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Abstract: Feeding is an essential part of animal life that is impacted greatly by the sense of taste. 
Although the characterization of taste-detection at the periphery is extensive, higher-order taste 
and feeding circuits are still being elucidated. Here, we use an automated closed-loop 
optogenetic activation screen for novel taste and feeding neurons in Drosophila melanogaster. 
Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we 
identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, 
we follow up on the R70C07-GAL4 neuron population, which strongly inhibits feeding. Using 
split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and 
aversive neurons. We also show that R70C07-GAL4 labels a population of putative second-order 
taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a 
resource for further functional dissection of fly feeding circuits. 
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Introduction: Gustation is a primary sense conserved across the animal kingdom. It contributes 
to individual fitness, allowing animals to assess and distinguish between potentially nutritious 
foods and those that may be toxic. In general, sweet foods (an indicator of energy) promote 
consumption, whereas bitter foods (an indicator of toxicity) trigger rejection behavior 
(Yarmolinsky et al. 2009). However, the details of how gustatory information is relayed through 
the brain to evoke the corresponding behaviors remains unclear. On-going research efforts in this 
area are fuelled by studies conducted in the Drosophila melanogaster model, owing to their 
reliability of innate feeding behaviors and the accessibility of powerful genetic tools. 
   
Similar to mammalian taste receptor cells, fruit flies have gustatory receptor neurons (GRNs) 
that are capable of detecting basic taste qualities, including sweet, bitter, salt and acids, 
responsible for triggering food acceptance or rejection (Scott 2018; Chen and Dahanukar 2019). 
The tuning of sweet and bitter GRNs are dictated by gustatory receptors (GRs). Namely, Gr5a-
positive neurons respond broadly to sweetness and those expressing Gr66a respond to bitter 
(Thorne et al. 2004; Wang et al. 2004; Marella et al. 2006; Dahanukar et al. 2007). GRNs send 
projections to the brain, with arborizations terminating in the subesophageal zone (SEZ). This 
compartment of the brain is referred to as the primary taste center, acting as the first point of 
taste signal relay (Rajashekhar and Singh 1994; Thorne et al. 2004; Wang et al. 2004; Ito et al. 
2014). GRN projection patterns in the SEZ are roughly localized based on the taste modality it is 
encoding and the origin of the GRN— from the pharynx, proboscis or legs (Wang et al. 2004; 
Kwon et al. 2014). 
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While GRNs are well characterized, only a handful of studies have identified downstream 
neurons. These include the sweet gustatory projection neurons (sGPNs), which make contact 
with Gr5a projections, project to the antennal mechanosensory and motor center (AMMC), and 
evoke PER (Kain and Dahanukar 2015). Another pair of second-order neurons identified were 
denoted the gustatory second-order neurons (G2N-1s)(Miyazaki et al. 2015). These also receive 
synaptic input from Gr5a GRNs, but unlike sGPNs, the G2N-1s locally arborize and terminate 
within the ventral SEZ. A third set of distinct second-order neurons activated by sucrose are 
specific to pharyngeal inputs (Yapici et al. 2016). These cholinergic neurons were named the 
ingestion neurons (IN1), and their activation is sufficient to prolong ingestion. More recently, a 
single pair of bilaterally symmetrical interneurons called bitter gustatory local neurons (bGLNs) 
was characterized to be activated by bitter tastants and is sufficient in inhibiting attractive 
behavior upon receiving signals from bitter GRNs (Bohra et al. 2018). Aside from second-order 
taste neurons that reside locally in the SEZ, long-range taste projection neurons (TPNs) also exist 
to relay taste input to regions of the higher brain (Kim et al. 2017). Notably, the valence of 
signals appears to remain consistent and segregated at the level of second-order taste neurons. 
Ultimately, the discovery of these second-order taste neurons brings us closer to understanding 
the pathways by which peripheral taste can be translated into the proper motor response. 
However, a global picture of taste circuitry remains obscure, suggesting the need for identifying 
more higher-order taste and feeding neurons.  
 
Recently, we developed the Sip-Triggered Optogenetic Behavior Enclosure (STROBE) for 
closed-loop optogenetic activation of fly neurons during feeding (Jaeger et al. 2018; Musso et al. 
2019). The STROBE temporally couples LED activation to interactions between a fly and one of 
two food sources in a small arena. In combination with targeted expression of light-gated 
channels, this system effectively activates peripheral and central neurons, allowing real-time 
modulation of the fly’s sensory experience or motor patterns during feeding (Musso et al. 2019). 
The preference of the fly for the light-triggering food compared to the non-light-triggering food 
indicates the appetitive or aversive valence of the neurons undergoing optogenetic activation.  
 
