. 1
e). We thus take them to quantify the importance of each
individual node to its respective schema. In the next step,
we used the individual importance values of the respective
principal component to predict the structure of the schemas’
edges.

The medial prefrontal cortex encodes the edges of value-
weighted schemas. We had hypothesized that more impor-

tant nodes – as indicated by the principal component – exhibit
stronger edges. We had further reasoned that the strength
of edges between nodes is reflected in their patterns of neu-
ral similarity, assuming that more strongly connected nodes
are also encoded by more overlapping neuronal populations
(1, 20, 57). We had thus predicted that more important nodes
should exhibit overall greater neural similarity.

We tested this prediction by constructing models of the ex-
pected structure of representations in the mPFC. The mod-
els were based on the importance values derived from the
respective principal component. Specifically, we predicted
the similarity between any two nodes by the product of their
respective principal component scores (i.e., importance val-
ues). Thus, we expected nodes that are more important to
yield overall greater pattern similarity (Fig. 2 b).

We then determined the neural similarity structure in the
mPFC, PCC, and in the hippocampus (Fig. 2 a). We con-
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Fig. 2. Only the structure of representations in the mPFC is best accounted for by the principal component model that reflects importance. a Construction of the
neural RSM. Each row and column of the matrix corresponds to a single simulation trial. In this analysis, we examine the similarity of activity patterns elicited by simulations of
different people or places. b Construction of the model predictions. We predicted more similar representations for people and places with overall higher principal component
scores, given that these more important exemplars should be more strongly embedded in their overall schema. To this end, we computed the combined importance of any two
people or places from the product of their principal component scores. c Correlation of neural RSM and model prediction. Asterisks denote significant positive correlations
as tested in a t-test on the Fisher-z transformed correlation coefficients (*** - p < .001; one-tailed; df = 35). d Comparisons of linear mixed models further support the
hypothesis: only the structure of representations in the mPFC is best explained by the principal component. The figure displays Log Evidence Ratios (LER). Smaller values
indicate better fit. By definition, the best model assumes a value of zero. The dotted red line demarks a relative LER difference of two, regarded as decisive. e Comparisons
with noise null models. Data points depict the mean model performance in comparisons with 1,000 random noise models (N) and sorted noise models (N+), whiskers indicate
the standard deviation of the model performance. Shaded areas correspond to the region > N (darker shade) and > N+ (lighter shade). mPFC = medial prefrontal cortex,
HPC = hippocampus, PCC = posterior cingulate cortex, CE = centrality, EX = experience, AV = affective value, PC = principal component, N = random noise, N+ = sorted
noise.

strained the broader cluster containing the PCC to the parts
covering this region using an anatomical mask (58). We used
an anatomical mask from the same atlas to examine the repre-
sentational structure for the hippocampus. All analyses were
conducted in subject space.

Finally, we tested for the correspondence between our pre-
diction and the actual structure of neural representations by
computing the correlation of the respective parts of the lower
triangular vectors of both matrices (Fig. 2 a-c). This was
done separately for people and places to examine whether
the effect is present for either category. Using Kendall’s τa
as a conservative estimate (59), we indeed observed signif-
icant correlations in the mPFC for both people (mean τa =
0.039, tested with a Wilcoxon test, W = 562, p < .001, d =
0.63, one-tailed, due to a deviation from normality indicated
by a Shapiro-Wilk test, W = 0.92, p = 0.01) and places (mean
τa = 0.026, t(35) = 3.72, p < .001, d = 0.62, one-tailed) - with
no significant differences between the two (t(35) = 1.04, p =

.307, d = 0.17, two-tailed).

Similarly, the correlations were also significant in the PCC
for people (mean τa = 0.046, t(35) = 3.91, p < .001, d = 0.65,
one-tailed) and places (mean τa = 0.026, t(35) = 3.61, p <
.001, d = 0.60, one-tailed), again with no significant differ-
ences between the two (t(35) = 1.42, p = .165, d = 0.24, two-
tailed). However, the same analyses of the hippocampal data
did not yield evidence for a match between the predicted and
actual structure of representations (people: mean τa = 0.003,
t(35) = 0.41, p = .341, d = 0.07, one-tailed; places: (mean τa
= 0.007, t(35) = 1.15, p = .13, d = 0.19, one-tailed).

