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Abstract 23 

Decision models such as the drift-diffusion model (DDM) are a widely used and broadly 24 

accepted tool that accounts remarkably well for binary choices and their response time 25 

distributions, as a function of the option values. The DDM is built on an evidence accumulation 26 

to bound concept, where a decision maker repeatedly samples a mental representation of the 27 

values of the options on offer until satisfied that there is enough evidence in favor of one option 28 

over the other. The value estimates that drive the DDM evidence are derived from the relative 29 

strength of value signals that are not stable across time, so that repeated sequential samples are 30 

necessary to average out noise. The standard DDM, however, typically does not allow for 31 

different options to have different levels of variability in their value representations. However, 32 

recent value-based decision studies have shown that a decision maker often reports levels of 33 

certainty regarding value estimates that vary across options. We thus propose that future 34 

versions of DDM should include an option-specific value certainty component. We present four 35 

different versions of such a model and validate them against empirical data from four previous 36 

studies. The data show that a model built around a sort of signal-to-noise ratio for each option 37 

(rather than a pure signal that randomly fluctuates) performs best, accounting for the positive 38 

impact of value certainty on choice consistency and the negative impact of value certainty on 39 

response time.  40 

  41 
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The drift-diffusion model (DDM) is ubiquitous in the contemporary literature on decision 42 

making, including research spanning the fields of psychology, neuroscience, economics, and 43 

consumer behavior. The DDM is a parsimonious mechanism that explains normative decisions by 44 

averaging out noise in information processing and implementing an optimal stopping rule 45 

(optimizing response time (RT) for a specified accuracy). This model accounts well for the 46 

dependency of the RT distribution on the values of the choice options, and for the speed-accuracy 47 

tradeoff—the often observed phenomenon that faster choices are typically less accurate (see 48 

Ratcliff et al, 2016; Gold and Shadlen, 2007 for reviews).  While initially used in the domain of 49 

perceptual decision-making, the DDM has since become a widespread tool in studies of 50 

preferential (i.e., value-based) decision-making as well (Busemeyer et al, 2019; Tajima, 51 

Drugowitsch, & Pouget, 2016; Polania et al, 2015; Philiastides & Ratcliff, 2013; Milosavljevic et al, 52 

2010; Krajbich, Armel, & Rangel, 2010; Basten et al, 2010).  In brief, in its application to 53 

preferential choice, the DDM assumes that the value of each option is represented by a 54 

probability distribution whose mean is the true value of the option, and whose variance 55 

corresponds to processing noise.  This noise can be interpreted as imprecision in the value 56 

representations themselves, or as a stochastic distortion of the value signals as they are relayed 57 

through the decision system by populations of neurons (whose firing patterns are known to be 58 

stochastic).  Either way, the momentary signal about the relative value of the options (the so-59 

called evidence for one option over the other) fluctuates randomly around a fixed trajectory (the 60 

so-called drift).  In order to average out this processing noise, evidence signals are thought to 61 

accumulate over time until a sufficient amount of evidence has been acquired to allow for a 62 

choice to be made. The DDM thus includes thresholds for each option (typically symmetric) that 63 

trigger a choice once reached by the evidence accumulator.  So, the fundamental components of 64 

the drift-diffusion process are the drift rate (the difference in the option values), the diffusion 65 

coefficient (the degree of stochasticity of the system), and the choice boundaries (the minimum 66 

required evidence threshold; see Figure 1). 67 
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 68 

Figure 1: An illustration of the classic basic DDM.  Evidence accumulates across time, following a 69 

fixed drift trajectory (black dashed arrow, corresponding to the value difference of choice 70 

options), corrupted by white processing noise.  Here, the accumulated evidence reaches the 71 

upper threshold after 3.9 seconds, and a choice for option 1 is recorded. 72 

The standard DDM implicitly assumes that processing noise is independent of the identity 73 

of the options contained in a particular choice set.  That is to say, there is no option-specific noise 74 

in the DDM (but see Ratcliff, Voskuilen, & Teodorescu, 2018; Teodorescu, Moran, & Usher, 2016 75 

for DDM variants in which the noise increases with task difficulty). Most of the DDM applications 76 

to preference-based decisions have assumed no option-specific noise. Since the brain encodes 77 

not only the subjective value of options, but also the subjective certainty about the value 78 

(Lebreton et al, 2015), it is possible to suggest that the representations of value that the brain 79 

uses to inform the decision process fluctuate, and that the degree of imprecision (or uncertainty) 80 

is not the same for all choice options.  Indeed, it has been shown that decision makers hold highly 81 

variable beliefs about the certainty of their value estimates for different options, and that those 82 

beliefs are relatively stable within individuals (Lee & Coricelli, 2020; Lee & Daunizeau, 2020a, 83 

2020b; Gwinn & Krajbich, 2020; Polania, Woodford, & Ruff, 2019).  It has further been shown 84 

that the variability in value (un)certainty has a clear impact on both choice and RT (Lee & Coricelli, 85 