In this study, 122 Janelia FlyLight Project enhancer-GAL4 lines (Jenett et al. 2012) were crossed 
with UAS-CsChrimson and subjected to testing in the STROBE. We found six lines that 
produced a preference for the light-triggering food and 35 lines that drove preference for the 
non-light-triggering food. One line in particular, R70C07-GAL4, was chosen for further 
characterization of its role in feeding inhibition. A GAL4 hemidriver version of R70C07 
(R70C07-p65) was combined with five different GAL4.DBD hemidrivers to generate five split-
GAL4s labeling subsets of an SEZ interneuron population that is prominent within the R70C07-
GAL4 expression pattern. Unexpectedly, while one split-GAL4 line phenocopied the aversion 
seen with R70C07-GAL4 activation, another drove the opposite effect (attraction), and three 
produced little or no significant effect. Nonetheless, GFP reconstitution across synaptic partners 
(GRASP) revealed that neurons within this population make contacts with both sweet and bitter 
GRNs, suggesting a role in taste processing. The results presented here demonstrate the 
feasibility of using the STROBE to identify novel candidate taste and feeding neurons, and 
provide a resource of lines for finer-scale dissection in the future.  
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Materials and methods: 
 
Drosophila stocks and crosses. Fly stocks were raised on standard cornmeal-dextrose fly food 
at 25°C in 70% humidity. 20XUAS-IVS-CsChrimson.mVenus (BDSC, stock number: 55135) was 
used for optogenetic activation. See S1 for the full list of enhancer-GAL4 lines of the Janelia 
FlyLight Project (http://flweb.janelia.org/) that were used for the optogenetic activation screen. 
The following split-GAL4 lines were created by combining selected hemidrivers with R70C07-
p65.AD (stock 71122): SEZ1-GAL4 (R37H08-GAL4.DBD stock 68786); SEZ2-GAL4 (R53C05-
GAL4.DBD stock 69451); SEZ3-GAL4 (VT044519-GAL4.DBD stock 75123); SEZ4-GAL4 
(R38E08-GAL4.DBD stock 69427); and SEZ5-GAL4 (R10E08-GAL4.DBD stock 69792). For 
GRASP experiments we used: Gr5a-LexA::VP16, UAS-CD4::spGFP1-10, LexAop-
CD4::spGFP11, UAS-CD8::dsRed (Gordon and Scott 2009) and Gr66a-LexA::VP16 (Thistle et 
al. 2012).  
 
Fly preparation and STROBE experiments. Flies were maintained at 25°C in 70% humidity. 
Females (2-5 d after eclosion) were collected and allowed to recover in fresh vials containing 
standard medium for at least 1 d before being transferred to covered vials that contained 1 ml 
standard medium with either 1 mM of all-trans-retinal and 1% ethanol as a vehicle (retinal-fed 
group) or ethanol vehicle alone (non-retinal-fed controls) for 2 days. Flies were then starved for 
20-24 hrs in similar conditions, except the standard medium was replaced with 1% agar. As such, 
flies were maintained on either + or – all-trans-retinal diets throughout the 3 d that preceded 
testing. To promote food interaction during testing, flies were water-deprived for 1 hour.  
 
Both channels of the STROBE chambers were loaded with 4 μl of 1% agar for the activation 
screen. Some follow-up experiments were performed with 100 mM sucrose in 1% agar to further 
promote food interactions. To commence each experiment, the acquisition on the STROBE 
software was initiated before flies were individually placed in each arena via mouth aspiration. 
Experiments were continued for 1 hour and the preference indices were calculated as: 
(Interactions with Food 1 – Interactions with Food 2)/ (Interactions with Food 1 + Interactions 
with Food 2). The red LED is always associated to the left channel, with Food 1. Details of the 
STROBE system, including the design and programming were previously described (Musso et 
al. 2019). 
 
