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Summary: 238w 

A hallmark of aging is the inability of differentiated cells to maintain their identity. In the aged 

Drosophila midgut differentiated enterocytes (ECs) lose their identity, and the integrity of the 

midgut tissue and its homeostasis are impaired. To discover regulators of EC identity relevant 

to aging we performed an RNAi screen targeting 453 ubiquitin-related genes in fully 

differentiated ECs. Seventeen genes were identified, including the de-ubiquitinase Non-stop 

(Not/dUSP22; CG4166). Acute loss of Non-stop in young ECs phenotypically resembled aged 

ECs. Lineage tracing experiments established that Non-stop-deficient young ECs as well as 

wild-type aged ECs are no longer differentiated. Aging or acute loss of Non-stop also resulted 

in progenitor cell hyperproliferation and mis-differentiation, loss of gut integrity, and reduced 

organismal survival. Proteomic analysis unveiled that Non-stop maintains identity as part of a 

Non-stop identity complex (NIC) that contains E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98.  

Transcriptionally, Non-stop ensured chromatin accessibility at EC genes, maintained an EC-

specific gene expression signature, and silenced non-EC-relevant transcriptional programs. 

Within the NIC, Non-stop was required for stabilizing of NIC subunits. Upon aging, the levels 

of Non-stop and NIC subunits declined, and the large-scale organization of the nucleus was 

distorted. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguarded the 

protein level of NIC subunits, restored the large-scale organization of the differentiated nucleus, 

and suppressed aging phenotypes and tissue integrity. Thus, the isopeptidase Non-stop, and 

NIC, supervise EC identity and protects from premature aging.   
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Introduction:  

Differentiated cell states are actively established and maintained through action of “identity 

supervisors” (Holmberg & Perlmann, 2012; Natolli, 2014). Identity supervisors control 

expression of genes that enable differentiated cells to respond to environmental cues and 

perform required physiological tasks. Concomitantly, they ensure silencing/repression of 

previous fate and non-relevant gene programs and reduce transcriptional noise. Inability to 

safeguard differentiated cell identity is a hallmark of aging and results in diseases such as 

neurodegeneration, diabetes, and cancer (Bensellam et al. 2018; Hudish, et al. 2019; Conway 

et al 2015; Hnisz et al. 2013; Deneris & Hobert 2014). In many cases, transcription factors 

(TFs) together with chromatin regulators and architectural/scaffold proteins establish and 

maintain large-scale chromatin and nuclear organization that is unique to the differentiated state 

of the cell (Blau & Baltimore 1991; Booth & Brune 2016; Naetar, et al 2017; Bitman-Lotan & 

Orian 2018).   

 

In adult Drosophila midgut epithelia, the transcription factor Hey (Hairy/E(spl)-related with 

YRPW motif), together with Drosophila nuclear type A lamin, Lamin C (LamC), co-supervise 

identity of fully differentiated enterocytes (ECs) (Monastirioti et al. 2010;  Gruenbaum and  

Foisner R. (2015)Flint-Brodsly et al. 2019). Highly similar to vertebrate gut, Drosophila midgut 

epithelia intestinal stem cells (ISC) either self-renew or differentiate into progenitor cells that 

mature into enteroendocrine cells (EEs) or give rise to enteroblast progenitors. Enteroblasts 

(EB) mature into fully polyploid differentiated enterocytes (ECs) that carry out many critical 

physiological tasks of the intestine (Figure 1A; Jiang, & Edgar 2012; Lemaitre & Miguel-

Aliaga 2013; Buchon et al. 2013; Hung et al. 2020).  Aging affects the entire midgut, and is 

associated with loss of EC identity, mis-differentiation of progenitors, pathological activation 

of the immune system, and loss of the physiological properties of the gut and its integrity. It 
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also results in loss of intestinal compartmentalization, and microbiota-dysbiosis, all leading to 

reduced lifespan (Biteau et al. 2010; Rera et al 2012; Bonnay et al. 2013; Ferrandon, 2013; 

Chen et al. 2014; Li, et al. 2020; Rodriguez-Fernandezet al 2020; Jasper H. 2020). During aging, 

the protein levels of identity supervisors such as Hey and LamC decline, resulting in inability 

to maintain EC-gene programs and ectopic expression of previous- and non-relevant gene 

programs (Neves et al 2015; Takeda et al 2018; Flint-Brodsly et al. 2019).  Indeed, continuous 

expression of Hey in aged ECs restores and protects EC identity, gut integrity, and tissue 

homeostasis (Flint-Brodsly et al. 2019).  

Regulation of EC identity requires signaling to the nucleus to communicate physiological 

changes in the gut environment. An important dynamic signaling mechanism involves changes 

in post-transcriptional modifications which may propagate, amplify, or conduct signals, 

ultimately leading to differential gene regulation. One type of posttranslational modification is 

the covalent attachment of ubiquitin or ubiquitin-like (Ub/UbL) molecules, that affect protein 

stability, function, localization, as well as modulate chromatin structure (Heideker, Wertz; 

2015; Swatek& Komander, (2016); Cappadocia, & Lima, 2018; Song & Luo, 2019; Yao et al. 

2020). Recent works suggest an intimate links between ubiquitin proteostasis and aging (Kevei, 

& Hoppe, 2014; Vilchez et al. 2014; Hohfled & Hoppe, 2018; Enam et al 2018; Chua & Signer, 

2020). Therefore, we performed an RNAi screen to search for Ub/UbL-related genes within 

ECs that supervise identity. Screening 548 genes, 17 were identified whose conditional 

elimination in fully differentiated ECs resulted in loss of EC identity. Further analysis revealed 

one of them, the deubiquitinating isopeptidase (DUB) Non-stop (Non-stop/dUSP22) is a key 

EC identity supervisor. Purification and proteomic analysis identified Non-stop as part of a 

CP190/Nup98/Sgf11/e(y)2/mdg4 protein complex, termed Non-stop identity complex (NIC), 

that is essential for maintenance of EC identity.  In part, Non-stop protects NIC proteins from 

age-dependent decline, safeguarding the EC-gene expression signature, as well as large-scale 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.23.263095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263095


 5 

nuclear organization in these cells, preventing premature aging. Over lifespan, Non-stop protein 

levels in ECs declined, leading to loss of NIC subunits. This decline is associated with loss of 

gut identity and physiology at the cellular and tissue levels and maintaining youthful levels of 

Non-stop prevented loss of the NIC and prevented aging of the gut.  

 

Results:  

A transgenic RNAi screen identified Ub/UbL-related EC identity regulators.  To identify 

EC identity supervisors,  a collection of RNAi transgenic flies targeting 453 evolutionarily 

conserved Ub/UbL-related genes were screened (Table S1; List of Ubiquitin-Related Genes 

according to DRSC - http://www.flyrnai.org/DRSC-SUB.html) .Genes were knocked-down in 

fully differentiated ECs of 2-4 day old adult Drosophila females using UAS-RNAi lines and 

EC-specific conditional driver MyoIA-Gal4/Gal80ts coupled system (termed MyoIAts; see 

methods for specific lines used; Salmeron et al., 1990; Brand and Perrimon, 1993; Flint Brodsly 

et al.  2019). Conditional RNAi was achieved by shifting flies from 25 to 290C for 48 hours, 

after which guts were dissected and analyzed. Immunofluorescence was used to score loss of 

proteins which are hallmarks of EC identity (Figure 1A, B). Among the changes upon loss of 

EC identity is the as ectopic expression of the ISC marker Delta on the surface of ECs-like 

polyploid cells. This change may be also accompanied with a decline in the expression of a 

GFP signal expressed only in fully differentiated ECs (derived from the MyoIAts Gal4, UAS-

GFP transgene). Knockdown of seventeen genes resulted in loss of EC identity and the 

appearance of EC-like polyploid cells (PPCs). We also determined whether these genes are 

required for maintaining identity of enteroendocrine cells (EE’s), or progenitor cells, using the 

Prospero>Gal4/Gal80ts, or Esg>Gal4/Gal80ts that activates the UAS-RNAi in these cells, 

respectively (Figure 1, Supplemental Table S1).  
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Non-stop supervises EC identity. Among the genes identified were E3 ubiquitin ligases, E2 

enzymes, SUMO-related enzymes and ubiquitin-specific peptidases (DUB/USPs). We also 

identified few nuclear proteins harboring PHD domain that serve as binding to methylated 

histones, but may confer ubiquitin ligase activity present in established ubiquitin ligases  

(Examples are shown in Figure1, Supplemental Figure 1A-H,). The entire results of the screen 

are detailed in Figure 1, Supplemental Table S1 section of the table and validated positive hits 

under secondary screen). The DUB Non-stop (Not, dUSP22, CG4166) was identified as a bona-

fide EC identity supervisor. RNAi mediated knockdown of Non-stop in ECs using three 

independent UAS-RNAi lines resulted in the inability of ECs to maintain MyoIA>UAS-GFP 

signal followed by ectopic expression of the ISC marker Delta on the surface of EC-like 

polyploid cells in both females and males (Figures 1C, 1D, quantitated in 1G and Figure 1 

Source-data; Figure 1 Figure supplemental 1I-K).  

