








 

 
Figure 5. Interpreting the deteRNNt model. ��(��A��) 2-dimensional tSNE of the pre-logit hidden layer of deteRNNt for the validation 
set. Colored by probability assigned to the true lab. An interactive 3-d visualization is available at 
http://papers.altlabs.tech/visualize-hiddens.html��.  (��B��) Scanning mask of 10 N’s across linear sequence (x-axis) of Chris Voigt lab 
plasmid pCI-YFP, (Genbank JQ394803.1) on the brink of predicting Baojun Wang Lab vs. Voigt Lab. At each x position is shown the 
probabilities given by softmax on the mean of the logits from all the sequences which include that position masked with N. Plasmid 
schematic is shown below. (��C��) The scanning 10-N mask analysis from (B) applied to Ed Boyden Lab Plasmid 
pAAV-Syn-SomArchon (Addgene #126941). The second-most likely lab predicted by deteRNNt on this plasmid is shown in red, with 
plasmid schematic above. (��D��) Predicting lab-of-origin from subsequences of varying lengths K scanned across the linear sequence. At 
each x the probabilities are given by softmax of the mean of logits from subsequences which include that position in the window. 
Color indicates subsequence K-mer length. Linear sequence position is given by the x-axis and shared with (B) with plasmid 
schematic above. (��E��) Custom designed gene-drive plasmid derived from an Omar Akbari ��Aedes aegypti ��germline Cas9 gene drive 
backbone (AAEL010097-Cas9, Addgene #100707) carrying a payload of Cas9-dsRed, a guide cassette, and SomArchon from the 
Boyden plasmid pAAV-Syn-SomArchon from (C), with scanning subsequence window as in (D) and K=1024. Predicted probabilities 
for Omar Akbari (red) and Boyden (blue) are shown, along with the correspondingly colored plasmid schematic. All unlabelled 
regions are from the Akbari vector. The right and left homology arms shown in grey were introduced by our design and come from 
neither lab’s material, and the U6a and U6c were from Akbari lab material (Addgene #117221 and #117223, respectively) but 
introduced into the backbone by our design (grey outlined in red). 
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Discussion 
 
Together, these results suggest a practical and accurate toolkit for genetic engineering forensics is within reach. 
We achieve 70% accuracy on lab-of-origin prediction, a problem previously thought challenging if not 
intractable. Our work has the advantages of using biologically motivated, motif-based sequence models, and 
leveraging phenotype information to both improve accuracy and interface with laboratory infrastructure. 
Furthermore, with model calibration we provide the first framework for weighing the predictions of attribution 
forensics models against other evidence. Finally, we establish new attribution tasks — nation of origin and 
ancestor lab prediction— which promise to aid in bioweapons deterrence and open the possibility of more 
creative attribution technologies. While we focus here on security, attribution has wide implications. For 
example, attribution could promote better lab safety by tracing accidental release​43​. Additionally, we discovered 
an interesting, albeit anecdotal, power-law like skew in Addgene plasmid deposits, which may reflect the 
particular dynamics of this unique resource, but is also consonant with prior work on scale-free patterns of 
scientific influence​44–46​. We believe that a deeper understanding of the biotechnology enterprise will continue to 
be a corollary of attribution research, and perhaps more importantly, that computational characterization tools, 
like ancestor lab prediction, will directly promote openness in science, for example by increasing transparency 
in the acknowledgement of sequence contributions from other labs, and establishing a mechanism by which 
community stakeholders and policy makers can probe the research process. 
 