2020; Lee & Daunizeau, 2020a, 2020b).  Specifically, judged value certainty, C, correlates 86 
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positively with choice consistency and negatively with RT (see Figure 2). This provides a 87 

qualitative benchmark that any DDM variant that includes option-specific uncertainty should be 88 

able to account for.  89 

 90 

Figure 2:  Previous results (pooled across four studies, n=152) demonstrate the relationships 91 

between value difference (dV), value certainty (C= .5 (c1+c2)), and certainty difference (dC= c1 92 

–c2) with choice consistency and log(RT).  Here we show the beta weights from a logistic 93 

regression on choice (upper left) and a linear regression on log(RT) (upper right; bar heights 94 

represent population means, error bars represent s.e.m.). Note: dV, C, and dC were all 95 

simultaneously included as independent variables in each regression model. Lower plots show 96 

the isolated relationships between log(RT) and C (left) and C1 - C2 (right). Note: the distribution 97 

of C was highly skewed, so we show the data binned by quantiles. (Lee & Daunizeau, 2020a, 98 

2020b; Lee & Coricelli, 2020; Gwinn & Krajbich, 2020) 99 
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As we show below, the most straightforward way to include option-specific noise in the 100 

preferential DDM – by assuming that noise increases with value uncertainty –  leads to the wrong 101 

qualitative predictions, with regards to the RT x certainty benchmark. In particular, as certainty 102 

increases, noise decreases, resulting in lower RT. Thus, unlike what we see in experimental data, 103 

such a model would predict that people would speed up when they are less certain of the options' 104 

values (all else equal). Moreover, this prediction is not specific to the standard DDM, but applies 105 

to the broader class of evidence accumulation-to-bound models (e.g., independent accumulators 106 

(Vickers, 1970; Brown & Heathcote, 2006); leaky competing accumulator (LCA; Usher & 107 

McLelland, 2001)), which also predict that higher noise in the system will result in faster 108 

responses, in direct contrast to the empirical data. 109 

The aim of this paper is to examine a number of DDM variants, which could potentially 110 

rise to the challenge of accounting for the impact of value certainty on choice and RT in behavioral 111 

data. In particular, we will first present a variety of derivations of the standard DDM, each of 112 

which incorporates the concept of option-specific value certainty in a unique and realistic way, 113 

starting from the default DDM that has no option-specific noise, and progressing to signal-to-114 

noise type of models. We then fit each of these models to experimental data from a variety of 115 

empirical datasets.  Finally, we quantitatively compare the performance of each model across 116 

the different datasets and suggest the best recommended approach for future studies to 117 

incorporate option-specific value certainty in models derived from the DDM. To anticipate our 118 

results, we find that a signal-to-noise DDM variant provides the best fit to the data and accounts 119 

for all qualitative benchmarks.  120 

METHODS 121 

Computational models 122 

In each of the models described below, we consider decisions between two alternatives, 123 

with values, v1 and v2, and with uncertainties, σ1, σ2, respectively.  Evidence of these values is 124 

integrated over deliberation time, subject to noise. The evidence accumulator for each decision 125 

is initialized at a neutral starting point (i.e., zero evidence or default bias in favor of either option), 126 

and evolves until reaching one of two symmetric boundaries (see Figure 1 above).  For each 127 
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decision, the output of the model is:  which boundary is reached, or the choice (ch = {0, 1}) and 128 

the number of integration time steps elapsed when that boundary is reached (RT). 129 

Model 1 130 

As a baseline default model for comparison (without any option-specific certainty term), 131 

we first consider the classic basic DDM.  In this model, the equations that govern the evidence 132 

accumulation process are: 133 

𝐸𝑡+1 = 𝐸𝑡 + 𝑑𝛥 134 

𝛥 ~𝑁(𝜇1 − 𝜇2, 𝜎
2) 135 

where E represents the cumulative balance of evidence that one option is better than the other, 136 

t represents deliberation time, Δ represents the incremental evidence in favor of one option over 137 

the other, d is a scalar, μi is the value estimate of option i, and σ2 represents processing noise in 138 

the evidence accumulation and/or comparator systems.  In a standard basic DDM, choice 139 

probability and expected response time can be analytically calculated using the following 140 

equations (Alos-Ferrer, 2018): 141 

𝑝(𝑐ℎ = 1) =
1

1 + 𝑒
(
−2𝜃𝑑
𝜎2

(𝜇1−𝜇2))

 142 

𝑅𝑇 =
𝜃(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑(𝜇1 − 𝜇2)
 143 

where θ is the height of the evidence accumulation threshold where a decision is triggered 144 

(shown here as the upper threshold, for a choice of option 1), p(ch=1) is the probability that the 145 

upper threshold will be reached (rather than the lower threshold), and RT is the expected time 146 

at which the accumulation process will end (by reaching one of the thresholds)1.  Because this 147 

system of equations is over-parameterized, one of the free parameters must be fixed for a 148 

