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ABSTRACT 

To investigate the role of the N-terminal domains 

(NTDs) in NMDA receptor signaling we used ki-

netic analyses of one-channel currents and compared 

the reaction mechanism of recombinant wild-type 

GluN1/GluN2A and GluN1/GluN2B receptors with 

those observed for NDT-lacking receptors. We 

found that truncated receptors maintained the funda-

mental gating mechanism characteristic of NMDA 

receptors, which includes a multi-state activation se-

quence, desensitization steps, and mode transitions. 

This result establishes that none of the functionally-

defined NMDA receptor activation events require 

the NTD. Notably, receptors that lacked the entire 

NTD layer retained isoform-specific kinetics. To-

gether with previous reports, these results demon-

strate that the entire gating machinery of NMDA re-

ceptors resides within a core domain that contains 

the ligand-binding and the channel-forming trans-

membrane domains, whereas the NTD and C-termi-

nal layers serve modulatory functions, exclusively. 

INTRODUCYION 

NMDA receptors are excitatory neurotransmitter re-

ceptors with prominent and vital functions in the 

mammalian central nervous system (CNS). The 

electrical signals generated by NMDA receptors re-

sult from complex reaction mechanisms that include 

agonist-binding reactions and dynamic isomeriza-

tions that accomplish gate opening, channel desensi-

tization, and mode transitions (1-3). Despite increas-

ing knowledge of NMDA receptor architectures, the 

specific structures that support activation, desensiti-

zation and moding remain under investigation (4-9).  

Mammalian NMDA receptors are the largest and 

most complex of neurotransmitter-gated channels 

(10). Like all 18 genes in the ionotropic glutamate 

receptor (iGluR) family, the GluN genes that make 

the NMDA receptor family have mosaic structures 

and encode four distinct semi-autonomous domains 

that speak of evolutionary kinship to simpler pro-

teins (11-15). The two extracellular domains, the N-

terminal (NTD) and the membrane proximal ligand-

binding (LBD) domains, share homology with the 

bacterial periplasmic binding-proteins (PBP) 

LAOBP and QBP, respectively; the transmembrane 

domain (TMD) resembles, in part, the pores of prim-

itive cation-selective channels; and lastly, the C-ter-

minal domains (CTDs), which reside intracellularly 

and represent the most variable region of iGluR sub-

units, are unrelated to known proteins(10).  

Several functional behaviors pertinent to intact re-

ceptors have been traced to distinct structural do-

mains, which maintain overall structural integrity 

and function even when experimentally separated 

from the full protein. The fundamental aspects of 

channel activation, i. e. agonist binding sites and lig-

and-controlled gate, have been mapped within LBDs 

(13,16-18) and TMDs (15,19,20), respectively, with 

increasingly prominent roles in coupling assigned to 

stretches of residues that link the LBD with the TMD 

(21-23). Far less is known about the structures that 

support desensitization and moding, leaving consti-

tutive steps of the activation process structurally un-

specified. 

Consistent with agonist-binding and ionic flux being 

mediated by LBD and TMD, respectively, neither 

the NTDs nor the CTDs are essential to agonist-de-

pendent activation (24-30). In previous work, we 

showed that although CTDs of NMDA receptors 

modulate channel conductance and open probabili-

ties, CTD-lacking receptors display all functional 

properties of wild-type receptors including desensi-

tization and modal gating, consistent with a purely 

modulatory role in channel function (31). The work 

reported here examines the roles of NTDs in the 

NMDA receptor reaction mechanism. 

Recombinant receptors lacking NTDs insert in the 

plasma membrane and retain glutamate-gated iono-

tropy, even when they have reduced surface expres-

sion, modified pharmacology, and altered kinetics 

(24-27,29). In addition, glutamate-activated chan-

nels that naturally lack NTDs, are observed in birds 

(KA-BP) and plants (GluR0), suggesting that the 

NTDs of mammalian receptors have been appended 

to an ancestral ionotropic receptor subsequent to the 

separation of these evolutionary branches (32,33). 