Our analysis has limitations. Machine learning depends on high-quality datasets and the data required to train 
attribution models is both diverse and scenario dependent.  That said, we believe it is the responsibility of the 
biotechnology community to develop forensic attribution techniques proactively, and while the Addgene 
attribution data provides a reasonable model scenario, future work should look to build larger and more 
balanced datasets, validate algorithms on other categories of engineered sequences like whole viral and bacterial 
genomes, and analyze their robustness to both obfuscation efforts and dataset shifts, especially considering new 
methods for robust calibration​47​. We further note that 70% lab-of-origin attribution accuracy is not conclusive 
on its own, and any real investigation with tools at this level of accuracy would do well to almost entirely rely 
on human expertise.   However, combined with traditional investigation, microbial forensics​3,4​, isotopic ratio 
analysis​48–50​, evolutionary tracing​51​, sequence watermarking​51,52​, and a collection of machine learning tools 
targeting nation states, ancestry lineages, and other angles, our results suggest that a powerful integrated 
approach can, with more development, amplify human expertise with practically-grounded forensic algorithms. 
In the meantime, developing automated attribution methods will help scale efforts to understand, characterize 
and study the rapidly expanding footprint of biotechnology on society, and may in doing so promote increased 
transparency and accountability to the communities affected by this work.  
 
We see our results as the first step towards this integrated approach, yet more work is needed. The 
bioengineering, deep learning, and policy communities will need to creatively address multidisciplinary 
problems within genetic engineering attribution. We are hopeful that the gap between these fields can be closed 
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so that tools from deep learning and synthetic biology are proactively aimed at essential problems of responsible 
innovation. 
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Methods 
Graphing and visualizations 
All graphs and plots were created in python using a combination of the seaborn (​https://seaborn.pydata.org/​), 
matplotlib (​https://matplotlib.org/3.1.0/index.html​), plotly (for geographic visualization and interactive 3d 
hidden state visualization: ​https://plot.ly/​) and networkx (​https://networkx.github.io/ ​).  
 
Processing the Addgene Dataset 
The dataset of deposited plasmid sequences and phenotype information was used with permission from 
Addgene, Inc.  
 
Scientists using Addgene may upload full or partial sequences along with metadata such as growth temperature, 
antibiotic resistance, vector backbone, vector manufacturer, host organism, and more. For quality control, 
Addgene sequences portions of deposited plasmids, and in some cases sequences entire constructs. As such, 
plasmid entries featured sequences categorized as addgene-full (22,937), depositor-full (32,669), 
addgene-partial (56,978), depositor-partial (25,654). When more than one category was listed we prioritized 
plasmids in the order listed above. When there was more than one entry for a category, the longest sequence 
was chosen. If more than one partial sequence was present, we concatenated them into a single sequence. The 
final numbers by sequence category were addgene-full (22937), depositor-full (28465), addgene-partial 
(27185), and depositor-partial (3247). Plasmids were dropped if they did not have any registered sequences. 
Any Us were changed to Ts and letters other than A, T, G, C, or N were changed to Ns. The resulting dataset 
contained 81834 plasmids, from 3751 labs. 
 
The raw dataset contains as many as 18 metadata fields from Addgene. In the final dataset we kept only host 
organism species, growth temperature, bacterial resistance, selectable markers, growth strain, and copy number. 
These fields were selected because they are phenotypic characteristics we expect to be easy to measure in the 
scenario considered here, where a sample of the organism is available for sequencing and wet-lab 
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experimentation. For more information on what these phenotyping assays might look like, see Supplementary 
Table 1.  
 
Metadata fields on Addgene are not standardized and have many irregularities as a result. To deal with the lack 
of standardization, our high-level approach was to default to conservatism in assigning a given plasmid some 
phenotype label. We used an “other” category for each field to avoid noisy or infrequent labels, in particular we 
assigned any label that made up less than 1% of all labels in some field to “other”. Additionally, some of the 
fields had multiple labels e.g. the species field may list multiple host organisms: “H. sapiens (human), M. 
musculus (mouse), R. norvegicus (rat)”. These fields were one-hot encoded, allowing multiple columns to take 
on positive values if multiple labels were present. If the field contained no high frequency labels (more than 
1%) and was not missing, the “other” column was set to 1. A small number of plasmids (117) had sequences but 
no metadata. While far from perfect, our choice to use the default category of “other” to avoid introducing noisy 
information should prevent spurious features from being introduced by including phenotypic metadata. Given 
the performance boost achieved by including even this very minimal phenotype information, we are enthusiastic 
about future efforts to collate more standardized, expressive and descriptive phenotype information. 
 