                                                           
1 In the standard version of the DDM, the RT distribution for correct and incorrect responses is identical. In a more 
complex version, additional variability parameters are introduced that allow to account for asymmetries between 
the RT distributions of correct and incorrect responses (see Ratcliff & McKoon, 2008 for review). We only consider 
the standard DDM without the variability parameters, as those cannot change the impact of value certainty on 
accuracy and RT illustrated in Figures 2 and 3.  
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practical application of the equations.  In this work, we will fix the threshold θ to a value of 1 149 

when fitting the models, for simplicity.  Choice probability and RT will thus be functions of the 150 

drift rate d and the noise σ2 (see Figure 3). As expected, accuracy increases and RT decreases with 151 

the drift. The noise, on the other hand, reduces both accuracy and RT. 152 

 153 

Figure 3:  With all other parameters fixed, an increase in drift rate leads to a sigmoidal increase 154 

in the probability of choosing option 1 from 0.5 (random guess) to 1, and a sigmoidal decrease 155 

in RT (left plots in blue).  With all other parameters fixed, an increase in processing noise will 156 

lead to a sigmoidal decrease in the probability of choosing option 1, and a parallel sigmoidal 157 

decrease in RT (right plots in red). 158 

Model 2 159 

The simplest and most obvious solution to incorporate option-specific uncertainty into 160 

the DDM would be to model the process as: 161 

𝐸𝑡+1 = 𝐸𝑡 + 𝑑𝛥 162 

𝛥 ~𝑁(𝜇1 − 𝜇2, 𝜎
2 + 𝜎1

2 + 𝜎2
2) 163 

which is simply the standard DDM equation capturing the evolution of the accumulated evidence 164 

across time, but with σi
2 representing the uncertainty about the value estimate of option i.  The 165 

only difference between this formulation and the standard one is that here the variance of Δ is 166 

specific to the options in the current choice set, whereas in the standard DDM it is fixed across 167 

choices (for an individual decision maker).  A direct result of this reformulation is that choices 168 
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between options with greater value uncertainty (lower C) will be more stochastic and take less 169 

time (on average), as can be seen by examining the (revised) DDM equations for choice 170 

probability and expected response time (see also Fig 3, red lines): 171 

𝑝(𝑐ℎ = 1) =
1

1 + 𝑒
(
−2𝜃𝑑(𝜇1−𝜇2)

𝜎2+𝜎1
2+𝜎2

2 )

 172 

𝑅𝑇 =
𝜃(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑(𝜇1 − 𝜇2)
 173 

Model 3 174 

An alternative way in which the concept of option-specific value (un)certainty could be 175 

incorporated into the DDM would be through a signal-to-noise dependency in the drift rate.  The 176 

drift rate in the DDM symbolizes the accumulation of evidence for one option over the other, 177 

equal to the value estimate of one option minus the value estimate of the other option (scaled 178 

by a fixed term).  The accumulator variable is referred to as “evidence” because the probability 179 

distributions controlling it (or the neural activity driving it) are thought to provide reliable signal 180 

that will accurately inform the decision.  If the value representations of different options can have 181 

different levels of uncertainty, it stands to reason that the reliability of the “evidence” that these 182 

signals provide about the correct decision will also be different.  As such, evidence drawn from a 183 

more reliable source (i.e., one with higher certainty) should be weighted more heavily.  Under 184 

this framework, the equation governing the DDM process would be: 185 

𝐸𝑡+1 = 𝐸𝑡 + 𝑑𝛥 186 

𝛥 ~𝑁(
𝜇1 − 𝜇2

√𝜎1
2 + 𝜎2

2
, 𝜎2) 187 

where σ2 (without a subscript) is the noise in the system unrelated to specific choice options.  The 188 

only difference between this formulation and the standard one is that here the mean of the 189 

option value difference is divided by its standard deviation.  A direct result of this reformulation 190 

is that choices between options with greater value uncertainty will be more stochastic and also 191 

take more time (on average), as can be seen by examining the (revised) DDM equations for choice 192 

probability and expected response time: 193 
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𝑝(𝑐ℎ = 1) =
1

1 + 𝑒(

 
 −2𝜃𝑑(𝜇1−𝜇2)

𝜎2(√𝜎1
2+𝜎2

2)
)

 
 

 194 

𝑅𝑇 =
𝜃(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑(𝜇1 − 𝜇2)