We obtained qualitatively identical results in analyses based
on purely anatomically defined ROIs (see Supplementary Ta-
ble 2 and 3; Supplementary Fig. 1). The results are also in
accordance with a whole-brain searchlight analysis (radius =
8 mm, 4 voxels) (see Supplementary Table 5). We thus show
that representations in the mPFC generally align with the pre-
dicted structure of value-weighted schematic representations.

4 | bioRχiv Paulus et al. | Value shapes schematic representations in the mPFC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.08.21.260950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260950
http://creativecommons.org/licenses/by-nc-nd/4.0/


PR
EP

RIN
T

However, it remains to be determined whether importance is
indeed the best model to account for the structure of repre-
sentations in any of our ROIs.

The importance model accounts best for the structure of
mPFC representations only. Does the structure of represen-
tations predicted from the principal component account best
for the data or would any of the individual contributing fea-
tures provide at least a comparable or even a better fit? If
the mPFC does encode value-weighted schemas, we would
expect the model based on the conglomerate index of impor-
tance to outperform models only based on centrality, experi-
ence, or affective value. Furthermore, we would expect some
degree of regional specificity, i.e., that only representations
in the mPFC are best accounted for by importance.

We formally tested these predictions by setting up alterna-
tive models that were solely based on either centrality, expe-
rience, or affective value. We then compared these models
with the importance model that was based on the principal
component. In brief, we set up linear mixed effects models
to account for the structure of representations as a function of
each of these individual features. In each of these models, we
included a factor of category (people, places) and the maxi-
mum possible random effects structure that would converge
across all models and regions of interest. We thus accounted
for between participant variance by including a random inter-
cept per participant and run, as well as random slopes for our
fixed effects of category and the respective predictor (e.g., the
principal component scores). We then performed model com-
parisons within each ROI to determine the model that best fits
the neural similarity structure. The comparisons were based
on Log Evidence Ratios (LER) derived from Akaike’s Infor-
mation Criterion (60). We regarded LER differences greater
than two as decisive evidence for the better model (61).

Consistent with our hypothesis, in the mPFC, the princi-
pal component model accounted best for the data. It per-
formed decisively better than affective value (LER = 4.19),
experience (LER = 14.8) and centrality (LER = 35.16) (Fig.
2 d). The model parameters of this winning model en-
tailed a significant main effect of category, reflecting over-
all higher neural pattern similarity for people than places
(βCategory_place = -0.026, SE = 0.008, χ2 = 11.61, p
< .001). Critically, they also included a significant pos-
itive parameter estimate for the principal component, in-
dicating overall greater neural pattern similarity for nodes
of greater importance (βPrincipalComponent = 0.048, SE =
0.012, χ2 = 17.12, p < .001). Moreover, the main effect
of the principal component did not interact with category
(βCategory_place:PrincipalComponent = -0.005, SE = 0.008,
χ2 = 0.36, p = .546).

By contrast, in both control regions, other models were better
suited to account for the structure of representations. For the
hippocampus, the model comparison yielded the best fit for
centrality, though there was only a minimal advantage for this
model over affective value (LER = 0.49). Notably, both mod-
els performed decisively better than the ones based on either

the principal component (LER = 2.68) or experience (LER
= 3.46). However, of the model parameters, only the main
effect of category was significant, indicating overall higher
pattern similarity for places than for people (βCategory_place
= 0.02, SE = 0.004, χ2 = 31.49, p < .001). There was neither
a main effect of centrality (βCentrality = -0.007, SE = 0.004,
χ2 = 0.9, p = .342) nor an interaction of category with cen-
trality (βCategory_place:Centrality = 0.007, SE = 0.004, χ2

= 3.04, p = .081). The same pattern (i.e., only a main effect
of category) also emerged for the model based on affective
value (see Supplementary Table 4).

