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Abstract  30 

How does the brain change during learning? In functional magnetic resonance imaging 31 

studies, both multivariate pattern analysis and repetition suppression (RS) have been 32 

used to detect changes in neuronal representations. In the context of motor sequence 33 

learning, the two techniques have provided discrepant findings: pattern analysis showed 34 

that only premotor and parietal regions, but not primary motor cortex (M1), develop a 35 

representation of trained sequences. In contrast, RS suggested trained sequence 36 

representations in all these regions. Here we applied both analysis techniques to a 5-37 

week finger sequence training study, in which participants executed each sequence 38 

twice before switching to a different sequence. Both RS and pattern analysis indicated 39 

learning-related changes for parietal areas, but only RS showed a difference between 40 

trained and untrained sequences in M1. A more fine-grained analysis, however, revealed 41 

that the RS effect in M1 reflects a fundamentally different process than in parietal areas. 42 

On the first execution, M1 represents especially the first finger of each sequence, likely 43 

reflecting preparatory processes. This effect dramatically reduces during the second 44 

execution. In contrast, parietal areas represent the identity of a sequence, and this 45 

representation stays relatively stable on the second execution. These results suggest 46 

that the RS effect does not reflect a trained sequence representation in M1, but rather a 47 

preparatory signal for movement initiation. More generally, our study demonstrates that 48 

across regions RS can reflect different representational changes in the neuronal 49 

population code, emphasizing the importance of combining pattern analysis and RS 50 

techniques.   51 
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Significance statement  52 

Previous studies using pattern analysis have suggested that primary motor cortex (M1) 53 

does not represent learnt sequential actions. However, a study using repetition 54 

suppression (RS) has reported M1 changes during motor sequence learning. Combining 55 

both techniques, we first replicate the discrepancy between them – with learning-related 56 

changes in M1 in RS, but not pattern dissimilarities. We further analysed the 57 

representational changes with repetition, and found that the RS effects differ across 58 

regions. M1’s activity represents the starting finger of the sequence, an effect that 59 

vanishes with repetition. In contrast, activity patterns in parietal areas exhibit sequence 60 

dependency, which persists with repetition. These results demonstrate the importance 61 

of combining RS and pattern analysis to understand the function of brain regions.   62 
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Introduction 63 

The ability to learn and produce complex sequences of movements is essential for many 64 

everyday activities, from tying shoelaces to playing instruments. Searching for where 65 

these acquired skills are represented in the brain has been one of the central questions 66 

in motor neuroscience (Lashley, 1950). One prominent issue in this debate is whether 67 

skilled sequence execution relies on representations in premotor and supplementary 68 

motor areas, or whether the sequences are represented in the primary motor cortex (M1) 69 

(see Dayan and Cohen, 2011; Berlot et al., 2018 for reviews). We recently conducted a 70 

systematic longitudinal 5-week training study (Berlot et al., 2020) employing functional 71 

magnetic resonance imaging (fMRI) to assess brain changes with motor sequence 72 

learning. We observed no overall change in overall activity with learning in M1, and no 73 

changes in the sequence-specific activity patterns. In contrast, clear learning-related 74 

changes in both overall activity and fine-grained activity patterns were observed in 75 

premotor and parietal areas, suggesting learning-related changes occur outside of M1. 76 

Consistent with this idea, activity patterns in M1 seem to reflect individual movement 77 

elements, but not the sequential context (Yokoi et al., 2018; Yokoi and Diedrichsen, 2019; 78 

Russo et al., 2020). This suggests that M1 does not represent learnt motor sequences, 79 

but must rely on inputs from other areas to select the next correct movement element. 80 

 Using the technique of repetition suppression, however, Wymbs and Grafton 81 

(2015) provided evidence for learning-related changes during motor sequence learning 82 

in M1. Repetition suppression (RS) refers to the observation that a stimulus repetition 83 

evokes reduced neuronal activity compared to its initial presentation (Gross, Schiller, 84 

Wells, Gerstein, 1967). It is commonly used as a tool for investigating brain 85 

representation (Buckner et al., 1998; Henson et al., 2003; see Segaert et al., 2013 for 86 

review) following the logic that if regional activation reduces upon repetition, the 87 

underlying neuronal population must represent some aspect of the stimulus that 88 

repeated (Grill-Spector et al., 2006). Wymbs and Grafton (2015) found learning-related 89 
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changes in RS across several regions, including M1, where they reported a non-90 

monotonic change in RS over weeks – early increase, followed by a decrease, and again 91 

an increase in RS, which they suggested indicates skill-specific specialization in M1. 92 

Altogether, their results indicate that M1’s activity patterns are malleable when learning 93 

motor sequences. This stands in stark contrast to the above-mentioned studies that used 94 

pattern dissimilarity analyses and found no evidence of sequential representation in M1.  95 

 We reasoned that this discrepancy between RS and pattern analysis may reflect 96 

the fact that different underlying components of activity patterns might bring about the 97 

suppression of activity observed on repetition, some of which may not be directly related 98 

to a sequence identity (Grill-Spector et al., 2006; Alink et al., 2018). To understand RS 99 

effects in more detail, we need to know what aspects of the underlying representations 100 

reduce from the first to the second repetition. We therefore designed a paradigm that 101 

allowed us to investigate changes in brain representation using both tools – RS and 102 

multivariate pattern analysis. We trained healthy volunteers to produce motor sequences 103 

over 5 weeks and tested their performance during high-field (7 T) MRI scanning. 104 

Participants performed trained and untrained sequences, each sequence twice in a row, 105 

allowing us to conduct both pattern and RS analysis on the same data. Replicating 106 

previous results, we observed significant learning-related changes in M1 for RS, but not 107 

for pattern dissimilarities. In contrast, both metrics showed learning-related changes in 108 

premotor and parietal regions. Using pattern analysis, we then decomposed the 109 

activation patterns in the first and second repetition to determine which representational 110 

aspects underlie the RS effects in the different regions. Finally, we performed control 111 

analyses to test whether observed effects could be attributed to learning-related 112 

improvements in the execution speed. 113 

 114 

Materials and Methods 115 

Participants 116 
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Twenty-seven participants took part in the experiment. Data of one participant were 117 

excluded because the field map was distorted in one of the four scans, resulting in 26 118 

participants whose data was analyzed (17 females, 9 males). Their mean age was 22.2 119 

years (SD = 3.3 years). Criteria for study inclusion were right-handedness and no prior 120 

history of psychiatric or neurological disorders. They provided written informed consent 121 

to all procedures and data usage before the study started. The experimental procedures 122 

were approved by the Ethics Committee at Western University. 123 

 124 

Apparatus 125 

Finger sequences were performed using a right-hand MRI-compatible keyboard device 126 

(Fig 1a). The keys of the device had a groove for each fingertip, with keys numbered 1-127 