Originally, Non-stop was discovered as a ubiquitin protease essential for axonal guidance in 

the visual system (Martin et al 1995). Non-stop is highly conserved from yeast to humans (Ubp8 

and USP22 respectively; Mohan et al. 2014b), and its activity is required for deubiquitinating 

monoubiquitinated histone H2B (H2Bub) and activating gene expression (Weake et al. 2008; 

Mohan et al. 2014; Morgan et al 2016).  

Immunofluorescence revealed that Non-stop is expressed in all gut cells (Figure 1 Supplemental 

Figure 2A-D). Non-stop is the major H2Bub deubiquitinase in Drosophila, therefore functional 

loss of Non-stop should lead to a many-fold increase in H2Bub levels (Weake et al. 2008; Zhang 

et al 2008; Morgan et al.  2016;  Mohan et al, 2014; Li et al. 2017).  Analysis showed that ECs 

lacking Non-stop exhibited more H2Bub, and accordingly protein extracts derived from these 

midguts were characterized by an over 6-fold increase in H2Bub compared to control 

knockdown midguts (Figure 1 Supp. Figure 2F-H). However, reduction of Non-stop in EEs did 

not impact EE or EC identity or number, or Delta expression, indicating that Non-stop function 

in maintaining gut identity was specifically localized in ECs (Figure 1 Supp. Figure 2I-L).  
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Non-stop knockdown in ECs resulted in an increase in Prospero positive cells (likely EEs) 

(Figure 1E, F, and quantified in 1H, Figure 1 Source-data). Non-stop elimination also affected 

the entire midgut tissue; resulting in ectopic activation of the Notch pathway, as well as the 

stem-cell enhancer M5-4 esg::LacZ in polyploid cells, indicating that these cells were losing 

differentiated state (Figure 1I-L, 1Q, and Figure 1source data). Loss of Non-stop also resulted 

in increased phospho-Histone H3 which is indicative of mitotic activity in small cells, likely 

progenitors (Figure 1M, N).  

At the tissue level, knockdown of Non-stop in ECs reduced epithelial integrity as evidenced by 

leaking of blue colored food outside the gut, and reduced overall survival (Figure 1O, P and 1R 

respectively; Figure 1 source data).  

We evaluated the identity and fate of young ECs conditionally lacking Non-stop, as well as 

aged wildtype ECs, as well as the cellular composition of the gut under these conditions. 

Towards this end we used the lineage tracing system G-TRACE. G-TRACE is a dual-color 

GAL4-dependent system, that enables tracing fully differentiated non-dividing cells (Figure 

2A; Evans et al. 2009; Flint-Brodsly et al. 2019). In brief, the MyoIA-Gal4/Gal80ts directs the 

expression of the color system only to fully differentiated ECs. Expression of the Gal4 is 

dependent on the EC-specific MyoIA promoter that induces expression of a UAS-RFP (red). 

Concomitantly, this Gal4 activity induces the expression of a Flp-recombinase resulting in a 

recombination event that drives permanent expression of a GFP regardless of the differentiation 

state of the cell. Therefore, wildtype young ECs express both RFP and GFP, and are the only 

population of polyploid cells (PPCs), observed in control midgut tissue (Figure 2B). In contrast, 

in guts where Non-stop was knocked-down in ECs, other populations of fluorescently colored 

PPC’s were observed. These include PPCs that express only GFP, termed PPC** (PPCGFP+ RFP-

; Figure 2C, and quantitated in 2H; Figure 2 source data). Unlike control cells, PPC** did not 

express EC-related transcription factors such Odd-skipped (Figure 2D-E). They also exhibited 

reduced expression of the differentiated lamin, LamC, (Figure 2F, G). By the nature of the G-
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TRACE system, we concluded that these PPC** are likely ECs that were no longer fully 

differentiated, failing to maintain EC identity. In accordance, PPCs that did not express EC key 

transcription factors such as Pdm1 and caudal were also observed (Figure 2 Figure 

Supplemental 1A-D).  In addition, guts where Non-stop was targeted in ECs were populated 

with PPCs lacking expression of either RFP or GFP (termed PPC*), and are likely mis-

differentiated progenitors that failed to activate the myo-promoter and the entire RFP/GFP 

marking system (Figure 2H, Figure 2 Source data). 

The phenotypes observed upon acute loss of Non-stop are highly similar to the ones observed 

in aged midguts (Figure 2I-P; Figure 2 Supplemental Figure 2, 3). G-TRACE analysis of aged 

ECs established that the aged midgut (5 weeks old) are populated with ECs that are no longer 

differentiated (PPC**), as well as mis-differentiated progenitors (PPC*). These PPC** no-

longer expressed the differentiated LamC, or the transcription factors Pdm1 and Odd-skipped 

and ectopically expressed the stem cell marker Delta (Figure 2I-O, quantitated in Figure 2P, 

and Figure 2 supplemental Source data; and Figure 2 Figure Supplemental 3A-D).  

As in the case of young ECs lacking Non-stop, aging ECs ectopically expressed the stem cell 

enhancer M5-4 (Figure 2 Figure Supplemental 2 A, B, I, J). They also exhibited reduced 

expression of the differentiated Lamin LamC (Figure 2 Figure Supplemental 2C, D, K, L) and 

ectopic expression of the stem cell-related Lamin, LamDm0 as well as its binding partner Otefin 

(Ote) in PPC  (Figure 2 Figure Supplemental 2E, F, M, N, G, H). At the tissue level, aged ECs 

also exhibited disorganized distribution of EC-related adhesion molecule Disc large, (Dlg), and 

reduced expression of MESH and snakeskin (SSK). They ectopically express Armadillo 

(Drosophila b-catenin), which s expressed on the surface of progenitors in young midguts, all 

resulting in loss of gut integrity (Figure 2 Figure Supplemental 3E-L; Figure 9O, P).  Thus, 

acute loss of Non-stop in young EC or age-related declines in aged ECs results in EC cells that 

lose differentiation status and/or mis-differentiate.  
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A Non-stop identity complex (NIC) supervises EC identity: Non-stop is the catalytic subunit 

of a DUB module containing Sgf11, E(y)2 and in some cases Ataxin7 that is part of the SAGA 

chromatin remodeling complex (Morgan and Wolberger 2017, Mohan 2014, Weake 2008). We 

therefore tested whether the SAGA complex is required for maintaining EC identity. EC-

specific RNAi-mediated reduction of Ataxin7 (part of the DUB module), or GCN5 (the histone 

acetyl transferase of the SAGA complex) did not result in loss of EC identity (Figure 3, Sup. 

Figure 1 and not shown). We concluded that the EC identity-related function(s) of Non-stop 

are independent of SAGA.   

Therefore, we biochemically searched for Non-stop-associated proteins that potentially 

together maintain EC identity. Toward this end, we generated a Drosophila S2 cell line stably 

expressing epitope-tagged Non-stop-2xFLAG-2xHA (Non-stop-FH) under the control of a 

copper-sulfate-responsive metallothionein promoter. Protein complexes that contained Non-

stop were affinity purified using sequential capture of the epitope tags, FLAG, then HA. These 

complexes were subsequently resolved according to size, using gel filtration chromatography 

(Figure 3A-C). We used a ubiquitin-AMC de-ubiquitinase activity assay to track enzymatically 

active Non-stop in the purified fractions (Figure 3B). We found three major peaks of de-

ubiquitinase activity. The major activity peak resolved at about 1.8 MDa, together with 

components of SAGA complex (Group 1). A second peak was resolved centering 

approximately around 670 kDa (Group 2). A third peak, with the lowest total activity, was 

detected centering around 75 kDa. The three fractions comprising the center of each peak were 

combined and constituent proteins identified by mass spectrometry (MudPIT) (Washburn et al., 

2001).  Group 2 contained e(y)2 and Sgf11but no other SAGA subunits.  Remarkably, it also 

contained members of a known boundary complex that includes Cp190, Nup98, Mod (mdg4) 

and is known to be part of nuclear complex regulating enhancer-promotor interactions and 

affecting transcriptional memory (Pascual-Garcia et al 2017). We also noted that Histones H2A 

and H2B were also detected in both groups 1 and 2, showing the DUB module was co-purifying 
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with known substrates of Non-stop and indicating the DUB was purifying in a physiologically 

native state (Figure 3C; Zhao et al., 2008).   

