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Abstract

Given the wide variability in the quality of NGS data submitted to public repositories, it is essential to
identify methods that can perform quality control on these datasets when additional quality control
data, such as mean tile data, is missing. This is particularly important because such datasets are
routinely deposited in public archives that now store data at an unprecedented scale. In this paper,
we show that correlating counts of reads corresponding to pairs of motifs separated over specific
distances on individual exons corresponds to mean tile data in the datasets we analysed, and can
therefore be used when mean tile data is not available.
As test datasets we use the H. sapiens IVT (in-vitro transcribed) dataset of Lahens et al., and a D.
melanogaster dataset comprising wild and mutant types from Aerts et al.
The intra-exon motif correlations as a function of both GC content parameters are much higher
in the IVT-Plasmids mRNA selection free RNA-Seq sample (control) than in the other RNA-Seq
samples that did undergo mRNA selection: both ribosomal depletion (IVT-Only) and PolyA selection
(IVT-polyA, wild-type, and mutant). There is considerable degradation of similar correlations in the
mutant samples from the D. melanogaster dataset. This matches with the available mean tile data that
has been gathered for these datasets. We observe that extremely low correlations are indicative of bias
of technical origin, such as flowcell errors.
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1 Introduction

Next-generation sequencing (NGS) methods have revolutionised nucleic acid sequencing largely as a result of the
employment of fluorescence-based nucleotide chemistry to generate a light signal on nucleotide incorporation [1, 2, 3],
miniaturisation and massively-parallel sequencing reactions [4]. Though these have, to a degree, simplified the core
sequencing process allowing reactions to be performed in clusters to generate enough signal and in parallel to increase
throughput, NGS technologies share the same complex preparatory procedures [5]. These are typically i) fragmentation
of fragments to the size appropriate for the target sequencing platform, amplification (e.g. PCR), and ligation of
synthetic sequencing adapters for the sequencing platform. Such high-throughput sequencing technologies generate
millions to billions of reads in a matter of days and generate large datasets [6] — it has enabled a number of large-scale
sequencing projects. These include the 100,000 genomes project in the UK [7, 8], the NIH (National Institute of Health)
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Precision Medicine 1 million genomes project in the US [9], and a 1 million genome project by the BGI (Beijing
Genome Institute) in China [10] to name just a few. Global collaboration, such as that of the International Cancer
Genome Consortium (ICGC), which coordinates cancer genomics research across different nations [11] is now possible
thanks to the availability of Next-generation sequencing technology.
RNA-Seq, on which this work focuses, is a high-throughput NGS technique for estimating the concentration of all
transcripts in a transcriptome. This is in contrast to microarrays, which are constrained to identification and quantification
of pre-selected target sequences based on complementary probes immobilised on the array [12]. It provides wider
coverage of the transcriptome as its methods involve the direct sequencing of transcripts of RNA found in the sample
[13, 14]. RNA-Seq can, therefore, be used to study various types of RNA present: total RNA, mRNA, pre-mRNA, and
non-coding RNA (ncRNA), such as microRNA and long ncRNA enabling it to be used to study alternative splicing
events [15, 16]. Furthermore, RNA-Seq achieves this at a higher resolution [14] than other technologies. After applying
RNA-Seq, the transcriptome can then be constructed by mapping read data back to a reference genome (a process
involving the alignment of sequences in the read data to the reference). To quantify gene expression, this mapping
process is combined with gene boundary information so as to count the number of transcripts that map to a given gene
or exon region [17, 13, 18].
RNA-Seq has transformed our view of the extent and complexity of the transcriptome through deep-sequencing [13]
and also as a result of the increased precision the technique offers over other methods. Whilst recent developments in
the RNA-Seq workflow, from sample preparation to sequencing, have furthered our understanding of the transcriptome,
they have also required substantial effort for data analysis and computation, and given the complexity of RNA-Seq
workflow necessitates study of the bias that can be introduced in the preparatory steps [14, 19]. Characterisation of bias
in RNA-Seq is especially incumbent given that the method sequences and measures the transcriptome indirectly using
reverse-transcribed complementary DNA (cDNA) [20]. Whilst microarray technologies also suffer from unwanted
sources of bias — in particular, the hybridisation of probes is known to lack specificity leading to increased variability —
these sources are well characterised and estimates of gene expression have, therefore, been amenable to improvements
by the application of statistical techniques. RNA-Seq technology, however, is comparatively younger and sources of
bias and variability are still under investigation. Bias introduced in the preparatory steps can have a profound effect on
the raw data and typically manifest themselves as sequence-specific or positional biases, whilst bias introduced by the
sequencing process itself are often systematic in nature [21].
The main obstacle to obtaining accurate estimates of transcript expression from RNA-Seq data is non-uniformity in the
distribution of mapped reads to the reference genome, which reduces the certainty that the measured counts of mapped
reads reflect the true expression of the transcript within the cell’s transcriptome. These bias have numerous sources such
as, for example, wet-lab sample preparatory techniques, the sequencing process itself [22, 23] and the potential for errors
in post-sequencing data processing. They perturb the uniformity of the distribution of mapped reads to a reference
genome [24] and such bias manifests itself as sequence-specific or positional [25]. Also, positional biases can occur due
to random hexamer priming in sample preparation [26]. Large amounts of this raw RNA-Seq read data is deposited
in public repositories such as the Sequence Read Archive (SRA) [27] and Gene Expression Omnibus (GEO) [28].
Furthermore, the SRA, for example, does not require a quality check on submission [29], and has shown poor annotation
of sequencing protocol steps — both at the top-level study and individual experiment record level [23]. Hence it is
critical that methods are developed to characterise and quantify bias in these datasets. Such methods can augment the
analysis of QC metadata in the datasets or can serve as an alternative measure when this metadata is not present .[30]
In this paper, we propose that a method we have previously devised, which applies distributed-computing to quantify the
sequence-specific deviations in the uniformity of mapped reads [31], can be used as a proxy measure when mean tile
data is not available for short-read RNA-Seq data. Our method uses counts of reads overlapping motifs and works at
the deep, read level. This approach is based on the assumption that 4-mers in short reads from one region on an exon
will be correlated with 4-mers in short reads from another region of the same exon. In order to provide the capacity to
process the amounts of data typical in transcriptomic datasets [32] our analysis employs parallel distributed computing
algorithms and infrastructure using the Apache Spark platform — it is named Hercules [33] (an MPI version has now
also been made available). We demonstrate this using a controlled in-vitro transcribed (IVT) dataset created by Lahens
et al. for the purpose of characterising bias introduced in RNA-Seq library preparation [24], as well as a D. melanogaster
dataset.
The first dataset (IVT) was produced utilising in-vitro transcription in E. coli to clone a pool of approximately 1,000
pre-selected human plasmids from the Mammalian Gene Collection (MGC) [34]. Because the sequences and expression
levels of these plasmids are known, and they do not undergo splicing, this allowed them to generate a highly controlled
set of samples, and therefore a controlled dataset, in which the source of biological variation in the samples is minimised.
The samples in this dataset were then subjected to different RNA-Seq preparatory protocols, specifically varying the
step in which mRNA is selected. This enables the study and quantification of the effect of these steps on coverage levels
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of the MGC transcripts when they were aligned to the human reference genome (hg19/grch37). They found that the
mRNA selection methods employed in RNA-Seq protocols, poly-A and ribosomal depletion, both resulted in significant
fold changes in the coverage of the IVT MGC plasmids when compared to sequencing the IVT MGC plasmids directly
(without mRNA selection). Importantly, as the bias introduced in this dataset is well characterised and attributed, we
apply our analysis method to a selection of relevant samples.
In previous work, we applied our analysis method to replicates of two samples from a D. melanogaster dataset produced
from typical biological specimens using conventional RNA-Seq protocols [31]. These are two small, but whole
transcriptomes — those of the fruit fly species D. melanogaster wild-type and mutant-r2, comprising of approximately
12.9 M and 15.0 M reads respectively. We will re-examine our analysis of this data with respect to sequencing tile
means. Whilst the IVT dataset offers a set of samples that allow us to study the effect of different RNA-selection
methods, the D. melanogaster datasets have the same RNA-selection method applied to all samples and vary only in the
glass eye mutation — i.e. the technical variation is fixed, and the biological variation should be minimal. Furthermore,
the Drosophila species and its reference genome are extremely well studied and annotated, and the data has excellent
provenance.

