
The role of primary motor cortex in sequence learning: resolving 
conflicting fMRI evidence from repetition suppression and pattern analysis  

 
 
 
 
 

 
Short title (70 characters): Resolving conflict between repetition suppression and 
pattern analysis  
 
 
 
 

Eva Berlot1,*, Nicola J. Popp1, Scott T. Grafton2-3, & Jörn Diedrichsen1,4,5, * 

 
 
 
 
 

1 The Brain and Mind Institute, University of Western Ontario, Canada 
2 Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA 
3 Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA 
4 Department of Statistical and Actuarial Sciences, University of Western Ontario, Canada 
5 Department of Computer Science, University of Western Ontario, Canada 
 
 
 
 
* Corresponding authors: 
eva.berlot@gmail.com and jdiedric@uwo.ca   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 21, 2020. ; https://doi.org/10.1101/2020.08.21.261453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.261453


	 2	

Abstract 

How does the brain change during learning? Functional magnetic resonance imaging 

studies have used both pattern analysis and repetition suppression (RS) to detect 

changes in neuronal representations. In the context of motor sequence learning, the two 

techniques have provided discrepant findings. Specifically, pattern analysis showed that 

only premotor and parietal regions, but not primary motor cortex (M1), develop a 

representation of trained sequences. In contrast, RS suggested trained sequence 

representations in all these regions. Here we applied both analysis techniques to data 

from a 5-week finger sequence training study, in which participants executed each 

sequence twice before switching to a different sequence. While we replicated both 

previously reported findings in the same paradigm, a more fine-grained analysis revealed 

that the RS effect in M1 and parietal areas reflect fundamentally different processes. On 

the first execution, M1 represents especially the first finger of each sequence, which might 

reflect preparatory processes, and this effect dramatically reduces during the second 

execution. In contrast, parietal areas represent the identity of a sequence, and this 

representation stays relatively stable on the second execution, only reducing 

proportionally to the reduction in overall activity. These results suggest that the RS effect 

in M1 does not reflect trained sequence representation, but rather the altered 

communication with higher-order areas. More generally, our study demonstrates that RS 

can reflect different representational changes in the underlying neuronal population code 

across regions, emphasizing the importance of combining pattern analysis and RS 

techniques.   
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Introduction 

The ability to learn and produce complex sequences of movements is essential for many 

everyday activities, from tying laces to riding a bicycle and playing instruments. When 

learning such motor skills, behavioural improvements are readily observable. In contrast, 

the neural substrates underlying these changes have remained more elusive. Searching 

for where the newly acquired skills are represented in the brain has been one of the 

central questions in motor neuroscience (1).  

 One central issue in this debate is whether skilful sequence execution relies on 

representations in premotor and supplementary motor areas, or whether the sequences 

are learnt and represented in the primary motor cortex (M1) itself (2–10; for reviews see 

11,12). Functional magnetic resonance imaging (fMRI) studies that investigated finger 

sequence learning have provided conflicting evidence to this question. A recent 

longitudinal 5-week training study from our lab (13) showed no overall activity changes 

with learning in M1, and no changes in the sequence-specific activity patterns in this 

region. In contrast, clear learning-related changes in both overall activity and fine-grained 

activity patterns were observed in premotor and parietal areas. Other recent studies 

suggest that M1 represents only movement elements of a sequence, but not the 

sequence itself (8,10,14). Together, these results reinforce the idea that M1, as measured 

at the spatio-temporal resolution of fMRI, does not represent learnt motor sequences. 

 Using the technique of repetition suppression, however, Wymbs and Grafton (15) 

provided evidence for the representation of skilled sequences in M1. Repetition 

suppression (RS) refers to the observation that a stimulus repetition evokes reduced 

neuronal activity compared to its initial presentation (16). This technique has been 
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commonly used as a tool for investigating brain representation (17–24) following the logic 

that if, on average, regional activation reduces upon repetition, then the underlying 

neuronal population must represent at least one of the repeated aspects of the stimulus. 

Based on this, stronger RS effects are commonly interpreted as more robust 

representations (18). Wymbs and Grafton (15) found learning-related changes in RS 

across several regions, including premotor and parietal areas. Critically, RS also 

increased in M1, suggesting that M1 might represent trained sequences. This stands in 

stark contrast to the above-mentioned studies that used pattern dissimilarity analyses and 

found no evidence of sequential representation in M1.  

 We reasoned that this discrepancy may reflect the fact that RS can be caused by 

a range of changes in the neuronal population code, and hence may reflect different 

changes in brain computation (18,25). To understand RS effects in more detail, we need 

to know what aspects of the underlying representations reduces from the first to the 

second repetition of a stimulus or movement. We, therefore, designed a paradigm that 

allowed us to investigate changes in RS and changes in multivariate activity patterns 

within the same study.  

We trained healthy volunteers to produce motor sequences over 5 weeks and 

tested their performance during high-field (7 Tesla) fMRI scanning. In the scanner, 

participants performed trained and untrained sequences. Changes in overall activity and 

multivariate patterns have been reported in a previous paper (13). Each sequence was 

executed twice in a row, allowing us to conduct both pattern and RS analysis on the same 

data. We first replicate the discrepancy in the literature, with RS indicating that M1 

develops a sequence representation with training, and multivariate analysis indicating the 
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opposite. Using pattern analysis, we then decompose the activation patterns in the first 

and second repetition to determine which representational aspects underlie the RS 

effects in the different regions.  