Inferring Plasmid Lineage Networks 
 
Many plasmids in the Addgene database reference other plasmids used in their construction. Within the 
metadata of each plasmid, we searched for references to other sequences in the Addgene repository, either by 
name or by their unique Addgene identifier. Plasmid names were unique except for 1519 plasmids that had 
names associated with more than one Addgene ID (331 of these also had duplicate sequences). However, none 
of these plasmids with duplicate names were referenced by name by some other plasmid. We considered a 
plasmid reference in one of the following metadata fields to be a valid reference: ​A portion of this plasmid was 
derived from a plasmid made by, Vector backbone, Backbone manufacturer, ​and ​Modifications to backbone ​. 
Self-references were not counted, and in the rare case where two plasmids referred to each other, the 
descendent/ancestor relationship was picked at random. 
 
We were interested in discovering networks of plasmids with shared ancestors— collectively we may call this 
subset of plasmids a lineage network​. ​The problem of assigning plasmids to their associated network reduces to 
the problem of finding a node’s connected component from an adjacency list of a directed, potentially cyclic, 
graph. The algorithm proceeded iteratively: in each round we picked some unvisited node. We then performed 
breadth-first search (plasmids were allowed to have multiple ancestors) and assigned all nodes visited in that 
round to a lineage network. In the case where a visited node pointed to a node that was already a member of 
some network, the two networks were merged. Keeping track of nodes visited in each round prevented the 
formation of cycles. We verified this result by reversing our adjacency list and running the same algorithm, 
equivalent to traversing by descendents instead of ancestors.  
 
Train-Test-Validation Split 
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To rigorously evaluate the performance of a predictive algorithm, strong boundaries between the datasets used 
for training and evaluation are needed to prevent overfitting. We follow best practices by pre-splitting the 
lab-of-origin Addgene data into an 80% training set, ~10% validation set for model selection, and ~10% test set 
held out for final model evaluation. In our vocabulary, the training set can be used for any optimization, 
including fitting an arbitrarily complex model. The validation set may only be used to measure the performance 
of an already trained model, e.g. to select architecture or hyperparameters; no direct training. Finally, the test set 
may only be used after analysis is completed, the architecture and hyperparameters are finalized, as a measure 
of generalization performance. We addressed two additional considerations with the split: 

1. A large number of labs only deposited one or a few sequences. This is insufficient data to either train a 
model to predict that lab class or reasonably measure generalization error. 

2. Like many biological sequence datasets, the Addgene data are not independent and identically 
distributed because many plasmids are derived from others in the dataset, potentially creating biased 
accuracy measures due to overperformance on related plasmids used for both training and evaluation. 

 
To handle the first, we choose to pool plasmids with fewer than 10 examples into an auxiliary category called 
“Unknown Engineered”, and additionally stratify the split to ensure that every lab has at least 3 plasmids in the 
test set.  
 
For the second, we inferred lineage networks (see above). We stratified the split such that multi-lab networks 
were not split into multiple sets. In other words, each lineage was assigned either to the training, validation, or 
test set as a group, not divided between them.  
 
We used the GroupShuffleSplit function in python with sklearn (​http://scikit-learn.org/stable/​) to randomly split 
given these constraints. The final split had 63,017 training points, 7,466 validation points, and 11,351 test 
points. The larger test set is a direct result of enforcing ⅓ of rare lab’s plasmids are split there for generalization 
measurement. We note that, because model selection is occurring on the validation set which has no 
representation of a number of rare labs, there is a built-in distributional shift that makes generalizing to our test 
set particularly challenging. However, we believe that this is appropriate to the problem setting— attribution 
algorithms should be penalized if they cannot detect rare labs, because in a deployment scenario the responsible 
lab may be unexpected. A visualization of this phenomena, and the lab distribution after splitting can be found 
in Supplementary Fig. 4. 
 
We confirmed that this cleaning and splitting procedure did not dramatically change the difficulty of the task 
from prior work by reproducing the model architecture, hyperparameters, and training procedure of a model 
with known performance on a published dataset (see Baselines in Methods)​23​.  
 
