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Key Points 

• Fetal HSCs synthesize much more protein per hour than young adult HSCs in vivo 

• Fetal erythroid progenitors synthesize much less protein per hour than young adult 

erythroid progenitors in vivo 

•  Differences in protein synthesis dynamics distinguish fetal and adult erythroid 

differentiation  

• A ribosomal mutation that reduces protein synthesis impairs fetal and adult HSCs 

• Reduced protein synthesis impairs fetal but not adult erythroid progenitors 
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Abstract 

Ribosomopathies encompass a collection of human genetic disorders that often arise from 

mutations in ribosomal proteins or ribosome biogenesis factors. Despite ubiquitous requirement 

of ribosomes for protein synthesis, ribosomopathies present with tissue- and cell-type-specific 

disorders, and blood is particularly affected. Several ribosomopathies present with congenital 

anemias and bone marrow failure, and accordingly, erythroid lineage cells and hematopoietic 

stem cells (HSCs) are preferentially impaired by ribosomal dysfunction. However, the factors that 

influence this cell-type-specific sensitivity are incompletely understood. Here, we show that 

protein synthesis rates change during HSC and erythroid progenitor ontogeny. Fetal HSCs exhibit 

significantly higher protein synthesis than adult HSCs. Despite protein synthesis differences, 

reconstituting activity of both fetal and adult HSCs is severely disrupted by a ribosomal mutation 

(Rpl24Bst/+). In contrast, fetal erythroid lineage progenitors exhibit significantly lower protein 

synthesis than their adult counterparts. Protein synthesis declines during erythroid differentiation, 

but the decline starts earlier in fetal differentiation than in adults. Strikingly, the Rpl24Bst/+ mutation 

impairs fetal, but not adult erythropoiesis, by impairing proliferation at fetal erythroid progenitor 

stages with the lowest protein synthesis relative to their adult counterparts. Thus, developmental 

and cell-type-specific changes in protein synthesis can sensitize hematopoietic cells to impaired 

ribosome biogenesis. 
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Introduction  

Adult hematopoietic stem cells (HSCs) maintain exquisite control of protein synthesis1. 

Inappropriately high or low protein synthesis rates impair HSC self-renewal and can lead to 

leukemia or bone marrow failure1,2. Adult HSCs exhibit very low protein synthesis compared to 

other hematopoietic cells1,3, which is required to protect HSCs from stress associated with protein 

misfolding4. Most adult HSCs are quiescent, but when forced into cycle, their protein synthesis 

remains low1,3. This raises the question of whether HSCs maintain low protein synthesis when 

they cycle in other contexts, such as fetal development5. Ontogeny-driven changes in protein 

synthesis carry potential implications for human disease. Ribosomopathies, such as Diamond 

Blackfan Anemia and Shwachman-Diamond Syndrome, cause congenital anemia and bone 

marrow (BM) failure, and present early in life6-9. This could reflect the germline nature of the 

mutations, but it could also reflect exquisite sensitivity to altered protein synthesis in fetal HSCs 

or erythroid progenitors. We therefore investigated whether hematopoietic stem and progenitor 

cells (HSPCs) undergo cell-type- and developmental stage-specific changes in protein synthesis 

that can alter the susceptibility to the deleterious effects of a ribosomal mutation in vivo. 

 

Methods 

Mice 

Rpl24Bst/+ mice are previously described1,10. Transplant recipients were irradiated (540 rad 

x2) and transplanted with 10 fetal CD150+CD48-Lineage-Sca1+cKit+ HSCs11 and 3x105 recipient-

type BM cells, or with 5x105 donor and 5x105 recipient-type BM cells. Animals were housed in the 

Animal Resource Center at UT Southwestern or the UC San Diego Moores Cancer Center 

vivarium. Protocols were approved by the UT Southwestern and UC San Diego Institutional 

Animal Care and Use Committees. 
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Cell isolation and flow cytometry 

Cells were isolated by flushing long bones or crushing fetal livers in HBSS with 2% heat-

inactivated bovine serum. Flow cytometric analysis/isolation were performed as previously 

described4. 

 

Protein synthesis 

O-propargyl-puromycin12 (OP-Puro; Medchem Source) was injected into young adult or 

pregnant mice and analyzed as previously described13. 