 

Results 

Learning paradigm 

We trained 26 participants to execute six 9-digit finger sequences with their right hand 

(Fig 1a), over a period of 5 weeks (Fig 1b). Over the 14 days of training, the average MT 

decreased by 62%. Participants also underwent scanning (using 7T MRI) while executing 

the 6 trained and 6 untrained sequences. In this paper we focus on results from week 1, 

i.e., before training, and week 5, i.e., after training (Fig. 1c; see Methods for details). The 

design also included 2 more sessions throughout training, which are reported in a 

previous paper (13). The trials in the scanning sessions were structured so that the same 

sequence was always executed twice in a row (Fig 1d). This design choice allowed us to 

contrast brain responses during the first execution to that of the second execution to 

examine repetition effects. 
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Fig 1.  Experimental paradigm. a) Experimental setup – finger sequences composed of 9 digits 
were executed on a keyboard device. Participants received visual feedback on correctness of 
their presses – digits turned green for correct presses, red for incorrect presses. b) Group-
averaged performance on trained sequences over the 5-week behavioural training protocol. Red 
shade indicates the standard error of the group mean. c) Group-averaged performance during 
the pre-training and post-training scanning sessions paper. Trained sequences are in red, 
untrained in blue. Dark colour indicates first execution, light second execution. White bars indicate 
the group mean performance. d) Experimental paradigm inside the scanner. Each sequence was 
presented twice in a row. Trials started with a 1s preparation time in which the 9-digit sequence 
was presented, followed by a 3.5s period of sequence execution and 0.5s of inter-trial interval 
(ITI). Periods of rest were intermixed between trials to allow for an estimate of resting baseline 
activation. Yellow and purple indicate two different motor sequences. Darker shades indicate first 
execution, lighter shades second execution. 
 

Changes in repetition suppression and pattern dissimilarities with learning 

To examine learning-related changes in repetition suppression and pattern analysis, we 

calculated both metrics on fMRI activation patterns in the pre-learning session (i.e. week 

1), and in the post-learning session (week 5). Relative to rest, sequence execution 
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activated the primary motor cortex (M1), the primary somatosensory cortex (S1), 

premotor dorsal and ventral regions, supplementary motor cortex and the superior 

parietal lobules (SPL; Fig 2a-b). Activity was higher for the first than for the second 

execution. The amount of repetition suppression was calculated as the difference in the 

elicited activation between the two executions of the same sequence (exe 2 – exe 1). 

Negative values indicate a relative reduction in activation with repetition, i.e., repetition 

suppression (RS). Already in week 1, prior to learning, RS was observed in nearly all 

regions displaying task-evoked activation (Fig 2b-c). In regions that showed de-activation 

during task performance (blue shades in Fig 2a), we observed positive difference values 

between the executions (areas in red shades in Fig 2c). This indicates that, both the 

amount of activation, as well as the amount of deactivation reduced with repetition. 

 Next, we examined whether the regions that exhibited RS also displayed distinct 

activity patterns for different sequences (i.e., sequence-specific representations). Pattern 

dissimilarities were calculated as the average crossvalidated Mahalanobis dissimilarity 

(i.e., Crossnobis dissimilarity) between activation patterns of all possible sequence pairs 

(see Methods for more details). Overall, regions with dissimilar activity patterns for the 

different sequences corresponded to regions which also exhibited RS effects (Fig 2c-e). 

Additionally, both metrics (RS and pattern dissimilarities) increased with from week 1 to 

week 5, with the effect particularly pronounced in the parietal cortex (Fig 2c, e). Thus, 

based on visual inspection, RS and pattern dissimilarity metrics seem to provide 

consistent evidence for the development of sequence-specific representations with 

learning in an overlapping set of regions.  
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 However, a more detailed inspection reveals some important differences between 

these two metrics. To show this, we focussed on a set of predefined regions of interest: 

the anterior SPL (SPLa), the dorsal premotor cortex (PMd), and M1. In SPLa and PMd, 

pattern dissimilarities increased specifically for the trained sequences (Fig 2g), as 

quantified by a significant interaction in a week x sequence type ANOVA (SPLa: 

F(1,25)=4.80; p=.038, PMd: F(1,25)=5.29, p=.030). The RS effects in the same regions 

paralleled those of pattern dissimilarities, with bigger increase in RS for trained than 

untrained sequences (Fig 2f; SPLa: F(1,25)=17.44; p=3.1e-4, PMd: F(1,25)=7.27, p=1.1e-6). 

Furthermore, the observed change in RS across weeks replicated a previously reported 

finding (15; see supporting figure S1). Thus, in PMd and SPLa, trained sequences 

exhibited more dissimilar activity patterns and a stronger RS, together suggesting these 

regions develop a dedicated representation of the trained sequences with learning. 

In contrast, the two metrics diverged in M1. Here, pattern dissimilarities did not 

change with learning, i.e., the week by sequence type interaction was not significant (Fig 

2g; F(1,25)=2.13, p=.16). In contrast, RS increased more for trained than untrained 

sequences with learning (Fig 2f; F(1,25)=25.09; p=3.6e-4). These results, thus, replicate the 

previously reported discrepancy in findings showing increased RS in M1 with learning 

(15), yet no change in pattern dissimilarities (13), within the same dataset. 
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Fig 2. Changes in repetition suppression and dissimilarities with learning. a) Group-
averaged evoked activation, measured as percent signal change over resting baseline in week 1, 
averaged across all sequences and projected to an inflated representation of the left hemisphere. 
b) Group-averaged activation for each execution (Exe1, Exe2), in the baseline session (Week 1) 
and after training (Week 5) represented on a flattened representation of the left hemisphere. CS 
stands for the central sulcus. c) The difference in evoked activation between the two executions. 
Blue represents relative suppression of activation on the second, relative to the first, execution. 
Regions of interest: primary motor cortex (M1), dorsal premotor cortex (PMd), anterior superior 
parietal lobule (SPLa). d) Average dissimilarity between evoked patterns for all pairs of 
sequences, in week 1, averaged across the group. Pattern dissimilarity was computed using a 
searchlight approach, by calculating the average Crossnobis dissimilarity of activation patterns 
between all sequence pairs in each searchlight. The mean dissimilarity of a searchlight was 
assigned to its centre (see Methods). e) Average dissimilarity between activation patterns of 
different sequence pairs in weeks 1 and 4. f) Repetition suppression in the predefined regions of 
interest. Repetition suppression is calculated as the difference in group-averaged activation 
between the two executions for trained (red) and untrained (blue) sequences. Error bars reflect 
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the standard error of the group. More negative values indicate more suppression during second 
execution, relative to the first. * signals p<.05. g) Dissimilarities between trained (red) and 
untrained (blue) sequence patterns, across weeks 1 and 5. Error bars reflect the standard error 
of the group. * signals p<.05. 
 