Within the iGluR family, NTDs host molecular de-

terminants of tetrameric assembly, membrane target-

ing, and protein-protein interactions. Uniquely to 

NMDA receptors, NTDs contain several binding 
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sites for endogenous and synthetic effectors, thus as-

signing functions onto NTD attachments (10).  

Glutamatergic NMDA receptors assemble as obli-

gate hetero-tetramers of GluN1 (N1) and GluN2 

(N2) subunits. N1 protomers occur as multiple splice 

variants of a single gene product, with alternative 

splicing of exon 5 producing two types of NTD mod-

ules (a and b); N2 subunits are expressed from four 

separate genes (A - D), whose NTDs share ~ 30% 

homology. These structural variations of the NTD 

modules confer substantial functional and pharma-

cologic diversity onto the family, and represent ther-

apeutic targets for several neuropsychiatric disorders 

(34). 

Several NMDA receptor allosteric modulators act 

through residues located on the NTDs of N1 or/and 

N2 subunits, including protons, polyamines, zinc, 

and phenyl-ethanol-amines (e. g. ifenprodil). The 

current hypothesis for the action of these pharmaco-

logic agents is that by binding at the interface formed 

by mobile domains they change the time course of 

the activation reaction and therefore of the receptor-

generated currents. Similarly, isoform-specific 

structures of the NTDs have been proposed to be a 

major locus for subunit-specific kinetic differences 

between NMDA receptor isoforms (35,36).  

Yuan et al. (29) studied receptors lacking the NTD 

of specific N2 subunits (N1/N2A, N1/N2B, 

N1/N2C and N2/N2D) as well as chimeric recep-

tors whose 2A and 2D subunits had swapped NTDs. 

Their results uncovered that the NTDs of N2 subu-

nits have no influence on channel conductance but 

by controlling the time spent by receptors in closed 

conformations (MCT) they also control important 

kinetic aspects of the channel response such as open 

probability (Po) and deactivation time course (d) 

(29). 

Here, we extend these studies to the entire NTD do-

main and investigate specifically the mechanisms by 

which the absence of NTDs affects activation, de-

sensitization, and moding in NMDA receptors. We 

show that NTD-lacking NMDA receptors: 1) retain 

characteristic functional properties including ago-

nist-dependent gating, multi-step activation se-

quence, two microscopic desensitization steps (re-

sponsible for bursting behavior), and modal gating; 

2) the modulatory role of NTDs is contributed asym-

metrically by N1 and N2 subunits; and 3) 2A- and 

2B-containing NMDA receptors maintain subunit 

specific kinetics even in the absence of NTDs. 

RESULTS 

Macroscopic kinetics and zinc sensitivity of NTD-

lacking N1/N2A receptors. 

To delineate contributions by NTDs to the NMDA 

receptor activation mechanism, we set up to examine 

current responses from recombinant NMDA recep-

tors that lacked NTD modules of N1 (N1), 2A 

(2A), and/or 2B (2B) subunits (Figure 1A, B). We 

co-expressed wild-type or NTD-truncated subunits 

in HEK293 cells in the following combinations: 

N1/N2, N1/N2, or N1/N2, for either 2A or 2B 

isoforms. Before launching into recording micro-

scopic responses, we aimed to validate functional 

expression of mutated receptors. 

As a measure of N2A NTD function, we examined 

glutamate-elicited responses and tested their sensi-

tivity to zinc inhibition (37,38). We recorded whole-

cell currents during applications of glutamate (5-s, 1 

mM) in the continuous presence of glycine (0.1 

mM), and applied increasing concentrations of zinc 

to the steady state portion of the current. As expected 

for receptors lacking the NTD of N2A, N1/2A and 

N1/2A receptors lost their high-affinity sensitivity 

to Zn2+ but retained low-affinity Zn2+ sensitivity 

(Figure 1B) (39-41).  