2 Materials and methods

2.1 Quantifying sequence-specific deviation in the distribution of mapped reads across exons

The uniformity of read distribution across an exon can be quantified by computing Pearson (or Spearman rank)
correlations of the counts for the given motif pair in all exons within the dataset by aggregating the motif pair counts
at a given distance apart (motif-spacing) regardless of position within the exon. We used motif-spacings of 10, 50,
100 and 200 base-pairs (bp). An ideal dataset would have perfect correlations for motif pairs (for instance +1.0 for
the Pearson correlation coefficient) for any given motif-pair and motif-spacing. In order to thoroughly examine the
affect of sequence-specific motifs on the uniformity of read distribution we analysed the correlation for all 4-mer motifs
ranging from AAAA to GGGG (i.e. 44 combinations) in the RNA-Seq reads of an aligned SAM (Sequence Alignment
Map) file. We verified this method by running our analysis on an artificially created transcriptome with in-built uniform
distribution of reads (see Supplementary Information Section 1 and Figure S1).
The effect of extremes of GC content in RNA-Seq data (as well as microarray data) has been discussed in numerous
studies [35, 36], and we therefore also investigate the effect the mean GC content of reads within the exon 64, and the
GC content of the 4-mer motif itself 6<, has on the distribution of reads across the exon. In order to partition reads by
mean GC content we define binned GC content ranges: 64 ∈ {30 − 40%, 40 − 50%, 50 − 60%, 60 − 70%}. Given we
are working with 4-mers, the motif GC is a value in the set: 6< ∈ {0%, 25%, 50%, 75%, 100%}.

2.2 H. sapiens IVT (In-vitro Transcription) RNA-Seq dataset

We explored known-bias in this RNA-Seq, by analysing intra-exon motif pair correlation within the reads, we performed
analysis on three samples from H. sapiens that were produced in a controlled way using IVT (in vitro transcription), and
by applying different library preparation protocols to each sample during RNA-Seq. These samples from Lahens et
al. are known to demonstrate intra-exon coverage bias (we have used their H. sapiens data) [24]. Although the raw
data deposited in GEO for this dataset has not been aligned, the library preparation protocol for each sample, and the
alignment and post-processing strategy applied have been clearly documented. We, therefore, aligned the reads of the
samples to the reference hg19 genome according to the documented parameters to generate the SAM files for analysis
by our method.
The RNA in these samples has been transcribed from cDNA clones in E. coli DH5U cells. The dataset comprises of a
pool of 1,062 RNAs from a full-length human cDNA library sequenced using RNA-Seq. The first sample, IVT-Only,
had its IVT RNA subjected to ribosomal RNA depletion prior to sequencing, whilst the second sample, IVT-PolyAsel,
had polyadenylated selection applied instead of ribosomal depletion — these are two different, routinely used protocols
for selecting specifically mature (mRNA) from RNA samples. The third sample, IVT-Plasmids, is our control as it was
produced by direct sequencing of the Human IVT plasmids without RNA-selection (i.e. neither ribosomal depletion
nor polyA selection were applied). The datasets were produced by the Smilow Center for Translational Research,
Philadelphia, USA and featured in a publication by Lahens et al. [24], and the third sample was one of the controls used
in the original research paper. This data is deposited at the GEO database with the ID GSE50445 [37].
The distribution of protein-coding exon lengths in H. sapiens is shown in Supplementary Figure S2. We note that,
although the median exon length in H. sapiens is 121 bp (shorter than Drosophila) and approximately 80% of the exons
are less than 200 bp (Sakharkar et al., 2004), the remaining 20% of exons will contribute to motif pair correlations at
200 bp apart.
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H. sapiens (IVT-Plasmids, IVT-Only and IVTpolyAsel) D. melanogaster (wild and mutant)
Replicates: 1x .sam file for each IVT sample (no repli-
cates)