Pattern dissimilarities reduce with repetition 

Pattern analysis and RS therefore provide conflicting evidence on the nature of learning-

related change in M1. While the increase in pattern dissimilarities (Fig 2f), as well as 

direct evidence for cross-session pattern changes (13), clearly argue that sequence-

specific learning occurs in premotor and parietal areas and not in M1, RS provides 

evidence for the development of sequence-specific representations in both parietal / 

premotor regions and M1.  

 How can this discrepancy be explained? To resolve this question, we need to 

understand how the representations in each area during skilled performance change from 

the first to the second execution. We first inspected pattern dissimilarities for each of the 

two executions separately (execution 1, execution 2) in the trained state (Week 5). We 

observed that, on average, pattern dissimilarities in week 5 decreased with repetition in 

most cortical regions (Fig 3a). This decrease was particularly pronounced in M1 (Fig 3b).  

The relationship between the reduction in overall activity with repetition and the 

reduction of pattern dissimilarity provides a way of distinguishing three different accounts 

of RS (Fig 3c; 17). According to one hypothesis (the scaling account), all of the involved 

voxels scale their activation with repetition, proportional to the initial activity in the first 

instance. This account predicts that dissimilarities reduce proportionally, i.e. scale, to the 

decrease in activation. Alternatively (following the sharpening account), representation 

could sharpen with repetition – this would occur if the neuronal population most sensitive 
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to different motor sequences would still be active on repetition, but the less selective 

neurons (i.e., background noise) would decrease their activation. As a third option (the 

fatigue account), the most active and selective neurons would decrease their firing the 

most on repetition, resulting in a representational fatigue, which predicts that 

dissimilarities reduce more than the reduction in overall activity.  

 Given this set of competing accounts, we first investigated how overall 

dissimilarities within a region change across the two executions relative to changes in 

activation within the same region. We quantified the amount of activation as the length of 

the average activity vector relative to rest, separately for each execution (length of lines 

in Fig 3c, see Methods for details). We then calculated the ratio of the activity during the 

second execution over the activity during the first. This ratio was applied to the observed 

dissimilarities on the first execution (dashed line in Fig 3d), yielding a prediction of what 

dissimilarities would be expected for the second execution, if representation scaled with 

activation. Relative to this expected dissimilarity, the observed dissimilarities of M1 

patterns were significantly lower during the second execution (Fig 3d; t(25)=3.87, p=6.9e-

4). This indicates that M1’s representational change is more in line with the 

representational fatigue account, which proposes that the neuronal populations most 

tuned to performed sequences on the first execution reduce their firing the most with 

repetition. 

In contrast to M1, PMd and SPLa’s dissimilarities on the second execution were 

closer to the expected dissimilarities under scaling (Fig 3e; also see supporting figure S2 

for a depiction of distance deviation from scaling across the cortical sheet). To quantify 

whether the representational nature of repetition differed qualitatively across regions, we 
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performed a region x sequence type ANOVA. The main effect of region was significant 

(F(2,50)=7.42, p=1.5e-3). Post-hoc t-tests revealed that this was driven by a significantly 

larger deviation from scaling in M1 as compared to SPLa (t(25)=3.55, p=1.56e-3). M1 and 

PMd did not differ from one another (t(25)=1.25, p=.22). There was a significant difference 

between PMd and SPLa (t(25)=2.65, p=.013), indicating a more ‘scaling-like’ 

representation in SPLa. There was no main effect of sequence type (F(1,25)=1.35, p=.26), 

nor a region x sequence type interaction (F(2,50)=2.10, p=.14). Altogether this indicates 

that representational change with repetition differed across regions: proportional scaling 

of representation in parietal regions, and much more pronounced decrease of 

dissimilarities in M1, similar to the fatigue account.  

 
Fig 3. Representational change with repetition related to different hypothesized accounts 
of repetition suppression. a) Dissimilarities between pairs of sequences in week 5 (post-
training), split by first and second executions. b) Difference in pattern dissimilarities between 
executions 1 and 2. Blue hues reflect relatively lower dissimilarities on the second execution. c) 
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Different possible accounts of representational change with repetition. Yellow and purple indicate 
two different conditions, i.e. motor sequences in our paradigm. Darker shades indicate first 
execution, lighter shades second execution. Scaling: dissimilarities scale proportionally to 
activation reduction with repetition. Sharpening: dissimilarities on the second execution are 
relatively higher than during the first execution, after accounting for activation reduction. Fatigue: 
Dissimilarities reduce on repetition more than expected from the reduction in activation. d) 
Average Crossnobis dissimilarity between pairs of evoked sequence-specific patterns in week 5 
in the primary motor cortex (M1), split by execution. Dashed line depicts expected dissimilarities 
if distances scaled proportionally with reduction of activation on repetition. The difference between 
dissimilarities on execution 2 and dashed line is plotted in e). * denotes p<.05 for comparison 
between the observed dissimilarities on execution 2 and the expected ones under scaling. e) 
Difference between the expected dissimilarity under scaling of activation and the observed 
dissimilarities on the second for trained (red) and untrained (blue) activity patterns. Regions: M1, 
dorsal premotor cortex (PMd), anterior superior parietal lobule (SPLa). Zero indicates proportional 
scaling with activation. * denotes p<.05. 
 