Our results also showed drastic changes in macro-

scopic response kinetics. Consistent with previous 

reports, N1/N2A receptors lacking NTDs produced 

macroscopic currents that desensitized faster, as 

measured by shorter decay time constants (τD) and 

deeper, as measured by a reduction in the relative 

amplitudes of the steady-state and peak currents  

(Iss/Ipk) (Figure 1C). The most dramatic effect oc-

curred for receptors lacking the NTDs of N1 subu-

nits alone, whereas receptors lacking only the NTDs 

of N2A subunits and those lacking the entire NTD 

layer showed intermediate phenotypes.  
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In keeping with a proposed role for the N1-NTD in 

receptor assembly and efficient surface expression 

(25), whole-cell currents from cells expressing 

N1/2A receptors were ~20-fold smaller than those 

obtained from cells expressing wild-type receptors 

(96 ± 44 pA, n = 9 vs. 2,340 ± 382 pA, n = 10). In 

contrast, cells expressing receptors lacking the NTD 

of 2A subunits, N1/2A and N1/2A, produced cur-

rents of comparable amplitudes: 1,010 ± 435 pA (n 

= 6) and 1,850 ± 294 pA (n = 7), respectively (p > 

0.05, Student’s t-test). 

Smaller whole-cell currents may reflect reduced sur-

face expression but also decreased single-channel 

conductance and/or alterations in activation kinetics. 

We investigated these possibilities in greater detail, 

with single-channel current recordings. 

Unitary currents from NTD-lacking receptors dis-

play characteristic NMDA receptor patterns 

We recorded single-channel currents from cell-at-

tached patches containing only one active receptor 

and measured their unitary current amplitudes (Fig-

ure 2). Regardless of which NTD domain was trun-

cated, unitary amplitudes were similar with those 

measured for wild-type receptors for both N1/N2A 

and N1/N2B receptors (Table 1). This observation 

is consistent with previous reports that the NTD of 

N2 subunits has no effect on unitary conductance 

(29). In addition, they demonstrate that channel con-

ductance is independent of the presence of the N1 

NTD, and of the presence of the entire NTD layer. 

Next, we examined the gating kinetics of NTD-lack-

ing receptors, as observed in one-channel records.  

All receptors used in this study gated with complex 

single-channel behaviors that included bursts of 

channel openings and closings (42,43), separated by 

long closures designated as desensitized intervals 

(Figure 2). On first pass, this observation indicates 

that the NTD is not responsible for the characteristic 

bursting and desensitizing features of single NMDA 

receptors. 

Further, kinetic modeling of these data sets, de-

scribed in more depth below, showed that single-

channel traces were adequately described with mod-

els that had five closed components and up to four 

open components, as previously reported for wild-

type 2A and 2B receptors (Figures 3, 4, and Table 

2) (44-46). This observation indicates that truncated 

receptors maintained a multi-state opening sequence 

(47-49), two desensitized states (44,47), and modal 

gating (1,2,48).  

In summary, truncation of the NTDs of either one or 

both subunits had no effect on the number of closed 

and open components present in these data, suggest-

ing that the NTD itself does not change the basic ki-

netic scheme of NMDA receptor activation.   

Subtype-dependent contributions of NTD to Po 

In addition to information about unitary amplitudes, 

bursting behavior, and bursting structure, unitary 

currents, especially when recorded from a single ac-

tive molecule as in this study, inform about the ab-

solute open probability of the channel examined. 

Truncating NTDs of N1/N2A receptors, whether in 

only one subunit or both, decreased the channels’ 

open probability (Po) by increasing closed durations, 

and had no effect on open durations (Table 1). In 

contrast, truncating NTDs of N1/N2B receptors had 

little if any effect on Po (Table 1). Regardless of the 

extensive truncations, all three of the N1/N2B con-

structs examined had largely wild-type behaviors.  

In N1/N2A receptors, NTDs increase Po by destabi-

lizing desensitized states 

To elucidate the role of NTDs in channel gating we 

fit our single-channel data for wild-type and NTD-

truncated receptors with kinetic multi-state models 

and estimated rate constants for the transitions in-

cluded in the model. As noted previously, all records 

were well described with five closed and two to four 

open components. Multiple open components are in-

dicative of modal gating, with each recording cap-

turing anywhere from one mode (two open states) 

and up to three modes (four open states) 

(1,2,46,48,50). Due to the complexity of the reaction 

mechanism, for ease of comparison across record-

ings, and given that open times were unaffected by 

NTD truncations, we used for subsequent measure-

ments a simplified kinetic scheme where a single 

open state, aggregated all open states observed in 

each recording (Figures 3, 4). We used this model 

to identify the microscopic transitions whose kinet-

ics were affected by truncation of the NTDs. 
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For N1/N2A receptors, NTD deletions affected sev-

eral rate constants in the reaction mechanism. Con-

sistently, for all three NTD-truncated N1/N2A re-

ceptors, rate constants returning receptors from ei-

ther desensitized state into the active gating se-

quence (k53, k42) were ~2-fold slower (Figure 3A). 