5 for thumb-little finger. The keys were not depressible, so participants performed 128 

isometric finger presses. The force of the presses was measured by the force 129 

transducers underneath each finger groove (FSG-15N1A, Sensing and Control, 130 

Honeywell; dynamic range 0-25 N; update rate 2 ms; sampling 200 Hz). For the key to 131 

be recognized as pressed, the applied force had to exceed 1 N.  132 

 133 

Experimental design – learning paradigm 134 

Participants were trained over a five-week time period to perform six 9-digit finger 135 

sequences (Fig 1b). They were split into two groups, with trained sequences of one 136 

group being the untrained sequences of the second group, and vice versa (see Fig 4b 137 

for all of the chosen sequences). The chosen sequences for both groups were matched 138 

as closely as possible on several features: starting finger, number of repetitions per 139 

finger, and first-order finger transitions. The decision to split participants into two groups 140 

was made to ensure that none of the observed effects could be due to the specific set 141 

of sequences chosen.  142 
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 On day 1 of the study, participants were acquainted with the apparatus and the 143 

task performed in the scanner. To ensure no sequence-specific learning would take 144 

place prior to scan 1, we used finger sequences different from the trained and untrained 145 

sets which participants did not encounter at any later stage of the experiment.  146 

During the behavioral training sessions, participants were trained to perform the 147 

six sequences. They received visual feedback on the correctness of their presses online 148 

with each digit turning green for correct, and red for incorrect press (Fig 1a). They were 149 

instructed to perform the sequences as fast as possible while keeping the overall 150 

accuracy >85%. The details of the training protocol, as well as a few other design 151 

features (which were not assessed for this paper) have been described elsewhere 152 

(Berlot et al., 2020). 153 

 154 

Experimental design – scanning  155 

Longitudinal studies assessing learning have to tackle the challenge that performance 156 

changes with learning, and that it is not clear whether brain changes reflect the 157 

acquisition of new skills, or are caused indirectly by the changed behaviour (Poldrack, 158 

2000). For motor learning, the higher speed of execution could lead to different brain 159 

activation, unrelated to learning. Pacing participants to perform at the same speed for 160 

trained and untrained sequences, and across sessions, presents a possible solution for 161 

this problem. On the other side, pacing participants at a slower speed might not tap into 162 

the same neural circuitry as skilled behaviour. For this reason, we decided to include 163 

both approaches; sessions with paced performance and a session where participants 164 

performed at full speed. 165 

Participants underwent a total of 4 MRI scanning sessions (Fig 1c) while 166 

executing trained and untrained sequences. The first session served as a baseline prior 167 

to the start of the training protocol (in week 1), where the “trained” and “untrained” 168 

sequences were both untrained and seen for equivalent amounts of time. The second 169 
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session was conducted in week 2, and the last two after training protocol was completed 170 

– in week 5. In scanning sessions 1-3, participants’ performance inside the scanner was 171 

paced with a metronome, whereas in session 4, they performed as quickly as possible. 172 

For the purpose of this paper, we analyzed data of scanning session 1 (prior to training 173 

– paced), 3 (after learning – paced) and 4 (after learning – unpaced) (Fig 1c), allowing 174 

us to examining learning- and performance-related changes. Session 4 allows for the 175 

closest comparison to the previous RS study (Wymbs and Grafton, 2015) which also 176 

employed a full-speed performance design.  177 

 Each scanning session consisted of eight functional runs with event-related 178 

design randomly intermixing trials containing the 6 trained and the 6 untrained 179 

sequences (totalling 72 trials per functional run). Each sequence was executed for two 180 

trials in a row (Fig 1d). In this way, our design did not differentiate between repetition 181 

suppression and expectation suppression (Summerfield et al., 2008; Kok et al., 2012). 182 

In contrast to perceptual studies, however, in motor studies the influence of the 183 

expectation of a repetition is likely much less important. After the informative cue, 184 

preparatory processes are executed in a full awareness of whether the sequence is 185 

repeated from last trial, no matter if that repetition was expected or not. Thus, repetition 186 

effects in motor control will always contain an element of expectation. For this reason, 187 

we chose repetition to be a predictable feature of our experimental design.  188 

Each trial started with a 1-s preparation time with nine digits of the sequence 189 

presented on the screen (Fig 1d). A ‘go’ signal was presented afterwards. In scans 1-3, 190 

a pink line appeared underneath the sequence and started expanding, indicating the 191 

pace at which participants were to press. In scan 4, participants executed the sequence 192 

as fast as possible after the go cue. After execution, they received feedback on their 193 

overall performance – 3 points for correct and 0 for incorrect performance. Each trial 194 

lasted for 5 s total, with a 0.5-s inter-trial interval (Fig 1d). Five periods of 10 s rests were 195 
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 9 

added throughout each functional run to provide a better estimate of baseline activation. 196 

These rests were added randomly, but never between the first and second execution of 197 

the same sequence. In total, each scanning session lasted for approximately 75 minutes. 198 

 199 

Figure 1.  Experimental paradigm. a) Experimental setup – finger sequences composed of 9 200 
digits were executed on a keyboard device. Participants received visual feedback on 201 
correctness of their presses – digits turned green for correct presses, red for incorrect presses. 202 

b) Group-averaged performance on trained sequences over the 5-week behavioural training 203 

protocol. Red shade indicates the standard error of the group mean. c) Group-averaged 204 

performance during the scanning sessions. Trained sequences are in red, untrained in blue. 205 
Dark colour indicates first execution, light second execution. White bars indicate the group mean 206 

performance. d) Experimental paradigm inside the scanner. Each sequence was presented 207 

twice in a row. Trials started with a 1-s preparation time in which the sequence was presented, 208 
followed by a 3.5s-period of main phase, when the sequence was also execution, followed by 209 
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0.5 s of inter-trial interval (ITI). The plotted timeseries for an insert of the design is group-210 
averaged evoked activation of M1. Shaded error bars indicate the standard error of the mean.  211 
 212 

Image acquisition 213 

Data were acquired on a 7-Tesla Siemens Magnetom MRI scanner with a 32-receive 214 

channel head coil (8-channel parallel transmit). At the beginning of the first scan, we 215 

acquired anatomical T1-weighted scan for each participant. This was obtained using a 216 

magnetization-prepared rapid gradient echo sequence (MPRAGE) with voxel size of 217 

0.75x0.75x0.75 mm isotropic (field of view = 208 x 157 x 110 mm [A-P; R-L; F-H], 218 

encoding direction coronal). Data during functional runs were acquired using the 219 

following sequence parameters: GRAPPA 3, multi-band acceleration factor 2, repetition 220 

time [TR] = 1.0 s, echo time [TE] = 20 ms, flip angle [FA] = 30 deg, slice number: 44, 221 

voxel size: 2x2x2 mm isotropic. To estimate magnetic field inhomogeneities, we acquired 222 

a gradient echo field map with the following parameters: transversal orientation, field of 223 

view: 210 x 210 x 160 mm, 64 slices, 2.5 mm thickness, TR = 475 ms, TE = 4.08 ms, FA 224 