Decomposing representations across executions 1 and 2 

Analysis of average dissimilarities across executions revealed bigger compression of 

representation in M1 than in parietal regions. This analysis, however, does not reveal 

which aspects of the representations are responsible for this regional difference. To 

investigate exactly how the representation changed, we decomposed the representations 

during each execution into several underlying representational components. Differences 

in activity patterns can reflect differences in various characteristics, or features, of the 

performed sequences (Fig 4a). Specifically, based on previous results (10,14), we 

hypothesized that the covariance (or similarity) between activity patterns can be explained 

with the following 5 components (Fig 4b, see Methods for details): 1) first finger: the 

pattern is determined by the starting finger, 2) all fingers: the pattern reflects a linear 

mixture of finger-specific patterns, 3) sequence type: trained and untrained sequences 

have different average patterns, 4) trained sequence identity: the trained sequences differ 

amongst each other, 5) untrained sequence identity: the untrained sequences (7-12) differ 

amongst each other. Using pattern component modelling framework (26), we constructed 
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a model family out of these components, which consisted of all possible combinations of 

those 5 components, totalling 25 models (see supporting figure S3a). These models were 

then fit to the observed regional covariance structure (second moment matrices; Fig 4c), 

separately for executions 1 and 2. The crossvalidated log Bayes factor relative to null 

model (i.e. no component present), and relative to the noise ceiling, is shown in supporting 

figure S3 for each of the combination models. To integrate the results across models, we 

then used Bayesian model averaging and estimated how much pattern variance was 

accounted for by each of these components (see Methods for details).  

In M1, the regional representation on the first execution was accounted for by the 

individual movement elements (fingers), with especially high weight on the first finger (Fig 

4d). This replicates the recent finding that M1’s representation during sequence 

production tasks can be fully explained by the starting finger, but does not reflect 

differences later in the sequence (10,14). In the current study, we did not match the 

sequences in terms of the number of times each of the five fingers was pressed. Thus, 

subsequent finger presses, encoded in the ‘all finger’ component, also accounted for 

substantial variance, independent of the exact ordering of these movements. 

To statistically quantify these effects, we calculated component Bayes factors for 

individual components. The Bayes factors were significant for both first and all finger 

factors (first finger: BF=13.3, t(25)=3.1, p=4.8e-3; all fingers: BF=19.6, t(25)=4.1, p=3.4e-4). 

In contrast, the component Bayes factors were not significant for any sequence-related 

feature – neither sequence type (BF=3.2, t=1.9, p=.07), nor sequence identity: of trained 

sequences (BF=1.6, t(25)=1.5, p=.16) or untrained sequences (BF=0, t(25)=-0.2, p=.85). 

Thus, the pattern analysis clearly shows that activity patterns during the first execution in 
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M1 can be explained by a superposition of individual movements, without clear evidence 

of a sequence representation. 

In SPLa and PMd, the variance explained during the first execution was well 

accounted for by sequence type (SPLa: BF=48.0, t(25)=5.85, p=4.22e-6, PMd: BF=55.2, 

t(25)=4.97, p=4.0e-4), and trained sequence identity (SPLa: BF=7.2, t(25)=3.03, p=5.6e-3; 

PMd: BF=6.0, t(25)=2.5, p=.019). There was no significant evidence for representation of 

untrained sequence identity in either of the regions (SPLa: BF=0.8, PMd: BF=0; t(25)<=1.1, 

p>=.28). In comparison to M1, the variance related on individual movements – either the 

first finger or all fingers were weaker across PMd and M1. In PMd the first finger still 

accounted for some variance (BF=4.1), but this was further reduced in SPLa (BF=0.5).  

With repetition, the pattern component related to the first finger drastically reduced, 

in M1 by 93% (Fig 4d). The reduction in variance explained by the first finger component 

was larger than for the all finger component, which reduced by 75% (paired t-test: 

t(25)=9.03, p=2.4e-9). This indicates that the drastic reduction of average dissimilarities in 

M1 with repetition is mostly due a pronounced first-finger effect during the first execution 

that almost vanishes on the second execution. Large reductions in first finger effect were 

also observed in PMd (by 81%) and SPLa (by 83%). In contrast, the representation of 

sequence type and trained sequence identity in these areas clearly reduced less (PMd: 

sequence type: 44%, trained sequence: 64%; SPLa: sequence type: 49%, trained 

sequence: 55%). The statistical significance of these effects was confirmed using a paired 

t-test, comparing the % reduction of the first finger and trained sequence factors within 

each region (PMd: t(25)=7.96, p=2.6-8; SPLa: t(25)=12.8, p=1.7e-12).  
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In summary, SPLa’s regional activation patterns were better accounted for by 

components related to the sequence identity than to the first finger, which also reduced 

much less with repetition. This likely explains why the average dissimilarities did not 

compress with repetition in SPLa regions as much as in M1. PMd’s representation was 

in-between those of M1 and SPLa – more variance was accounted for by the first finger 

than in SPLa, but less than in M1. With repetition, the proportion of different components 

to overall regional representation remained relatively stable in PMd and SPLa (Fig 4e), 

but changed substantially in M1 in that the dominant first-finger representation on the first 

execution nearly disappeared on the second execution. 
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Fig 4. Component decomposition of regional representation across executions 1 and 2. a) 
Executed 9-digit sequences. Trained sequences of group 1 (presented here) were untrained for 
group 2, and vice versa. b) Candidate component models used to assess regional representations 
across first and second executions. Each row and column indicate a specific sequence, and 
values in the matrices reflect the correspondence across sequences on that component, with 
yellow indicating higher correspondence. c) Regional representations during the first execution of 
sequences, as assessed by the crossvalidated second moment matrix, averaged across subjects 
of group 1. Similar as for models, each row and column reflect an activation pattern for an 
individual sequence. Regions: primary motor cortex (M1) and anterior superior parietal lobule 
(SPLa). d) Variance explained by candidate model components on executions 1 (black) and 2 
(grey) in M1, PMd (dorsal premotor cortex) and SPLa. See also supporting figure S3 for 
performance of all models in model family. e) Relative contribution of variance explained in d) 
across the different components. The total variance explained across the different components 
(i.e. sum of the bars in d) was normalized across the two executions to display the relative shift 
of importance of different representational components. 
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Discussion 

In the present study, we examined how brain representations of motor sequences evolve 

with training using a combination of pattern analysis and repetition suppression. Both 

pattern analysis and RS are commonly used to examine brain representations (18,27–

30). The two methods often provide convergent results about the representational content 

of brain regions (24,17) – but sometimes there are discrepancies between the two. 