Immunohistochemistry. Brain immunohistochemistry was performed as previously described 
(Chu et al. 2014). To stain flies with the UAS-CsChrimson.mVenus transgene, the following 
primary antibodies were used: mouse anti-brp (1:50, Developmental Studies Hybridoma Bank 
#nc82) and rabbit anti-GFP (1:1000, Invitrogen), with secondary antibodies: goat anti-rabbit 
Alexa-488 (A11008, Invitrogen) and goat anti-mouse Alexa-546 (A11030, Invitrogen). For 
GRASP experiments, the following were used as primary antibodies: mouse anti-GFP (1:100, 
Sigma-Aldrich, G6539), rat anti-DN- cadherin (1:25, DSHB DNEX#8), and rabbit anti-DsRed 
(1:1000, Clontech #632496) with secondary antibodies: goat anti-mouse Alexa-488 (A11029, 
Invitrogen), goat anti-rat Alexa-568 (A11077, Invitrogen) and goat anti-rabbit Alexa-647 
(A21245, Invitrogen).  
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All images were acquired using a Leica SP5 II Confocal microscope. Images taken at a 
magnification of 25x were with a water immersion objective with a Z-stack step size of 1 μm, 
while at 63x were with oil immersion with a step size of 0.5 μm.  
 
Statistics and data exclusion. The STROBE sometimes records very small or very large 
interaction numbers due to technical malfunctions. To account for this, trials from individual 
flies were removed under three conditions: (i) if no interactions were recorded from the light-
triggering channel; (ii) if fewer than five interactions were recorded on the non-light-triggering 
channel; (iii) if the number of interactions was more than 2.68 standard deviations from the 
mean. The rationale for (i) and (ii) is that very aversive neurons can produce few interactions on 
the light-triggering channel, but flies will generally record more than five interactions on the 
other channel in a functional trial.  
 
Statistical tests were performed using Graphpad Prism 6. T-tests were used to compare 
experimental (retinal fed) to control (same genotype not fed retinal). The purpose of these 
statistics is to evaluate the significance of effects within individual genotypes for the purposes of 
selecting lines for follow-up, rather than to minimize the overall false positive rate. Therefore, no 
correction was applied when combining the different genotypes in the summary graph shown in 
Figure 1. 
 
Data and reagent availability. All raw numerical data is available for download in 
supplemental files. Reagents are available upon request. 
 
 
Results & Discussion:  
 
Optogenetic screening of driver lines with the STROBE  
The Janelia FlyLight Project has generated more than 8000 transgenic GAL4 lines, providing a 
vast resource for manipulating specific neurons in the fly brain (Pfeiffer et al. 2008; Jenett et al. 
2012). We selected 122 GAL4 driver lines from the collection based on the following criteria: 
having relatively sparse labeling, having split-GAL4 versions available, and labeling neurons 
that have not yet been implicated in taste. Importantly, the first two criteria predetermine the 
feasibility of further neural population refinement since sparseness allows the systematic 
selection of different neuron populations to isolate via split-GAL4 combinations. Flies 
expressing CsChrimson under control of the selected GAL4 drivers were fed with all-trans-
retinal 3 days prior to the experiment to make CsChrimson functional, whereas control flies of 
the same genotype were not fed all-trans-retinal. Flies were individually mouth-aspirated into 
STROBE arenas containing two choices of identical plain agar (1%), where interactions with one 
of the choices triggers a red LED light to excite neurons with functional CsChrimson (Figure 
1A). Flies that choose both options equally would have a near-0 preference index (PI), while 
flies that interacted relatively more or less with the light-paired option are represented by 
positive and negative PIs, respectively. 
 
Our screen identified six GAL4 lines that produced a significantly positive preference in the 
STROBE compared to their matched isogenetic non-retinal controls, and 35 lines that produced a 
significantly negative preference (Figure 1B). Since food interactions measured in the STROBE 
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correlate with food consumption (Itskov et al. 2014; Musso et al. 2019), we can interpret these 
lines as containing neurons that acutely impact feeding behavior. Notably, there are examples 
where a significant difference from controls was observed, despite an absolute preference near 
zero. This is because each line was compared to its own set of controls, and there are cases where 
the control group displayed a preference that deviated from neutrality, despite the fact that 
pooling all the controls revealed the expected preference near zero (Figure 1B). The difference 
between experimental and control preferences for each line is displayed in Figure 1C. We also 
identified lines that produced a change in total sip number across both food choices, which may 
or may not be associated with a change in preference (Figure 1D). These lines are good 
candidates for containing neurons that exert persistent modulation of feeding that lasts beyond 
the time period of individual feeding events and therefore affects interactions with the non-light-
triggering food as well. Detailed data for each line, including expression, time curves and 
interaction numbers for each replicate is presented in graphical form (File S1) and raw data is 
available for download (Files S2 and S3) in the supplementary materials. 
 