= 35 deg. The dataset is publicly available on OpenNeuro (accession number 225 

ds002776). 226 

 227 

Preprocessing and first level analysis 228 

Data preprocessing was carried out using SPM12. Preprocessing of functional data 229 

included correcting for geometric distortions using the acquired field map data, and 230 

head motion correction (3 translations: x, y, z; 3 rotations: pitch, roll yaw). The data 231 

across sessions were all aligned to the first run of the first session, and then co-registered 232 

to the anatomical scan. 233 

 Preprocessed data were analysed using a general linear model (GLM; Friston et 234 

al., 1994). We defined a regressor for each of the performed 12 sequences (6 trained, 6 235 

untrained), separately for their first and second execution – resulting in a total of 24 236 

regressors per run. The regressor was a boxcar function defined for each trial, and 237 
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convolved with a two-gamma canonical hemodynamic response function (time to peak: 238 

5.5 s, time to undershoot: 12.5 s). All instances of sequence execution were included 239 

into estimating regressors, regardless of whether the execution was correct or 240 

erroneous. This analysis choice was also taken by Wymbs and Grafton (2015), thus 241 

allowing a more direct comparison of repetition suppression results. Even when the error 242 

trials were excluded (i.e. removing all error trials as well as second execution trials when 243 

the first execution was erroneous), our results remained unchanged. Ultimately, the first 244 

level analysis resulted in activation images (beta maps) for each of the 24 conditions per 245 

run, for each of the four scanning sessions.  246 

 247 

Surface reconstruction and regions of interest 248 

Individual subject’s cortical surfaces were reconstructed using FreeSurfer (Dale et al., 249 

1999), and aligned to the FreeSurfer’s Left-Right symmetric template (Workbench’s 164 250 

nodes template) via spherical registration. To examine sequence representation across 251 

the cortical surface, we defined searchlights (Oosterhof et al., 2011). A searchlight was 252 

defined for each surface node, encompassing a circular neighbourhood region 253 

containing 120 voxels. As a slightly coarser alternative to searchlights, we also defined 254 

a regular tessellation of the cortical surface separated into small hexagons.  255 

For our regions of interest (ROI), we defined areas covering the primary motor 256 

cortex and secondary associative regions. The primary motor cortex (M1) was defined 257 

using probabilistic cytoarchitectonic map (Fischl et al., 2008) by including nodes with 258 

the highest probability of belonging to Brodmann area (BA) 4 which in addition 259 

corresponded to the hand knob area (Yousry et al., 1997). The dorsal premotor cortex 260 

(PMd) was included as the lateral part of the middle frontal gyrus. The anterior part of 261 

the superior parietal lobule (SPLa) was defined to include anterior, medial and ventral 262 

intraparietal sulcus.  263 

 264 
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Evoked activation and repetition suppression 265 

We calculated the percent signal change for execution of each sequence relative to the 266 

baseline activation for each voxel. The calculation was split between the first and second 267 

execution (Fig 1d).  268 

To calculate repetition suppression, the activation during the first execution was 269 

subtracted from the elicited activation during the second execution. Thus, negative 270 

values of this difference contrast represented relative suppression of activation on the 271 

second execution, i.e. repetition suppression. For most subsequent analyses, the 272 

obtained values of activation and repetition suppression were averaged separately for 273 

trained and the untrained sequences. For ROI analysis, the volume maps were averaged 274 

across the predefined regions (M1, PMd, SPLa) in the native volume space of each 275 

subject. Additionally, for visualization the volume maps were projected to the surface for 276 

each subject, and averaged across the group in Workbench space. 277 

 278 

Dissimilarities between activity patterns for different sequences 279 

To evaluate which regions displayed sequence-specific representation, we calculated 280 

Crossnobis dissimilarities between the evoked beta patterns of individual sequences. To 281 

do so, we first multivariately prewhitened the beta values – i.e. we standardized them by 282 

voxels’ residuals and weighted by the voxel noise covariance matrix. We used optimal 283 

shrinkage towards a diagonal noise matrix following the Ledoit and Wolf (2004) 284 

procedure. Such regularized prewhitening has been found to increase the reliability of 285 

dissimilarity estimates (Walther et al., 2016). Next, we calculated the crossvalidated 286 

Mahalanobis dissimilarities (i.e. the Crossnobis dissimilarities) between evoked regional 287 

patterns of different pairs of sequences, resulting in a total of 66 dissimilarities. This was 288 

performed twice: once by combining the activation patterns across the two executions 289 

and second time by separately obtaining dissimilarities between evoked patterns split 290 

per execution. The obtained dissimilarities were then averaged overall, as well as 291 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.08.21.261453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.261453


 13 

separately within the pairs of trained sequences, and the untrained sequences. This 292 

analysis was conducted separately for each ROI and using a surface searchlight 293 

approach (Oosterhof et al., 2011). In the searchlight approach, dissimilarities were 294 

calculated amongst the voxels of each searchlight, with the resulting dissimilarities 295 

values assigned to the centre of the searchlight.  296 

 297 

Changes in dissimilarities with repetition 298 

We then related the change in dissimilarities with repetition to the changes in overall 299 

activity. As a starting point, we considered the possibility that repetition suppression 300 

simply scaled the entire activity pattern downward. To test for this possibility, we first 301 

computed the ratio of activation change: 	"#$%&%'
"#$%&%(

. Based on this value, we could compute 302 

what dissimilarities would be predicted on the second execution if representation 303 

decreased proportional to the decrease in activation (diss,-./ = 	
"#$%&%'
"#$%&%(

	x	diss.2.3). This 304 

was then contrasted with the observed dissimilarities on execution 2 (diss.2.5 − diss,-./). 305 

A positive difference indicates that dissimilarities decrease relatively less with repetition 306 

than the reduction in average activation. This would indicate a relatively sharper 307 

representation on the second execution. In contrast, a negative difference would reflect 308 

a further reduction in dissimilarities relative to that obtained in activation. This would 309 

suggest that with repetition, representation decreases relatively more than activation. 310 