Replicates: 4x .sam files (two replicates for each species).

Sample preparation Sample Preparation
Glycerol stocks containing individual cDNAs (cloned into
pCMV-Sport 6 plasmid) from the MGC (Mammalian
Gene Collection) [34] were produced. Plasmid DNA was
extracted from these glycerol stocks and plated at 50 ng
per well in 384-well plates. The contents of three 384-well
plates (total of 1,062 human transcripts) were collected.
The plasmid library was then amplified by transferring 10
ng into E. coli DH5U cells (Invitrogen, Life Technologies,
Carlsbad, CA, USA, catalogue no. 18258–012). The heat
shock method was used to transform E. coli (See [24]
for more details). The plasmids were then purified using
Qiagen (Hilden, Germany) maxiprep kit (catalogue no.
12163), according to the manufacturer’s protocol. Samples
were sequenced on the Illumina HiSeq 2000 platform.

For the wild type D. melanogaster, fly stocks (Canton-S
and strain RAL-208) were obtained from the inbred col-
lection of T. Mackay. For the mutant-r2 D. melanogaster,
fly stocks (stock 507) were obtained from the Blooming-
ton Stock Center. Eye-antennal and wing imaginal discs
were dissected. RNA was extracted, yielding ∼ 3 mg
of total RNA per sample. The samples were processed
into libraries according to the Illumina TruSeq protocol
with appropriate indices, pooled. Sequencing of the tran-
scriptomes was performed on the Illumina HISeq 2000
platform.

RNA-Seq RNA-Seq
After sequencing, raw reads from the samples were aligned
to the human genome (GRCh37/hg19) using the RNA-Seq
Unified Mapper (v2.0.4) with default parameters. Only
reads that mapped to a single location were used (selected
from the RUM_Unique aligned reads file).

After sequencing, Fastx-clipper [40] was used to discard
reads containing residuals of adapter sequences were dis-
carded (FastX clipper version 0.0.13 with option -M15).
Quality control was applied to the raw sequence reads
and performed using the FastQC software [30] (version
0.9), checking for PHRED quality >20 and different
primer contaminations. The reads were then aligned
using TopHat v2.0 [41] with default parameters, to the
Flybase Drosophila Melanogaster genome version r5.45
(released March 2012) [42].

Table 1: The sample and library preparation protocols, together with the data-processing steps, applied to the RNA-Seq
datasets used in this analysis. (Left) H. sapiens IVT RNA-Seq. (Right) D. melanogaster.

2.3 D. melanogaster RNA-Seq dataset

In order to investigate intra-exon motif pair correlation within the reads from a “typical dataset”, we have used two
Drosophila (species D. melanogaster) transcriptomics datasets which differ by mutation gl[60j] in the eye-antennal disc.
These are the full transcriptomes of the wild-type and mutant glass eye mutations, acquired from Stein Aerts Laboratory
of Computational Biology at the University of Leuven, Belgium. This data is deposited at the GEO database with the ID
GSE39781 [38]. The D. melanogaster datasets featured in a research publication by Naval-Sánchez et al.[39].
Supplementary Figure S3 shows the distribution of exon lengths in the Drosophila genome — the median exon length is
298 bp. This is important because it shows that most of the exons are longer than 200 bp and therefore can have data to
compute correlations.
The information regarding the source of the biological samples, the sample preparatory protocols and post-sequencing
processing that were applied to samples in these two datasets are documented in Table 1.
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3 Results

3.1 Analysis of IVT (In-Vitro Transcribed) RNA in H. sapiens

We have analysed three H. sapiens samples which were prepared by IVT RNA-Seq. Lahens et al. in their study used
RNA that has been in-vitro transcribed (IVT) from cDNA clones in E. coli[24]. Their rationale was that the “nucleotide
sequence at every base was known, the splicing pattern established, and the expression the level coverage is uniform
across the transcript.”. This means that any bias occurring in the coverage of reads in these three samples must be as a
result of technical rather than biological origin.
The first IVT sample we analysed was the IVT-Plasmids sample, as this was produced from sequencing the Human
IVT plasmids directly without applying Ribosomal depletion or PolyA selection methods, and therefore represents
a control. Importantly, the IVT-Plasmids sample, by virtue of not having RNA selection protocol steps applied, also
reduces the technical sources of variation in read distribution. Table 2 shows a number of 4-mer motif-pairs that have
very high correlations (Pearson correlations very close to +1), and these high correlations are observed across all
spacings. There are also some extremely low correlations due to a lack of 4-mer data (as indicated by the sample sizes in
parenthesis). In order to visualise correlations across the IVT-Plasmids sample, we partitioned the results as a function
of GC content of the motif and GC content of the exon and produced box and whisker plots (Figure 1). We observe a
reasonably good correlation, with a median correlation of approximately 0.35, across all of the 4-mer pairs as a function
of the GC content of the exons (right side of the figure), and a reasonably good correlation across different Motif GC
concentrations except that of 100% motif GC content.