Together with slower rates along the activation se-

quence (k32, k1O), these changes increased substan-

tially the occupancy of desensitized states (Figure 

3B).  

To validate these kinetic models, we used them to 

simulate macroscopic currents, and compared these 

traces with the experimentally recorded currents 

(Figure 3C). Simulated currents had kinetics (Iss/Ipk) 

that matched well the recorded currents indicating 

that the reaction mechanisms deduced from kinetic 

modeling of one-channel recordings reflects well the 

observed behaviors of assemble responses. This val-

idation strengthens the conclusion that when present, 

NTDs of N1/N2A receptors increase channel Po by 

accelerating the opening reaction and destabilizing 

desensitized states.  

In N1/N2B receptors, truncation of NTDs has negli-

gible effect on gating kinetics and Po  

Unexpectedly, in N1/N2B receptors, truncation of 

NTD in either subunit, or of the entire NTD layer had 

only a marginal effect on the channel’s reaction 

mechanism (Figure 4A, Tables 1, 2). None of the 

examined truncations produced significant effects 

on channel Po or closed durations (MCT). N1/N2B 

receptors lacking the N1 NTD, had a small but sta-

tistically significant reduction in mean open dura-

tions (from 4.6 ± 0.5 ms to 2.8 ± 0.2 ms, p < 0.05, 

Student’s t-test), which resulted in a slight reduction 

in channel Po from (0.15 ± 0.03 to 0.10 ± 0.02, p > 

0.05, Student’s t-test). However, due to the well-doc-

umented variability in closed times for this receptor 

type (46), the reduction in Po was not statistically sig-

nificant. Instead, the model predicts a redistribution 

of receptors across closed states (Figure 4B), result-

ing in increased occupancy of the longest desensi-

tized state (C5), as observed for NTD truncations in 

N1/N2A receptors (Figure 3B). 

We were surprised by the minimal effect of NTD 

truncations on N1/N2B receptors kinetics and we 

aimed to test the model by comparing its macro-

scopic predictions with experimentally recorded cur-

rents. We used the model to simulate ensemble re-

sponses to glutamate (1 mM) and compared these 

traces with experimentally recorded whole-cell re-

sponses from cells expressing each truncated recep-

tor. Results show that as predicted by the model, 

NTD-lacking N1/N2B receptors had minimal 

changes in their macroscopic desensitization kinet-

ics (Figure 4C). 

Together, these observations and analyses indicate 

that when present, NTDs of N1/N2B receptors have 

only small effects on overall channel Po, but produce 

a redistribution across closed states, and this is most 

prominent for the N2B NTD.  

NTD-truncated receptors maintain isoform specific 

kinetics 

In CNS, the majority of excitatory synapses express 

N2A- and N2B-containing receptors whose ratios 

are dynamic and among other factors depend on the 

developmental stage of the animal, and the maturity 

and strength of each synapse (51-54). In practice, the 

exact molecular composition of synaptic NMDA re-

ceptors is difficult to ascertain. Instead the decay 

time of the excitatory synaptic current (τd) is used as 

a proxy for molecular composition, based on the 

markedly slower (~3-4-fold) decay time of recombi-

nant N2B- and N2A-containing receptors (55,56). 

Given the stronger sequence homology in LBD and 

NTD domains, these characteristic and biologically 

relevant differences in decay time have been at-

tributed in large part to differences in the NTDs of 

the two isoforms. 