 311 

Pattern component analyses: modelling representational components  312 

To determine what specific features of the patterns might change across the two 313 

executions, we decomposed the pattern component modelling toolbox (PCM; 314 

Diedrichsen et al., 2011, 2017). PCM models the covariance structure (second moment 315 

matrix) of regional activity patterns according to different representational hypotheses. 316 
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In our experiment based on presented sequences, we defined five representational 317 

components. 318 

1) First finger 319 

Both trained and untrained sequences started with one of three possible fingers: thumb, 320 

middle or little finger. The first finger component predicts that activity pattern for 321 

sequences that start with the same finger are identical. For sequences starting with a 322 

different first finger, the prediction was based on the covariance of the natural statistics 323 

of hand movement (Ejaz et al., 2015). 324 

2) All fingers 325 

The sequences were slightly different in terms of which fingers were involved. The ‘all 326 

fingers’ component simply characterized how often each finger occurred in each 327 

sequence. If two sequences consisted exactly of the same presses (just in a different 328 

order), they were predicted to be identical. The predicted covariance was again 329 

weighted by the natural statistics of hand movement (Ejaz et al., 2015). 330 

3) Sequence type 331 

This component split the performed sequences based on whether they were trained or 332 

untrained, predicting one regional activity patterns for all the trained and a different 333 

activity pattern for all the untrained sequences.  334 

4) Trained sequence identity 335 

This component modelled any differences between the 6 trained sequences.  336 

5) Untrained sequence identity 337 

Similar as the trained sequence identity, this component predicted a unique activity 338 

patterns for each untrained sequence.  339 

 340 

The overall predicted second moment matrix (G) was then a convex combination 341 

of the component matrices (Gc), each weighted by a positive component weight exp	(Θ:).  342 
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𝐺 = exp Θ= 𝐺=
=

 343 

The construction of the model components was done separately for the two groups of 344 

participants, as different sequences constituted ‘trained’ or ‘untrained’ sequences for the 345 

two groups. The subsequent steps of model fitting and evaluation were carried together 346 

for all subjects. 347 

 We formulated a model family containing all possible combinations of the five 348 

chosen components (Yokoi and Diedrichsen, 2019). This resulted in 32 combinations, 349 

also containing the ‘null’ model that predicted no differences amongst any of the 350 

sequence patterns. We evaluated all of the 32 models using a crossvalidated leave-one-351 

subject-out scheme. The components weights were fitted to maximize the likelihood of 352 

the data the data of subject 1,...,N-1. We then evaluated the likelihood of the observed 353 

regional activity patterns of subject N under that model. The resultant cross-validated 354 

likelihoods were used as model evidence for each model (see Diedrichsen et al. 2017). 355 

The log model Bayes Factor BFm, the difference between the crossvalidated log-356 

likelihood of each model and the null model, characterises the relative evidence for that 357 

model.  358 

 In addition to the model family of the chosen components, we also fit a ‘noise-359 

ceiling’ model to assess maximal logBFm that would be achievable for a group model 360 

(Nili et al., 2014; Diedrichsen et al., 2017). For each of the two groups, we predicted the 361 

second moment matrix of a left-out subject based on n-1 subjects in the same group. 362 

This metric of inter-subject consistency was then combined across the subjects of the 363 

two groups. 364 

 To integrate the results across models, we used model averaging. Assuming a 365 

uniform prior probability across models, we first computed the posterior probability of 366 

each model and region directly from the log-Bayes factors: 367 

 368 
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𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟E = 	
exp	(𝑙𝑜𝑔𝐵𝐹E)
exp	(𝑙𝑜𝑔𝐵𝐹J)=

JK3
 369 

 370 

The posterior probability was used to calculate two subsequent metrics: 1) component 371 

log-Bayes factor, and 2) variance accounted for by each component. The log-Bayes 372 

factor for each component (first finger, all fingers, etc.) was calculated as the log of the 373 

ratio between the posterior probability for the models containing the component (c=1) 374 

versus the models that did not (c=0). 375 

𝑙𝑜𝑔𝐵𝐹= = 𝑙𝑜𝑔

1
𝑁E:=K3

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟EE:=K3

1
𝑁E:=KO

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟EE:=KO

 376 

where Nm:c=1 (Nm:c=0) denotes the number of models (not) containing the component 377 

(Shen and Ma, 2019). The component log-Bayes factor is monotonically related to the 378 

posterior probability of model components.  379 

To determine the amount of pattern variance accounted for by each component 380 

(across the models), we normalized the trace of each model component to be 12 381 

(number of conditions) prior to fitting. Thus, the fitted component weight exp	(Θ:,Q) 382 

indicates the amount of variance accounted for by the component i in the context of 383 

model m. The model-averaged amount of variance accounted for by each component c 384 

was then calculated as:  385 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒= = 	 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟E		exp	(Θ=,E)
V5

EK3

 386 

Important to note is that the estimated variance is always positive, such that this quantity 387 

cannot be used to test whether a component is present at all. On the other hand, the log-388 

Bayes factor does not take into account the actual weighting of the component in 389 

explaining the activity patterns. In univariate models, the average variance accounted 390 
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for is tightly related to the evidence for that component- however this is not necessarily 391 

the case in the multivariate setting. While component c1 can be crucial to account for 392 

the covariance between the patterns, it may actually play a relative small role in 393 

predicting the activity patterns. Thus, both the component Bayes factor and the 394 

averaged explained variance provide informative, albeit slightly different, measures of 395 

the importance of a component.  396 

 397 

Statistical analysis of repetition suppression and dissimilarities 398 

We employed a within-subject design. For each subject’s data, we calculated repetition 399 

suppression (RS) and dissimilarities, separately for trained and untrained sequences. 400 

This was done for each region and session. To statistically quantify how RS and 401 

dissimilarities changed with learning (across sessions for trained / untrained 402 

sequences), we performed a session x sequence type ANOVA on those metrics, in 403 

predefined ROIs. Afterwards, we used a two-sided paired t-test to assess the effect of 404 

sequence type per session. We additionally performed a three-way session x region x 405 

sequence type ANOVA to examine if the learning-related effects differed across regions. 406 

For the analysis of dissimilarities split by execution (execution 1 vs. 2), we calculated, 407 

per subject, the expected crossnobis dissimilarities for execution 2 of the cortical surface 408 

regions. The observed dissimilarities on the second execution were contrasted with 409 

those by using a two-sided paired t-test.    410 

 411 

Statistical analysis of pattern component modelling 412 

We report the component log-Bayes factors, averaged across subjects. Additionally, the 413 

log-Bayes factors were submitted to a one-sample t-test against 0 (two-sided). To 414 

quantify the change in component variance across executions, we calculated, per 415 

subject, the percent reduction in component variance from execution 1 to 2. The relative 416 
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reduction in variance with repetition was contrasted across components by using a two-417 

sided paired t-test. 418 

 419 

Results 420 

Changes in repetition suppression with learning 421 

To examine learning-related changes in repetition suppression and pattern analysis, we 422 

calculated both metrics on fMRI activation patterns both pre- and post-learning (i.e. 423 

weeks 1 and 5). Relative to rest, sequence execution activated primary motor cortex 424 

(M1), primary somatosensory cortex (S1), dorsal and ventral premotor cortex (PMd and 425 

PMv), supplementary motor area (SMA) and the anterior superior parietal lobules (SPLa; 426 