A
IVT-Plasmids H. sapiens

Lowest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
ATCG=-0.0543 (23) ACGA=-0.2715 (15) TCGA=-0.2600 (16) ACGA=-0.3050 (10)
CGTC=-0.0209 (44) GACG=-0.0101 (39) CGAA=-0.1953 (17) TCGC=-0.1834 (13)
ACCG=-0.0129 (49) AACG=0.0000 (9) CGTT=-0.1510 (10) ACCG=-0.1608 (18)
CGTT=-0.0052 (21) TTCG=0.0000 (9) GTCG=-0.0786 (19) GTAC=-0.1465 (21)
CGTA=0.0000 (7) TCGA=0.0000 (8) CGGT=-0.0304 (45) TCGA=-0.1274 (11)
CGAC=0.0479 (43) CGTT=0.0000 (8) CGTA=0.0000 (5) CGAG=-0.1055 (41)
ACGC=0.1639 (40) TCGT=0.0000 (8) ACGT=0.0000 (9) TGCG=-0.0935 (40)
GCGA=0.1665 (62) TACG=0.0000 (7) TACG=0.0000 (4) GTCT=-0.0547 (54)
ACCC=0.1899 (260) CGAT=0.0000 (9) CCGT=0.0312 (37) TAGG=-0.0541 (24)
GGGG=0.1991 (649) TCGC=0.0884 (28) CGAT=0.0407 (18) GCGA=-0.0482 (18)
Highest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TAGA=0.9985 (48) TAGG=0.9943 (19) ATCG=0.9822 (16) TCAA=0.8609 (57)
GTCG=0.9984 (19) ACTA=0.9703 (21) GTAT=0.9581 (33) ATCG=0.8324 (10)
TTAG=0.9983 (39) CTAG=0.9692 (19) CGTC=0.9429 (31) AGGC=0.7683 (137)
ACGT=0.9978 (19) CCTA=0.9672 (26) GTTA=0.9233 (23) ATCC=0.7553 (49)
ATAG=0.9976 (37) CATT=0.9644 (103) AGTC=0.9189 (59) GGAT=0.7430 (40)
ATTC=0.9974 (85) ACTT=0.9594 (84) GTCA=0.8984 (67) TGAC=0.6765 (52)
GCAC=0.9971 (110) GATA=0.9590 (27) TCGT=0.8971 (12) TACC=0.6553 (22)
TAGG=0.9970 (31) CTAA=0.9572 (31) GCAA=0.8938 (72) TGGT=0.6435 (84)
TCGT=0.9968 (18) TATC=0.9495 (27) CATC=0.8817 (117) GGTG=0.6410 (103)
ACAT=0.9968 (114) TTAC=0.9389 (33) ATTC=0.8620 (78) ACGG=0.6184 (21)

Table 2: H. sapiens Pearson correlation co-efficient outliers
(top ten and lowest ten) for different intra-exon 4-mer motif
sequence pairs at 10, 50, 100 and 200 bp spacings.

B

Figure 1: Box-whisker plot of the IVT-Plasmid sample
(control) correlations as a function of Motif GC and mean
exon GC content.

In order to compare the effect of applying different RNA selection protocol methods to the IVT samples, specifically
ribosomal depletion vs. polyA selection, we compared the IVT-Only and IVT-PolyA samples respectively. Table 3 below
shows that the highest outliers for both these IVT-Seq samples show a number of 4-mer motif-pairs that have very high
correlations. High correlation outliers are observed across all spacings. We produced box-whisker plots of correlation
as a function of GC content of the motif and GC content of the exon (Figure 2). The trend of the data for IVT-Only and
IVT-PolyA, as a function of Motif GC content and Mean GC content, is similar to that of the IVT-Plasmids data although
the median correlation is somewhat less.
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A
IVT-Only H. sapiens

Lowest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
CGTT=-0.1726 (18) CGAC=-0.2017 (22) CGAC=-0.1421 (28) CTAC=-0.2360 (30)
CGTA=-0.1470 (13) GCGT=-0.1374 (25) GCGA=-0.1255 (33) ACGC=-0.2332 (14)
ACGC=-0.1337 (35) CGAT=-0.1171 (11) ACCG=-0.1224 (25) TCGG=-0.2111 (21)
CCGT=-0.0979 (37) CCTA=-0.1010 (34) GACG=-0.0923 (29) GTAT=-0.1806 (13)
GCGT=-0.0746 (44) TAAC=-0.0980 (42) CGAA=-0.0903 (18) CCGA=-0.1790 (17)
GAGT=-0.0628 (101) CGAA=-0.0884 (18) GTTA=-0.0891 (32) CGGT=-0.1735 (16)
CGTC=-0.0298 (44) TAGG=-0.0698 (32) CGTT=-0.0832 (11) ACGG=-0.1720 (16)
CGGA=-0.0217 (75) AACC=-0.0657 (81) CGGT=-0.0666 (34) ACTA=-0.1571 (23)
GCGA=-0.0156 (52) CGCA=-0.0563 (40) GTTC=-0.0627 (48) GACG=-0.1540 (26)
TACG=0.0000 (6) GCTA=-0.0562 (26) GTAG=-0.0583 (40) TGCG=-0.1532 (34)
Highest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TACA=0.9989 (98) TCGA=0.9805 (15) ATCC=0.9609 (41) TAGT=0.9913 (20)
CTCA=0.9983 (168) GACT=0.9713 (56) AGTA=0.9403 (31) ATCC=0.9860 (35)
AGTA=0.9978 (50) TGCA=0.9674 (114) TATA=0.9261 (50) GCAT=0.9734 (40)
TACT=0.9977 (47) AGGT=0.9667 (70) CGTG=0.9146 (39) CTCG=0.9417 (19)
TGAA=0.9975 (229) ATGC=0.9626 (44) TCAC=0.8733 (77) AGTC=0.8869 (34)
GTCA=0.9970 (81) CCTT=0.9551 (132) CACC=0.8694 (164) TCAC=0.8492 (47)
GCAT=0.9969 (92) TTGC=0.9544 (48) CACT=0.8642 (109) TGTG=0.8017 (111)
AAGA=0.9969 (257) ATGG=0.9543 (93) CCCT=0.8530 (275) ATTC=0.7894 (52)
AACT=0.9965 (104) CTCG=0.9507 (30) TGAT=0.8525 (64) CTGT=0.7682 (114)
GTAT=0.9963 (24) CCGT=0.9480 (17) GTAC=0.8448 (18) TACC=0.7581 (22)