Byte Pair Encoding 
The sequences from the training set were formatted as a newline separated file for Byte Pair Encoding 
inference. Inference was performed in python on Amazon Web Services (AWS) with the sentencepiece package 
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( ​https://github.com/google/sentencepiece​) using both the BPE and Unigram​53​ algorithms, with vocabulary sizes 
in [100, 1000, 5000, 10000], no start or end token, and full representation of all characters. The resulting model 
and vocabulary files were saved for model training, which used sentencepiece to tokenize batches of sequence 
on the fly during training. For the Unigram model, which is probabilistic, we sampled from the top 10 most 
likely sequence configurations.  
 
For the visualization and interpretation of the 1000-token BPE vocabulary ultimately selected by our search 
algorithm, we took the vocabulary produced by sentencepiece, which has a list of tokens in order of merging 
(which is based on their frequency), and plotted this ordering vs. the length of the detected motif. We selected 3 
example points visually for length at a given ranking. These sequence motifs were interrogated with BLAST​26 
with the NCBI web tool, and additionally with BLAST tool on the iGEM Registry of Standard Biological Parts 
( ​http://parts.igem.org/sequencing/index.cgi​). For each motif, a collection of results were compared with their 
plasmid maps to place the motif sequences within a plasmid component. We found, as numbered in the figure, 
motif 1 repeated twice in the SV40 promoter, motif 2 repeated twice in the CMV promoter, and motif 3 
occuring slightly downstream of the pMB1 origin of replication. 
 
Training deep Recurrent Neural Networks 
We consider a family of models based on the LSTM recurrent neural network and a DNA motif-base encoding. 
We formulated an architecture and hyperparameter search space based on prior experience with these models. 
In particular, we searched over categorical options of learning rate, batch size, bidirectionality, LSTM hidden 
size, LSTM number of layers, number of fully connected layers, extent of dropout, class of activations, 
maximum length of the input sequence and word embedding dimension. We further searched over parameters 
of the motif-based encoding, including whether it was Unigram or BPE based and the vocabulary size. 
Configurations from this categorical search space were sampled and evaluated by the Asynchronous 
Hyperband​54​ algorithm, which evaluates a population of configurations in tandem and halts poor performing 
models periodically. Thus, computational resources are more efficiently allocated to the better performing 
models at each step in training. Our LSTM architecture was optimized with Adam using categorical 
cross-entropy loss in PyTorch (​https://pytorch.org/ ​) and hyperparameter tuning with Asynchronous Hyperband 
used ray tune (​https://ray.readthedocs.io/en/latest/tune.html ​).  
 
 In early exploratory experiments, we found that including metadata in the initial training process caused a rapid 
increase but quick plateau of the Hyperband population. We noticed that these models usually had small LSTM 
components, suggesting that they were ignoring sequence information. This led us to hypothesize that adding 
metadata early in training led to an attractive local minima for the tuning process which neglected sequence, 
exploiting the fact that Hyperband penalizes slow-improving algorithms. 
 
We therefore adopted a progressive training policy as follows. First, 250 configurations of the search space 
described above were evaluated with ray tune (Supplementary Fig. 2-3) over the course of ~1 week on an AWS 
p2.8xlarge machine with K80 GPUs. The best performing model was selected for a stable and steadily 
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decreasing loss curve (Supplementary Fig. 3) after 300 Hyperband steps, each of 300 weight updates (~90,000 
updates total). This model configuration was saved and trained from scratch to ~200,000 weight updates, 
selected based on an early stopping heuristic on the validation loss. Next, this model was truncated to the 
pre-logit layer, and metadata was concatenated with the output of this sequence only model (Supplementary 
Fig. 1), followed by one hidden layer and the logit layer. This was further trained, but with the LSTM sequence 
model frozen until validation loss plateaued. Finally, the full model was jointly trained until validation loss 
plateaued. The effect of this approach was to prevent the model converging on a metadata-focused local 
optimum without overfitting on the training set (which was facilitated by training only components of the model 
at a time). 
 