We used the models obtained from single-channel 

currents (Figure 2) and validated with whole-cell re-

cordings (Figures 3, 4) to simulate synaptic-like re-

sponses following stimulation with a brief (1 ms) 

pulse of glutamate (1 mM). Results show that alt-

hough NTD-lacking N1/N2A receptors respond with 

lower peak Po, which indeed makes them more sim-

ilar to the less active N1/N2B receptors, they also 

have faster deactivation kinetics, which makes them 

even more different than the slow decaying N1/N2B 

currents. Importantly, in practice it is difficult to 

measure the peak Po, which has been measured for 

only a handful of preparations. Instead, experimental 
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recordings are normalized to peak and evaluated in 

terms of their deactivation time. Our results suggest 

that NMDA receptors with NTD truncations main-

tain isoform-specific kinetics.   

DISCUSSION  

We used one-channel current recordings and kinetic 

modeling of NMDA receptors lacking NTD modules 

of N1, N2B or N2A subunits or the entire NTD layer 

to quantify for the first time the role of NTD domains 

in NMDA receptor gating. We report three main 

conclusions. First, truncated receptors retained all 

the gating features characteristic of NMDA recep-

tors, i.e. multi state activation, two desensitized 

states and three kinetic modes. Second, NTD trunca-

tions reduced the gating kinetics of N1/N2A and had 

minimal effect on the gating of N1/N2B receptors. 

Third, receptors lacking the entire NTD layer re-

tained isoform-specific kinetic differences.  

Definitive evidence indicates that agonist-dependent 

gating of NMDA receptors require functional LBDs 

and TMD and their cooperation (4,5,7,57-59). Fur-

ther, CTD domains modulate channel conductance 

and channel open probability, and mediate effects on 

conductance, calcium-permeability,  and gating by 

intracellular effectors (31,60,61). However, CTD-

lacking receptors maintain desensitization, the abil-

ity to go through modal transitions, and isoform-spe-

cific kinetics. The results we present here, complete 

the picture by showing that NTD-lacking receptors 

have the necessary machinery to perform all the 

basic functions of ligand-dependent gating, desensi-

tization, and moding. The implication is that like lig-

and-dependent gating, the structural determinants of 

desensitization and moding also reside within the 

structural core represented by LBDs, NTD and their 

coupling.  

This knowledge is important because the large size 

of NTD and CTD layers of the NMDA receptors, 

which represent more than half their mass, precludes 

their structural examination in intact form. In fact, 

the most comprehensive structural models reported 

to date for tetrameric NMDA receptors describe 

CTD-lacking receptors (4-8,58,59,62). Further, te-

trameric receptors that lack both the NTD and the 

CTD layers, represent more amenable targets for 

high resolution structural studies (7). These are also 

feasible for full-atom computational approaches 

aimed to map the temporal aspects of their activation 

mechanism. The results we present here, together 

with previous reports, indicate that such minimal, or 

core receptors maintain the essential components of 

ligand-dependent gating, desensitization, and mod-

ing, and therefore they represent valid preparations 

for in-depth structural and molecular dynamics stud-

ies. Importantly, they also retain characteristic iso-

form-dependent kinetics, whose yet-unknown un-

derpinning control important biological functions. 

In summary, our results support the value of mini-

mal, or core, NMDA receptor proteins that lack NTD 

and LBD layers as subjects for future high-resolution 

structural investigations and for computational ap-

proaches to map the dynamic structural changes that 

make the NMDA receptor activation mechanism. A 

next necessary step will be to add the finer and also 

critically important details of how NTD and CTD 

layers modulate the basic functions encoded in the 

receptor core. 

EXPERIMENTAL PROCEDURES 

Cells and Expression – Rat GluN1-1a (N1, U08261), 

GluN2A (N2A, M91561) or GluN2B (N2B, 

M91562) were expressed from pcDNA3.1(+) vec-

tors in HEK293 cells along with GFP as described in 

detail previously (44). 

NMDA receptor subunits lacking the NTD, N1Δ, 

N2AΔ, and N2BΔ, were constructed as follows. A 

plasmid encoding N1Δ was previously developed by 

B. Laube (Darmstadt, Germany) and generously 

shared with us by P. Paoletti (Paris, France) (27). 