Fig 2a). In general, activity was higher for the first than for the second execution (Fig 427 

2b). Repetition suppression was calculated as the difference in activity between the two 428 

executions of the same sequence (Exe 2 – Exe 1). Negative values indicate a relative 429 

reduction in activation with repetition, i.e., repetition suppression (RS). Already in week 430 

1, prior to learning, RS was observed in nearly all regions displaying task-evoked 431 

activation (Fig 2c). Only in regions that showed de-activation during task performance 432 

(blue shades in Fig 2b), did we observed positive difference values between the 433 

executions (areas in red shades in Fig 2c). This indicates that, both the amount of 434 

activation and the amount of deactivation reduced with repetition. 435 

 We statistically quantified how RS changed across weeks (specifically between 436 

sessions 1 and 4) for three predefined regions of interest: SPLa, PMd, and M1. The 437 

increase in RS across session was higher for trained than untrained sequences in all 438 

regions (Fig 2d), as confirmed by significant session x sequence type interactions 439 

(SPLa: F(1,25)=17.44; p=3.1e-4, PMd: F(1,25)=7.27, p=1.1e-6, F(1,25)=25.09; p=3.6e-4). The 440 

increase in RS was particularly strong in M1. Indeed, the three-way interaction of region 441 
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x session x sequence type was significant (F(2,50)=9.19, p=3.9e-4). To summarize the RS 442 

results, all regions showed evidence of an increase of sequence-specific representation 443 

with learning, with a particularly strong effect in M1.  444 

 445 
Figure 2. Changes in repetition suppression and dissimilarities with learning. a) Group-446 

averaged evoked activation, measured as percent signal change over resting baseline in week 447 
1, averaged across all sequences and projected to an inflated representation of the left 448 

hemisphere, i.e. hemisphere contralateral to the performing hand. b) Group-averaged activation 449 

for each execution (Exe1, Exe2), in the baseline session (Session 1 – Week 1) and after training 450 
(Session 4 – Week 5) represented on a flattened representation of the left hemisphere. CS stands 451 

for the central sulcus. c) The difference in evoked activation between the two executions. Blue 452 

represents relative suppression of activation on the second, relative to the first, execution. 453 
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Regions of interest: primary motor cortex (M1), dorsal premotor cortex (PMd), anterior superior 454 

parietal lobule (SPLa). d) Repetition suppression in the predefined regions of interest, separately 455 
for trained (red) and untrained (blue) sequences. Error bars reflect the standard error of the 456 
group. More negative values indicate more suppression during second execution, relative to the 457 

first. * signals p<.05. e) Average dissimilarity between evoked patterns for all pairs of sequences, 458 
in week 1, averaged across the group. Pattern dissimilarity was computed using a searchlight 459 
approach, by calculating the average crossnobis dissimilarity of activation patterns between all 460 

sequence pairs in each searchlight. f) Average dissimilarity between activation patterns of 461 

different sequence pairs in weeks 1 and 4. g) Dissimilarities between trained (red) and untrained 462 

(blue) sequence patterns, across weeks 1 and 5. Error bars reflect the standard error of the 463 
group. * signals p<.05. 464 
 465 

Changes in pattern dissimilarities with learning 466 

As another measure of sequence-specific representations, we tested whether the 467 

regions that displayed RS also showed distinguishable fine-grained activity patterns for 468 

each sequence. As a measure of pattern dissimilarity, we calculated the average 469 

crossvalidated Mahalanobis dissimilarity (i.e., crossnobis dissimilarity) between 470 

activation patterns of all possible sequence pairs. Overall, regions with dissimilar activity 471 

patterns for the different sequences corresponded to regions which also exhibited RS 472 

effects (Fig 2e-f). Additionally, both metrics (RS and pattern dissimilarities) increased 473 

from session 1 to 4, with the effect particularly pronounced in the parietal cortex (Fig 2c, 474 

f). Thus, based on visual inspection, RS and pattern dissimilarity metrics seem to provide 475 

consistent evidence for the development of sequence-specific representations with 476 

learning in an overlapping set of regions.  477 

 However, when quantifying the change in pattern dissimilarities across weeks in 478 

predefined ROIs, we observed important differences from RS. In SPLa and PMd, pattern 479 

dissimilarities increased more for trained than untrained sequences across sessions (Fig 480 

2g), as quantified by a significant interaction in a session x sequence type ANOVA 481 

(SPLa: F(1,25)=4.80; p=.038, PMd: F(1,25)=5.29, p=.030). In contrast, the week by sequence 482 
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type interaction was not significant in M1 (Fig 2g; F(1,25)=2.13, p=.16). This indicates that 483 

while PMd and SPLa show learning-related changes on the level of pattern 484 

dissimilarities, these are absent in M1. The three-way interaction (region x session x 485 

sequence type) on the observed dissimilarities was indeed significant (F(2,50)=3.39, 486 

p=0.041), confirming the difference between regions.  487 

 488 

Pattern dissimilarities reduce with repetition 489 

Within the same dataset, we observed learning-related changes in RS in M1, but no 490 

change in pattern dissimilarities with learning. While the increase in pattern dissimilarities 491 

(Fig 2f), as well as direct evidence for pattern changes across weeks (Berlot et al., 2020), 492 

clearly argue that sequence-specific learning occurs in premotor and parietal areas and 493 

not in M1, RS provides evidence for the development of sequence-specific 494 

representations in all these regions. How can this discrepancy be explained? To resolve 495 

this question, we need to understand how the role that each area plays during skilled 496 

sequence performance changes from the first to the second execution. We first 497 

inspected pattern dissimilarities for each of the two executions separately (execution 1, 498 

execution 2) in the trained state (Week 5 / Session 4). We observed that, on average, 499 

pattern dissimilarities in week 5 decreased with repetition in most cortical regions (Fig 500 

3a). This decrease was particularly pronounced around the central sulcus, including M1 501 

(Fig 3b).  502 

Of course some decrease in dissimilarities would be expected given the decrease 503 

of overall activity with repetition (Fig 2d). We therefore compared the decrease in 504 

dissimilarities to what would be predicted if activation decreased proportionally for all 505 

sequences. First we calculated the relative decrease in activity – i.e. the ratio of the 506 

activity during the second execution over the activity during the first. This ratio was 507 

applied to the observed dissimilarities on the first execution, yielding a prediction of what 508 
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dissimilarities would be expected for the second execution, if representation scaled with 509 

activation. This calculation was applied to activity patterns to each of the parcels on a 510 

regularly tessellated cortical surface (Fig 3c). Around the central sulcus, i.e. including 511 