After fully training and finalizing results using our original random split (see above), 3 additional random splits 
were performed and training was repeated as before using different random seeds but the same hyperparameters 
as were found in the first hyperband search. We found that even without hyperparameter tuning on each newly 
split dataset, the results for the full and sequence-only deteRNNt models were consistent with our earlier results 
(Supplementary Fig. 5). 
 
Calibration analysis 
We followed the methodology of Guo et al (2017)​33​. Prediction on the test set were binned into 15 bins, ​B​m​.​ The 
difference between the confidence of a model and the accuracy of the resulting model’s predictions, termed 
calibration can be measured by two metrics, Expected Calibration Error (ECE) measuring the average 
difference between prediction confidence and ground truth accuracy, and Maximum Calibration Error (MCE) 
measuring the maximum thereof. They are defined below (n is the number of samples).  
 

 
 
 

 
 
Temperature Scaling 
Temperature scaling adjusts the logits (pre-softmax output) of a multiclass classifier) by dividing them by a 
single scalar value called the temperature. For a categorical prediction ​q​, logits ​z ​and temperature T, we have: 
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The temperature is learned on the validation set after the model is fully trained. We used PyTorch and gradient 
descent with the Adam optimizer to fit the temperature value. Subsequently, all of the logits predicted for the 
test set by the original model were divided by the temperature and softmaxed to get confidences as shown in 
Fig. 2 (right). Because the maximum of the softmaxed vector is mathematically equivalent to the maximum of a 
softmax on scaled logits, we concluded that the slight difference in accuracy of the calibrated model was due to 
floating-point errors. 
 
Random Forest models 
 
We used scikit-learn package (​https://scikit-learn.org/stable/index.html​) implementation of Random Forest 
Regressor. Unless otherwise specified, we used 1000 estimators with 0.5 as the ​maximum proportion of features 
to look at while searching for the best split and with class weights inversely proportional to class frequency​.  
 
For Random Forest analysis we represented the sequences as frequencies of 1,2,3 and 4-grams. We constructed 
the ngram vocabulary using the training set, and then only used the frequencies of ngrams included in the 
vocabulary to construct features (ngram frequencies) for the validation and test sets. Where specified, we 
concatenated one-hot-encoded metadata (phenotypic information) to these ngram frequencies. We transformed 
the ngrams features using TF-IDF weighting​55​ before using them for the Random Forest models. 
 
 
Nation-of-origin data 
Addgene has lab country information for many depositing labs (​https://www.addgene.org/browse/pi/​). For those 
missing, publication links were followed to affiliation addresses, and the country of the lab was manually read 
off the address and cross-checked with a web search. When country information was missing from a lab, if there 
was conflicting information, and for very rare countries, these classes were dropped and all the corresponding 
plasmids for that lab were dropped from all three training split sets. No reshuffling of the train, validation and 
test data occured. 
 
Lineage network analysis 
Lab, country, and ancestry-descendent linkage counts were obtained from the training set and plotted as 
described above, rank-ordering where specified. Networks were analyzed for size and graph diameter with 
NetworkX. Lab lineages were obtained from plasmid lineage data by considering the presence of a link from 
plasmid X from lab A to plasmid Y from Lab B to be a directed edge from Lab A to B. Parallel edges were not 
allowed and weight was not considered. Self edges were disregarded. The country lineage network was 
constructed from the lab lineage network, by considering a connection between lab X in country A and lab Y in 
country B to be a directed edge between country A and B. This time, weights were given as the number of 
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lab-to-lab connections. Parallel edges were not allowed, but self-edges were. For simplicity, the arrows of the 
directed graph were not shown in the NetworkX visualization. A version of Google PageRank​56​ was computed 
on the directed, weighted graph with NetworkX. 
 
Ancestor lab prediction 
Due to the earlier biased train-validation-test split which deliberately segregated lineage networks into one of 
the three sets to minimize ancestry relationships that could lead to overfitting, we reconsidered the dataset for 
ancestor lab prediction. By definition, an ancestor plasmid and all its descendents will always be in the same 
set. So, if the ancestor is in the validation set, none of its descendants are available for training. 
 