This construct contained the Kpnl-Sac1 fragment of 

the original GluN1-1a clone pN60 reported by the 

Nakanishi group (63), from which the nucleotide se-

quence encoding amino acids 5 to 358 was excised 

using  PvuI. From this previously reported construct 

we sub-cloned the N1Δ coding sequence into pcDNA 

3.1 by engineering HindIII and Kozak sites just 5’ to 

the 22-residue signal peptide, and NotI sites just 3’ 

of the coding sequence. This manipulation added a 

consensus translation initiation site, preserved the 

signal peptide, and excluded a large 3’UTR from the 

initial construct, thus improving the efficiency of 
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translation and surface expression in our HEK293 

cell expression system. 

The coding sequence for N2AΔ in pCI was a gift 

from F. Zheng (Little Rock, AR). This cDNA origi-

nated from the EcoR I-XbaI fragment of pRSCI-

A’ΔN1-3 constructed in the Neyton lab (24) which 

was reintroduced into wild-type N2A coding se-

quence with a XbaI site engineered to the pre-M1 re-

gion in the Zheng lab (64). The resulting construct 

preserved the 28-residue signal peptide, and ex-

cluded residues 5 - 385, such that the remaining cod-

ing sequence was identical to wild-type N2A. From 

this construct, we shuttled the EcoR1-Not1 fragment 

into pcDNA3.1.  

We prepared the N2BΔ coding plasmid by using the 

N2AΔ (pcDNA3.1) described above, and replacing 

the fragment between the SacII site immediately up-

stream of the 27-residue signal peptide and immedi-

ately downstream of M386, with the corresponding 

SacII/NotI cassette of 2B. 

Electrophysiology - Whole-cell currents were rec-

orded with borosilicate glass electrodes filled with 

intracellular solution (in mM) 135 CsOH, 33 CsF, 2 

MgCl2, 1 CaCl2, 10 HEPES and 11 EGTA, adjusted 

to pH 7.4 (CsOH). Cells were clamped at -70 mV 

and were perfused with extracellular solution con-

taining (in mM) 150 NaCl, 2.5 KCl, 0.5 CaCl2, 10 

HEPBS, 0.01 EDTA and 0.1 glycine, adjusted to pH 

8 (NaOH). Responses were elicited with external so-

lutions with added glutamate (1 mM). For zinc inhi-

bition curves, extracellular solutions did not contain 

EDTA; free zinc concentrations in 10 mM tricine-

buffered solutions were calculated using Maxchela-

tor software (www.stanford.edu/ ~cpatton/ 

maxc.html)  using a binding constant of 10-5 M as 

previously reported (37). Currents were amplified 

and low-pass filtered (2 kHz, Axopatch 200B), digi-

tally sampled (5 kHz, Digidata 1440A) and acquired 

into digital files with pClamp 10.2 software. Traces 

were analyzed in Clampfit 10.2 and further with 

OriginPro8. 

Single-channel currents were recorded continuously 

from cell-attached patches containing only one ac-

tive receptor, with borosilicate electrodes filled with 

extracellular solution (in mM) 150 NaCl, 2.5 KCl, 

10 HEPBS, 1 EDTA, 1 glutamate and 0.1 glycine, 

adjusted to pH 8 (NaOH). Inward Na+ currents were 

elicited by applying +100 mV through the recording 

pipette. Currents were amplified and low-pass fil-

tered (10 kHz, Axopatch 200B), digitally sampled 

(40 kHz, National Instruments PCI-6229 A/D board) 

and acquired into digital files using QuB acquisition 

software (www.qub.buffalo.edu, University at Buf-

falo, Buffalo, NY). 

Kinetic Modeling – Selection, processing, idealiza-

tion and modeling of microscopic data were done in 

QuB as described previously in detail (65). Briefly, 

processing and analyses were done on records se-

lected to have only one active channel, which re-

quired minimum corrections and contained 3.0 x 104 

– 7.2 x 105 events, after imposing a 0.075 ms resolu-

tion. Idealization (SKM algorithm) and modeling 

(MIL algorithm) were done in QuB using 12 kHz 

digitally filtered data (66,67). State models were fit 

to individual recordings by adding closed and open 

states, sequentially; best fitting models were selected 

with an arbitrarily set threshold of 10 log-likelihood 

units. Time constants and areas of individual kinetic 

components, as well as rate constants for the transi-

tions considered were calculated for each data file 

with the models indicated and presented in Figures 3 

and 4 as rounded means. 