B
IVT-PolAsel H. sapiens

Lowest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
CGTA=-0.1953 (11) ATCG=-0.2190 (16) CGAA=-0.2046 (13) TGCG=-0.2025 (42)
CGTT=-0.1012 (20) CGTT=-0.2000 (10) TACC=-0.1573 (28) ATCG=-0.1998 (12)
GCGA=-0.0976 (67) AACG=-0.1797 (14) TCGT=-0.1174 (25) CGTT=-0.1923 (13)
ATCG=-0.0694 (31) TCTA=-0.1429 (27) GCGA=-0.1062 (34) CGAC=-0.1810 (17)
AACG=-0.0510 (20) ACTA=-0.1184 (23) CGCA=-0.0956 (84) ATAG=-0.1664 (21)
GCGT=-0.0388 (46) CGCA=-0.1003 (59) ATAG=-0.0786 (49) CGTG=-0.1445 (49)
CTTA=-0.0373 (44) GTTA=-0.0876 (31) GTTG=-0.0708 (115) GTTA=-0.1404 (40)
TAGC=-0.0171 (44) CGAC=-0.0747 (40) TCGC=-0.0676 (46) AACG=-0.1316 (13)
GGTA=-0.0107 (66) TACC=-0.0682 (13) GACG=-0.0637 (41) CGGT=-0.1314 (32)
GAGT=-0.0079 (110) GCTA=-0.0583 (35) TCGG=-0.0576 (63) GTAG=-0.1307 (41)
Highest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TACT=0.9998 (45) ACTT=0.9887 (68) AGTA=0.9703 (36) ATCC=0.9890 (41)
TACC=0.9997 (39) AGAG=0.9886 (129) CGAT=0.9035 (18) ACGA=0.9751 (11)
CTAC=0.9992 (60) CTAA=0.9726 (25) TATA=0.8982 (88) TAGT=0.9358 (33)
TAAC=0.9991 (27) CACG=0.9685 (37) CGTG=0.8641 (65) GCAT=0.8991 (45)
AGTA=0.9986 (57) TGGA=0.9652 (196) ACAC=0.8495 (75) CGAG=0.7917 (30)
AGAC=0.9979 (81) AAGC=0.9606 (85) TCAA=0.8321 (93) TGTG=0.7810 (119)
TGAC=0.9976 (84) TTGA=0.9571 (82) CATA=0.8264 (39) GACG=0.7799 (29)
CCTA=0.9976 (47) AACT=0.9559 (87) ACCT=0.8171 (93) TGAA=0.7644 (123)
TGAA=0.9958 (234) ATAA=0.9541 (77) CACT=0.8108 (114) AATC=0.7620 (35)
ATCC=0.9956 (71) ATAG=0.9531 (42) CCAA=0.7891 (124) CATC=0.7204 (72)

Table 3: H. sapiens IVT-Seq Pearson correlation co-efficient outliers (top ten and lowest ten) for different intra-exon
4-mer motif sequence pairs at 10, 50, 100 and 200 bp spacings. A) IVT only library preparation B) IVT with PolyA
library selection. Sample sizes are given in parenthesis.

Figure 2: Correlation (Pearson’s) as a function of 4-mer motif and exon GC content for H. sapiens for the two IVT
samples that had different RNA selection protocols applied: Top) IVT-Only sample, which underwent ribosomal
depletion, and B) IVT-PolyA which underwent PolyA selection.
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3.2 Analysis of Wild-type and Mutant-r2 D. melanogaster

Using our method, we have also analysed the whole transcriptomes of two Drosophila Fruitfly (species D. melanogaster)
which only differ by mutation gl[60j] in the eye-antennal disc [39]. Overall correlations for both wild-type and mutant-r2
are given in Table 4. We observe much lower correlations for the mutant-r2 than in wild-type — the difference is
especially marked when comparing the motifs with the highest 10 correlation in both samples.

3.2.1 GC content of the replicates

In order to examine the effect of GC content on the distribution of mapped reads, we have plotted intra-exon 4-mer
motif-pair correlations as a function of both motif and exon GC content, for both D. melanogaster datasets (Figure
3). In the wild-type dataset we observe notable variation in the correlation as a function of GC content of the motif,
whereas no variation in the correlation is observed as a function of the mean exon GC content. This indicates that the
GC content of the motif has an effect (causing a deviation in the distribution of mapped reads to an exon) rather than the
overall GC content. In the mutant-r2 dataset, no variation is observed.