M1, the observed dissimilarities on the second execution were significantly lower than 512 

what was predicted from the reduction in overall activity (Fig 3c). In contrast, observed 513 

dissimilarities on the second execution in premotor and parietal areas were quite close 514 

to the prediction from activation reduction. Altogether this indicates that representational 515 

change with repetition differed across regions: proportional scaling of representation in 516 

parietal regions, and violation of proportional scaling in M1, where a much more 517 

pronounced decrease of dissimilarities was observed. 518 

 519 

 520 
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Figure 3. Representational change with repetition of sequence execution. a) Dissimilarities 521 

between pairs of sequences in session 4, split by first and second executions. b) Difference in 522 
pattern dissimilarities between executions 1 and 2. Blue hues reflect relatively lower 523 

dissimilarities on the second execution. c) Difference between the observed dissimilarity during 524 
execution 2 and the predicted distance based on the reduction of activation with repetition. Blue 525 
hues indicate lower dissimilarities than predicted, red higher. The difference between the two 526 

was significant with p<.05 in tessels which are fully visible (i.e. not greyed out). d-f): Same as a-527 

c but for the paced speed session, i.e. session 3. Same thresholds were applied to the 528 

visualizations as the respective figures from a-c. 529 
 530 

Decomposing representations across executions 1 and 2 531 

Analysis of average dissimilarities across executions revealed a compression of 532 

representation in M1, but not in parietal regions. This analysis, however, does not reveal 533 

which aspects of the representations are responsible for this regional difference. To 534 

investigate exactly how the representation changed, we decomposed the 535 

representations during each execution into several underlying representational 536 

components. Differences in the sequence patterns could reflect differences in various 537 

characteristics, or features (Fig 4a). Specifically, based on previous results (Yokoi et al., 538 

2018; Yokoi and Diedrichsen, 2019), we hypothesized that the covariance (or similarity) 539 

between activity patterns can be explained with the following 5 components (Fig 4b, see 540 

Methods for details): 1) first finger: a pattern component determined by the starting 541 

finger, 2) all fingers: a pattern component that simply adds the finger-specific patterns 542 

regardless of their sequence, 3) sequence type: trained and untrained sequences have 543 

different average patterns, 4) trained sequence identity: the trained sequences differ 544 

amongst each other, 5) untrained sequence identity: the untrained sequences differ 545 

amongst each other. Using pattern component modelling (Diedrichsen et al., 2017), we 546 

constructed a model family, which consisted of all possible combinations of those 5 547 

components, totalling 25 = 32 models. These models were then fit to the observed 548 

regional covariance structure (second moment matrices; Fig 4c), separately for 549 
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executions 1 and 2. In all regions and across both executions, several models accounted 550 

for observed data well, with model fits as good as the noise ceiling model (M1: 21 models 551 

for exe 1, 24 for exe 2; PMd: 16 for exe 1 and 2, SPLa: 16 for exe 1 and 2), showing that 552 

overall these models accounted well for the observed data. To integrate the results 553 

across models, we used Bayesian model averaging to estimated which components 554 

were most important to explain the patterns.  555 

In M1, the regional representation on the first execution was accounted for by the 556 

individual movement elements (all fingers), with especially high weight on the first finger 557 

(Fig 4d). This replicates the previous findings showing that M1’s representation during 558 

sequence production tasks can be fully explained by the starting finger (Yokoi et al., 559 

2018; Yokoi and Diedrichsen, 2019). In these two studies, the number of times each of 560 

the five fingers was pressed was held constant across all sequences. In the current 561 

study, we did not match this number. Thus, the subsequent finger presses, encoded in 562 

the ‘all finger’ component, also accounted for substantial variance, independent of the 563 

exact ordering of these movements. 564 

To statistically quantify these effects, we calculated component Bayes factors for 565 

individual components. In M1, the Bayes factors were significant for both first and all 566 

finger factors (first finger: BF=6.8, t(25)=3.1, p=4.8e-3; all fingers: BF=9.6, t(25)=4.4, p=1.7e-567 

4). In contrast, the component Bayes factors were not significant for any sequence-568 

related feature – neither sequence type (BFc=3.2, t=1.9, p=.07), nor sequence identity: 569 

of trained sequences (BFc=1.6, t(25)=1.5, p=.16) or untrained sequences (BFc=0, t(25)=-570 

0.2, p=.85). Thus, the pattern analysis clearly shows that activity patterns during the first 571 

execution in M1 can be explained by a superposition of individual movements, without 572 

any evidence of a sequence representation. 573 

In SPLa and PMd, the variance explained during the first execution was well 574 

accounted for by sequence type (SPLa: BFc=16.3, t(25)=6.0, p=3.0e-6, PMd: BF=15.5, 575 

t(25)=5.94, p=3.3e-4), and trained sequence identity (SPLa: BFc=5.4, t(25)=3.4, p=2.5e-3; 576 
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PMd: BFc=4.6, t(25)=2.8, p=.011). There was no significant evidence for representation of 577 

untrained sequence identity in either of the regions (SPLa: BFc=0.8, PMd: BF=0.1; 578 

t(25)<=1.1, p>=.28). In comparison to M1, the variance related on individual movements 579 

– either the first finger or all fingers were weaker across PMd and M1. In PMd the first 580 

finger still accounted for some variance (BFc=4.1), but this was further reduced in SPLa 581 

(BFc=0.5).  582 

In M1, the pattern component related to the first finger drastically reduced by 93% 583 

with repetition (Fig 4d). The reduction in variance explained by the first finger component 584 

was larger than for the all finger component, which reduced by 75% (paired t-test: 585 

t(25)=9.03, p=2.4e-9). This indicates that the drastic reduction of average dissimilarities in 586 

M1 with repetition is mostly due a pronounced first-finger effect during the first execution 587 

that almost vanishes on the second execution.  588 

Large reductions in first finger effect were also observed in session 4 in PMd (by 589 

81%) and SPLa (by 83%). In contrast, the representation of sequence type and trained 590 

sequence identity in these areas clearly reduced less (PMd: sequence type: 44%, 591 

trained sequence: 64%; SPLa: sequence type: 49%, trained sequence: 55%). To 592 

statistically quantify whether the first finger effect reduced more than trained sequence 593 

component, we performed a paired t-tests on the percentage reduction across the two 594 

components. The results of tests were indeed significant for both PMd (t(25)=7.96, p=2.6-595 