For the PCC, the model based on affective value performed
decisively better than any other model: principal component
(LER = 4.14), experience (LER = 6.82), and centrality (LER
= 33.99) (Fig. 2 d). The main effect of affective value was
significant, indicating overall greater neural pattern similarity
for nodes of higher affective value (βAffectiveV alue = 0.026,
SE = 0.007, χ2 = 10.71, p = .001). There was no main effect
of category (βCategory_place = 0.014, SE = 0.009, χ2 = 1.51,
p = .219), but an interaction of affective value with category,
reflecting a stronger effect of affective value for people than
places (βCategory_place:AffectiveV alue = -0.01, SE = 0.005,
χ2 = 3.92, p = .048) (see Supplementary Table 4 for all model
parameters).

In summary, the model based on the principal component was
the clear winner in the mPFC, whereas it was outperformed
by alternative models in the control regions. This pattern
thus suggests some regional specificity of value-weighted
schemas. Note that we obtained consistent results when ex-
amining the structure of representations in the purely anatom-
ically defined ROIs (see Supplementary Fig. 2; Supplemen-
tary Table 4).

Finally, we sought to ensure that the winning models in each
ROI perform better null models based on noise. To this end,
for each familiar person and place, we randomly sampled
a value from a standard normal distribution. We then used
these values to construct a noise model by performing the
identical processing steps as for the other predictors.

Moreover, we derived a second noise model by sorting the
noise vector in descending order prior to constructing the
model. This was done to account for the order of columns in
the neural RSM that was not randomly determined. Instead,
the order reflected the serial position of the people and places
as provided by the participants. Participants tend to start list-
ing people and places with the ones that they like and know
better. As a consequence, nodes that are listed earlier tend
to also have higher values on the principal component. By
sorting the noise vectors in descending order, we imposed a
similar dependence between the noise values and their serial
positions.

Separately for each ROI, we then compared model perfor-
mance of random noise and sorted noise against the winning
model. Because there was no clear single winning model
for the hippocampus, we included the models based on cen-
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trality and on affective value (LER < 2) in this comparison.
We repeated this process 1,000 times to obtain an estimate of
the expected performance of the noise models and the win-
ning model. As expected, in the mPFC, the principal com-
ponent remained the best model (mean LER = 0, SD = 0.04),
performing decisively better than sorted noise (mean LER =
15.56, SD = 2.51) and random noise (mean LER = 25.81, SD
= 6.03).

For the hippocampus, the initial model comparisons had pro-
vided only minimal evidence for centrality over affective
value. We therefore compared both of these models with the
noise models. Again, there was minimal evidence for supe-
riority of centrality (mean LER = 0.09, SD = 0.53) over af-
fective value (mean LER = 0.58, SD = 0.53). Both models
performed decisively better than sorted noise (mean LER =
4.4, SD = 1.09) and random noise (mean LER = 5.32, SD =
2.38). The model comparisons in the PCC revealed strong,
though not decisive, evidence for a superiority of affective
value (mean LER = 1.15, SD = 2.1) over sorted noise (mean
LER = 2.89, SD = 3.37). However, both did perform deci-
sively better than random noise (mean LER = 29.46, SD =
9.01) (see Fig. 2 e).

The results thus provide further evidence for the hypothe-
sis that the mPFC encodes both the nodes and the edges of
value-weighted schematic representations. The model com-
parison moreover supports this account with some regional
specificity.

Discussion

Human adaptive cognition is fostered by representations of
the structure of our environment (7, 15, 17). Such structured
representations act as templates that allow us to facilitate rec-
ollections of the past, to make sense of the present, and to
flexibly anticipate the future (6, 8, 13, 33, 62). Structured
representations have been described in the mPFC for vari-
ous domains, ranging from spatial and conceptual to abstract
state spaces (63–66).

Our results support the hypothesis that the mPFC supports
a specific form of such structured representations: value-
weighted schemas of our environment. Generally, the mPFC
has long been argued to mediate memory schemas (26, 27,
62), yet the exact contribution of this region has remained
unclear. It has been suggested that the mPFC serves to detect
congruency of incoming information with schematic knowl-
edge that is represented in posterior areas (27). This region
would thus not necessarily represent any kind of schematic
knowledge by itself. Our data indicate that the contribution
of the mPFC goes beyond congruency detection: It directly
encodes schematic representations of the environment (11,
see also 19).