A
Wild type D. melanogaster

Lowest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TAGG=-0.0151 (539) CCTA=-0.0074 (403) GGGG=0.0024 (1991) GGGG=-0.0187 (1525)
CATA=0.0108 (1150) GGTT=-0.0051 (1243) CCTA=0.0066 (627) CCCC=-0.0043 (1721)
CCGA=0.0250 (1343) CTAG=-0.0001 (331) TACC=0.0203 (951) ACCC=0.0030 (1346)
TAAC=0.0268 (790) CCGG=0.0225 (2795) GGTT=0.0259 (2008) AACC=0.0063 (1559)
CCCC=0.0461 (2356) CATA=0.0248 (636) AACC=0.0460 (2028) CCGG=0.0182 (3351)
CGTA=0.0624 (620) GATA=0.0479 (664) CGCG=0.0535 (2417) GGGT=0.0292 (1310)
CGGG=0.0627 (2534) TAAC=0.0485 (464) GGTA=0.0577 (868) GGTA=0.0350 (680)
GGTA=0.0639 (779) AGGG=0.0522 (1313) GGGA=0.0651 (2585) GTCT=0.0367 (691)
GGGA=0.0710 (2197) CGCG=0.0635 (1551) TCCC=0.0728 (2637) GGTT=0.0384 (1674)
AGGG=0.0832 (1702) AGCC=0.0744 (1243) TGGG=0.0800 (3963) CCCA=0.0392 (3348)
Highest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TAGA=0.9860 (602) TAGA=0.8947 (445) AGTG=0.9289 (1402) GAGT=0.8516 (975)
ATAG=0.9672 (894) GTAC=0.8623 (529) TATG=0.8375 (978) ACGG=0.7927 (837)
TAGC=0.9325 (729) TTAG=0.8317 (551) CTAA=0.8110 (753) ACTA=0.7202 (596)
AGTG=0.9002 (1368) AGTG=0.8158 (920) GCTA=0.8054 (750) TACG=0.7173 (517)
AACG=0.8898 (1330) CTAT=0.8059 (533) CCAT=0.7493 (2080) TCGT=0.7171 (1541)
ATCC=0.8336 (2306) ACTA=0.8042 (515) GCTG=0.7303 (9467) CTAC=0.7036 (749)
CTGA=0.8192 (1577) AGCA=0.7986 (4465) GACT=0.7296 (1149) ACAG=0.6966 (1360)
CACT=0.8175 (1706) GTGT=0.7916 (1063) TAGT=0.7249 (802) ACCA=0.6960 (2168)
CGAG=0.8028 (2433) CAGT=0.7776 (1182) GAGT=0.7149 (1153) CGTA=0.6860 (560)
AATT=0.8018 (3447) AGTT=0.7770 (1506) CGAA=0.7145 (2171) TGTG=0.6842 (1867)

B
Mutant-r2 D. melanogaster

Lowest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
CCTA=-0.0163 (932) GACT=-0.0208 (1403) CCTA=-0.0116 (1083) TACT=-0.0230 (1301)
TCTA=-0.0137 (1346) GCTA=-0.0146 (1090) TCCC=-0.0072 (4951) GTAA=-0.0215 (1321)
TAGG=-0.0112 (944) TAAC=-0.0124 (1099) TCTA=-0.0071 (1505) GGTA=-0.0203 (1135)
CCGA=-0.0083 (2821) CATA=-0.0120 (1278) ACTA=-0.0039 (1535) AACC=-0.0166 (2747)
TAAC=-0.0040 (1623) CTAC=-0.0114 (1345) GGGG=0.0025 (4280) TTAC=-0.0150 (1397)
GTAG=-0.0039 (1736) GTCT=-0.0108 (1466) GGGA=0.0091 (4967) GTGT=-0.0113 (2178)
CATA=0.0017 (2064) ATAC=-0.0108 (1180) GATT=0.0103 (4102) GTTA=-0.0107 (1368)
CTAG=0.0018 (805) GAGT=-0.0081 (1634) GTTT=0.0108 (6502) TCAC=-0.0091 (2027)
GACC=0.0025 (2731) TAAG=-0.0080 (1201) ACGT=0.0115 (1450) TAAC=-0.0081 (1267)
GATA=0.0032 (1784) CCTA=-0.0073 (701) CATA=0.0115 (2078) GTGA=-0.0073 (1933)
Highest 10 Pearson-correlation outliers and their motifs
R(10 bp) R(50 bp) R(100 bp) R(200 bp)
TAGT=0.7594 (1485) TACC=0.5456 (1016) CAAG=0.3938 (3971) CTTG=0.5247 (3120)
CACT=0.6408 (1754) ATGT=0.5207 (1390) CTTG=0.3705 (4073) GCAG=0.4106 (6614)
GATG=0.5231 (3671) CTTG=0.4582 (2911) CTGC=0.3625 (8133) TGAT=0.3769 (1844)
TGCA=0.4906 (3256) TTAG=0.4365 (1190) TGAT=0.3560 (2331) CAAG=0.3720 (3118)
CAAG=0.4242 (3575) CAAG=0.3459 (2740) CATC=0.3467 (3747) ACAT=0.3496 (1661)
GCAG=0.3975 (8213) AGTT=0.3399 (1555) GATG=0.3396 (3686) CGAA=0.3235 (3096)
AAGG=0.3903 (4231) TATG=0.3257 (1270) TATC=0.3316 (2020) GATC=0.3184 (2394)
TCGA=0.3841 (2228) TTGT=0.3235 (2925) ATCA=0.3291 (2324) CATT=0.3037 (2055)
ACTC=0.3804 (2157) AACT=0.3221 (1459) ATCG=0.3053 (2304) TGTG=0.3024 (1977)
AATG=0.3743 (2211) GATG=0.3199 (2601) CTCG=0.2964 (2798) ACGG=0.3001 (2036)

Table 4: D. melanogaster Pearson correlation co-efficient outliers (top ten and lowest ten) for different intra-exon
4-mer motif sequence pairs at 10, 50, 100 and 200 bp spacings. A) Wild-type B) Mutant-r2. Sample sizes are given in
parenthesis. Replicates are given in Supplementary Table S2.