Simulations – Macroscopic traces were simulated in 

QuB or MATLAB software, in response to square 

jumps into 1 mM glutamate, as the sum of time-de-

pendent open state occupancies, using the experi-

mentally determined microscopic rate constants for 

the best fitting models. Previously reported micro-

scopic rates for glutamate binding and dissociation 

rate constants of wild-type receptors were used: 2 x 

107 M-1s-1 and 60 s-1, for N1/N2A (68) and 6 x 106 

M-1s-1 and 15 s-1, for N1/N2B (1,46,50). Simulated 

traces were analyzed in a manner similar to experi-

mental macroscopic traces. 

Statistics – Results are reported for each data set as 

means ± SEM. Statistical differences were evaluated 

using two-tailed Student’s t-tests assuming equal 

variance, and were considered significant for p < 

0.05. 
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FOOTNOTES 

Abbreviations used: NMDA (N-methyl-D-aspartate) receptor; iGluR, ionotropic glutamate receptor; 

NTD, N-terminal domain; LBD, ligand binding domain; TMD, transmembrane domain; CTD, C-terminal 

domain; Po, open probability; MOT, mean open time; MCT, mean closed time; Iss, steady state current; 

Ipk, peak current; τd, deactivation time constant; τD, desensitization time constant.  
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Figure 1: Properties of NTD-lacking NMDA receptors A, Diagram of the GluN subunit constructs used

in this study (top) and hypothetical architectures of the receptors examined based on PDB 4PE5, and

schematic of CTD tails of unknown structure (not at scale) (bottom). B, Top, Whole-cell current trace

elicited from cells expressing N1Δ/2AΔ receptors with a sustained pulse of glutamate (1 mM, and glycine

continually present at 0.1 mM), and zinc applications as indicated (in M). Bottom, Zinc-concentration

dependent decrease in steady-state current levels (Izn/ICTR) for wild-type N1/N2A, N1Δ/2AΔ, and N1/2AΔ

receptors. Zinc concentrations that produced half- maximal inhibition (IC50) are marked with vertical broken

lines for both the high-affinity (nM) and low-affinity (M) sites. C, Whole-cell current recordings (top) and

desensitization kinetics (bottom) as time course (τD ) and extent (Iss/Ipk) for wild-type N1/N2A and three

truncated receptors.
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Figure 2: Effects of NTD truncations on NMDA

receptor single-channel currents. Continuous traces

were recorded from cell-attached patches that

contained one active channel exposed to 1 mM Glu,

and 0.1 mM Gly. Each panel illustrates 20-s from a

minutes-long recording (5-s/trace, 1 kHz filter) for

the indicated receptor.
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Figure 3: Effects of NTD truncations on N1/N2A receptor gating kinetics. A, Reaction mechanisms

were estimated with the illustrated models from direct fits to single-channel data. All states represent

receptor conformations fully liganded with glutamate and glycine: C, non-conductive; O, conductive. Rate

constants are given above the respective arrows as average values for each dataset (s-1). * indicates values

that are different (faster, red or slower, blue) relative to N1/2A (p < 0.05 Student’s t-test). B, State

occupancies calculated from the reaction mechanisms in A. C, Macroscopic responses simulated with the

models in A recapitulate the extent of desensitization (Iss/Ipk) observed in experimentally recorded traces

(as in Figure 1D).
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Figure 4: Effect of NTD truncations on the kinetic reaction mechanisms of 2B-type NMDA receptors.