Therefore, we first parsed the most recent ancestor for each plasmid from the lineage data and assigned each 
plasmid that ancestor’s lab. We then randomly 80-10-10 resplit the data. 
 
We recognize that there is some potential for meta-overfitting by performing this reshuffle, even though 
ancestor lab prediction is a unique task from any of the others done so far. However, as this analysis was using a 
simple model intending to show tractability rather than peak performance, we decided enabling the right 
train-test-split was worth the chance. 
 
Interpreting the deteRNNt model  
To visualize the hidden states of the model, we first performed inference of the deteRNNt model on the 
validation set and extracted the activations of the last hidden layer (just prior to the layer which outputs logits). 
These hidden states were 1000-dimensional. To visualize them, we projected them into two and three 
dimensions using tSNE​39​ in scikit-learn with default hyperparameters. We colored each point by P(True Lab) as 
assigned by the model for that example. Note that throughout this section when we refer to model probabilities, 
we mean the probabilities given by the model after temperature scaling calibration has been applied. The three 
dimensional interactive plot was made using plotly and labelled with each plasmid’s true lab of origin.  
 
For the analyses of sequence motifs (Fig. 5 b-e) we use the deteRNNt sequence only-model as phenotype 
information was not available for all plasmids. For the scanning-N ablation analysis (Fig. b,c), we made all 
possible sequences with a window of 10 Ns inserted and performed standard deteRNNt inference to predict 
logits. We then generated per-position predicted logits by selecting all the sequences which include a given 
position as mutated to N, and averaging their logits together. We then apply softmax over each of these position 
logits to generate per-position predicted probabilities, which are indexed by the relevant labs to visualize.  
 
For the scanning subsequence analysis (Fig. 5 d-e) we made all possible subsequences of given length K and 
predicted logits for each, as above. Note that these are subsequences in isolation, as if they were sequences from 
a new plasmid, rather than padded with Ns or similar. For each position in the full sequence, we selected all the 
subsequences which include that position and averaged together their predicted logits, softmaxing to visualize 
probabilities as above.  
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We custom-designed a gene-drive vector using the Akbari germline-Cas9 plasmid AAEL010097-Cas9 
(Addgene #100707) as a baseline. We modified it by removing the eGFP sequence attached to Cas9 and 
replacing it with the dsRed1 sequence within the same plasmid (but removing the Opie2 promoter in the 
process). We then identified two Cas9 guide RNAs against the ​Aedes aegypti ​ ​AeAct-4​ gene​57​ (Genbank 
Accession Number: AY531223), designed to remove most of the coding region, that are predicted to have high 
activity using CHOPCHOP (​https://chopchop.cbu.uib.no ​) ​58​ . These guides were placed downstream of the 
Akbari identified AeU6a and AeU6c promoters (Addgene #117221 and #117223)​59​. We also included 
somArchon-GFP from pAAV-Syn-SomArchon (Addgene #126941, deposited by Ed Boyden’s group) as a 
non-Akbari derived sequence. The Cas9-dsRed1_guide cassette_somArchon-GFP payload was flanked by 
500bp homology arms (upstream of 5’ guide and downstream of 3’ guide). 
 
To analyze the results of our ablation and subsequence analyses we indexed out the positions in the sequence 
with the most extreme changes in predicted probability and manually examined these regions in Benchling. We 
performed automated annotation, used BLAST​60​, and searched various repositories for the highest-ranked 
fragments in order to identify restriction sites, primers sites and other features. 
 
Baselines 
The comparison with BLAST was performed using the blastn command line tool from NCBI​60​. At a high level, 
we can consider the BLAST baseline to be a nearest-neighbor algorithm, where the blast e-value is used to 
define neighbors in the training set. For each of the lab-of-origin and nation-of-origin prediction tasks, a fasta 
file of plasmid sequences from the training set was formatted as a BLAST database. Then, each test set was 
blasted against this database with an e-value threshold of 10. The resulting training set hits were sorted by 
e-value, from lowest to highest, and used to look up the training set labels for each sequence. For top 1 
accuracy, the lowest e-value sequence class was compared to be the true class. For top 10 accuracy, an example 
was marked correct if one of the labels of the lowest 10 e-value hits, after dropping duplicate hits to the same 
lab, corresponded to the correct test set label. Dropping duplicates ensured that the BLAST baseline was 
permitted up to 10 unique lab “guesses”, which is necessary because occasionally the top-k ranked sequence 
results all have the same lab label.  To perform the nation-of-origin and U.S. vs foreign comparison, the same 
blast results were filtered to drop the U.S. or binarized so the U.S. was the positive class, respectively. 
 