By pitting the choice of agar against agar paired with neuronal activation, we were able to 
efficiently identify driver lines labeling neurons that impact feeding in either a positive or 
negative direction. One question is why we observed many more lines producing a negative 
feeding preference. We speculate that this is because there are many ways to decrease feeding – 
paralysis, inducing a behavior that interrupts feeding, or producing any kind of negative percept. 
One the other hand, we expect effects that increase feeding to be relatively more specific to taste 
or feeding themselves.  
  
Subsets of the R70C07-GAL4 neuron population drive opposing feeding behaviors 
We identified R70C07-GAL4 to be a driver line of interest, as it showed the strongest feeding 
aversion upon neuronal activation (Figure 1B). Immunofluorescence of brains and ventral nerve 
cords (VNCs) from R70C07-GAL4>CsChrimson flies revealed a prominent set of 15 strongly 
labelled cell bodies on each side of the SEZ, with dense arborization across the medial and 
lateral SEZ (Figure 2A). Weaker and sparser projections were also observed in the antennal 
lobes and superior medial protocerebrum. Despite the absence of labellar and pharyngeal taste 
projections in this driver, stereotypical leg GRN projections were observed in the SEZ, as well as 
weak VNC processes, which could be contributing to the aversive feeding behavior observed in 
the STROBE (Stocker 1994). We retested R70C07>CsChrimson flies in the STROBE with the 
addition of 100 mM sucrose to both 1% agar options, which we have previously shown to 
enhance negative effects by increasing overall interaction numbers (Musso et al. 2019). This 
revealed intense aversion to the light-triggering side reminiscent of bitter GRN activation in the 
STROBE (Figure 2B,C)(Jaeger et al. 2018; Musso et al. 2019). 
 
To identify the specific neurons involved in producing feeding aversion, split-GAL4 lines (Luan 
et al.; Tirian and Dickson 2017; Dionne et al. 2018) were created by combining the R70C07-
p65.AD hemidriver with various GAL4 DNA binding domain (DBD) hemidrivers that were 
selected based on putative expression in the SEZ neuron population (Figures 2 and 3). Leg 
projections and most VNC projections were successfully eliminated in R70C07-p65.AD; 
R37H08-GAL4.DBD (combination called SEZ1-GAL4) and R70C07- p65.AD; R53C05-
GAL4.DBD (SEZ2-GAL4)(Figure 2D,G). Additionally, this intersectional refinement reduced the 
number of SEZ neurons from 15 per side in the original R70C07-GAL4 driver to subsets of 3 and 
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7 in SEZ1-GAL4 and SEZ2-GAL4, respectively. Light-activation of SEZ1>CsChrimson flies in 
the STROBE inhibited feeding similar to R70C07-GAL4 (Figure 2E,F). The magnitude was 
slightly reduced, which could be explained by the elimination of either the leg inputs or subsets 
of SEZ neurons. Surprisingly, light-activation of SEZ2-GAL4 produced the opposite effect by 
strongly promoting feeding (Figure H,I). We also identified one split-GAL4 combination (SEZ3-
GAL4) that produced mild but significant feeding inhibition, and two (SEZ4-GAL4, and SEZ5-
GAL4) that labeled subsets of the R70C07 SEZ neurons but produced no significant behavioral 
effect in the STROBE, although both trended in the negative direction (Figure 3).  
 
There are two possible broad explanations for the phenotypes observed following split-GAL4 
refinement. First, it is possible that the R70C07 SEZ population comprises multiple neuron types 
with different behavioral effects. Perhaps SEZ1-GAL4 isolated a predominantly negative set, 
while SEZ2-GAL4 isolated a subset that was predominantly positive. This theory can be extended 
to suggest that the three split-GAL4 lines producing little or no effect labeled both positive and 
negative SEZ neurons that effectively cancelled each other out. The second possibility is that 
neurons outside the SEZ population affected preference in one or more of the split-GAL4 
populations. Additional split-GAL4 lines that completely eliminate all expression outside the 
SEZ would be required to tease apart these possibilities. It is notable that both SEZ1-GAL4 and 
SEZ2-GAL4 labeled 1-2 neurons that were not clearly visible in the original R70C07 driver. 
Whether this reflects different relative expression levels or differences between R70C07-GAL4 
and R70C07-p65.AD is unclear. 
 