√𝜎1
2 + 𝜎2

2

 195 

Here the impact of option-specific uncertainty on RT is more complex.  First, greater 196 

uncertainty decreases RT through its effect on choice stochasticity (as before).  Second, greater 197 

uncertainty directly increases RT by diminishing the slope of the drift rate.  The second effect 198 

dominates.   199 

Model 4 200 

A variant of the DDM in which the drift rate is altered by the option-specific value 201 

certainty could be one in which the evidence in favor of each option is scaled by its own precision 202 

term, as is the case, for example, in multi-sensory integration (Drugowitsch et al, 2014; Fetsch et 203 

al, 2012). The drift rate would thus become the accumulation of adjusted evidence for one option 204 

over the other, equal to the precision-weighted value estimate of one option minus the precision-205 

weighted value estimate of the other option (scaled by a fixed term).  Here, the evidence drawn 206 

from a more reliable source (i.e., one with higher certainty) will be weighted more heavily (as in 207 

Model 3), but prior to comparison between the alternative options.  Note that here the certainty 208 

weighting is truly specific to each option, whereas in Model 3 the certainty weighting is specific 209 

to the pair of options. Under this framework, the equation governing the DDM process would be: 210 

𝐸𝑡+1 = 𝐸𝑡 + 𝑑𝛥 211 

𝛥 ~𝑁(
𝜇1

√𝜎1
2
−
𝜇2

√𝜎2
2
, 𝜎2) 212 

The only difference between this formulation and the standard one is that here the mean 213 

of the option value difference is adjusted by the standard deviations of the individual choice 214 

options.  Because the evidence in favor of each option (prior to comparison) will be scaled by its 215 

own specific (and importantly, potentially different) precision term, the impact on both choice 216 
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stochasticity and response time could go in either direction.  This can be seen by examining the 217 

(revised) DDM equations for choice probability and expected response time: 218 

𝑝(𝑐ℎ = 1) =
1

1 + 𝑒(

 
 −2𝜃𝑑
𝜎2

(

 𝜇1

√𝜎1
2
−
𝜇2

√𝜎2
2
)

 

)

 
 

 219 

𝑅𝑇 =
𝜃(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑 (
𝜇1
√𝜎1

2
−
𝜇2
√𝜎2

2
)

 220 

Here the impact of option-specific uncertainty on both choice and RT is more complex 221 

than in the other models presented above.  If the evidence stream for one option has both a 222 

larger mean and a smaller variance, relative to the other option, the effective drift rate will be 223 

higher than in a standard DDM (e.g., choices will be less stochastic and faster).  On the other 224 

hand, if the option with the larger mean evidence stream is different from the option with the 225 

more reliable evidence stream, the effective drift rate will be lower than in a standard DDM (e.g., 226 

choices will be more stochastic and slower).  227 

Model 5 228 

Yet another alternative way in which the DDM could include option-specific value 229 

certainty is in the form of an independent evidence accumulator -- a secondary drift, with a rate 230 

proportional to the difference in certainty between the choice options.  In this way, the decision 231 

about which option to choose would be influenced both by which value estimate was higher (via 232 

the primary, standard drift) and by which value estimate was more certain (via the secondary, 233 

novel drift).  The secondary drift might represent an aversion to risk or ambiguity, where the 234 

deliberation process would be both slowed by the risk/ambiguity and pulled towards the more 235 

certain option.  This would imply that the decision maker prefers options that are more valuable, 236 

but also options for which the value is more certain. Under this framework, the equation 237 

governing the DDM process would be: 238 

𝐸𝑡+1 = 𝐸𝑡 + 𝑑𝑣𝛥𝑣 + 𝑑𝑐𝛥𝑐 239 
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𝛥𝑣  ~𝑁(𝜇1 − 𝜇2, 𝜎
2) 240 

𝛥𝑐  ~𝑁(𝜎1
2 − 𝜎2

2, 𝜎2) 241 

where Δv and Δc are the incremental evidence for value and certainty, respectively, and dv and dc 242 

are scalars (it is assumed that dv will always be positive, but dc could take either sign).  The 243 

inclusion of a secondary drift rate (in essence, a parallel evidence stream that monitors value 244 

certainty rather than value itself) can have either a positive or a negative impact on both choice 245 

and RT, depending on whether the option with the higher mean evidence stream is the same as 246 

or different than the option with the higher evidence reliability (as well as on the sign of dc).  This 247 

can be seen by examining the (revised) DDM equations for choice probability and expected 248 

response time: 249 

𝑝(𝑐ℎ = 1) =
1

1 + 𝑒
(
−2𝜃
𝜎2

[𝑑𝑣(𝜇1−𝜇2)+𝑑𝑐(𝜎1
2−𝜎2

2)])
 250 

𝑅𝑇 =
𝜃(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑𝑣(𝜇1 − 𝜇2) + 𝑑𝑐(𝜎1
2 − 𝜎2