8) and SPLa (t(25)=12.8, p=1.7e-12).  596 

In summary, SPLa’s regional activation patterns were better accounted for by 597 

components related to the sequence identity than to the first finger, which also reduced 598 

much less with repetition. This likely explains why the average dissimilarities did not 599 

compress with repetition in SPLa regions as much as in M1. With repetition, the 600 

proportion of different components to overall regional representation remained relatively 601 

stable in SPLa (Fig 4e), but changed substantially in M1 in that the dominant first-finger 602 

representation on the first execution nearly disappeared on the second execution. PMd’s 603 
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representation was in-between those of M1 and SPLa – more variance was accounted 604 

for by the first finger than in SPLa, but less than in M1.  605 

 606 
Figure 4. Component decomposition of regional representation across executions 1 and 607 

2. a) Executed 9-digit sequences. b) Candidate component models used to assess regional 608 
representations across first and second executions. Each row and column indicate a specific 609 
sequence, and values in the matrices reflect the correspondence across sequences on that 610 
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component, with yellow indicating higher correspondence. c) Regional representations during 611 

the first execution of sequences, as assessed by the crossvalidated second moment matrix, 612 
averaged across subjects of group 1. Similar as for models, each row and column reflect an 613 
activation pattern for an individual sequence. Regions: primary motor cortex (M1) and anterior 614 

superior parietal lobule (SPLa). d) Variance explained by candidate model components on 615 
executions 1 (black) and 2 (grey) during the full speed session in M1, PMd (dorsal premotor 616 

cortex) and SPLa. e) Relative contribution of variance explained in d) across the different 617 

components. The total variance explained across the different components (i.e. sum of the bars 618 
in d) was normalized across the two executions to display the relative shift of importance of 619 

different representational components. f-g): Same depiction as d-e for the results of activity 620 

patterns during the paced scanning session. 621 

 622 

Speed of execution does not affect RS, but it overall alters the balance 623 

between first- and all-finger representations 624 

It is important to note that the speed of execution differed between trained and untrained 625 

sequences in session 4 (Fig 1c). This speed difference could conflate the observed 626 

effect of learning. To control for this factor, we had designed the study to include an 627 

extra session, session 3, which was also performed after learning was completed, but 628 

with paced performance. Specifically, the movement speed in session 3 was matched 629 

between trained and untrained sequences, as well as to performance observed in 630 

session 1. 631 

We have previously reported that after learning, crossnobis dissimilarities for 632 

trained sequences are affected by the speed of execution. Specifically, the 633 

dissimilarities between trained sequences were lower for paced session (session 3) than 634 

full speed session 4 in PMd and SPLa, but not in M1, where there was no distinction 635 

between trained and untrained dissimilarities in either session (Berlot et al., 2020; Fig 2g 636 

– comparison session 3-4). Similarly, RS in PMd and SPLa was also less pronounced in 637 

session 3. The RS did not differ significantly between trained and untrained sequences 638 

in session 3 (t(25)<=1.22, p>=.23; Fig 2d). However in M1, the difference in RS between 639 
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the two sequence types was significant already in session 3 (t(25)=2.1, p=0.046). The 640 

nature of this significance is less clear since RS for neither trained nor untrained 641 

sequences changed significantly from session 1 to 3. Still, it points to the fact that the 642 

presence of learning-related effects (as characterized from session 1 to 4) in M1 for RS, 643 

but no change in dissimilarities cannot be simply explained by the speed of execution. 644 

 Next, we compared whether the speed of execution affects the decrease in 645 

dissimilarities on repetition. As for the full speed performance, we observed that 646 

dissimilarities decreased on the second execution (Fig 3d-e). Additionally, as reported 647 

for the full speed performance, this reduction in dissimilarities was particularly 648 

pronounced around the central sulcus (Fig 3f) also when performance was paced with 649 

the metronome.  650 

 Finally, we assessed whether the reduction in representational components on 651 

repetition (especially the finger effect in M1) is observed even during paced 652 

performance. Overall, our PCM modelling accounted for less variance during the paced 653 

performance compared to full speed performance (Fig 4d,f). We have previously 654 

reported that the patterns of activity are much more distinguishable and have higher 655 

signal-to-noise ratio during the full speed session compared to paced performance 656 

(Berlot et al., 2020), which likely accounts for this difference.  657 

Interestingly, the overall amount of the first- vs. all-finger components varied with 658 

speed. During full speed performance the first finger component accounted for a larger 659 

part of the pattern variance than during paced performance (Fig 4d-g). This was 660 

confirmed by an significant interaction of a session x component (first / all fingers) 661 

ANOVA in M1 (F(1,25)=17.3, p=3.3e-4). Nevertheless, a similar reduction of the first-finger 662 

effect in M1 was observed for the paced session as for the full speed session (first finger 663 

reduction by 92%, all finger by 66%; t(25) = 3.12, p=4.5e-3), suggesting that the decrease 664 

of the first finger weight on repetition did not depend on the speed of execution. The 665 
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reductions in first finger effect were larger than for trained sequence components also 666 

in PMd and SPLa (PMd: t(25)=2.34, p=0.02; SPLa: t(25)=8.11, p=1.8e-8). Altogether this 667 

confirms that the larger reduction of the first finger effect with repetition does not depend 668 

on the speed of performance.  669 

 670 

Discussion 671 

In the present study, we combined two fMRI analysis techniques to investigate brain 672 

underpinnings of learning motor sequences: pattern analysis and repetition suppression. 673 

Both techniques showed the development of sequence specific representations in 674 

premotor and parietal cortex. In contrast, only RS provided evidence for a sequence 675 

learning in M1. In this study, we carefully investigated how the activity patterns in these 676 

regions changed from the first to the second repetition, which offers an explanation for 677 

these discrepant findings, and which leads us to a speculative model of parietal – M1 678 

interactions in skilled sequence performance.  679 

 680 

Learning-related changes of RS and pattern dissimilarities 681 

Several pattern analysis fMRI studies have failed to provide evidence that M1 obtains a 682 

motor sequence representation with learning (Wiestler and Diedrichsen, 2013; Yokoi et 683 

al., 2018; Berlot et al., 2020). In contrast, one study (Wymbs and Grafton, 2015) reported 684 

learning-related changes in RS even for M1, which suggests a development of 685 

sequence-dependent representation. We first replicated that these two metrics provide 686 

discrepant insights into M1 – we observed evidence for learning-related changes using 687 

RS, but not pattern dissimilarities. In additional control analysis, we also showed that this 688 

difference was not due by a higher sensitivity of RS to speed of execution. The results of 689 

the session with paced performance showed that RS in M1 was stronger for trained than 690 

untrained sequences even for paced performance, whereas pattern dissimilarities did 691 
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not differ between trained and untrained sequences for either full speed or paced 692 

sessions.  693 

As Wymbs & Grafton (2015), we found changes in RS in M1 across learning 694 

sessions, as well as a difference between trained and untrained sequences in sessions 695 

post-training. However, the specific evolution of the changes differed between the two 696 

studies. Wymbs and Grafton reported a complex increase-decrease-increase pattern of 697 

RS in M1 depending on the level of the training of the sequence. In contrast, we report 698 

higher RS for trained than untrained sequences after training. There are a number of 699 

important differences in the design of the two studies which could have contributed to 700 

the observed differences in results. For instance, their design only employed full speed 701 

performance, the probability of sequence repetition was lower (50%), and the training 702 

was longer and had three groups of sequences (highly, medium, and lightly trained) 703 

rather than just two (trained and untrained). Further studies, directly manipulating any of 704 

the aforementioned differences, are needed to reconcile the findings reported here 705 

relative to the previous report of Wymbs & Grafton (2015). 706 

 707 

Representational changes with repetition 708 

Reduced activity with repetition is commonly interpreted as an indication that the region 709 

represents the dimension of the stimulus along which the repetition occurred (Grill-710 