 

We mapped the interaction of Non-stop with members of the complex using in vitro binding 

assays and yeast two-hybrid system (Y2H, Figure 3D-F).  In vitro binding, using S2 cell-derived 

extract expressing HA-Non-stop and His-tagged proteins, established that Non-stop interacted 

with its known interaction partner e(y)2 as well as with the C-terminal portion of Cp190 (amino 

acids (a. a.) 468-1096), but minimally with the N-terminal portion of Cp190  (a.a.  1-524). 

Additionally, in the Y2H system, Non-stop interacted with full length Cp190. Y2H mapped this 

interaction to the second and third zinc fingers of Cp190 but not the first or fourth (Figure 3F). 

Non-stop did not interact with either Nup98 or Mod (mdg4) in similar binding assays (not 

shown).   

 

We termed this complex NIC (Non-stop identity complex) and hypothesized that if the NIC 

supervises EC identity, RNAi-mediated elimination of each of its subunits will result in loss of 

EC identity similar to the loss of Non-stop. Indeed, EC-specific knockdown of all NIC subunits 

except Sgf11 resulted in loss of identity and inability to maintain expression of the EC gene 

LamC (Figure 4A-F, Figure 3 Figure Supplemental 1). It also resulted in ectopic expression of 

Delta (Figure 4G-L). In contrast, loss of Su(Hw), an insulator protein that binds to Mod (mdg4) 

but was not identified as a Non-stop binding partner, did not result in any detectable phenotype 

(Figure 3, Figure supplemental 1E).   

  

Non-stop supervises EC-gene signature and regulates chromatin accessibility.  Non-stop 

is well known to regulate gene expression (Mohan et al. 2014, Li et al. 2017). To elucidate 

Non-stop-dependent expression signatures, we determined the changes in transcriptional 

expression using RNA-Seq and its effect(s) on chromatin accessibility by ATAC-seq analyses 
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(Figure 5). We determined the changes in transcription signatures of whole guts upon 

elimination of Not in ECs using UAS-Not-RNAi and the EC-specific MyoIA-Gal4ts.  We 

identified 863 genes with  downregulated mRNA expression upon loss of Not in ECs (Table 

S1 and Figure 5 Figure Supplemental 1D). Of these, 38% (398/1039) were previously identified 

as EC-related genes (Figure 5A; Korzelius 2014). Metascape analysis unveiled that these shared 

targets consist of core EC pathways that execute many of the physiological tasks of the gut 

(Figure 5B; Figure 5 Supplemental Table 1, 2).   

We previously identified genes that required Hey for their expression in ECs, and 76% 

(174/228) of Hey-dependent genes also required Not for expression (Figure 5C).  

Moreover, the expression of EC-specific genes was repressed by ectopic expression of the ISC-

related lamin, LamDm0, in ECs (Flint-Brodsly 2019). Fifty percent (188/372) of genes that are 

repressed by expression of LamDm0 in ECs also required Not for their expression, and 46 of 

these genes were regulated also with Hey (Figure 5D, Figure 5 Figure supplemental 1A-B and 

see discussion). 

In parallel, we examined whether expression of EC-genes involves Non-stop-dependent 

regulation of chromatin accessibility using ATAC-seq. We identified 214 loci that exhibited 

reduced chromatin accessibility (“closed”). Of these, 75% (162/214) were located in the range 

of 0-10Kb vicinity of genes that exhibited reduced expression (Figure 5A; Figure 5 

Supplemental Figure 3A, and Supplemental Table S3, S4). GO analysis of these “closed” 

regions suggested that they belong to genes that maintain the physiological properties of 

enterocytes (Figure 5E).   Alignment of the “closed” chromatin regions showed that they cluster 

to discrete gene regions (Figure 5F; for EC-related down-regulated genes, and Figure 5, 

Supplemental Figure 2A for all closed sites, Supplemental Table S5). As shown in Figure 5F, 

a one cluster was located to the 5’ UTR, a second cluster was at the transcriptional start site 

(TSS), a third was spanning the coding region, and a fourth was  located at the 3’-UTR. MEME 
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analysis revealed that they are statistically significantly enriched in DNA motifs that are known 

binding sequences of TFs (Figure 5F, Figure 5 Supplemental Figure 2B).   

In addition, 565 genes showed upregulation of mRNA expression upon loss of Non-stop, and 

are related to progenitor fate, cell cycle, and DNA repair (Figure 5, Supplemental 1C).  In 

contrast to numerous closed regions only a small number (~16) regions exhibited increased 

accessibility upon loss of Non-stop in ECs interestingly many of these genes code of long non-

coding RNA (Figure 5 Figure supplemental 2C). Thus, supporting the notion that Non-stop acts 

primarily to maintain chromatin accessibility in the vicinity of its targets.  

We hypothesized that the ectopic expression of these genes may be, at least partially, due to 

changes in nuclear organization in ECs. In this regard, among the genes that require Non-

stop/NIC at the protein level is LamC (Figure 4A-F). LamC is the dominant lamin in ECs that 

silences the expression of stem cell and non-relevant gene programs in ECs (Flint-Brodsly 

2019). For example, PCNA is not expressed in control ECs, but is ectopically expressed in 

PPC** (ECs that are no longer differentiated; PPCGFP+ RFP-). This ectopic expression was 

prevented by co-expression of LamC in ECs where Non-stop was eliminated (Figure 5, 

Supplemental Figure 1E-G).  Moreover, loss of Non-stop in ECs also resulted in a significant 

decrease in the linker histone H1 that is associated with compacting chromatin and gene 

silencing (Fyodorov et al. 2018). H1 protein levels were reduced in the nuclear periphery of 

ECs lacking Non-stop  (Figure 5G, H), in gut extracts derived from flies where Non-stop was 

targeted in ECs, as well as upon knockdown of Non-stop in S2R cells (Figure 5I, J  

respectively). Thus, the ectopic expression of non-EC programs may be due loss of LamC and 

H1 proteins and subsequently heterochromatin impairment and dependent silencing. However, 

since we isolated mRNA from the entire midgut, the source of these upregulated mRNAs may 

also be from mis-differentiated stem cells (PPC*), as well as from the increase in rapidly 

dividing progenitor cells.   
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Comparison of Non-stop RNA-seq data with a genome-wide high-resolution DamID binding 

map of histone H1 performed in Kc167 Drosophila cells (Braunschweig et al., 2009) identified 

the GAGAGA sequence as the binding sites for the transcription factors Trithorax-related 

(Trl/GAF), a shared motif for Non-stop-regulated genes also bound by H1. Moreover, 

GAGAGA sequence was also enriched in of Non-stop closed regions at the  TSS of genes 

requiring Non-stop for expression (Figure 5F).   

While Trl/GAF was not identified as part of the NIC in our proteomic purification, it associates 

in a protein complex containing Nup98, e(y)2 and Mod (mdg4) that regulate gene-expression 

(Pascual-Garcia et al. 2017). However, targetnig Trl/GAF or the adaptor protein CLAMP 

protein which bind to the GAGAGA sequence and associates with Cp190 and Mod (mdg4) did 

not result in loss of EC identity (Not shown; Bag et al. 2019). Therefore, we suggest that NIC 

is likely functionally and compositionally distinct from the Trl-containing complex.  