3.3 FastQC and BamQC— Quality Control analysis of D. melanogaster dataset

Given there is no biological precedent for the differences observed between the wild and mutant species, and that the
low correlations are seen across the mutant replicates, independent of both spacing and GC content, the source of
variance is likely to be technical in origin. With this in mind, in order to see if the source of variance between the D.
melanogaster datasets could be identified by means of Quality Control (QC) checks, we ran Qualimap [43] on all of the
D. melanogaster samples and replicates, and then ran FastQC [30] on all of the datasets we analysed. In this way, we
worked our way backwards through the analysis (i.e. working upstream from our analysis method), starting with the D.
melanogaster datasets. Firstly, in order to see if there were any alignment or coverage issues in the mutant dataset, we
ran Qualimap to analyse the source BAM (Binary Alignment files) that the SAM files were directly derived from. Next,
in order to analyse the raw unaligned reads files (Fasta files) for any sequencing issues, we ran FastQC on all of the
RNA-Seq replicates and samples, for all datasets that we have analysed in this research.
When we compare the BamQC analysis for the wild and mutant types (a summary of the results is given in Table 5, there
is not much difference between them in terms of the mapping quality, nucleotide frequencies and GC content. However,
there is an increase in variance in the coverage of the mutant D. melanogaster dataset as indicated by the slightly higher
standard deviation (93.045 vs. 80.229). To look into this further, we looked into how coverage across chromosomes
in the two samples was reported in the BamQC report, this is plotted in Figure 7. This shows substantial variation in
coverage between different chromosomes that reads were mapped to in the organism. However a similar pattern is
observed in all of the samples and thus cannot account for the differences in 4-mer correlations that we observe.
In comparing the FastQC analysis results for the datasets, we found that the per tile sequencing quality heatmaps were
radically different for the mutant and wild type datasets (Figure 5). These depict deviations from the average tile quality
within areas of flowcells on the sequencing apparatus (the explicit values underlying the heatmaps are referred to as the
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Figure 3: Correlation (Pearson’s) as a function of 4-mer motif and exon GC content in both wild and mutant-r2 D.
melanogaster transcriptomes. NB: The replicates are given in Supplementary Figure S4

Figure 4: Heatmaps of the Sequencing per-tileMeans, obtained from FastQC analysis for the two RNA-selection H. sapiens IVT
RNA-Seq samples analysed — sequencing tile information was not present in the IVT-Plasmids sample. Left) IVT-PolyA Right)
IVT-NoSel.
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Figure 5: Heatmaps of the Sequencing per-tileMeans, obtained from FastQC analysis for all D. melanogaster RNA-Seq samples
and their replicates analysed Top) Wild-type replicates Bottom) Mutant replicates.

per-tile Means) [44]. In the wild-type replicates, these heatmaps were plain and uniform, whereas both of the mutant
replicates showed considerable variation from the Means. There were no differences in any of the other FastQC analysis
parameters measured between the wild and mutant datasets. In order to investigate this effect further, and to contrast it
with the IVT dataset samples, we plotted the distribution of per-tile Means as both a histogram and a density plot (Figure
6) for all the samples in all of the datasets we have analysed. In Figure 6, we observe that the distributions in the IVT
and wild type datasets show the least deviation from the Mean tile qualities. The mutant D. melanogaster datasets show
considerable deviation from the Mean tile qualities — this accounts for the low correlations seen across the mutant
replicates. By computing intra-exon motif-pair correlations we have observed that sequencing errors occurring in
flowcell tiles result in widespread deviations from the uniformity of mapped reads across exons, and are independent of
sequence or GC content.
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A) B)
Figure 6: Visualisation of the distributions of the Sequencing per-tile Means, obtained from FastQC analysis for all RNA-Seq
samples analysed (species D. melanogaster and H. sapiens). A) Histogram B) Density plot. The distributions in the IVT datasets, and
both wild type replicates, show that less of the tiles in the flowcells of the sequencing apparatus deviate from the per-tileMeans. This
is indicated by the tallest, narrowest peaks, centered around 0, for the IVTPolyA dataset (Blue) followed by IVTnosel (Orange), and
then the first wild-type replicate (Red). The second wild-type replicate (Green) was the third tallest peak, and showed a reasonably
good narrow distribution of the data about the per-tileMeans, albeit lower than the IVT datasets and first wild type replicate. The two
mutant replicates, however, show very wide distributions about the per-tileMeans in the flowcells, as depicted by the shorter, wider
curves (Purple and Brown) respectively. NB: The IVT-Plasmids sample did not carry sequencing tile information.