Reaction mechanisms estimated from fitting a 5C1O model to single-channel data. All states represent

receptor conformations fully liganded with glutamate and glycine; C, non-conductive; O, conductive. Rate

constants (s-1) are given as average values for each data set. * indicates significant differences (faster, red or

slower, blue) relative to wild-type receptors (p < 0.05, Student’s t-test). B, State occupancies calculated from

the reaction mechanisms in A. C, Macroscopic responses simulated with the models in A recapitulate the

extent of desensitization (Iss/Ipk) observed in experimentally recorded traces.
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Figure 5

Figure 5: Effects of NTD truncations on

synaptic-like responses. Macroscopic responses

to one 1-ms glutamate pulse were simulated with

the kinetic models for the indicated NMDA

receptors.
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receptor n
amp

(pA)
Po

MCT

(ms)

MOT 

(ms)

Duration

(min)

Events

(X106)

N1/2A 13 8.7 ± 0.3 0.52 ± 0.03 6 ± 1 6.7 ± 0.4 435 3.8

N1Δ/2A 7 9.9 ± 0.7 0.10 ± 0.03* 60 ± 9* 5.6 ± 0.7 367 0.8

N1/2AΔ 10 10.4 ± 0.6 0.27 ± 0.05* 27 ± 4* 8.5 ± 1.2 314 1.1

N1Δ/2AΔ 11 9.7 ± 0.7 0.25 ± 0.04* 27 ± 4* 7.1 ± 0.6 317 1.2

N1/2B 16 10.6 ± 0.4 0.15 ± 0.03 36 ± 5 4.6 ± 0.5 552 1.6 

N1Δ/2B 8 10.8 ± 0.2 0.10 ± 0.02 39 ± 11 2.8 ± 0.2* 271 0.9

N1/2BΔ 5 9.8 ± 0.4 0.15 ± 0.04 31 ± 5 4.8 ± 0.6 387 1.8

N1Δ/2BΔ 6 11.7 ± 0.6 0.17 ± 0.03 23 ± 5 3.7 ± 0.4 303 1.8 

Table 1: Kinetic parameters of single NMDA receptors

* indicates significant differences relative to wild-type ( p < 0.05, Student’s t-test); higher, 

red or lower, blue.

Table 1
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Table 2: Effects of NTD truncation on individual closed components

Table 2

receptor τE1 aE1 τE2 aE2 τE3 aE3 τE4 aE4 τE5 aE5

N1/2A 0.18 ± 0.01 34 ± 3 1.8 ± 0.1 33 ± 2 5.3 ± 0.3 31 ± 3 28 ± 3 1.5 ± 0.2 2,898 ± 241 0.12 ± 0.01

N1Δ/2A 0.29 ± 0.03* 20 ± 2* 2.5 ± 0.2* 32 ± 4 9.1 ± 0.9* 44 ± 4* 135 ± 50* 2.4 ± 0.6 8,432 ± 1,322* 0.68 ± 0.12*

N1/2AΔ 0.28 ± 0.04* 29 ± 2 2.3 ± 0.3 32 ± 2 9.0 ± 0.9* 35 ± 3 70 ± 19* 4.0 ± 0.8* 4,317 ± 514* 0.53 ± 0.10*

N1Δ/2AΔ 0.38 ± 0.06* 30 ± 2 2.4 ± 0.4 37 ± 3 9.9 ± 0.9* 30 ± 3 76 ± 16* 2.6 ± 0.8 4,853 ± 441* 0.51 ± 0.07*

N1/2B 0.19 ± 0.01 15 ± 2 4.4 ± 0.6 28 ± 4 16 ± 2 47 ± 3 307 ± 86 7.6 ± 1.9 2,042 ± 344 0.95 ± 0.17

N1Δ/2B 0.25 ± 0.01* 11 ± 1 5.8 ± 0.8 36 ± 4 17 ± 2 48 ± 3 136 ± 61 4.3 ± 0.9 2,977 ± 918 0.85 ± 0.21

N1/2BΔ 0.24 ± 0.01* 18 ± 1 3.3 ± 0.3 40 ± 5 9.4 ± 0.9* 39 ± 5 42 ± 5 2.7 ± 0.7 3,230 ± 341 0.79 ± 0.15

N1Δ/2BΔ 0.22 ± 0.02* 15 ± 2 3.9 ± 0.7 38 ± 4 12 ± 2 42 ± 3 56 ± 11 3.7 ± 0.7 2,443 ± 303 0.39 ± 0.08

Time constants (τ, ms) and areas (a, %) of individual closed components estimated from direct fits of a kinetic model with 

five closed and four open states to single-channel data. *, significant differences relative to wild-type ( p < 0.05, Student’s t-

test); higher, red or lower, blue.
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