Specifically, in the context of motor sequence learning, previous studies using pattern 

analysis have reported no evidence of M1 representing trained motor sequences with 

learning (9,10,13). In contrast, one study (15) has reported learning-related increases in 

RS even for M1, which suggests a representation of the trained sequences in this region.  

 We first replicated the discrepancy between these two metrics in M1 in the same 

experiment. Closer examination of this discrepancy revealed that, with repetition, pattern 

dissimilarities decreased, particularly in M1. When decomposing regional representations 

into different underlying components, we observed that M1 mainly represents the first 

finger in a sequence. This component diminishes dramatically on a repetition. In contrast, 

the representation of sequence type and identity, which accounted for most of the 

variance in premotor and parietal areas, remained more stable across the two executions. 

This suggests that RS acts differently on different components of neuronal 

representations; thus it’s interpretation also varies across regions which differ in their 

regional code. 

Our findings suggest a new model of the interaction between parietal/premotor 

areas and M1 during the execution of skilled motor sequences. During the first execution, 

premotor and parietal regions contain information about the specific sequence that needs 
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to be executed (Fig 5). Additionally, premotor regions also reflect the starting finger of the 

sequence. These regions send signals to M1, pre-activating the neural circuits for the 

movement of the first finger. This replicates a previous finding that the difference between 

M1’s activation patterns is explained by the starting finger, rather than reflecting true 

sequence representation (10). The finding is also consistent with results from 

neurophysiology (31) and magneto-encephalography (MEG; 32), showing the first action 

in a sequence is most highly activated in premotor and motor areas during the preparatory 

period. Since M1 does not contain representation of sequence identity, continuous signals 

from higher-order regions provide it with the sequential context needed throughout the 

sequence production (8,33).  

Upon repetition of the same sequence, activation reduces across all regions (Fig 

5). This effect is already present before training, but its strength increases with training. 

The global reduction in activation likely indicates that the initial volley of inter-regional 

communication is established the first time, and does not need to be re-initialised (18). 

The analysis of the regional representations in terms of their components indicates that 

this reduction is most pronounced in the pre-activation of the first finger. In contrast, the 

information about sequence identity in premotor and parietal regions reduces only 

moderately, but otherwise remains similar to the first execution. This suggests that the 

sequence representation is always necessary for successfully guiding M1 through the 

correct sequences of actions, whereas the first finger does not need to be pre-activated 

for a successful second execution.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 21, 2020. ; https://doi.org/10.1101/2020.08.21.261453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.261453


	 20	

 
Fig 5. Conceptual depiction of changes in representation across regions and with 
repetition. Different dots represent activation patterns for different finger sequences. Regions: 
anterior superior parietal lobule (SPLa), dorsal premotor cortex (PMd), primary motor cortex (M1). 
Arrows depict communication between higher-order areas and M1. Activation levels of three 
hypothetical voxels are indicated across the 3 axes.  

 

Overall, our results suggest that M1 does not represent individual trained 

sequences with learning, despite increased RS. Instead, its representation is 

characterized by combinations of finger presses. If this is true, why was RS in M1 stronger 

for trained than for untrained sequences?  Since fMRI activation reflects the driving input 

into the area (34), this effect may reflect changes in the communication between higher-

order areas and M1, which may become more efficient with repetition of trained 

sequences. Some support for this idea comes from a recent study demonstrating layer-

specific effects in M1 (35). By measuring changes in cerebral blood volume across layers, 

the authors demonstrated that superficial M1 layers (which reflect inputs into M1) show 

RS, whereas deep layers’ activation (which is more indicative of M1’s outputs) is 

enhanced during repetition. Since the blood-oxygenated level depend signal (BOLD) is 

biased towards the superficial vascular signals, our activation results more likely reflect 

inputs into M1.  

An alternative explanation for M1’s increased RS for trained sequences is that M1 

does contain sequence information, albeit at a spatial scale which cannot be detected by 
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pattern analyses. In line with this idea, a prior electrophysiology study reported differential  

M1’s responses to trained relative to random sequences (7). This study, however, only 

reflected an overall difference between trained and random sequences, but not M1’s 

differential activation for different trained sequences, thus no sequence representation as 

defined here. More recent electrophysiological studies have shown that M1 only 

represents the ongoing movement, and does not represent the sequential context (8,33). 

Altogether, this makes M1 representing individual trained sequences a less likely 

explanation of our results.  

There are a number of limitations of the current study which merit future 

experimentation. First, our study did not differentiate between repetition suppression and 

expectation suppression (36,37). Expectation of repetition has been shown to modulate 

RS. We suspect that our observed effects would likely be weaker had the sequence 

repetition been less predictable, although we would not expect qualitatively different 

patterns of results. Second, the RS accounts tested here are by no means an exhaustive 

list. Other studies have examined additional models of RS (25,38). Some of those can 

only be tested with measurements providing better temporal resolution than that afforded 

by fMRI. For instance, a facilitation model predicts a faster start and finish of neuronal 

responses with repetition (22,39), which we are unable to assess using the sluggish 

temporal resolution of fMRI. Similarly, differences in neural synchronization across 

regions have been discussed as a mechanism of RS (40). MEG (41,42) or 

electrocorticography approaches (43) are more appropriate to test those accounts, and 

may provide important insights into the dynamics of parietal-premotor-M1 interactions.  
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Nevertheless, with the RS accounts employed here, we demonstrated that RS can 

reflect very different representational changes from the first to the second execution 

depending on the regions. During the repetition of skilled motor sequences, associative 

cortical regions represent the sequence itself in a stable fashion, while the activation in 

M1 changes qualitatively, with a reduced activation of the beginning of the sequence. 