A

Wild-type D. melanogaster
Parameter Result
number of reads 12,960,778
number of mapped reads 12,960,778 (100%)
number of mapped bases 554,135,221 bp
number of sequenced bases 442,559,999 bp
mean mapping quality 135.086
mean coverage data 3.284X
std coverage data 80.2288X
Base composition / GC content
Parameter Result
number of A’s 114,904,069 bp (25.96%)
number of C’s 107,246,603 bp (24.23%)
number of T’s 115,649,248 bp (26.13%)
number of G’s 104,760,079 bp (23.67%)
number of N’s 111,575,222 bp (25.21%)
GC percentage 47.9%

B

Mutant-r2 D. melanogaster
Parameter Result
number of reads 15,099,081
number of mapped reads 15,099,081 (100%)
number of mapped bases 656,286,624 bp
number of sequenced bases 530,325,061 bp
mean mapping quality 139.9086
mean coverage data 3.8894X
std coverage data 93.0446X
Base composition / GC content
Parameter Result
number of A’s 136,501,323 bp (25.74%)
number of C’s 129,898,946 bp (24.49%)
number of T’s 137,081,079 bp (25.85%)
number of G’s 126,843,713 bp (23.92%)
number of N’s 125,961,563 bp (23.75%)
GC percentage 48.41%

Table 5: BamQC analysis summary for (A) wild-type and (B) mutant-r2 Drosophila.
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Figure 7: Plot of chromosome coverage, obtained from BamQC analysis results for wild-type and mutant-r2 Drosophila.
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4 Discussion

Wehave analysed RNA-Seq samples from two species: H. sapiens (MGCplasmids) andD.melanogaster (transcriptomes).
The IVT dataset was produced in a highly controlled manner — we have analysed three H.sapiens samples from this,
two were subjected to mRNA selection prior to RNA-Seq, and the other was not. The IVT samples contain fewer reads
than the D. melanogaster samples in which the wild and mutant-r2 types, comprise approximately 12.9 M and 15.0
M reads respectively, whilst the IVT-Only sample has 0.406 M reads, the IVT-PolyA sample has 0.397 M reads and
the IVT-Plasmids 0.181 M reads. Although these are comparatively small numbers of reads, the IVT samples have
the intra-exon bias within them, as indicated by coverage of reads mapping to the source MGC plasmids used, well
quantified. From the box and whisker plots of the two IVT samples that underwent mRNA selection RNA-Seq protocols
(Ribosomal depletion and Poly-A selection), we observe a dependence of intra-exon motif pair correlation on motif GC
content. This effect is also seen in the wild-type replicates of the D. melanogaster samples, but not in the IVT-Plasmids
sample which is not subjected to mRNA selection. The mutant D. melanogaster data has very low overall correlations
and hence this pattern is not seen here.

4.1 Dependence of intra-exon correlation on GC content appears to be due to mRNA selection

The intra-exon motif correlations as a function of both GC content parameters are much higher in the IVT-Plasmids
mRNA selection free RNA-Seq sample than in the other RNA-Seq samples that we analysed that did undergo mRNA
selection: both ribosomal depletion (IVT-Only) and PolyA selection (IVT-polyA and wild-type). Furthermore, both
of the H. sapiens and wild-type D. melanogaster samples that underwent mRNA selection in the RNA-Seq process
had slightly lower correlations than the H. sapiens IVT-Plasmids sample which did not, suggesting this is likely of
technical origin. Importantly, all the samples from all of the datasets we analysed were sequenced on the same platform
— Illumina HiSeq 2000 (as detailed in Table 1).
As the dependence on overall GC concentration is not observed in the IVT-Plasmids control sample, but is observed in
RNA-Seq samples that underwent mRNA selection, we can exclude platform-specific sequencing bias as a source of this
effect in the IVT samples. This suggests that not only do mRNA selection protocols result in bias in the distribution
of mapped RNA-Seq reads as Lahens et al. demonstrated [24], but that mRNA selection is also responsible for the
dependence of correlation on GC content — we have observed this in all of the RNA-Seq samples that underwent
mRNA selection across both H. sapiens and D. melanogaster species. Risso et al. also noted motif-specific GC
effects, manifesting as deviations from uniform read distribution, which they attribute these problematic motifs being
underrepresented [45]. However, the GC effect we observe occurs in both the wild type replicates, which have large
sample sizes (A of Table 4), as well as in the IVT-polyA and IVTnosel mRNA selection datasets, which have low sample
sizes (due to the controlled way in which the samples were prepared) (Table 3). Furthermore, the numbers of counts
for high GC content motifs, as indicated by the highest outliers (Table 4), is of the same order as other motifs. The
dependence of intra-exon correlations on the GC content of the motifs appears to be due to mRNA selection methods,
which are routinely employed in RNA-Seq experiments, and are known to introduce bias [46, 47, 24].
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5 Conclusion

In this work, we have applied our novel k-mer based analysis method that allows deep investigation into RNA-Seq read
data at the exon level, and quantifies sequence-specific deviations in the uniformity of the distribution of mapped reads
to a reference genome. The method we have applied uses distributed computing to count reads overlapping 4-mer
motifs exhaustively (AAAA through to GGGG) at different regions of the same exon. The assumption is that, when
there is no deviation in the distribution of mapped reads, these counts should be correlated. We have demonstrated
that the correlations we have computed correspond to mean tile data in the samples from the two datasets we analysed,
and propose that this be used when mean tile data is not available and therefore requires only the raw short-read data
alone. We have also observed that extremely poor correlations are an indication of technical sources of bias, such
as sequencing flowcell tile errors or batch-effects. This is important work because i) gene expression studies rely on
abundance estimates of RNA transcripts that can be hampered by deviations in the uniformity of read distribution ii) the
lack of annotation in experiments deposited at public repositories, such as the SRA and GEO, compound the challenges
in characterising bias in RNA-Seq data, and iii) our method is scalable and can, therefore, be applied to analyse the large
datasets present in these vast data repositories. As of August 2020 (the time of writing) the SRA alone contains more
than 43 peta bases (43.390x1015) of sequencing data, that is in excess of 5 terabytes [48]. In light of this increase in
throughput, the relatively young age of RNA-Seq (hence not all bias has been characterised), and the trend towards
data-driven science, more work is needed to develop QC measures to ensure the integrity of this data.
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