2)
 251 

Here, the secondary drift rate will result in more consistent and faster choices if the sign 252 

of μ1-μ2 is the same as that of σ1
2-σ2

2, but it will result in less consistent and slower choices 253 

otherwise.  This, of course, is under the assumption that the decision maker is risk/ambiguity 254 

averse (i.e., dc>0).  If the decision maker were risk/ambiguity seeking (i.e., dc<0), the opposite 255 

predictions would hold.  256 

Materials and Design 257 

Using a variety of different datasets from previous studies, one at a time, we fit 258 

experimental data to each of the models that we described above.  We then performed Bayesian 259 

model comparison to determine which of the models (if any) performed better than the others 260 

across the population of participants.  For this model fitting and comparison exercise, we relied 261 

on the Variational Bayesian Analysis toolbox (VBA, available freely at https://mbb-262 

team.github.io/VBA-toolbox/; Daunizeau, Adam, & Rigoux, 2014) for Matlab R2020a.  We used 263 

the VBA_NLStateSpaceModel function to fit the data for each participant individually, followed 264 

by the VBA_groupBMC function to compare the results of the model fitting across models for the 265 
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full group of participants.  The input for the model inversion was a series of two-alternative forced 266 

choice (2AFC) data, including measures of value estimate and value estimate certainty for each 267 

choice option, the chosen option (left or right) for each trial, and response time (RT) for each 268 

trial.  Some datasets also included choice confidence reports for each trial, which were included 269 

in supplementary analyses as will be described below.  The parameters to be fitted included all 270 

of the d and σ2 terms described above, plus additional parameters for an affine transformation 271 

of experimental certainty measures into theoretical ones.  This is necessary because in the 272 

experimental data, the measures of value and those of value certainty reside on the same scale, 273 

but this is likely untrue for the cognitive variables that are meant to drive the models.  274 

Dataset 1 275 

The first dataset we examined was from Lee & Daunizeau (2020a).  In this study, 276 

participants made choices between various snack food options based on their personal subjective 277 

preferences.  Value estimates for each option were provided in a separate rating task prior to the 278 

choice task.  Participants used a slider scale to respond to the question, “Does this please you?”  279 

After each rating, participants used a separate slider scale to respond to the question, “Are you 280 

sure?”  This provided a measure of value estimate certainty for each item.  During the choice 281 

task, participants were presented with pairs of snack food images and asked, “What do you 282 

prefer?”  After each choice, participants used a slider scale to respond to the question, “Are you 283 

sure about your choice?” to provide a subjective report of choice confidence.  This dataset 284 

contained 51 subjects, each of whom were faced with 54 choice trials.  285 

Dataset 2 286 

The second dataset we examined was from Lee & Daunizeau (2020b).  In this study, 287 

participants made choices between various snack food options based on their personal subjective 288 

preferences.  Value estimates for each option were provided in a separate rating task prior to the 289 

choice task.  Participants used a slider scale to respond to the question, “How much do you like 290 

this item?”  After each rating, participants used the same slider scale to respond to the question, 291 

“How certain are you about the item’s value?” by indicating a zone in which they believed the 292 

value of the item surely fell.  This provided a measure of value estimate certainty for each item.  293 
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During the choice task, participants were presented with pairs of snack food images and asked, 294 

“Which do you prefer?”  After each choice, participants used a slider scale to respond to the 295 

question, “Are you sure about your choice?” to provide a subjective report of choice confidence.  296 

This dataset contained 32 subjects, each of whom were faced with 74 choice trials.  297 

Dataset 3 298 

The third dataset we examined was from Lee & Coricelli (2020).  In this study, participants 299 

made choices between various snack food options based on their personal subjective 300 

preferences.  Value estimates for each option were provided in a separate rating task prior to the 301 

choice task.  Participants used a slider scale to respond to the question, “How pleased would you 302 

be to eat this?”  After each rating, participants used a six-point descriptive scale to respond to 303 

the question, “How sure are you about that?”  This provided a measure of value estimate 304 

certainty for each item.  During the choice task, participants were presented with pairs of snack 305 

food images and asked, “Which would you prefer to eat?”  After each choice, participants used a 306 

slider scale to respond to the question, “How sure are you about your choice?” to provide a 307 

subjective report of choice confidence.  This dataset contained 47 subjects, each of whom were 308 

faced with 55 choice trials.  309 

Dataset 4 310 

The fourth dataset we examined was from Gwinn & Krajbich (2020).  In this study, 311 

participants made choices between various snack food options based on their personal subjective 312 

preferences.  Value estimates for each option were provided in a separate rating task prior to the 313 

choice task.  Participants used a 10-point numerical scale to respond to the prompt, “Please 314 

indicate how much you want to eat this item.”  After each rating, participants used a seven-point 315 

numerical scale to respond to the prompt, “Please indicate how confident you are in your rating 316 

of this item.”  This provided a measure of value estimate certainty for each item.  During the 317 

choice task, participants were presented with pairs of snack food images and instructed to choose 318 

the one that they preferred to eat.  Choice confidence was not measured in this study.  This 319 

dataset contained 36 subjects, each of whom were faced with 200 choice trials.  320 

 321 
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RESULTS 322 

Model comparison 323 

Before we present the quantitative model comparison results, we first show the 324 

qualitative predictions that each model (fitted to its optimal parameters) makes with respect to 325 

the effects of value difference, value certainty, and certainty difference on choice consistency, 326 