 

Non-stop stabilizes NIC subunits, and Non-stop expression of in aged ECs restores large-

scale nuclear organization of ECs and suppresses aging phenotypes. As an isopeptidase, it 

seemed possible that Non-stop’s ability to maintain expression of EC-related genes stems also 

from protecting NIC subunits from degradation. Indeed, the protein levels of Cp190, e(y)2, 

Mod (mdg4), and were reduced upon RNAi-dependent Non-stop elimination in young ECs as 

observed by immunostaining (Figure 6; Figure 6 Source data). Moreover, Nup98 was no-longer 

confined to the nuclear envelope but was localized to the nucleus interior in a punctate pattern 

(Figure 6E, F; Figure 6 Source data).  

The observed changes in the stability of LamC and NIC subunits encouraged us to examine the 

larger organization of the nucleus using proteins that are markers for specific intranuclear 

domains and bodies. Loss of Non-stop in ECs resulted in decline in Coilin, which resides within 

Cajal bodies, and expansion in the expression of nucleolar Nop60B, a marker of the nucleolus. 

At the nuclear periphery we noted changes in localization of mTor and subsequent decline in 
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LamC and reduced protein level of HP1b that is associated with  heterochromatin and the 

chromocenter (Figure 6M-T; Figure 2G, H). Moreover, these changes were also observed upon 

targeting individual NIC subunits (Figure 6, Figure Supplemental 1).  

As described above, the physiological relevance of a failure of Non-stop is significant to aging 

(Rodriguez-Fernandez et al. 2020). The cellular and tissue phenotypes associated with acute 

loss of Non-stop highly phenocopy aged midguts (Figure 2, Figure supplemental 2, 3). Indeed, 

a decline in the protein level of Non-stop was observed in aged ECs (Figure 7A, F, P).  

Moreover, the protein levels of NIC subunits CP190, e(y)2, and Mod (mdg4) were also reduced 

in aged ECs (compare Figure 7B-E to 7G-J; quantified in Figure 7P-T; Figure 7 source data). 

Thus, suggesting that a decline in Non-stop protein resulting in a failure to safeguard NIC 

stability accompanies aging. Therefore, we tested whether preventing the decline in Non-stop 

protein can protect the loss of NIC. Towards this aim we continuously expressed Non-stop in 

ECs using UAS-non-stop and the MyoIA>Gal4/Gal80ts system, expressing Non-stop to a level 

similar to its expression in young ECs as determined by immunofluorescence (Fig 7). Indeed, 

and consistent with Non-stop’s role as a key stabilizer of NIC expression of Non-stop, but not  

the control (UAS-LacZ), for five weeks prevented the aged dependent-decline of individual 

NIC subunits (Figure 7K-O; quantified in Figure 7P-T; Figure 7 source data).  

We further examined whether maintaining Non-stop protein levels attenuates the aging of the 

midgut using the above system. Aging is associated with distorted nuclear organization of ECs 

(Figure 8, Figure 2, Figure 2 supplemental Figure 2).  These changes include re-organization 

of the nuclear periphery, including a reduced level of LamC and histone H1 as well as 

redistribution of mTOR (Figure 8A-I). Aging is also associated with ectopic expression of 

LamDm0, and re-localization to the nuclear periphery of LamDm0 binding partner, Otefin 

(Ote) (Figure 8J, K, H, and Figure 8 supplemental Figure 1). Changes are also observed in the 

nucleus interior, involving the nucleolus and Cajal bodies as observed by the expansion of the 

nucleolar protein Nop60B and Coilin, which are resident proteins in these sub-nuclear bodies 
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(Figure 8M-O; Figure 8 supplemental Figure 1). Consistent with Non-stop as a key identity 

supervisor relevant to aging, continuous expression of Non-stop for five weeks suppressed the 

above age-related changes in nuclear organization. Non-stop expression greatly restored LamC, 

histone H1 levels, localization of Mtor and suppressed the ectopic expression of LamDm0 and 

Ote, as well as restored the large-scale  organization of the aged EC nucleus (Figure 8 C, F, I, 

L, O  and Figure 8 supplemental Figure 1).  

We further tested whether expression of Non-stop in wild-type ECs is capable of attenuating 

age-related changes in the gut epithelia. Indeed, expression of Non-stop suppressed classical 

characteristics of the aged midgut. For example, Non-stop expression maintained the 

expression of the EC marker Myo>GFP and suppressed the ectopic expression of the ISC 

marker Delta PPCs (Figure 9A-D, H). Continuous expression of Non-stop in wildtype ECs for 

five weeks restored the expression of EC-related junctional proteins SSK and MESH, and 

suppressed the ectopic expression of Arm in PPCs (Figures 9E-G, and 9I-N). To test whether 

Non-stop maintenance affected the entire midgut at the organ level we tested for overall gut 

integrity using the Smurf assay. We observed that continuous expression of Non-stop in ECs 

greatly prevented the extensive leakage of blue-colored food observed in five weeks old aged 

animals restoring gut integrity (Figure 9O-Q). Thus, Non-stop is required for expression of EC-

gene programs, stabilizes NIC subunits in the adult, and together with NIC regulates large-scale 

organization of the differentiated nucleus, safeguarding  EC identity and protecting from 

premature aging.   

 

 

Discussion:  

An in vivo screen identifies regulators that maintain the differentiated state. We performed 

an identity screen focused on conserved enzymes within the ubiquitin and ubiquitin-like 

pathways using the midgut tissue as a model system.  Based on cell-specific secondary tests, 
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we identified three categories of supervisors; 1. EC-specific identity regulators 2. Genes that 

are required for differentiated cell identity (both EEs and ECs) 3. Genes that are required for 

identity of all cell types (general identity regulators). Of specific interest were a group of genes 

(CG1490; CG2926; CG4080) whose elimination in EEs resulted in a loss of EC, but not EE, 

identity, acting as inductive identity regulators. Likely their effect on ECs involves cell~cell 

communication via diffusible factors. The latter may be stochastic, or may be mediated by 

microtubule-based nanotubes as in the crosstalk between the hub cell (part of the stem cell 

niche) and stem cells in the Drosophila testis (Inaba et al. 2015).   

The observation that Ub/UbL-related genes protect the differentiated identity is conserved 

across species. Screens in mammalian systems identified enzymes within the SUMO and 

ubiquitin pathways acting as a barrier against forced reprogramming of differentiated cell. 

Among these genes were Ubc9, the sole SUMO conjugating enzyme, that was also identified 

in our screen and the isopeptidase Psmd14 (Cheloufi et al. 2015; Buckley 2012). In addition to 

Non-stop, screen identified the iso-isopeptidase UTO6-like (CG7857), Usp7, and Rpn11 as 

regulators of EC identity. Rpn11 is part of the lid particle of the 26S proteasome, involved in 

deubiquitinating proteins undergoing proteasomal degradation (Greene et al. 2020). We also 

identified the core particle proteasome subunit Pros-a6 (CG4904) as a bona-fide identity 

supervisor but not other proteasome subunits (that were also screened). Thus, it is not clear 

whether it represents a unique proteasome-independent function of the Pro-a6 subunit or 

whether Pro-a6 is a limiting subunit for proteasome biogenesis and activity in ECs.   

Identity supervision is intimately involved in cancer, and genes regulating identity are likely to 

serve as a barrier to tumorigenesis and tumor suppressors. The human ortholog of Non-stop 

/USP22 has mixed oncogenic and tumor-suppressive functions (Jeusset et al. 2017). Relevant 

to our study is the observation that USP22 has tumor suppressive functions in colon cancer by 

reducing mTor activity (Kosinsky et al. 2020). Along this line it is interesting to note that 10/17 
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of human orthologs to genes discovered in our screen are either mutated or silenced in cancer. 

Thus, future studies of these human orthologs may identify potent tumor suppressors in cancer.   

 

Crosstalk between identity supervisors; Both Non-stop and the transcription factor Hey are 

bona-fide regulators of EC identity required for the expression of EC-related genes. We found 

a significant number of EC-related genes that required both Non-stop and Hey for their 

expression, suggesting that Hey and Not may co-regulate these genes. However, functional and 

epistatic tests suggest that Hey also acts upstream or in additional pathways to Non-stop. Hey 

binds to enhancers in lamin genes repressing the expression of the ISC-related lamin LamDm0 

and enhances the expression of LamC. In contrast, Non-stop does not regulate the accessibility 

or expression of either LamDm0 or LamC at mRNA level. However, Non-stop is required for 

maintaining the levels of LamC protein. Therefore, loss of Non-stop result in a decline in LamC 

but not in the ectopic expression of LamDm0, which is observed upon acute loss of Hey or 

aging.  