Spector et al., 2006). For example, if a region shows less activity every time the colour 711 

of a visual stimulus repeats (rather than the shape, texture, etc.), it would provide 712 

evidence for a role of the region in the analysis of colour. However, a more complex 713 

reason for repetition suppression could be that the region’s role changes with repetition. 714 

To test for this possibility, we decomposed regional representations into different 715 

underlying components (e.g. first finger, combination of all fingers, sequence identity, 716 

etc.) separately for the first and second execution. We observed that M1 mainly 717 

represents the first finger in a sequence. This component diminishes dramatically on a 718 
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repetition. In contrast, the representation of sequence type and identity, which 719 

accounted for most of the variance in parietal areas, remained more stable across the 720 

two executions. Activation patterns in PMd reflected a mixture between these two 721 

extremes. Similarly to parietal cortex, sequence type and identity components remained 722 

stable with repetition. The substantial contribution of the first finger component on the 723 

first execution, however, diminished with repetition. This suggests that PMd’s 724 

representation is a mixture of more abstract sequence representations (as in parietal 725 

regions) and representations related to single movements (as in M1). Altogether, our 726 

results suggest that RS acts differently on different components of neuronal 727 

representations. Depending on the representational composition of each region, RS can 728 

therefore be more or less pronounced.  729 

 730 

Interactions between cortical motor regions during sequence performance 731 

These findings can be summarized in the following - admittedly rather speculative - 732 

model of how parietal/premotor areas and M1 interact during skilled motor sequence 733 

performance. During the first execution, premotor and parietal regions contain 734 

information about the specific sequence that needs to be executed (Fig 5). Premotor 735 

regions also reflect the starting finger of the sequence. These regions may send signals 736 

to M1, pre-activating the neural circuits for the movement of the first finger. This 737 

replicates a previous finding that the difference between M1’s activation patterns is 738 

explained by the starting finger, rather than true sequence representation (Yokoi et al., 739 

2018). The finding is also consistent with results from neurophysiology (Averbeck et al., 740 

2002) and magneto-encephalography (MEG; Kornysheva et al., 2019) showing that the 741 

first action in a sequence is most highly activated in premotor and motor areas during 742 

the preparatory period.  743 

Upon repetition of the same sequence, activation reduces across all regions. The 744 

decomposition analysis of the regional representations indicates that the sequence 745 
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identity component in premotor and parietal regions reduces only moderately, 746 

suggesting that the sequence representation is always necessary for successfully 747 

guiding M1 through the correct sequences of actions. In contrast, the pre-activation of 748 

the first finger reduced dramatically, possibly reflecting reduced planning needs on 749 

repetition (Ariani et al., 2020). Thus, the especially pronounced RS effect in M1 may be 750 

due to the fact that fMRI activity here is driven to a large degree by the initial input from 751 

other regions that prepares this region for the first execution of a sequence. On the 752 

second execution, the need for this pre-activation may be substantially reduced.  753 

 754 

 755 
Figure 5. Conceptual depiction of changes in representation across regions and with 756 

repetition. Different dots represent activation patterns for different finger sequences. Regions: 757 
anterior superior parietal lobule (SPLa), dorsal premotor cortex (PMd), primary motor cortex 758 
(M1). Activation levels of three hypothetical voxels are indicated across the 3 axes.  759 
 760 

Overall, our results suggest that M1 does not represent individual trained 761 

sequences with learning, despite increased RS. Instead, it appears to represent 762 

individual finger presses. If this is true, why was RS in M1 stronger for trained than 763 

untrained sequences? fMRI activity reflects a combination of the input to a cortical 764 

region, as well as the recurrent activity within that region (Logothetis, 2002), but not the 765 

output spiking (Picard et al., 2013). We suggest that the effect may be due to changed 766 

input, reflecting changes in the communication between higher-order areas and M1, 767 

which may become more efficient with repetition of trained sequences. Some support 768 

for this idea comes from a recent study demonstrating layer-specific effects in M1 769 
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(Persichetti et al., 2019). By measuring changes in cerebral blood volume across layers, 770 

the authors demonstrated that superficial M1 layers (which reflect M1 inputs) show RS, 771 

whereas deep layers’ activation (which is more indicative of M1’s outputs) is enhanced 772 

during repetition. Since the BOLD signal is biased towards the superficial vascular 773 

signals, our activation results more likely reflect inputs into M1.  774 

However, rather than input from other areas, increased RS in M1 could reflect 775 

sequence dependency at a subvoxel resolution (Grill-Spector and Malach, 2001; Grill-776 

Spector et al., 2006), which cannot be detected by pattern analyses. A prior 777 

electrophysiology study provided some support for this, demonstrating differential M1’s 778 

responses to trained relative to random sequences (Matsuzaka et al., 2011). However, 779 

this study did not show differential activation for different trained sequences, thus no 780 

sequence representation as defined here. Moreover, recent electrophysiological studies 781 

have also shown that M1 does not represent the sequential context (Russo et al., 2020; 782 

Zimnik and Churchland, 2021). Altogether, this makes it unlikely that the RS observed in 783 

M1 reflects sequence dependency.  784 

Our proposed model makes a number of predictions that could be tested using a 785 

combination of techniques. For layer-specific fMRI studies, we would predict that the 786 

first finger effect in M1 can be mostly found in the superficial layers, reflecting cortico-787 

cortico communication. For MEG or intracranial EEG studies (Ghuman et al., 2008; 788 

Gilbert et al., 2010; Korzeniewska et al., 2020) we would predict that the difference 789 

between trained and untrained sequences would be mainly present at the start of the 790 

sequence, an effect that would strongly reduce on repetition. Addressing these 791 

questions will advance our understanding of motor sequence on neural circuitry 792 

underlying production of skilled actions. 793 

 794 

Conclusion 795 
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We demonstrated here that RS may not only reflect a suppression of a specific 796 

representation in a region, but that the role of the region, and hence the structure of the 797 

representation, can change qualitatively from the first to the second repetition. While the 798 

representation of the skilled motor sequences remained relatively stable in parietal and 799 

premotor regions, the M1’s representation changed, with a strongly reduced activation 800 

related to the beginning of the sequence. These results emphasize that employing RS 801 

only using the average regional activation sometimes provides incomplete, and possibly 802 

misleading, insights into regional representation. Instead, the combination of RS with 803 

pattern analyses can illuminate how representations change with repetition, and may 804 

provide a deeper understanding of brain circuits and their function.805 
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