RT, and choice confidence (see Figure 4).  We first simulated 107 trials for each model, based on 327 

random input values with similar distributions as in our experimental data.  The model-328 

parameters we used were in line with the best fit parameters to the experimental data.  We then 329 

performed GLM regressions:  dV, C, and dC on choice (binomial) and on RT (linear). (Note: we 330 

coded the data such that option 1 always had the higher value.) A preliminary inspection of the 331 

results suggests that Model 4 is the only model that accounts for all of the qualitative benchmarks 332 

of the certainty-RT correlations, in particular the decrease in RT with both average certainty and 333 

certainty difference.  As expected, Model 2 makes the wrong qualitative prediction (higher RT 334 

with value certainty), while Model 3 and Model 5 fail to account for the dependency of RT on 335 

either certainty difference (dC) or average certainty (C), respectively.  336 
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 337 

Figure 4:  Qualitative predictions of the effects of value difference, value certainty, and 338 

certainty difference on choice consistency and RT (shown for models 2-5; top row shows 339 

experimental data).  (Bar heights represent mean GLM beta weights based on 107 simulated 340 

trials for each model.) 341 
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The classic basic DDM, our Model 1, has been validated countless times for its ability to 342 

account for two-alternative forced choice responses and mean response times. The other models 343 

we described above, Models 2-5, are new and have therefore never been tested with empirical 344 

data.  Thus, we start our model comparison exercise with one-on-one competitions between 345 

Model 1 and each of Models 2-5, separately.  This serves as a simple test of whether the addition 346 

of the option-specific value estimate certainty term, as suggested in each of the four different 347 

manners described in Models 2-5, improves the fit of the classic DDM.  We then perform a 348 

comparison across all five models simultaneously, and test whether any of them dominates the 349 

others in terms of best fit to the data. We present the quantitative results of the model-fit 350 

comparison in Figure 5, and describe them below. 351 

 352 

Figure 5:  Model comparison results.  For the five models we examined, we show here the 353 

model attributions (top row) for each of the studies we examined, at the subject level; each cell 354 

represents the probability that the model (column) best represents the behavior of the subject 355 

(row).  We also show the exceedance probability for each model being the best in each study 356 

(bottom row). 357 
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For Dataset 1, Model 1 dominated Model 2, with an exceedance probability of 1 and an 358 

estimated model frequency (across the participant population) of 0.972.  Model 1 dominated 359 

Model 3, with an exceedance probability of 1 and an estimated model frequency of 0.990.  Model 360 

4 dominated Model 1, with an exceedance probability of 1 and an estimated model frequency of 361 

0.779.  Model 5 dominated Model 1, with an exceedance probability of 1 and an estimated model 362 

frequency of 0.757.  When comparing all models simultaneously, Model 4 dominated, with an 363 

exceedance probability of 0.956 and an estimated model frequency of 0.541.  Models 1, 2, 3, and 364 

5 had estimated model frequencies of 0.127, 0.004, 0.004, and 0.324, respectively.  Because 365 

Models 4 and 5 each performed better than Model 1, we ran the comparison again including 366 

Model 6, which was a combination of Models 4 and 5.  Model 4 again dominated, with Model 6 367 

receiving no support.   368 

For Dataset 2, Model 1 dominated Model 2, with an exceedance probability of 1 and an 369 

estimated model frequency of 0.984.  Model 1 dominated Model 3, with an exceedance 370 

probability of 1 and an estimated model frequency of 0.983.  Model 4 dominated Model 1, with 371 

an exceedance probability of 1 and an estimated model frequency of 0.897.  Model 5 dominated 372 

Model 1, with an exceedance probability of 1 and an estimated model frequency of 0.889.  When 373 

comparing all models simultaneously, Model 4 outperformed the others, with an exceedance 374 

probability of 0.742 and an estimated model frequency of 0.546.  Models 1, 2, 3, and 5 had 375 

estimated model frequencies of 0.127, 0.004, 0.004, and 0.324, respectively.  Because Models 4 376 

and 5 each performed better than Model 1, we ran the comparison again including Model 6, 377 

which was a combination of Models 4 and 5.  Model 4 again outperformed the others, with Model 378 

6 receiving no support.   379 

For Dataset 3, Model 1 dominated Model 2, with an exceedance probability of 1 and an 380 

estimated model frequency of 0.987.  Model 1 dominated Model 3, with an exceedance 381 

probability of 1 and an estimated model frequency of 0.985.  Model 4 dominated Model 1, with 382 

an exceedance probability of 1 and an estimated model frequency of 0.860.  Model 5 slightly 383 

outperformed Model 1, with an exceedance probability of 0.561 and an estimated model 384 

frequency of 0.511.  When comparing all models simultaneously, Model 4 dominated, with an 385 

exceedance probability of 1 and an estimated model frequency of 0.865.  Models 1, 2, 3, and 5 386 
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had estimated model frequencies of 0.122, 0.004, 0.004, and 0.004, respectively.  Because 387 