These representations could act as pointer functions that
guide the reinstatement of relevant distributed information
(26, 27, 67, 68). This suggestion fits with broader accounts

that situate the mPFC on top of a cortical hierarchy as a con-
vergence zone (48, 69) that integrates information from di-
verse brain networks (33, 55).

Critically, our results support the hypothesis that schematic
representations in the mPFC (e.g., of one’s social network)
inherently entail the value of the encoded nodes (e.g., how
much we like individual people). That is, the structure of the
edges could best be accounted for by a model based on a la-
tent factor that quantifies the importance of the nodes. As
predicted, this factor was not only influenced by the nodes’
centrality (11, 40) and familiarity (19, 29, 33), but also by
their affective value (19–21). We obtained this pattern across
schemas for personally familiar people and places. The con-
vergent results thus demonstrate that this coding scheme in
the mPFC generalizes to different kinds of environmental
representations.

The model comparison also suggested some degree of re-
gional specificity for value-weighted schemas. The impor-
tance model was neither the best fit to the data obtained from
the PCC nor from the hippocampus. Whereas even the best
model did not decisively outperform a noise model in the
PCC, there was some evidence that the structure of the edges
in the hippocampus could best be accounted for by either cen-
trality or affective value. These results are consistent with
evidence showing that the hippocampus encodes map-like
representations of relational abstract (45, 70) and social (71)
knowledge and that it is involved in value learning (72, 73).

More broadly, a functional dissociation between the hip-
pocampus and mPFC is also consistent with the suggested
involvement of these regions in two complementary learning
systems. Whereas the hippocampus is critical for the reten-
tion of individual episodes, the mPFC may extract common-
alities across similar events and bind these into consolidated
representations (13, 17, 41, 74, cf. 75). The mPFC would
thus reduce the complexity of our experience into schematic
summary representations.

Indeed, a recent study provided convergent evidence for such
dimension reduction in this region. It demonstrated that the
mPFC compresses rich perceptual input to only those fea-
tures that are currently task-relevant – akin to a principal
component analysis (14). While such dimension reduction
entails the loss of specific details, it also affords generaliz-
ability and cognitive flexibility (8, 76). These representa-
tions can thus augment planning (6, 77, 78) and also be flex-
ibly used for the construction and valuation of novel events
(1, 33).

The emergence of schemas in the mPFC could be fostered by
hippocampal replay of past events (79–81). Such replay, con-
veyed by monosynaptic efferent projections into the mPFC
(82), can potentially provide a teaching signal that facilitates
neocortical consolidation (41). Moreover, to the degree that
replay is biased towards valuable information, it may lead to a
stronger weighting of those experiences that are of particular
importance (41, 42). However, the mPFC likewise receives

6 | bioRχiv Paulus et al. | Value shapes schematic representations in the mPFC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.08.21.260950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260950
http://creativecommons.org/licenses/by-nc-nd/4.0/


PR
EP

RIN
T

direct projections from areas such as the amygdala and the
striatum (83) that could also contribute to a shaping of the
schematic representations by value (see also 21).

Importantly, the highlighted structure of representations in
the mPFC provides a common account for the involvement of
this region in both memory schemas and valuation. That is,
when we think about an individual element from our environ-
ment (e.g., a known person), its representation in the mPFC
is activated. This activation then spreads throughout the net-
work of connected nodes. Critically, we suggest that there is a
wider spread from nodes that are more valuable and that are
thus more strongly embedded in their overarching schema.
This wider spread, in turn, may manifest as greater regional
univariate activity. According to this account, the valuation
signal that has been attributed to the mPFC (30, 34) thus con-
stitutes an emergent property of the structure of its encoded
representations.

This interpretation similarly accounts for the stronger en-
gagement of the mPFC when individuals think about them-
selves as compared to others (84, 85). The self can be con-
sidered a super-ordinate schema that entails abstracted repre-
sentations of all our personal experiences (67). Instantiating
this schema would thus presumably lead to wide spread activ-
ity, whereas thinking about specific other people would only
co-activate neural representations of more restricted nodes.
Moreover, the net activity would be lower for other people
that we feel less connected to and that we have less experi-
ence with (33, 86–88).