The comparison with the Convolutional Neural Network (CNN) method copied the architecture and 
hyperparameters reported in Nielsen & Voigt (2018)​23​. The model was implemented in PyTorch. We trained for 
100 epochs, as reported in previous work​23​, on an Nvidia K80 GPU using the Amazon Web Services cloud 
p2.xlarge instance.  Training converged on a validation score of 57.1% and appeared stable (Supplementary Fig. 
6). After training for this duration, we saved the model and evaluated performance on the held-out validation 
and test sets. Test-set performance was 50.2%, which was very near the previously reported accuracy of 48%​23​, 
leading us to conclude that this model’s performance was reproducible and robust to increases in both the 
number of labs and number of plasmids in our dataset compared to Nielsen & Voigt (2018) (827 vs. 1314 labs, 
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36,764 vs. 63,017 plasmids)​23​. In other words, this replication of the architecture, hyperparameters and training 
procedure of previous work with everything held constant to the best of our knowledge except the dataset, 
suggests that the effect of having more examples (typically associated with an easier task) and more labs to 
distinguish between (typically associated with a more difficult task) approximately cancel out, or perhaps net to 
a very weak (2%) difference in the difficulty of our dataset. 
 
In lab-of-origin, U.S. vs foreign, nation-of-origin, and ancestor lab prediction, we show comparisons with a 
baseline based on guessing the most abundant class, or classes (in the case of top 10 accuracy) from the training 
set. We also show the frequency of success based on uniformly guessing between the available labels (1/ 
number of categories). 
 
Supplementary Information 
 

Phenotype Description Example 
experiment to 
assay a sample 
organism 

Possible Values Number not 
missing 

Number unique 
values 

Bacterial 
Resistance(s) 

Antibiotic 
resistance of the 
plasmid used 
for selecting 
during bacterial 
growth and 
cloning. 

Expose the 
organism to 
concentration 
gradients of 
various 
antibiotics and 
measure 
growth. 

Ampicillin, 
Kanamycin, 
Spectinomycin, 
Chloramphenic
ol, Other  

67095 2189 

Copy Number Based on the 
Origin of 
Replication, the 
copy number is 
the number of 
plasmids per 
bacterial cell. 

Quantitative 
PCR priming on 
target plasmid 
compared to 
known copy 
number 

High, Low, 
Unknown 

28517 490 

Growth Strain The strain used 
to clone the 
plasmid. 

Various 
microbiological 
techniques; 
sequencing 16s 
and other 
markers 

Dh5alpha, NEB 
stable, top10, 
stbl3, xl1 blue, 
DH10b, ccdb 
Survival 

81717 200 
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Growth 
Temperature 

The temperature 
the plasmid 
should be 
grown at. 

Grow under 
temp. gradient 
and measure 
growth. 

30 C, 37 C, 
Other 

81717 91 

Selectable 
Markers 

For a plasmid 
used outside of 
the cloning 
organism, these 
markers allow 
non-bacterial 
selection. 

As in the 
antibiotic case, 
but with other 
selection 
conditions. 

Neomycin, 
Puromycin, 
Hygromycin, 
URA3, 
Blasticidin, 
Zeocin, Leu2, 
Trp1, His3, 
Other 

81717 3 

Species The species the 
plasmid is used 
in, after cloning. 