These results emphasize that employing RS only using the average regional activation 

sometimes provides incomplete, and possibly misleading, insights into regional 

representation. Instead, RS should be combined with pattern analyses to determine how 

the representations change with repetition, to ultimately provide a deeper understanding 

of brain circuits and their function.  
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Materials and Methods 

Participants 

Twenty-seven participants took part in the experiment. Data of one participant were 

excluded because their fieldmap was distorted in one of the four scans, resulting in 26 

participants whose data was analysed (17 females, 9 males). Their mean age was 22.2 

years (SD = 3.3 years). Criteria for study inclusion were right-handedness and no prior 

history of psychiatric or neurological disorders. They provided written informed consent 

to all procedures and data usage before the study started. The experimental procedures 

were approved by the Ethics Committee at Western University. 

 

Apparatus 

Finger sequences were performed using a right-hand MRI-compatible keyboard device 

(Fig. 1a). The keys of the device had a groove for each fingertip, with keys numbered 1-

5 for thumb-little finger. The keys were not depressible, so participants performed 

isometric finger presses. The force of the presses was measured by the force transducers 

underneath each finger groove (FSG-15N1A, Sensing and Control, Honeywell; dynamic 

range 0-25 N; update rate 2 ms; sampling 200 Hz). For the key to be recognized as 

pressed, the applied force had to exceed 1 N.  

 

Learning paradigm 

Participants were trained over a five-week time period to perform six 9-digit finger 

sequences. They were split into two groups, with trained sequences of one group being 

the untrained sequences of the second group, and vice versa (see Fig. 4b for all of the 
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chosen sequences). The chosen sequences for both groups were matched as closely as 

possible on several features: starting finger, number of repetitions per finger, and first-

order finger transitions. The decision to split participants into two groups was made to 

ensure that none of the observed effects could be due to the specific set of sequences 

chosen.  

 On day 1 of the study, participants were acquainted with the apparatus and the 

task performed in the scanner. To ensure no sequence-specific learning would take place 

prior to scan 1, we used finger sequences different from the trained and untrained sets 

which participants did not encounter at any later stage of the experiment. 

 During the behavioral training sessions, participants were trained to perform the 

six sequences. Each training session was split into several blocks with 24 trials in each 

block (i.e. 4 repetitions of each of the 6 sequences). Participants received visual feedback 

on the correctness of their presses online with digits turning green for correct presses and 

red for incorrect presses (Fig. 1a). They were instructed to perform the sequences as fast 

as possible, while keeping the overall accuracy within each block <15% error rate. To 

encourage fast and accurate performance throughout the training, participants received 

0, 1 or 3 points after each trial completion based on correctness and movement time (MT) 

– time from the first press until the last release in the sequence. Specifically, they received 

1 point for correct presses performed at their median MT, 3 points for correct presses 

executed at least 20% faster than their median speed until that point. If they made a 

mistake on any of the presses or the MT in the trial was lower than their median MT, they 

received 0 points. The median MT threshold was dynamically adjusted across blocks 

every time a block was completed with an error rate <15% and the median MT faster than 
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previous threshold. Overall, their MT decreased across the five weeks of training (Fig. 

1b). 

 We included several other design features in the behavioural training, such as 

behavioural test sessions comparing participants’ performance of trained sequences to 

random sequences, and their performance using the left hand. Those sessions were not 

assessed for this paper, and have been described elsewhere (13). 

 

Experimental design during scanning 

Participants underwent a total of 4 MRI scanning sessions (Fig. 1c) while executing 

trained and untrained sequences. The first session served as a baseline prior to the start 

of the training protocol (in week 1), where the “trained” and “untrained” sequences were 

both untrained and seen for equivalent amount. The second session was conducted after 

a week (in week 2), and the last two after training protocol was completed – in week 5. In 

scanning sessions 1-3, participants’ performance inside the scanner was paced with a 

metronome, whereas in session 4, they performed as fast as possible. For the purpose 

of this paper, data of scanning session 1 (prior to training) and 4 (fully skilled performance) 

were analysed (Fig. 1c). Session 4 allows for the closest comparison to the previous RS 

study (15) which also employed a full-speed performance design. Pattern analyses of 

sessions 2 and 3 are reported in (13).  

 Each scanning session consisted of eight functional runs with event-related design 

randomly intermixing trials containing the 6 trained and the 6 untrained sequences 

(totalling 72 trials per functional run). Each sequence was executed for two trials in a row 

(Fig. 1d). The trial started with a 1 second preparation time with nine digits of the 
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sequence presented on the screen. A ‘go’ signal was presented afterwards. In scans 1-

3, a pink line appeared underneath the sequence and started expanding, indicating the 

pace at which participants were to press. In scan 4, participants executed the sequence 

as fast as possible after the go cue. After execution, they received feedback on their 

overall performance – 3 points for correct and 0 for incorrect performance. Each trial 

lasted for 5 s total (Fig. 1d), with a 0.5 s inter-trial interval. Five periods of 10 s rests were 

added throughout each functional run to provide a better estimate of baseline activation. 

These rests were added randomly, but never between the first and second execution of 

the same sequence. In total, each scanning session lasted for approximately 75 minutes. 