To conclude, this study provides evidence that the medial pre-
frontal cortex represents the structure of our environment in
the form of value-weighted schemas. These schemas reflect
our experience with individual nodes as well as their central-
ity. Critically, they also inherently encode information about
their affective value. These schematic representations thus
prioritize information that is critical for adaptive planning
and ultimately promotes our well-being and survival.

Methods

Participants. We recruited 39 right handed healthy unmed-
icated adults (23 females; mean age = 25.4 years, SD = 2.6
years) from the study database of the Max Planck Institute
for Human Cognitive and Brain Sciences. All participants
had normal or corrected to normal vision, provided written
informed consent and received monetary compensation for
their participation. The experimental protocol was approved
by the local ethics committee (Ethical Committee at the Med-
ical Faculty, Leipzig University, Leipzig, Germany; Proposal
number: 310/16-ek). Three participants had to be excluded
from analysis either because of a recording error (n = 1), or
excessive movement (n = 2). Excessive movement was de-
fined as absolute movement ≤ 3 mm within either run or a
total of ≤ 5 episodes of movement ≤ 0.5 mm. We thus in-
cluded 36 participants (22 females; mean age = 25.2 years,

SD = 2.5 years) in the analyses.

Task and procedures. The procedure, adapted from ref. 19,
comprised two sessions. During the first session, participants
provided names of personally familiar people and of such
places. Participants tend to start by listing people and places
that they are most familiar with and that they like the most.
We therefore asked them to provide us with 90 people and
90 places and then randomly sampled 30 of each to ensure a
greater variability in these variables of interest.

Assessing centrality, experience, and affective value. To
quantify the centrality of each node to its schema, partici-
pants arranged the names of the people and places on sep-
arate two-dimensional circular arenas using the multiple ar-
rangements task (43) (Fig. 1 d). We instructed participants
to position names closer to each other that they also associate
more strongly. The inverse of the distance thus serves as a
measure of associatedness between any two nodes. We quan-
tified the centrality of each person and place to its schema by
computing their centrality, i.e., the sum of their associated-
ness values.

We then assessed how much experience participants had with
each person and place. The participants therefore placed the
names on continuous familiarity scales ranging from “not at
all familiar” to “very much familiar” (Fig. 1 d). Finally, par-
ticipants provided a measure of affective value for each per-
son and place by arranging their names on continuous liking
scales ranging from “not at all liked” to “very much liked”.
All arrangements were done separately for people and places.

Assessing neural representations. The participants returned
for a separate session (median delay: 1 day; range: 1–4 days)
to complete the episodic simulation task in the fMRI scanner.
Each trial of the simulation task began with a fixation period
of 0.5 s followed by the name of a person or a place for 7.5
s. During this time, participants imagined interacting with
the person in a typical manner or being at the place engaging
in a location specific activity. Participants were instructed to
imagine the episode as vividly as possible, so that they have
a clear mental picture of the respective person or place. Par-
ticipants then rated the vividness of their imagination on a
five-point scale within a maximum of 3 s. Trials for which
participants failed to press a button within that time period
were later removed from analysis. If there was time left from
the response window, it was added to the subsequent inter
trial interval. This lasted for at least 3 s plus an additional jit-
tered period (0 to 8 s in 2 s intervals). The screen during the
inter trial interval was blank. Each person and place was pre-
sented once in each of the two functional runs that followed
different random orders. Before entering the scanner, partic-
ipants practiced the simulation task with people and places
that they had previously provided but that did not feature in
the simulation task proper.