Various 
microbiological 
and taxonomic 
techniques; 
sequencing 16s 
and other 
markers 

Human, Fly, 
Mouse, 
Budding Yeast, 
Zebrafish, Rat, 
Mustard Weed, 
Nematode, 
Other 

81717 3 

 
Supplementary Table 1.​ Simple phenotypic information inferred from Addgene. Note that in the envisioned 
deployment scenario some of these characteristics may be unavailable or uniformative, for example the growth 
strain used for cloning is not available if you have a sample of the chassis orgamism instead of cloning strain. 
On the other hand, many additional and more informative phenotypic characterizations are possible, and could 
be incorporated into the model if a sufficiently large and representative dataset of measurements and 
lab-of-origin are assembled.  
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Supplementary Figure 1. ​Model architecture. (​A​) From left to right: a DNA sequence is Byte-Pair-Encoded to 
integers, embedded into a vector space, passed through a 2-layer bi-directional LSTM, to a 1000-d fully 
connected layer with dropout = .5, another fully connected layer which outputs 1314 dimensional logits, one for 
each class, which is softmaxed to produce a prediction vector summing to 1. (​B​) The LSTM. Input sequence is 
processed forward (F) and backward (B) by LSTM cells. The previous layer’s hidden states are concatenated, 
and as before both the forward and backward sequence are processed. The output is the concatenation of the 
final hidden state from forward and backward cells. (​C​) Mathematical definition of an LSTM cell. At each 
position along a sequence, the output of the cell is defined by the value of the input sequence (x​t​) and a recurrent 
relationship with the previous step, captured in a hidden state and cell state (​h​(t-1) ​ ​ ​c ​(t-1)​). Typically, ​i​t​, ​f​t​, ​g​t​,​ o ​t​, are 
called the input, forget, cell and output gates, respectively. For motivation and a full mathematical treatment, 
please see Hochreiter and Schmidhuber (1997)​61​. 
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Supplementary Figure 2. ​Accuracy curves of Asynchronous Hyperband hyperparameter search. Validation 
accuracy on the Y axis, and number of Hyperband steps on the X axis. The entire collection of variants (top) is 
compared to the selected model (bottom). 
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Supplementary Figure 3.​ Loss curves of Asynchronous Hyperband hyperparameter search. Validation set 
cross entropy loss on the Y axis, and number of Hyperband steps on the X axis. The entire collection of variants 
(top) is compared to the selected model (bottom). 
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Method Top 1 Accuracy Top 10 Accuracy 

Ours 70.1% 84.7% 

Ours -phenotype 59.9% 80.3% 

BLAST 66.3% 74.8% 

CNN (Nielsen & Voigt, 2018) 50.2% 73.4% 

Baseline: guess by abundance in 
training set 

7.5% 15.2% 

Uniformly random guess .076% .76% 

 
Supplementary Table 2.​ Lab-of-origin attribution accuracy on the held-out test set.  
 
 

Method Top 1 Accuracy Top 10 Accuracy 

Random Forest 75.8% 96.7% 

BLAST 70.3% 86.7% 

Baseline: guess by abundance in 
training set 

16.1% 83.8% 

Uniformly random guess 3.0% 30.3% 

 
Supplementary Table 3.​ Nation-of-origin attribution accuracy on the held-out test set. 
 
 

Method Top 1 Accuracy Top 10 Accuracy 

Random Forest 87.0% 96.5% 

Baseline: guess by abundance in 
training set 

13.6% 45.0% 

Uniformly random guess .5% 5.3% 

 
Supplementary Table 4. ​Ancestor lab attribution accuracy on the held-out test set. 
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Supplementary Figure 4.​ Lab distribution after train-test-validation split. Each vertical sums to 100%. The 
validation set points (orange) hit 0% abundance because there was no rule that the validation set must have a 
certain number of plasmids per lab.  
 

 
Supplementary Figure 5.​ Reproducibility of random data splits. Three full resplits of the data show on-par 
performance with the original split, using the same hyperparameters but different random seeds and input data. 
X axis shows TopN accuracy for N in [1-10]. Y axis shows test set accuracy for the splits corresponding test set. 
The original split (blue) has a different random seed and slightly different training time from the model 
presented in the main text but the same data.  
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Supplementary Figure 6. ​Training and validation curves of the CNN model on Addgene lab-of-origin data. 
Training continues to 100 epochs, or 787,800 steps on our data. 
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