 

Image acquisition 

Data were acquired on a 7-Tesla Siemens Magnetom MRI scanner with a 32-receive 

channel head coil (8-channel parallel transmit). At the beginning of the first scan, we 

acquired anatomical T1-weighted scan for each participant. This was obtained using a 

magnetization-prepared rapid gradient echo sequence (MPRAGE) with voxel size of 

0.75x0.75x0.75 mm isotropic (field of view = 208 x 157 x 110 mm [A-P; R-L; F-H], 

encoding direction coronal). Data during functional runs were acquired using the following 

sequence parameters: GRAPPA 3, multi-band acceleration factor 2, repetition time [TR] 

= 1.0 s, echo time [TE] = 20 ms, flip angle [FA] = 30 deg, slice number: 44, voxel size: 

2x2x2 mm isotropic. To estimate magnetic field inhomogeneities, we acquired a gradient 

echo field map with the following parameters: transversal orientation, field of view: 210 x 

210 x 160 mm, 64 slices, 2.5 mm thickness, TR = 475 ms, TE = 4.08 ms, FA = 35 deg.  
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Preprocessing and first level analysis 

Data preprocessing was carried out using SPM12 and custom MATLAB code. 

Preprocessing of functional data included correcting for geometric distortions using the 

acquired fieldmap data (Hutton et al., 2002), and head motion correction (3 translations: 

x, y, z; 3 rotations: pitch, roll yaw). The data across sessions were all aligned to the first 

run of the first session, and then co-registered to the anatomical scan. 

 Preprocessed data were analysed using a general linear model (GLM; 44). We 

defined a regressor for each of the performed 12 sequences (6 trained, 6 untrained), 

separately for their first and second execution – resulting in a total of 24 regressors per 

run. The regressor was a boxcar function defined for each trial, and convolved with a two-

gamma canonical hemodynamic response function (time to peak: 5.5 s, time to 

undershoot: 12.5 s). All instances of sequence execution were included into estimating 

regressors, regardless of whether the execution was correct or erroneous. This analysis 

choice was also taken by (15), thus allowing a more direct comparison of repetition 

suppression results. Even when the error trials were excluded (i.e. removing all error trials 

as well as second execution trials when the first execution was erroneous), our results 

remained unchanged. Ultimately, the first level analysis resulted in activation images 

(beta maps) for each of the 24 conditions per run, for each of the four scanning sessions.  

 

Surface reconstruction and regions of interest 

Individual subject’s cortical surfaces were reconstructed using FreeSurfer (45), and 

aligned to the FreeSurfer’s Left-Right symmetric template (Workbench’s 164 nodes 

template) via spherical registration. For our regions of interest (ROI), we defined areas 
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covering the primary motor cortex and secondary associative regions. The primary motor 

cortex (M1) was defined using probabilistic cytoarchitectonic map (46) by including nodes 

with the highest probability of belonging to Brodmann area (BA) 4 which in addition 

corresponded to the hand knob area (47). The dorsal premotor cortex (PMd) was included 

as the lateral part of the middle frontal gyrus. The anterior part of the superior parietal 

lobule (SPLa) was defined to include anterior, medial and ventral intraparietal sulcus.  

 

Evoked activation and repetition suppression 

We calculated the percent signal change for execution of each sequence relative to the 

baseline activation for each voxel. The calculation was split between the first and second 

execution. To calculate repetition suppression, the activation during the first execution 

was subtracted from the elicited activation during the second execution. Thus, negative 

values of this difference contrast represented relative suppression of activation on the 

second execution, i.e. repetition suppression. For most subsequent analyses, the 

obtained values of activation and repetition suppression were averaged separately for 

trained and the untrained sequences. For ROI analysis, the volume maps were averaged 

across the predefined regions (M1, PMd, SPLa) in the native volume space of each 

subject. Additionally, for visualization the volume maps were projected to the surface for 

each subject, and averaged across the group in Workbench space. 

 

Dissimilarities between activity patterns for different sequences 

To evaluate which regions displayed sequence-specific representation, we calculated 

Crossnobis dissimilarities between the evoked beta patterns of individual sequences. To 
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do so, we first multivariately prewhitened the beta values – i.e. we standardized them by 

voxels’ residuals and weighted by the voxel noise covariance matrix. Prewhitening has 

previously been found to increase the reliability of dissimilarity estimates (48). Next, we 

calculated the crossvalidated squared Mahalanobis dissimilarities (i.e. the Crossnobis 

dissimilarities) between evoked regional patterns of different pairs of sequences, resulting 

in a total of 66 dissimilarities. This was performed twice: once by combining the activation 

patterns across the two executions and second time by separately obtaining 

dissimilarities between evoked patterns split per execution. The obtained dissimilarities 

were then averaged overall, as well as separately within the pairs of trained sequences, 

and the untrained sequences.  

The multivariate analysis was conducted separately for each ROI and then repeated 

using a surface searchlight approach (49). For each surface node, a circular region of 

120 voxels was defined and Crossnobis dissimilarities were calculated amongst those 

voxels, with the resulting dissimilarities values assigned to the centre of the searchlight. 

The searchlight was then moved across the cortical sheet in a continuous manner.  

 

Assessing accounts of repetition suppression  

We examined several proposed accounts of RS – scaling, sharpening and fatigue (Fig 

3c), by relating the observed changes in pattern dissimilarities with repetition to activation 

changes with repetition. Activation pattern for each sequence can be characterized as a 

point in a high-dimensional space, with each axis referring to the activation of a voxel. As 

a measure of the overall activation, we used the length of the activity vector from the 

origin (rest), and as dissimilarities the lengths of the vectors between different dots (Fig 
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3c). Unbiased estimates of the length of activity vectors relative to rest were derived from 

the crossvalidated second-moment matrix. The square root of each diagonal element 

(variance of evoked pattern) indicates the length of the activity vector, relative to rest. The 

square root of Crossnobis dissimilarity (variance – covariance between patterns) is the 

length of the vector between the two patterns (50). These measures were averaged 

across the 6 trained, and 6 untrained conditions, separately for executions 1 and 2.  