This discrepancy may be due to the presence of Hey on its repressed targets in young ECs where 

Non-stop is targeted, and directly repressing their expression as maybe in the case of LamDm0. 

Moreover, EC-specific expression of Non-stop did not suppress the phenotypes associated with 

acute loss of Hey in young ECs further supporting for Hey-dependent, but Non-stop 

independent functions. However, the ECs-specific expression of either Non-stop or Hey in 

aging midguts restores expression of LamC and repressed ectopic LamDm0 expression.  

 

Potential function of Non-stop and the NIC: A possible function of the NIC may be the 

recruitment of the H3K4me2/3 COMPASS methylases to catalyze H3K9 di- and tri-

methylation at enhancers and promotors, which are  fundamental for gene activation (Shilatifard 

2012; Sze and Shilatifard 2016). One prominent phenotype of loss of Non-stop was the mis-

localization of Nup98 from the nuclear periphery to intranuclear punctate pattern. Nup98 was 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.23.263095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263095


 18 

shown to recruit Set1~COMPASS to enhance histone H3K4me2-3 methylations in 

hematopoietic progenitors (Frank et al 2017). Thus, NIC may be required for recruitment of 

COMPASS and enhancing transcriptional memory promoting the transcription of EC-related 

genes.  

H3K4 methylation and gene activation also require a ubiquitination and de-ubiquitination cycle  

catalyzed by the Bre1 ubiquitin ligase, and the de-ubiquitinase Non-stop/USP22 (Lee et al. 

2007; Nakanishi et al. 2009). It is possible that with respect to EC-related genes, activity of 

Bre1 or Non-stop/NIC has a direct role in gene transcription in a similar fashion. 

Moreover, we found that Non-stop is required for the stability of NIC, possibly by 

deubiquitinating NIC subunits in vivo, and that this stabilization is relevant in the context of 

physiological. However, the stabilization of NIC subunits maybe a more indirect role of Non-

stop and mediated via LamC. We noticed that LamC expression partially restored the protein 

levels of NIC subunits and their intranuclear localization potentially by serving as a scaffold 

for NIC at the nuclear periphery.  Thus, Non-stop may function at two levels; One is a direct 

role in transcription within NIC promoting de-ubiquitination of H2Bub while a second function 

is the stabilization of identity supervisors including NIC subunits and LamC. 

Not LLPs, and pre-mature aging: Changes in large-scale nuclear organization are hallmarks 

of aging (Zhang W 2020). Expression of identity supervisors can prevent age-related distortion 

of the nucleus EC identity and protect overall the epithelial tissue (This work and flint Brodsly 

et al 2019). However, to accomplish this, Non-stop or Hey were continuously expressed in ECs 

and  temporal expression of Hey or Non-stop in already aged ECs was not sufficient to suppress 

aging phenotypes. Thus, if the levels of identity supervisors are kept at youthful levels, they 

can continue to maintain cell identity and prevent signs of aging, effectively keeping the gut 

organization and structure similar to young tissue (Kenyon 2010).    

Furthermore, it is not clear how expression of a single regulator like Non-stop has an extensive 

impact on the entire nucleus.  Recent studies suggest that Non-stop functions in additional 
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multiprotein complexes that may regulate large-scale cellular organization.  For example, Non-

stop is part of an Arp2/3 and WAVE regulatory (WRC) actin-cytoskeleton organization 

complex where it deubiquitinates the subunit SCAR (Cloud et al. 2019). In this regard, a nuclear 

actin organizing complex, WASH, interacted with nuclear Lamin and was required for large 

scale nuclear organization (Varbooon et al. 2015). Thus, it is tempting to suggest that such 

complexes are required to maintain cell identity, and that subunits within these complexes are 

deubiquitinated by Non-stop.   

Recent studies suggest that the organization of the nucleus is mediated by the biophysical 

properties of the nuclear protein milieu and interaction with macro-molecules such as 

chromatin  and formation of local condensates (Strom and Brangwynne 2019; Yoshizawa 

2020). These biophysical forces including liquid-liquid phase-separation (LLPS), are critical 

for compartmentalization of the nucleus, heterochromatin and euchromatin formation, 

establishment of transcription factories and intranuclear bodies.  Thus, Non-stop/NIC activity 

may be critical for safeguarding the stability of proteins that their local concentration is critical 

for the self-organization and compartmentalization of the differentiated nucleus.  

In this regard many nuclear proteins are extremely long-lived proteins (LLPs) among them are 

nuclear pore complex proteins (NPCs) and core histones (Toyama et al. 2013; Toyama 2019). 

The extended stability of LLPs may originate from intrinsic properties of LLPs, or due to 

sequestration and evading degradation. However, increased stability may be also actively 

maintained by constitutive de-ubiquitination. Indeed, post-transcriptional modification by 

ubiquitin and SUMO were shown to regulate lamin stability and their intranuclear localization 

(Blank M. 2020). Specifically, type-A lamin and its splice variant Progerin, the cause of 

Hutchinson Gilford progeria syndrome (HGPS), a premature aging syndrome, are degraded by 

the HECT-type E3 ligase Smurf2 via ubiquitin-dependent autophagy (Borroni et al. 2018).  The 

elimination of Progerin by expression of Smurf2 in HGSP-fibroblasts reduced the deformation 

observed in these cells. Thus, it is possible that enhancing Progerin degradation by inhibiting 
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the human ortholog of Non-stop, USP22, will restore nuclear architecture, and suppress the 

premature aging phenotypes observed in HGPS cells. 
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Figure legends 

 

Figure 1: RNAi Screen identified Non-stop (Not) as an ECs identity supervisor.  (A) 

Schematic diagram of midgut differentiation and an outline of the Ub/UbL screen (see text for 

details). The Notch ligand, Delta, is expressed on the surface of Intestinal stem cells (ISC) 

marked in red. (B) Phenotypes expected from positive hits:  1. Loss of expression of EC-specific 

GFP (expressed only in fully differentiated ECs using MyoIA>Gal4/Gal80ts system), along with 

ectopic expression of the ISC marker Delta (red).  2. Polyploid cells that ectopically express 

Delta and retain expression of GFP. (C-F) Confocal images using UAS-LacZ (C, E) or UAS-

Not RNAi (D, F) along with UAS-GFP expressed under the control of MyoIA>Gal4/Gal80ts 

system. Scale bar is 10µM. The stem cell marker Delta (C, D) and EE marker Prospero (E, F) 

are shown in red. (G, H) Quantification of three biological repeats of experiments similar to 

that shown in C-F. *(I, J) Expression of UAS-Not RNAi, but not control, in ECs for 48h using 

MyoIA>Gal4/Gal80ts results in ectopic expression of the Notch-reporter (red) in polyploid 

cells. (K, L, Q) Expression of the escargot progenitor enhancer reporter M5-4-LacZ in control 

or Not-targeted ECs (red). Yellow arrows points to cells shown in the insets. White arrows in 

L are examples of EC-like polyploid cells ectopically expressing the reporter.  (M, N) Loss of 

Not in ECs resulted in an increase in the mitosis marker p-H3 in small cells.  (O, P) Loss of 

Not in ECs impairs gut integrity as evident by the leakage of blue-colored food into the 

abdomen (smurf assay); 24% of Not-RNAi flies show loss of gut integrity versus 0% in control 
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flies (n = 44, 55 respectively, p<0.001) (Q) Quantification of M5-4 positive PPCs in control 

and upon targetnig Not in ECs.  (***= p<0.001 **p<0.01).  (R) Survival analysis of flies 

expressing the indicated transgenes in ECs under the control of MyoIA-Gal4/Gal80ts 

(****=p<0.0001). 

 

Figure 1; Figure Supplemental 1: Examples of positive hits of the Ub/UbL screen: (A-K) 

Confocal images of the midgut tissue and the indicated transgenes expressed in ECs using the 

MyoIA-Gal4/Gal80ts. White arrows indicate cells shown in insets. Scale bar is 10µM 

MyoIA>UAS-GPF marks fully differentiated ECs, Delta is shown in red, and DAPI (blue) 

marks DNA. (A-G)  Examples of positive hits from the screen. (H-J) Loss of in ECs Non-stop 

using  three independent UAS-RNAi transgenic lines results in loss of EC identity.  