 

Proliferation 

2mg of EdU (Thermo) was injected into pregnant mice. Fetal livers were harvested 1h 

later, and EdU incorporation was assessed as previously described3.  

 

Results and Discussion 

To investigate protein synthesis in adult and fetal HSPCs, we administered OP-Puro1,12,13 

to young adult (2-3 month old) or timed pregnant mice. One hour later, we quantified OP-Puro 

incorporation in BM and E15.5 fetal liver HSPCs by flow cytometry. Consistent with previous 

reports1,3, adult HSCs14 exhibited significantly lower protein synthesis than restricted progenitors 

(Fig. 1A). In contrast, fetal HSCs did not exhibit low protein synthesis compared to most fetal 

progenitors (Fig. 1B). Fetal HSCs synthesized ~2.6-fold less protein than CD127-Lineage-

cKit+Sca1- myeloid progenitors15, but ~1.3-1.6-fold more protein than unfractionated liver cells, 

erythroid progenitors, B cell progenitors and granulocytes (Fig. 1B). Because of differences in 

OP-Puro perfusion/uptake in distinct tissues13, we could not directly compare OP-Puro 

fluorescence between adult BM and fetal liver cells. Thus, we compared adult and fetal HSC 
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protein synthesis by normalizing OP-Puro fluorescence to unfractionated BM and fetal liver cells 

or to Gr1+ cells. On these bases, fetal HSCs exhibited ~3.5-4.5-fold higher protein synthesis than 

adult HSCs in vivo (Fig. 1C,D). Protein synthesis differences between adult and fetal HSCs cannot 

be fully explained by differences in proliferation, as adult HSCs driven to undergo rapid 

proliferation exhibit only modestly elevated protein synthesis1,3. Thus, protein synthesis rates 

change during HSC ontogeny, and they decline between fetal development and adulthood. 

Surprisingly, we found that adult erythroid progenitors synthesized ~3.5-fold more protein 

than their fetal counterparts (Fig. 1E). We thus closely investigated protein synthesis in adult and 

fetal erythroid progenitors. Erythroid differentiation traverses five distinct stages (R1-R5) that can 

be identified based on CD71 and Ter119 expression16 (Fig. 1F,I). We examined protein synthesis 

within adult and fetal R1-R4 erythroid populations in vivo (Fig. 1G; R5 cells do not survive the OP-

Puro procedure). In adult BM, protein synthesis increased ~2-fold at the R1/R2 transition. It 

remained elevated through the R3 stage but declined ~4-fold at the R4 stage (Fig. 1H). In fetal 

liver, protein synthesis again increased ~2-fold at the R1/R2 transition, but significantly declined 

by the R3 stage and was ~6-fold lower in R4 relative to R2 cells (Fig. 1J,K). Thus, fetal erythroid 

progenitors exhibit lower protein synthesis than their adult counterparts (Fig. 1L,M), and they 

attenuate protein synthesis earlier in the differentiation program. 

Our findings raised the question of whether ontogeny-dependent changes in protein 

synthesis correlate with changes in sensitivity to ribosomal mutations. To test this, we utilized 

mice with a ribosomal protein L24 mutation (Rpl24Bst/+ )10. Fetal and adult Rpl24Bst/+ HSCs 

exhibited 30-50% reductions in protein synthesis (Fig. 2A,B). Reduced protein synthesis did not 

significantly affect adult BM cellularity, HSC frequency or number (Fig. 2C,D; S1A). In contrast, 

Rpl24Bst/+ fetal liver cellularity was significantly reduced, and HSC frequency and number were 

increased compared to controls (Fig. 2E-G). Rpl24Bst/+ fetal HSCs proliferated at normal rates 

(Fig. 2H), consistent with the notion that protein synthesis and proliferation are partially decoupled 

in HSCs3. To test whether fetal HSC function is compromised by the Rpl24Bst/+ mutation, as we 
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previously observed for adult HSCs (Fig. S1B,C)1, we transplanted 10 E15.5 HSCs from Rpl24Bst/+ 

or control mice (CD45.2+) with 3x105 recipient-type BM cells into irradiated mice (CD45.1+) (Fig. 