After the simulation task, participants were presented with
people-places and faces-places localizers. Outside the scan-
ner, they provided further information regarding the associ-
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ations and identities of the individual people and places, in-
cluding their addresses and locations. They also completed
a number of standard questionnaires. These data were not
analyzed for the current study.

fMRI data acquisition. Participants were scanned with a 3
Tesla Siemens Magnetom PRISMA MRI scanner with a 32-
channel head coil. We acquired anatomical images with a
T1-weighted magnetization-prepared rapid gradient-echo se-
quence (MPRAGE, 256 sagittal slices, TR = 2,300 ms, TE
= 2.98 ms, flip angle = 9°, 1 x 1 x 1 mm³ voxels, FoV =
240 mm, GRAPPA factor = 2). For each of the two func-
tional runs of the simulation task, we acquired 469 volumes
of blood-oxygen-level-dependent (BOLD) data with a T2*-
weighted echo-planar imaging (EPI) pulse sequence (89, 90).
This sequence employed multiband RF pulses with the fol-
lowing parameters: 72 interleaved axial-oblique slices (an-
gled 15° towards coronal from AC-PC), TR = 2,000 ms, TE
= 25 ms, flip angle = 90°, 2 x 2 x 2 mm³ voxels, 6/8 partial
Fourier, FoV = 192 mm, MF = 3). The first five volumes of
each run were discarded to allow for T1 equilibration effects.

fMRI data analysis. Data were analyzed using SPM12
(www.fil.ion.ucl.ac.uk/spm) in Matlab (version
9.3). The functional images were corrected for slice acqui-
sition times, realigned, corrected for field distortions, and
co-registered with the anatomical scan. Correction for field
distortions was achieved using FSL topup (91, 92) as im-
plemented in FSL 5.0 (https://fsl.fmrib.ox.ac.
uk/).

We then decomposed the variance in the BOLD time-series
using a general linear model (GLM) in SPM12 (93). Each
model included six regressors representing residual move-
ment artifacts, plus regressors modeling the intercepts of
block and session. The additional regressors in the GLM
coded for the effects of interest.

Specifically, we modeled each trial as a separate condition
yielding a total of 120 regressors – one for each of the two
simulations of the 30 people and 30 places. The trial re-
gressors were convolved with the canonical hemodynamic
response function. A 1/128-Hz high-pass filter was applied
to the data and the model. We computed t-maps for the
estimated parameters of interest (i.e., for each simulation)
against the implicit baseline. The ensuing parameters were
used for representational similarity analysis (RSA) (44, 59).

Identifying regions that code for nodes of the schemas. To
identify brain regions that encode representations of individ-
ual people and places (i.e., the nodes of the schemas), we
employed an RSA searchlight analysis (spheres with a radius
of 8mm, 4 voxels) across all gray matter voxels. This analy-
sis was based on the RSA toolbox 59 and compared activity
patterns across functional runs (54, 94). It identified regions
where two simulations of the same person or place yielded
more similar activity patterns (same-item similarity) than any
two simulations of different people or places (different-item
similarity). Specifically, we assessed same-item similarity as

the Pearson correlation between the activity pattern of the ini-
tial simulation of any given node in the first and its repeated
simulation in the second run. Different-item similarity was
computed as the average correlation of the initial simulation
of a node in the first run with all other nodes of the same cat-
egory (people or places) in the second run. By constraining
the different-item similarity to items of the same category,
we ensure that it is not affected by general differences in the
neural representation of people versus places. Finally, we de-
termined the magnitude of the node coding as the difference
score between same- and different-item similarity (19, 54).

This searchlight analysis yielded a node-coding map for each
individual participant. For second level analyses, we Fisher-
z-transformed these maps, normalized them into MNI space
using the DARTEL (95) estimated deformation fields, and
smoothed them with a Gaussian Kernel of 8 mm radius at
full-width-half-maximum. We then masked the smoothed
map with the normalized gray matter masks and tested the
significance of the node-coding effect using a simple t-
contrast at each voxel. We used voxel-level inference at p
< 0.05 (family-wise-error-corrected) and regarded only clus-
ters that comprised at least 30 contiguous voxels.

Examining the structure of the edges. The second RSA
examined whether regions that code for the nodes of the
schema also code for the predicted relationships between
the nodes (i.e., their edges). This analysis thus examined
data from regions-of-interest based on the thresholded node-
coding map. Note that the two sets of analyses are based
on different parts of the neural RSM and on comparisons
of model RSMs that are independent from the node-coding
model.