Figure 1 Figure Supplemental 2: Characterization of Non-stop in midgut cells (A-G) 

Confocal images of the midgut tissue and the indicated transgenes expressed in EC using the 

MyoIA-Gal4/Gal80ts. (A-D) Not is expressed in all mid gut cells. Expression of endogenous 

Not protein (red) was tested relative to the expression of UAS-GFP that was expressed under 

the cell-specific GAL4 drivers: Dl>GAL4 (ISC); Su(H)>Gal4 (EBs); Prospero Gal4 (EE’s) and 

MyoIA>Gal4 (ECs). Arrow point to cells shown in insets.  (E) Expression of Not upon 

activating UAS-Not-RNAi in ECs. (F, G) Level of H2Bub (red) in midguts expressing the 

control (F), or UAS-Not-RNAi (G) in ECs using the MyoIA>Gal4, UAS-GFP system.  (H) 

Western-blot analysis of H2Bub and H2B in midgut derived extracts of the indicated genotypes. 

Actin serves as a loading control.  (I-L) Expression of Delta (I, J, red) or Prospero (K, L, red) 

in midguts expressing control (I, K) or the UAS-Not RNAi (J, L) in EE using prospero>GAL4ts, 

UAS-GFP system. Scale bar is 10µM 

 

Figure 1; Supplemental Table 1: Summary of the screen Ub/UbL screen results. 
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Figure 1; Source data: Quantification of data presented in Figure 1G, H. 

 

Figure 2:  G-TRACE-Lineage characterization of Not targeted young ECs and , aged ECs.  

(A) Schematic diagram of EC-G-TRACE-lineage tracing system adopted from (Flint-Brodsly 

2019). PPC** (RFP-GFP+), are EC that are no-longer differentiated.  PPC* (RFP-GFP-) are 

miss-differentiated progenitors. (B-O) Confocal microscopy of midguts expressing the 

indicated transgenes, under the control of MyoIAts G-TRACE system using the indicated 

antibodies. DAPI (blue) marks DNA. Arrows point to cells shown in the insets with individual 

far-RFP, RFP and GFP channels. DAPI (blue) marks DNA scale bar is 10µM. 

(B-G) G-TRACE of EC in control young midgut expressing either UAS-LacZ (B, D, F), or 

UAS-Not- RNAi (C, E, G). Arrows point to cells shown in the insets with individual far-RFP, 

RFP and GFP channels. (H) G-TRACE-based quantification of PPC types (wildtype, PPC* 

PPC**) observed in control midguts or where Not was targeted ECs.   (I-O) Confocal 

microscopy of midguts expressing MyoIAts> G-TRACE system using the indicated antibodies. 

(B, J, L, N) G-TRACE of EC in young, and (I, K, M, O) old midguts. (P). Quantification of 

indicated PPCs expressing Odd-Skipped , and Delta similar to experiments shown in L-O. 

 

Figure 2; Figure Supplemental 1: Non-stop is required for expression of EC transcription 

factors Caudal and Pdm1. (A-D) Confocal images of the midgut tissue and the indicated 

transgenes expressed in EC using the MyoIA-Gal4/Gal80ts. (A, B) anti-Pdm1 (C, D) anti-

Caudal Arrows point to cells shown in the inset. Scale bar is 10µM 

Figure 2; Figure Supplemental 2: Miss-regulation of enhancers activity and nuclear 

Lamins in aged enterocytes. (A-N) Confocal images with the indicated antibodies of adult 

Drosophila midgut epithelium expressing the indicated transgenes, DAPI marks DNA, and 

scale bar is 10μm. (A-H) transgenic lines expressing UAS-GFP under the control of the EC- 
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specific promoter MyoIA-GAL4/Gal80ts system.  (I-P) Transgenic lines expressing G-TRACE 

system under the control of the enterocyte specific promoter MyoIAts system. The expression 

of M5-4::LacZ stem cells enhancer of esg gene is shown in A, B, I, and J. The protein level and 

distribution of the indicated protein is shown; LamC expression (C, D, K, L). Lamin Dm0 

(LamDm0), E, F, M, N., and Otefin (Ote) (G, H, O, P). Otefin (Ote) protein level in control 

young ECs or old (G, H).  

 

Figure 2; Figure Supplemental 3: Hallmarks of aging in the Drosophila midgut (A-L 

Confocal images of indirect immunofluorescence staining with the indicated antibodies of adult 

Drosophila midgut intestinal epithelium expressing termed MyoIAts. Scale bar is 10μm. (A, C, 

E, G, I, K): Young mid-guts (four days old adults). (B, D, F, H, J, L) Four weeks old guts. DAPI 

marks DNA and arrows indicates cells shown in the insets. SSK; Snake Skin; Arm, Armadillo; 

Dlg, Disc large.  

 

Figure 2 Source data file:  Quantification data for Figures 2H, 2P,  

 

Figure 3: Identification of a Non-stop-identity complex (NIC). (A-C) Purification scheme 

of nuclear Not-associated complexes from Drosophila S2 cells. (see text and methods; adopted 

from Cloud et al 2019) (B) Identification of Not-associated isopeptidase activity proteins by 

immunoprecipitation followed by size fractionation and mass-spectrometry. CP190, Mod 

(mdg4), Nup96-98, and E(y)2 were all present in Group 2. Not-FH; IP with full length Not 

FLAG-HA tagged (C) Summary of protein complexes isolated identified by mass-spectrometry  

(D, E) Not binds to the C-terminal portion of CP190 and to E(y)2. (D) Western-blot of in vitro 

binding between HA-Not derived from S2 cell extract and the indicated bacterially expressed 

purified His-tagged proteins. 10% input is shown. (E) Comassie blue staining of the indicated 

bacterially expressed His-tagged proteins used in the binding assay in (D).  (F) Schematic 
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diagram of Y2H interaction assay between CP190 and Non-stop. Different fragments of CP190 

were fused to the activation domain (AD) of GAL4 and tested for interaction with Non-stop  

fused to the DNA-binding domain (BD) of GAL4. Protein domains of full-length CP190 are 

indicated as boxes, and lines represent the different deletion fragments. Zf denote zinc-fingers; 

BTB, BTB/POZ domain; D, aspartic acid -rich region; M, microtubule-interacting region; E, 

acid glutamate-rich region of CP190. The results are summarized in columns on the right (BD-

Not and BD alone), with the “+” and “-“ signs denotes presence and absence of interaction, 

respectively.  

 

Figure 3; Figure Supplemental 1: Loss of SAGA subunits and Su(Hw) does-not affect EC 

identity. (A-E) Confocal images of the midgut tissue and the indicated transgenes expressed in 

EC using the MyoIA-Gal4/Gal80ts. (A-E) anti-Delta (A’-C’) anti-Odd-skipped. (A, A’) UAS-

LacZ, (B, B’) UAS-Sgf11-RNAi; (C, C’) UAS GCN5-RNAi, (D) UAS-Atx7 RNAi (E) UAS-

Su(Hw)- RNAi.  DAPI marks DNA, Scale bar is 10µM.  

 

Figure 4: Not identity complex (NIC) regulates EC identity. Confocal images of the midgut 

tissue using the indicated antibodies; (A-E) LamC, (G-K) Delta, DAPI marks DNA (blue). The 

indicated transgenes were expressed in EC using the MyoIA-Gal4/Gal80ts system for forty-

eight hours. UAS-LacZ (A, G)  UAS-e(y)2-RNAi (B, H); UAS-CP190-RNAi; (C, I). Nup98-

96 (D, J) Mod (mdg4) (E, K) White arrows points to cells shown in insets, and scale bar is 

10µM. Quantification is shown in (F) for LamC.  and (L) for Delta.  

Figure 4 Supplemental source data : Quantification of cell populations described in 4F, 4L. 

  

Figure 5: Not regulates EC-gene expression and is required for chromatin accessibility. 