S2A). The Rpl24Bst mutation severely reduced HSC reconstituting activity (Fig. 2I,J; Fig. S2B-E), 

demonstrating that HSCs are exquisitely sensitive to reductions in protein synthesis, irrespective 

of whether they have high or low baseline protein synthesis. 

We next tested whether erythroid progenitors are similarly sensitive to perturbations in 

protein synthesis across different stages of development. The Rpl24Bst/+ mutation reduced protein 

synthesis by 25-55% in fetal and adult erythroid progenitors (Fig. 2K,L). Adult Rpl24Bst/+ BM 

contained similar frequencies and numbers of erythroid progenitors as controls (Fig. 2M,N; 

S3A,B), and there was no change in erythroid progenitor apoptosis (Fig. S3C) or peripheral red 

blood cells1. In contrast, Rpl24Bst/+ fetal livers contained significantly more R2 and R3 erythroid 

progenitors and significantly fewer R4 and R5 cells compared to controls (Fig. 2O,P). Overall, 

Rpl24Bst/+ fetal livers contained ~45% fewer Ter119+ erythroid cells than controls (Fig. 2Q). The 

depletion of fetal erythroid progenitors was not attributable to changes in apoptosis, as Annexin-

V labeling was similar in Rpl24Bst/+ and control R1-R5 cells (Fig. 2R). However, Rpl24Bst/+ fetal R3 

and R4 cells exhibited significantly reduced proliferation in vivo (Fig. 2S), which coincides with 

the stage at which fetal progenitors specifically exhibit a decline in protein synthesis. Low protein 

synthesis may thus hypersensitize differentiating fetal erythroid progenitors to ribosomal 

mutations by restricting proliferation and translation of essential mRNAs17-19. 

This study reveals that protein synthesis is dynamically controlled in a cell-type- and 

developmental stage-specific manner in the hematopoietic system. Fetal HSCs maintain relatively 

high protein synthesis, yet they retain self-renewal capacity. Bile acids in the fetal liver protect 

HSCs by restricting activation of the unfolded protein response20, but a more complete 

understanding of how fetal HSCs cope with protein misfolding that accompanies high protein 

synthesis could yield interventions to improve proteostasis maintenance in adult HSCs21. Unlike 

HSCs, erythroid progenitors exhibit fetal-specific susceptibility to defects in ribosome biogenesis, 
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suggesting that ribosomal mutations may disrupt erythropoiesis to a greater degree in early 

stages of life. Indeed, some Diamond Blackfan Anemia patients go into spontaneous remission 

as they age22. Further studies should resolve whether temporal changes in protein synthesis 

convey susceptibility to disease-relevant mutations23. 
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Figure Legends 

Figure 1. Distinct protein synthesis rates in fetal and adult hematopoietic stem and 

progenitor cells. (A,B) Relative protein synthesis in hematopoietic stem and progenitor cells 

relative to unfractionated cells in (A) young adult BM and (B) E15.5 fetal liver. Data are shown for 

unfractionated BM cells, liver cells, CD150+CD48-Lineage-Sca1+cKit+ HSCs, CD127-Lineage-

Sca1-cKit+ myeloid progenitors (MyP), CD71+Ter119+ erythroid progenitors (E), IgM-B220+ B 

lineage progenitors (B) and Gr1+ cells (GR). (C,D) Relative protein synthesis in young adult BM 

and fetal liver HSCs normalized to (C) unfractionated cells or (D) Gr1+ cells. (E) Relative protein 

synthesis in young adult BM and fetal liver restricted hematopoietic progenitor cells normalized to 

Gr1+ cells. (F) Representative flow cytometry plot showing gating strategy for R1-R5 erythroid 

lineage cells in young adult BM. (G) Representative histograms showing OP-Puro incorporation 

in R1-R4 erythroid progenitors in young adult BM. (H) Relative protein synthesis based on OP-

Puro incorporation in young adult R1-R4 erythroid progenitors relative to unfractionated BM cells 

in vivo. Statistical differences are summarized in the adjacent table. (I) Representative flow 

cytometry plot showing gating strategy for R1-R5 erythroid lineage cells in E15.5 fetal liver. (J) 