Two distinct neuronal clusters make up the R70C07 SEZ population  
Closer examination of R70C07-GAL4 revealed that the SEZ cluster is actually composed of two 
distinct clusters. One cluster of eight neurons on each side arborize medially and laterally within 
the SEZ. The other cluster is comprised of seven neurons with more anterior cell bodies and 
processes that project close to the antennal nerve into the posterior SEZ, where the arbors remain 
mostly lateral (Figure 4A). SEZ1-, SEZ2-, SEZ4-, and SEZ5-GAL4 all label neurons from within 
the first cluster, while SEZ3-GAL4 labels all seven of the neurons in the second cluster.  (Figure 
4B-D). Based on the mild phenotype from SEZ3-GAL4 activation we suspect that the neurons in 
the more posterior-projecting cluster are not the primary drivers of R70C07-mediated feeding 
inhibition. However, we cannot rule out the possibility that lower expression levels in SEZ3-
GAL4 also contribute to its lesser effect.  
 
Bitter and sweet sensory neurons GRASP with lateral SEZ neurons  
We next wondered whether insight into the opposing behavioral effects of SEZ1-GAL4 and 
SEZ2-GAL4 could be gleaned from examining the synaptic inputs to these neurons. Thus, we 
used GFP-reconstitution across synaptic partners (GRASP) to test for contacts with sweet and 
bitter GRNs. One half of the split-GFP reporter (lexAop-spGFP11) was targeted to either the 
bitter- or sweet-sensitive GRNs using Gr66a-LexA or Gr5a-LexA as a driver; and the other half 
of the split-GFP reporter (UAS-spGFP1-10) was targeted to the lateral SEZ neurons with either 
SEZ1- (Figure 5A-D) or SEZ2-GAL4 (Figure 5E-H). Unexpectedly, bitter and sweet GRASP 
signals were detected for both split-GAL4 lines, suggesting that bitter and sweet GRNs interact 
with at least one of the neurons labelled by each line. Notably, since Gr5a is not expressed in the 
pharyngeal sense organs, the strong GRASP signal with Gr5a GRNs suggests an interaction with 
inputs from the labellum, emphasizing the distinction between these neurons and the previously 
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characterized and morphologically similar IN1 neurons (ref). Further analysis with calcium 
imaging will be necessary to determine the functional interactions between GRNs and the SEZ 
neurons. 
 