For the mPFC, we joined the two rostral and ventral clusters.
For the PCC, we took the conjunction of a broad cluster that
included this region and an anatomical PCC mask from the
Brainnetome atlas (58) (regions 175, 176, 181, 182). For the
hippocampal ROI, we merged its rostral and caudal parts of
the same atlas (regions 215 – 218). Voxels were included if
they had at least 50% probability of being part of the mask
and gray matter.

As complementary analyses, we also examined the data
solely based on an anatomical mask of the ventral mPFC used
by ref. 19 (see also 96), a more spatially extended mask in-
cluding the rostral mPFC (comprising Brainnetome regions
13, 14, 41, 42, 47 – 50, 187, 188), and said anatomical mask
of the PCC. All masks were inverse normalized into subject
space using the DARTEL estimated deformation fields and
constrained using the implicit mask estimated from the first
level GLMs.

Extraction of the importance weights using Principal
Component Analysis. We had hypothesized that central-
ity, experience, and affective value would jointly contribute
to the importance of a node and expected that they would
share a common latent factor. We thus applied principal
component analysis (PCA) to the three features and com-
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puted the latent factor that explained the most variance. The
PCAs were conducted separately for people and places and
were based on values of each variable that had been z-scored
for each participant. This approach ascertained that neither
between-category variance nor between-participant variance
would bias the factor solution. We then extracted, across
all participants, the respective first principal component for
people and places. These principal components were posi-
tively correlated not only with centrality and experience but
also with affective value, consistent with our proposal that all
three contributing features jointly quantify the importance of
a given node. We thus refer to these principal components as
importance factors.

Predicting the structure of value-weighted schematic rep-
resentations. We used the importance values to predict the
structure of schematic representations in the mPFC. We had
hypothesized that more important nodes should, overall, ex-
hibit greater neural similarity with the other nodes. We thus
predicted the similarity for any pair of nodes by the product
of their respective importance values. We scaled the vectors
to the interval of zero (lowest importance) and one (highest
importance) prior to multiplication. We then arranged the
combined importance values in square matrices for each cat-
egory (people, places). In initial analyses, we examined the
structure of representations separately for the schemas com-
prising people and places. Note that all analyses are only
based on the lower triangular vector of the representational
similarity matrices.

Testing the structure of the neural representations us-
ing Linear Mixed Effects Models. We set up a series
of linear mixed effects models in R (version 3.5.1, www.
r-project.org), using LME4 (97), to test which of sev-
eral alternative predictors accounted best for the structure of
representations in the ROIs. These models accounted for the
neural similarity data as a function of the full fixed effects of
category (people, places) and predictor of interest (i.e., cen-
trality, experience, affective value, or the principal compo-
nent). We further accounted for between participant variance
by including random effects: one random intercept for partic-
ipant and run as well as random slopes for category and the
respective predictor. Hence, all models were of the form:

Neural similarity ~ category * predictor +
(1 + category + predictor | participant) +
(1 | participant:run)

We estimated the models separately for each ROI and subse-
quently performed model comparisons based on the relative
Log Evidence Ratios (LER) derived from Akaike’s Informa-
tion Criterion (60). The best model assumes, by definition, a
relative LER of zero, and we regard relative LER differences
greater than two as decisive evidence for the better model
(61).

We further examined whether the winning models in each
ROI are also substantially superior to models based on ran-
dom Gaussian noise. We thus created null models by ran-

domly sampling 30 values from a standard normal distribu-
tion for both people and places. We then rescaled these val-
ues to the interval from zero to one. Subsequently, we con-
structed a noise null model by computing the product of ev-
ery combination of two values, just as we had done for our
predictors of interest. We also created a second null model
by sorting the same random noise values in descending or-
der prior to multiplication. This was done to account for
the inherent order of the original lists of people and places
provided by the participants that tended to start with more
familiar and pleasant exemplars. Thus, people and places
that were named first always received larger random numbers
than those named later.

We then fit linear mixed effect models for these two noise null
models, and performed a model comparison with the win-
ning model(s) from the respective ROI. We repeated this es-
timation process 1,000 times to compute average model per-
formance. Critically, if the winning model(s) in each ROI
constitute(s) a good approximation of the structure of neural
representations, they should consistently outperform both the
random noise and the sorted noise models.
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