(A) Venn diagram comparing EC-related genes (Blue; Korzelius 2014), genes exhibiting 
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reduced expression upon loss of Not in ECs (Green), and chromatin regions with reduced 

accessibility upon loss of Not in ECs identified by ATAC-seq (Orange). (B) Metascape analysis 

of Not-down-regulated genes in ECs. (C) Venn diagram comparison of genes that exhibit 

reduced expression upon loss of either Not or Hey in ECs, as well as genes in the vicinity of 

regions showing reduced accessibility upon loss of Not.  (D)  Venn diagram of genes that exhibit 

reduced expression upon loss of Not or Hey and of genes with reduced expression upon over 

expression of LamDm0 in ECs  (E) GO analysis of genes downregulated by loss of Not in ECs 

exhibiting reduced accessibility. Observed gene count; number of genes identified from this 

group in both ATAC-seq and RNA-seq (F) Genome-wide alignment and MEME analysis of 

regions with reduced accessibility in the vicinity of down-regulated genes upon loss of Not in 

ECs. TSS, transcriptional start site; TES, transcription end site. (G-H) Confocal images of the 

midgut tissue using a-Histone H1 (red),  and expressing the indicated transgenes in ECs using 

the MyoIA-Gal4/Gal80ts system for forty-eight hours, DAPI marks DNA (blue). (G) UAS-

LacZ (control) (H,) UAS-Not RNAi. Scale bar is 10µM.  (I, J) western-blot analysis of the 

indicated proteins derived from gut extract (I), or S2 Drosophila cell extract (J) Histone H3 and 

Actin serve as loading controls.  

 

Figure 5; Figure Supplemental 1: Analysis of Not-related RNA-seq and ATAC-seq.  

(A) Venn diagram comparing genes exhibiting enriched expression in differentiated gut cells 

(Blue), genes exhibiting reduced expression upon loss of Not in ECs (Green), and chromatin 

regions with reduced accessibility upon loss of Not in ECs identified by ATAC-seq (Orange). 

Venn diagram comparison of genes that exhibit reduced expression upon loss of either Not or 

expression of LamDm0  ECs, and EC-expressed genes (B)  Venn diagram comparison of genes 

that exhibit reduced expression or accessibility upon loss of Not, and genes with reduced 

expression upon over expression of LamDm0. (C) Venn diagram comparison of genes that 
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exhibit upregulation in expression upon loss of either Not or Hey in ECs or over-expression of 

LamDm0 in ECs. (D).  Three principle components analysis of RNA-seq. 

(E-G) Expression of LamC suppresses the ectopic expression of PNCA in EC that are no 

longer differentiated (PCC**).  Confocal images of the midgut tissue using the indicated 

antibodies. (E-F) G-TRACE analysis; (E) Control ECs (expressing UAS-LacZ) do not express 

PCNA, and are both RFP(+) GFP(+). (F) PPC** are GFP(+) and RPF(-) (PPC **) and express 

PCNA (purple). Arrow points to cells shown in the insets (individual channels). (G) ECs where 

Non-stop was eliminated using the MyoIA-Gal4/Gal80ts system for forty-eight hours 

ectopically express PCNA (purple), but not in cells that co-express UAS-LamC. Example of 

two cells is shown; the purple and red arrows point to  the cells shown in the  inset;   The left 

cell exhibits high level of LamC (red)  and low level of PCNA (purple), and the right cell exhibit 

low level of LamC and high level of PCNA.   

  

Figure 5; Figure supplemental 2: Analysis of changes in chromatin actability upon loss of 

Not. (A) Whole genome changes in chromatin accessibility unveiled by ATAC seq divided to 

clusters by location along gene regions and GO ontology of each cluster. (B)  MEME analysis 

of cluster -enrichment in DNA binding sequences associated with the indicated TFs. (C) List 

of all genes in the vicinity of regions that exhibit increased accessibility upon loss of Non -stop 

in ECs.  

 

Figure 6; Not maintains the protein level and intranuclear localization the NIC subunits, 

(A-H) Representative confocal images of the midgut tissue using the indicated antibodies (red) 

and expressing the indicated transgenes in EC using the MyoIA-Gal4/Gal80ts system. UAS-

LacZ (A, C, E, G), UAS-Not RNAi (B, D, F, H). DAPI marks DNA (blue), and scale bar is 

10µM. White arrows points to cells shown in insets, and scale bar is 10µM. (I-L) Quantification 

of 3 biological experiments is shown   (M-T) Non-stop regulate large-scale organization of the 
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nucleus. Representative confocal images of the midgut tissue using the indicated antibodies 

(red) and expressing the indicated transgenes in EC using the MyoIA-Gal4/Gal80ts system. 

UAS-LacZ (M-P), UAS-Not RNAi (Q-T).   

 

Figure 6; Supplemental Figure 1: NIC subunits are required for maintaining large-scale 

organization of the EC nucleus. (A-O) Confocal images of the midgut tissue using the 

indicated antibodies (red) and expressing the indicated transgenes in EC using the MyoIA-

Gal4/Gal80ts system, DAPI marks DNA (blue) and scale bar is 10µM  M (A, D, G, J, M ) Mtor; 

(B, E, H, K,  N) Coilin (C, F, I, L, O) Nop60B ; (A-C) Control, (D-F) UAS-Cp190 RNAi; (G-

I) UAS-e(y)2 RNAi (J-L)  Mod(Mdg4) RNAi (M-O) Nup98-96 RNAi. 

Figure 6; Supplemental source data: Quantification of cell populations described in 6I-L. 

 

 

 

Figure 7: The protein levels of the Not-CP190 complex subunits decline upon aging and 

is restored upon continues expression of Not in aged ECs. (A-O) Representative confocal 

images of the midgut tissue using the indicated antibodies (red) and expressing the indicated 

transgenes in EC using the MyoIA-Gal4/Gal80ts system. (A-E) Young 4 days old guts, (F-J) 

Five weeks old guts expressing UAS-lacZ. (K-O) Five weeks old guts expressing UAS-Not. 

DAPI marks DNA (blue), and scale bar is 10µM. (P-T) Quantification of similar experiments 

presented in A-O. **** =P < 0.0001, *** P < 0.001; ** P<0.01; *=P<0.1 

 

Figure 7; source data: Quantification of cell populations described in 7P-T. 

 

Figure 8: Expression of Non-stop restore large-scale organization of aged ECs: (A-O) 
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Confocal images of the midgut tissue using the indicated antibodies and expressing the 

indicated transgenes in EC using the MyoIA-Gal4/Gal80ts. DAPI marks DNA, and scale bar is 

10µM. (A, D, G, J, M) Young Guts expressing UAS-LacZ. (B, E, H, K, N ) Five weeks old 

guts expressing control (UAS-GFP). (C, F, I, L, O) Five weeks old guts expressing UAS-Non-

stop. (A-C) a-LamC; (D-F) Mtor; (G-I) a-Histone H; (J-L) a-Lam1Dm0; (M-O) a-Nop60B.. 

 

Figure 8 Supplemental Figure 1: Expression of Non-stop restore large-scale organization 

of aged ECs: (A-H) Confocal images of the midgut tissue using the indicated antibodies and 

expressing the indicated transgenes in EC using the MyoIA-Gal4/Gal80ts (A, D, G) Young 

Guts expressing the indicated UAS-LacZ. Five weeks old guts expressing the indicated control 

. (C, F, H) Five weeks old guts expressing UAS-Non-stop. (A-C) a-Coilin; (D-F) a-HP1b; (G-

I) a-Otefin.  

 

 

Figure 9: Continues Expression of Not in ECs suppresses aging phenotypes in the midgut.  

(A-N) Confocal images of the midgut tissue using the indicated antibodies and expressing the 

indicated transgenes in EC using the MyoIA-Gal4/Gal80ts. DAPI marks DNA and scale bar is 

10µM. (A, E, I, L) midguts derived from 2-4 days old flies (young) (B, F, J, M) Midguts 

derived from 5 weeks old flies expressing control (UAS-LacZ). (C, G, K, N) Midguts derived 

from 5 weeks old flies expressing UAS-Not. DAPI marks DNA (blue), and scale bar 

is10µM.Arm, Armadillo; SSK Snakeskin. (D, H) Quantification of similar experiments shown 

in (A-C).  **** =P < 0.0001, *** P < 0.001; ** P<0.01;  *=P<0.1 (O-P) Aging impairs gut 

integrity as evident by the leakage of blue-colored food into the abdomen (smurf assay). 

Continues expression of Not but not control using the MyoIA-Gal4/Gal80ts for five weeks 

safeguards gut integrity, n= 48, 38 respectively; P < 0.001, 
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Figure 9; Source data: Quantification of cell populations described in 8J-L. 