Representative histograms showing OP-Puro incorporation in R1-R4 erythroid progenitors in 

E15.5 fetal liver. (K) Relative protein synthesis based on OP-Puro incorporation in E15.5 fetal 

liver (FL) R1-R4 erythroid progenitors relative to unfractionated liver cells in vivo. Statistical 

differences are summarized in the adjacent table. (L,M) Relative protein synthesis in young adult 

BM and E15.5 fetal liver R1-R4 erythroid progenitors normalized to (L) unfractionated cells or (M) 

Gr1+ cells. All data represent mean ± standard deviation (SD). N=7 adult mice and 11 embryos. 

Statistical significance was assessed relative to HSCs using a repeated-measures one-way 

analysis of variance (ANOVA) followed by either Dunnett’s multiple comparisons test (A, B) or 
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Tukey’s multiple comparisons test (H, K), or using a two-tailed Student’s t-test to compare 

differences between fetal and adult cells (C-E and L-M); *P<0.05, **P<0.01, ***P<0.001. 

 

Figure 2. The Rpl24Bst/+ mutation impairs fetal and adult HSCs but only fetal erythroid 

lineage cells. (A,B) Relative protein synthesis rates in (A) unfractionated BM and HSCs in young 

adult Rpl24Bst/+ and control mice, and (B) unfractionated fetal liver cells and HSCs in E15.5 

Rpl24Bst/+ and littermate control embryos. Values are normalized to control BM (N=4 

mice/genotype) or control liver cells (N=12-13 embryos/genotype). (C) BM cellularity and (D) HSC 

frequency in young adult Rpl24Bst/+ and control mice (1 femur + 1 tibia/mouse; N=4 

mice/genotype). (E) Fetal liver cellularity, (F) HSC frequency and (G) HSC number in E15.5 

Rpl24Bst/+ and littermate control embryos (N=10 embryos/genotype). (H) Frequency of fetal liver 

HSCs that incorporated EdU after a 1-hour pulse in vivo (N=3-5 embryos/genotype). (I) Donor cell 

engraftment when 10 Rpl24Bst/+ (Bst/+) or littermate control (+/+) HSCs were transplanted with 

3x105 recipient-type young adult bone marrow cells into irradiated mice. Total hematopoietic, B-, 

T- and myeloid cell engraftment is shown 4, 8, 12 and 16 weeks after transplantation (N=8-9 

recipients per genotype). Long-term reconstitution of individual recipients is shown in Fig. S2B-E. 

(J) Frequency of recipient mice in (I) that exhibited long-term (16-week) multilineage reconstitution 

(≥0.5% donor derived peripheral blood B-, T- and myeloid cells). (K,L) Relative protein synthesis 

in Rpl24Bst/+ (Bst/+) or control (+/+) erythroid progenitor cells in (K) young adult BM (N=4 

mice/genotype) and (L) E15.5 fetal liver (N=12-13 embryos/genotype) in vivo. (M) Frequency and 

(N) absolute number of erythroid progenitors in Rpl24Bst/+ (Bst/+) or control (+/+) young adult BM 

(1 femur + 1 tibia/mouse; N=3-4 mice/genotype). (O) Frequency and (P) absolute number of 

erythroid progenitors in Rpl24Bst/+ (Bst/+) or control (+/+) E15.5 fetal liver (FL; N=10 

embryos/genotype). (Q) Number of Ter119+ cells in Rpl24Bst/+ (Bst/+) or control (+/+) E15.5 fetal 

liver (N=10 embryos/genotype). (R) Frequency of erythroid progenitors that are Annexin V+ in 

Rpl24Bst/+ (Bst/+) or control (+/+) E15.5 fetal liver (N=7 embryos/genotype). (S) Frequency of 
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Rpl24Bst/+ (Bst/+) or control (+/+) fetal liver erythroid progenitors that incorporated EdU after a 1-

hour pulse in vivo (N=3-5 embryos/genotype). Data represent mean ± SD (A-H; K-S) or standard 

error of the mean (SEM; I). Statistical significance was assessed using a two-tailed Student’s t-

test or a Fisher’s exact test (J); *P<0.05, **P<0.01, ***P<0.001. 
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