Although the evidence that the R70C07 SEZ represent bona fide second-order taste neurons is 
incomplete, neurons that appear very similar were previously identified as postsynaptic to sweet 
GRNs using the trans-synaptic tracer trans-Tango (Talay et al. 2017). The split-GAL4 lines 
identified in our study should greatly aid in more fully characterizing the functional properties of 
these neurons, including their inputs and post-synaptic targets. We also anticipate that the other 
lines identified in our behavioral screen will serve as useful starting points in the long-term 
prospect of more fully understanding the neural control of feeding behavior in flies. 
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Figure 1. Summary of STROBE screen results. 
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(A) Experimental setup: each STROBE arena contains two channels containing 1% agar, and 
only interactions with one of the channels triggers red light activation. (B) Mean preference 
indices of GAL4 driver lines that were tested in the STROBE. A positive PI indicates preference 
for the light-triggering food, while a negative PI indicates avoidance of the light-triggering food. 
Color code indicates significance compared to genetically identical, non-retinal-fed controls 
(control preferences for each line not shown): green bars denote significantly more positive 
preference than controls and red bars denote lines that generated a significantly more negative 
preference than controls; the dark grey bar shows the aggregate responses of the non-retinal 
controls across all experiments. Values represent mean ± SEM. n = 8–37, except for the 
aggregate control where n = 1978 (this aggregate control was not used for any statistical testing). 
(C) Difference in preference index between experimental and control groups for each line. Bars 
are color coded as in (B). (D) Difference in average total interaction numbers across both 
channels (light and non-light) for each line. Color code indicates significance compared to non-
retinal controls for each line: green bars denote significantly elevated interactions compared to 
controls; red bars indicate significantly suppressed interactions compared to controls. Detailed 
results for all lines are depicted graphically in File S1 and raw data is presented in Files S2 and 
S3. 
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Figure 2. Subsets of the R70C07-GAL4 population drive opposing feeding behaviors 
(A-C) R70C07-GAL4, UAS-CsChrimson.mVenus expression in the brain and VNC (A), 
preference index in the STROBE containing 100 mM sucrose in 1% agar in both channels (B), 
and individual interaction numbers from the same experiment (C). (D-F) SEZ1-GAL4 expression 
(D), preference index in the STROBE containing 100 mM sucrose in 1% agar in both channels 
(E), and interaction numbers (F). (G-I) SEZ2-GAL4 expression (G), preference index in the 
STROBE containing 100 mM sucrose in 1% agar in both channels (H), and interaction numbers 
(I). For immunofluorescence (A,D,G) brains and VNC are stained for GFP (green) and nc82 
(magenta). Scale bars, 100 µm. For preference indices (B,E,H), yellow bars represent the retinal 
fed group and grey bars represent the no retinal controls of the same genotype. Values are mean 
+/- SEM. For individual interaction numbers (C,F,I), lines connect values for individual flies. n = 
21-32. Statistical tests: t-test, ***p < 0.001. Raw data is available in File S4. 
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Figure 3. Not all R70C07-GAL4 SEZ neurons are sufficient to alter feeding. 
(A-C) SEZ3-GAL4 expression in the brain and VNC (A), preference index in the STROBE 
containing 100 mM sucrose in 1% agar in both channels (B), and individual interaction numbers 
from the same experiment (C). (D-F) SEZ4-GAL4 expression (D), preference index in the 
STROBE containing 100 mM sucrose in 1% agar in both channels (E), and interaction numbers 
(F). (G-I) SEZ5-GAL4 expression (G), preference index in the STROBE containing 100 mM 
sucrose in 1% agar in both channels (H), and interaction numbers (I). For immunofluorescence 
(A,D,G) brains and VNC are stained for GFP (green) and nc82 (magenta). Scale bars, 100 µm. 
For preference indices (B,E,H), yellow bars represent the retinal fed group and grey bars 
represent the no retinal controls of the same genotype. Values are mean +/- SEM. For individual 
interaction numbers (C,F,I), lines connect values for individual flies. n = 15-20. Statistical tests: 
t-test, *p < 0.05. Raw data is available in File S4. 
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Figure 4. Two distinct neuronal clusters make up the R70C07 SEZ population. 
Immunofluorescent detection of UAS-CsChrimson.mVenus (green) driven by R70C07-GAL4 (A), 
SEZ1-GAL4 (B), SEZ2-GAL4 (C), and SEZ3-GAL4 (D) in the SEZ with schematics on the right 
showing the number of neurons labelled by each split-GAL4. SEZ1-GAL4 and SEZ2-GAL4 label  
SEZ neurons that follow the same tract (red arrowhead). SEZ3-GAL4 labels a distinct group of 
SEZ neurons that project more ventrally near the the labellar nerve tracts (white arrows). 
Counterstain is nc82 (magenta). All scale bar is 50 µm. 
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Figure 5. The SEZ1-GAL4 and SEZ2-GAL4 populations both contact sweet and bitter 
GRNs. 
(A-D) GRASP between SEZ1-GAL4 and sweet (A,B) or bitter (C,D) GRNs. (E-H) GRASP 
between SEZ2-GAL4 and sweet (E,F) or bitter (G,H) GRNs. Antibodies: anti-DN-Cadherin for 
counterstain (blue), anti-DsRed for GAL4 expression (magenta), anti-GFP used for GRASP 
signal (green). Scale bar is 50 µm. 
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Supplementary materials: 
 
File S1. Full screen dataset in graphical form. For each line tested in the screen, the following 
data is displayed: genotype and expression pattern taken from FlyLight database (Jenett et al. 
2012); endpoint and time course values for the preference index; interaction numbers displayed 
for individual flies across each channel, as means for each channel, as pooled data across both 
channels, and as cumulative average over time. For all graphs, yellow indicates the experimental 
(retinal fed) group and grey indicates the control (no retinal). Bar graphs and time curves 
represent mean +/- SEM. Red shading denotes light-triggering channel for preference indices, 
time curves, and interaction numbers. For total interaction numbers, the data from individual 
flies are connected by lines. A key to interpreting the data is presented on the first page. 
 
File S2. Raw interaction numbers from screen. Each tab holds the data for an individual 
genotype. Raw interaction counts are shown from the endpoint of each experiment (summary 
table) and as cumulative counts over time for each replicate. 
 
File S3. Full dataset preference indices from screen. Each tab holds the data for an individual 
genotype. Preference indices are shown from the endpoint of each experiment (summary table) 
and as cumulative preference over time for each replicate. 
 
File S4. Raw data for figures 2 and 3. 
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