Models 4 and 5 each performed better than Model 1, we ran the comparison again including 388 

Model 6, which was a combination of Models 4 and 5.  Model 4 again dominated, with Model 6 389 

receiving no support.   390 

For Dataset 4, Model 1 dominated Model 2, with an exceedance probability of 1 and an 391 

estimated model frequency of 0.955.  Model 1 dominated Model 3, with an exceedance 392 

probability of 1 and an estimated model frequency 0.982.  Model 4 dominated Model 1, with an 393 

exceedance probability of 1 and an estimated model frequency of 0.986.  Model 5 dominated 394 

Model 1, with an exceedance probability of 1 and an estimated model frequency of 0.986.  When 395 

comparing all models simultaneously, Model 4 dominated, with an exceedance probability of 1 396 

and an estimated model frequency of 0.808.  Models 1, 2, 3, and 5 had estimated model 397 

frequencies of 0.005, 0.005, 0.005, and 0.175, respectively.  Because Models 4 and 5 each 398 

performed better than Model 1, we ran the comparison again including Model 6, which was a 399 

combination of Models 4 and 5.  Model 4 again dominated, with Model 6 receiving no support. 400 

 401 

DISCUSSION 402 

The aim of this study was to examine a number of variants of drift-diffusion model for 403 

preferential choice, and to probe them in their ability to account for benchmark data on the 404 

dependency of choice and RT on value uncertainty. As illustrated in Figure 2, the experimental 405 

data that we examined show that value certainty has a clear impact on both choice and RT (thus 406 

extending beyond the default DDM without option-specific noise), and also provides strong 407 

constraints on the way one can introduce option-specific noise into the model. As we have 408 

shown, the simplest DDM extension, in which the noise increases with value uncertainty, 409 

produces the wrong qualitative prediction: RT increases with certainty (certainty reduces the 410 

noise in the system, which slows down RT; see Figure 3, right panel).  Moreover, this problem 411 

with the introduction of option-specific value uncertainty in modeling value-based decisions is 412 

not particular to the DDM, but also applies to the broader class of evidence accumulation-to-413 

bound models, in which noise speeds up RT. 414 
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We have examined and tested three additional DDM variants. The first two (Models 3-4) 415 

were based on signal-to-noise principles, while the last one (Model 5) included an independent 416 

and additive diffusion process based on certainty. While each of these models was able to 417 

account for some of the relationships in the data, only Model 4 accounted for all of them. In this 418 

model, the drift rate of the diffusion process is not simply the fluctuating difference in the values 419 

of the options (Tajima, Drugowitsch, & Pouget, 2016), but rather a difference between the ratios 420 

of the values and their corresponding value uncertainties. This mechanism has a normative 421 

flavor, as it penalizes values that are associated with uncertain alternatives. Some similar type of 422 

signal-to-noise models have also been supported by data in perceptual choice tasks. For example, 423 

de Gardelle and Summerfield (2011) examined choices in which an array of eight visual patches 424 

of variable color or shape are compared (in binary choice) to a reference (color or shape). By 425 

independently varying the set mean distance (in the relevant dimension) from the reference as 426 

well as the set variance, they found that both independently affect choice accuracy and RT. In 427 

particular, set variance (which is the analog of our value uncertainty) reduces choice accuracy 428 

and increases RT. As shown by de Gardelle and Summerfield (2011), a signal-to-noise model can 429 

account for this dependency. Indeed, the random dot motion task that is widely used alongside 430 

the DDM in perceptual decision making studies provides a signal-to-noise ratio as input for the 431 

drift rate (e.g., Gold & Shadlen, 2007). With this task, drift rate is typically determined by the 432 

motion coherence, which is composed of the number of dots moving in the same direction 433 

(signal) as well as the number of dots moving randomly (noise). 434 

An alternative way to introduce option-specific value uncertainty in the DDM could be to 435 

assume that the uncertainty affects the response boundary rather than the drift rate. 436 

Accordingly, decision makers would compensate for their uncertainty by increasing the response 437 

boundary. While such a model could account for the negative correlation between RT and 438 

certainty (C) shown in Figure 2, it would not be able to account for the negative correlation 439 

between RT and dC. Moreover, such a model would predict that choices become more stochastic 440 

as value certainty increases, which is both counterintuitive and in contrast to the data. As we 441 

show in the Supplementary Materials, this model also fails in term of quantitative model 442 

comparison. Thus, we believe that the way in which value uncertainty affects the decision process 443 
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is via its impact on the drift rate. Future work is needed to examine the neural mechanism that 444 

extracts the drift rate from fluctuating values (sampled from memory or prospective imagination; 445 