 For each subject and region, we then computed the decrease in activation as 

activity length for 2nd execution divided by activity length for the 1st execution. If 

dissimilarities decreased proportional to changes in activation, we would expect the ratio 

of dissimilarities between the two executions to equal the ratio obtained from activity 

vector lengths. Likewise, the dissimilarities expected under the scaling account can be 

computed as: 𝑑𝑖𝑠𝑠$%&'()* = 	
&%-./.0
&%-./.1

	𝑥	𝑑𝑖𝑠𝑠3435. This expected dissimilarity value was 

compared to the observed dissimilarities on the second execution. Higher value of the 

observed relative to expected dissimilarity would be in line with the ‘sharpening’ account, 

lower value would be in support of the ‘fatigue’ account, while a value that wouldn’t differ 

from the expected dissimilarities would support the ‘scaling’ account of RS for that region. 

 

Pattern component analyses: modelling representational components  

The analysis on dissimilarities between sequence-specific activity patterns is sensitive to 

any possible difference between patterns of different sequences. To decompose what 

specific features of stimuli might be driving these differences, we used pattern component 

modelling (PCM; 26,51). PCM models the covariance structure (second moment matrix) 

of regional activity patterns according to different representational hypotheses. In our 
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experiment based on presented sequences, we defined five representational 

components. 

1) First finger 

Both trained and untrained sequences started with 3 possible fingers: thumb, middle 

finger and pinky finger. The first finger feature characterizes activity pattern as 

different for sequences starting with different first finger, and indistinguishable for 

sequences starting with the same first finger. The model component was weighted by 

the natural statistics of hand movement (52). 

2) All fingers 

The chosen sequences had slight differences in terms of how many times different 

fingers were executed in the sequence. Thus, the ‘all fingers’ feature characterized 

number of repetitions across fingers and how correspondent different sequences were 

in finger repetitions. Also this model component was weighted by the natural statistics 

of hand movement (52). 

3) Sequence type 

This component split the performed sequences based on whether they were trained 

or not, predicting different regional representations between trained and untrained 

sequences, but indistinguishable patterns within each of the two groups.  

4) Trained sequence identity 

This component assumes that each of the trained sequences is associated with 

unique activity patterns.  

5) Untrained sequence identity 
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Similar as the trained sequence identity component, this component assumes unique 

activity patterns for different untrained sequences.  

The overall predicted second moment matrix (G) was then a convex combination of the 

component matrices (Gc): 

𝐺 = exp Θ% 𝐺%
%

 

The construction of the models was split between the two groups of participants, as 

different sequences constituted ‘trained’ or ‘untrained’ sequences for the two groups. The 

subsequent steps of model fitting and evaluation were carried together for all subjects. 

 We formulated a family of models containing all possible combinations of the five 

chosen components. This resulted in 32 combinations (Fig. S3a), also containing the ‘null’ 

model without any component, which predicted no differences amongst any of the 

sequence patterns. We then evaluated all of the 32 models using a crossvalidated leave-

one-subject-out scheme, estimating the likelihood of the observed regional second 

moment data under each model. The resultant cross-validated likelihoods were used as 

evidence of the model. The difference between the log-likelihood of each model and the 

null model results in a log-Bayes factor representing the relative model evidence over a 

null model.  

 In addition to the model family of the chosen components, we also fit a ‘noise-

ceiling’ model to assess the maximal explainable information present in each region’s 

representation across participants (26,53). For each of the two groups, we predicted the 

second moment matrix of a left-out subject based on n-1 subjects in the same group. This 

metric of inter-subject consistency was then combined across the subjects of the two 

groups. 
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 To integrate the results across models, we used model averaging to determine the 

amount of pattern variance accounted for by each component in the context of all the 

other components. Prior to fitting, we normalized the trace of each model component to 

be 12 (number of conditions). Thus, the fitted component weight exp	(Θ() can be taken as 

the amount of variance accounted for by the component in the context of that model. 

Assuming a uniform prior probability across models, we compute a posterior probability 

of each model i (from 1 to 32) directly from their Bayes factors: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟( = 	
BCD	('E*FGH)
BCD	('E*FGI)J

IK1
  

The model-averaged amount of variance accounted for by each component c is then 

given by:  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒% = 	 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(	𝑥	exp	(Θ%)
PQ

(R5

 

Important to note is that this variance calculation always results in positive estimates.    

 

Data availability 

The dataset used for these analyses is publicly available on OpenNeuro (doi: 

10.18112/openneuro.ds002776.v1.0.2).  
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Supporting figures: 

 
S1. Learning-related changes in repetition suppression. Activation elicited on the first (x-axis) 
and second (y-axis) execution for trained (red) and untrained (blue) sequences across weeks 1, 
2 and 5, in sessions using paced performance. Regions: anterior superior parietal lobule (SPLa), 
dorsal premotor cortex (PMd), primary motor cortex (M1). Ellipses reflect the standard error of the 
group. Dots below the diagonal line indicate activation was lower on second execution.   
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S2. Difference in the Crossnobis dissimilarity on second execution from the ‘scaling’ 
account prediction. This was calculated for each of the regularly tessellated regions. Blue 
depicts lower dissimilarities than expected under the scaling account, yellow higher dissimilarities 
than predicted under scaling of activation.   
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S3. Pattern component modelling – formulation and model fits. a) Construction of a model 
family from the five components. All possible combinations of five components were used to 
construct models, resulting in 32 (25) models. The first model is a ‘null’ model (no component) and 
the last is a full model (all components). White squares indicate presence of the component in 
each model. b) Evidence for all models across regional activation, separately examined for the 
first and second sequence execution (left, right column). Regions: primary motor cortex (M1), 
dorsal premotor cortex (PMd), anterior superior parietal lobule (SPLa). The 32 evaluated models 
are presented on the x-axis. Model fits were assessed with a type-II log-likelihood. The difference 
in log-likelihood between each model and the null model was calculated; this can be interpreted 
as a log-Bayes factor (Log-BF) and is plotted on the y-axis. The grey shaded area represents the 
mean noise ceiling ± standard error of the group mean. The bar with a star is the best performing 
model. All models in red performed within the noise ceiling and did not differ from one another. 
Bars in dark blue depict models which hit the noise ceiling, but performed significantly worse than 
the best performing model. Bars in light blue did not reach the noise ceiling performance.  
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