Bakkour et al, 2019; Poldrack et al, 2001; Schacter, Addis, & Buckner, 2007) and that reduces the 446 

drift rate of strongly fluctuating items. Future research is also needed to examine if the effects of 447 

value uncertainty on choice correlate with risk-aversion at the level of individual participants, and 448 

to integrate this type of model with dynamical attentional affects as in the attentional drift-449 

diffusion model (aDDM; Krajbich et al, 2010; Sepulveda et al, 2020).   450 

While we have focused here on how value certainty affects choice and RT, the 451 

experimental data also importantly show a marked and systematic effect of value certainty on 452 

choice confidence. In particular, higher average value certainty (C) and certainty difference (dC) 453 

both lead to higher choice confidence. This pattern raises a further challenge for most 454 

accumulation-to-bound style choice models that aim to account for both RT and choice 455 

confidence. For example, in the balance of evidence (BOE) type models (Vickers & Packer, 1982; 456 

De Martino et al, 2013), confidence corresponds to the difference in the activation of two 457 

accumulators that independently race to a decision boundary. If we were to naively introduce 458 

option-specific noise in such models, they would predict, contrary to the data, that the 459 

confidence becomes larger for options with more value uncertainty (as the noise increases the 460 

BOE; see Lee & Daunizeau, 2020b). Similarly, if we were to model confidence using a DDM with 461 

collapsing boundaries (e.g., Tajima et al, 2016), with confidence corresponding to the height of 462 

the boundary at the time the choice is made, naively introducing option-specific noise would 463 

once again provide us with a prediction opposite from what we see in the data. For uncertain 464 

alternatives, there would be more noise in the evidence accumulation process, resulting in faster 465 

choices and therefore higher boundaries, and thus higher confidence (in fact, this would be true 466 

for any model that assumes that confidence decreases with RT; Kiani & Shadlen, 2009).  467 

There are very few value-based choice studies that simultaneously examined value 468 

certainty and choice confidence (but see Lee & Daunizeau, 2020a, 2020b; Lee & Coricelli, 2020; 469 

De Martino et al, 2013). We have not modeled choice confidence here, as there are many 470 

potential ways to do this, with substantial divergence among them (Vickers & Packer, 1982; Kiani 471 

& Shadlen, 2009; Pleskac & Busemeyer, 2010; De Martino et al, 2013; Moran, Teodorescu, & 472 
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Usher, 2015; Calder-Travis, Bogacz, & Yeung, 2020; see Calder-Travis et al, 2020). Nevertheless, 473 

all of these models strive to predict a strong negative correlation between RT and choice 474 

confidence, as has been demonstrated in a plethora of experimental data. We note that in the 475 

data we examined, the impact of value certainty on choice confidence was essentially the reverse 476 

of its effect on RT (see Supplementary Material, Figure S1). While we did not explore this further, 477 

it suggests that a signal-to-noise DDM can also capture the dependency of choice confidence on 478 

value certainty. Future work is needed to determine how signal detection style DDM variants 479 

might be extended towards an optimal unified account of choice, RT, and choice confidence.  480 
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Supplementary Materials 580 

Choice Confidence 581 

In this study, we chose not to include choice confidence in our model predictions, as there 582 

is not currently an agreed upon standard for doing so. Nevertheless, we did briefly examine this 583 

variable in those datasets that contained it (Studies 1-3; Lee & Daunizeau, 2020a, 2020b; Lee & 584 

Coricelli, 2020). In general, choice confidence exhibited patterns qualitatively opposite to those 585 

exhibited by RT. Specifically, regression beta weights for dV, C, and dC were of similar magnitude 586 

as those for RT, but were all positive (whereas for RT, they were all negative). (see Figure S1) 587 

 588 

 589 

Figure S1: Beta weights from a linear regression of dV, C, and dC on choice confidence (left) and 590 

log(RT) (right; n=124; bar heights represent population means, error bars represent s.e.m.). 591 

Certainty-Adjusted Response Threshold 592 

We considered a model that was a standard DDM, but with the response threshold 593 

determined as a function of option-specific (or more accurately, trial-specific) value certainty. 594 

Under this model, the height of the threshold increases as the value certainty of the pair of 595 

options decreases, on a trial-by-trial basis. Choice probability and mean RT are thus calculated 596 

using the following equations: 597 
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𝑝(𝑐ℎ = 1) =
1

1 + 𝑒
(
−2𝜃(𝜎1

2+𝜎2
2)𝑑

𝜎2
(𝜇1−𝜇2))

 598 

𝑅𝑇 =
𝜃(𝜎1

2 + 𝜎2
2)(2 ∗ 𝑝(𝑐ℎ = 1) − 1)

𝑑(𝜇1 − 𝜇2)
 599 

As can be seen in the equations, increasing value uncertainty will result in higher choice 600 

consistency and higher RT. This is inconsistent with the experimental data. Furthermore, as 601 

expected, this model received no support when included in a quantitative comparison with the 602 

other models.  603 
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