 

 

Supplemental Tables:  

Key Resources table  

Table S1: Results of primary and secondary transgenic RNAi screens 

Table S2:  Proteomic analysis of Non-stop bound proteins 

Table S3:   RNA-seq of Not-regulated genes 

Table S4:  ATAC-seq profiling of non-stop dependent changes in chromatin accessibility  

Table S5:  Gene clustering of Non-stop closed regions (complement Fig. 5 Figure Supp. 3) 

 

Materials and Methods: 

• Key resource table with fly stocks and antibodies used in this study 

• Plasmids and Primers used in this study  

• Chemicals used  

Methods: 

• In vitro binding 

• Direct Yeast 2 Hybrid 

• Proteomic analysis of Non-stop associated proteins 

•  RNAi in Drosophila S2 cells 

• Conditional expression of transgenes in specific gut cells 

• Conditional G-TRACE analysis 

• Gut dissection and immunofluorescence detection 

• Gut integrity and tracing of organismal survival  
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• Genomic analysis; RNA-seq, ATAC-seq and bioinformatics analyses including RNA 

extraction, cDNA preparation and Gene expression and RNA-seq, and bioinformatics 

analyses. 

• Statistical analysis 

 

Fly stocks used in this study: Fly stocks were maintained on yeast-cornmeal-molasses-malt 

extract medium at 18°C or as stated in the text. UAS- RNAi used in the screen are described 

under Table S1.  

UAS and Gal4 transgenic lines used: All transgenic RNAi lines used for the Ub/Ubl screen 

are detailed in Table S1. All other lines used in this study are described in the  

Antibodies used in this study:  All primary and secondary antibodies used are described in the 

Key resource table.  

Plasmids and primers:  

pRmha3 C-HAx2-FLx2-nonstop-735 – was as described in (Cloud et al. 2019).  

Plasmids for in vitro binding: CP190 CT (aa, 468-1096) was PCR-amplified using primers 5’-

tttggtaccgggccctggctgtgcctg-3’ and 5’-tttctcgagtgcggccgcagatcttag-3’ and subcloned into 

pET32a(+) vector (Merck Biosciences) in frame with 6xHis tag using restriction sites KpnI and 

XhoI. 

CP190 NT (aa, 1-524) was PCR-amplified using primers 5’- tttcatatgggtgaagtcaagtccgtg -3’ 

and 5’- tttctcgagcatgtggaaatgcagttcccg -3’ and subcloned into pET32a(+) vector (Merck 

Biosciences) in frame with 6xHis tag using restriction sites NdeI and XhoI. 

E(y)2 was PCR-amplified using primers 5’- tttggatccccggaattcccgacgatgag-3’ and 5’- 

tttgcggccgcttaggattcgtcctctggc-3’ and subcloned into pET32a(+) vector (Merck Biosciences) 

in frame with 6xHis tag using restriction sites BamHI and NotI 

 

Plasmids used in   the yeast two-hybrid assay: The full-sized Not (aa 496) was PCR-amplified 

using primers 5’-ttgaattcatgtccgagacgggttgtc-3’ and 5’-ttgtcgacttactcgtattccagcacatt-3’ and 
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subcloned into pGBT9 vector (Clontech) in frame with DNA-binding domain of GAL4 using 

restriction sites EcoRI and SalI. 

The full-sized CP190 (aa 1096) was PCR-amplified using primers 5’-

ttcccgggcatgggtgaagtcaagtccg-3’ and 5’-tttggaggagctatatttactaagatct-3’ and subcloned into 

pGAD424 vector (Clontech) in frame with activation domain of GAL4 using restriction sites 

SmaI and BamHI. Fragments of CP190 from first to fourth zinc fingers was PCR-amplified 

using primers 5’-ttgaattcgagaatactactgggccct-3’ and 5’-ttgtcgacgccatcctccaaagcctg-3’, from 

second to third - 5’-ttgaattcgcgctttgtgagcattgc-3’ and 5’-ttgtcgacgttgtcgtccgtgtgcac-3’ and then 

subcloned into pGAD424 vector (Clontech) in frame with activation domain of GAL4 using 

restriction sites EcoR1 and Sal1.    

Corresponding primers were used to make full-sized deletion variants of CP190:  

CP190Δ4 5’-aaggtaccggagcaggctttgga-3’ and 5’-aaggtacccactgctgcttgttgtcg-3’; 

CP190Δ3-4 5’-aaggtaccggagcaggctttgga and 5’-aaggtaccaacgtatacagcagcgac-3’; 

CP190Δ2-4 5’-aaggtaccggagcaggctttgga and 5’-aaggtacccgcgccggatcaattg-3’; 

CP190Δ1-4 5’-gccctggctgaaggagcaggctttggagga and 5’-cctgctccttcagccagggcccagtagtat-3’, 

 Primers used  for Non-stop RNAi in Drosophila cells  

• Not-RNAi forward – 5’-cggaattccgaattaatacgactcactatagggatttaatctggaaccatgcgaa-3’ 

• Not-RNAi reverse – 5’-cggaattccgaattaatacgactcactatagggaaatgtcccaaaacggatcgta-3’ 

 

Chemicals:  Bromophenol Blue (Sigma #B5525), Guanidine hydrochloride (Sigma #G4505), 

NP40 (Igepal CA-630) (Sigma #I3021), Triton X-100 (Amresco #0694), Acrylamide (Bis-

Acrylamide 29:1) (Biological Industries #01-874-1A), Ammonium Persulfate (Sigma #A-

9164), TEMED (Sigma #T-7024), L-Glutamine (Gibco #25030024), MG132 (Boston 

Biochemicals), Blot Qualified BSA (Biological Industries #PRW3841), Agarose (SeaKem® 

LE Agarose- Cambrex Bio Science #CAM-50004), Bradford Protein Assay (BioRad #500-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.23.263095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263095


 40 

0006), EZ-ECL (Biological Industries #20-500-500), FD&C blue dye #1, Cyclohexamide 

(Sigma #01810). 

 
 
Methods:  

In vitro binding:  6xHis-tagged proteins were xpressed and purification from E. coli BL-21 

(DE3), using Ni-NTA agarose beads. His-tagged protein were induced with 0.5mM IPTG for 

5h at 30°C and subsequently immobilized on with Ni-NTA agarose beads. Nuclear extract 

derived from Non-stop expressing S2 cells was prepared similar to the described in (Cloud et 

al, 2019), see “Non-denaturing extract”:  Stably transfected cells were resuspended in 

Extraction Buffer (20 mM HEPES (pH7.5), 25% Glycerol, 420 mM NaCl, 1.5 mM MgCl2, 

0.2 mM EDTA, 1:100 ethidium bromide with protease inhibitors added.  1% NP-40 was 

added and the cells were pipetted up and down until the solution was homogenous. They were 

placed on ice for one hour with agitation every 10-15 minutes. They were then centrifuged for 

30 minutes at 4 °C at 20,000 x g. An equal volume of Dignum A buffer (10 mM HEPES (pH 

7.5), 1.5 mM MgCl2, 10 mM KCl) was added to the lysates in order to adjust the salt 

concentration to 210 mM NaCl.    

Binding was performed using 0.5mg of S2 cell extract expressing HF-Non-stop and the 

indicated His-tagged proteins immobilized to Ni-NTA beads using binding buffer (20mM 

Hepes-KOH pH 7.7, 150mM NaCl, 10mM MgCl20.1%mM ZnCl2, 0.1% NP40, 10% Glycerol 

and protease inhibitors) for over-night in rotation. Subsequently, beads were collected and 

washed four times with wash buffer, and proteins resolved over SDS-PAGE and detected by 

western blot analysis. 

Yeast two-hybrid assay (Y2H):  Y2H was carried out using yeast strain pJ69-4A (MATa 

trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ GAL2-ADE2 LYS2::GAL1-HIS3 

met2::GAL7-lacZ), with plasmids according to Clontech protocols . In brief, for growth 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.23.263095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263095


 41 

assays, AD (activation domain of GAL4) - and BD (DNA-binding domain of GAL4) -fused 

plasmids were co-transformed into yeast strain pJ69-4A by the lithium acetate method, as 

described by the manufacturer with some modifications. Transformed cells were plated on 

selective medium lacking Leu (leucine biosynthesis gene Leu2 is expressed from pGAD424 

plasmid) and Trp (tryptophan biosynthesis gene Trp1 is expressed from pGBT9 plasmid) 

(‘medium-2’). The plates were incubated at 30°C for 2-3 days. Afterward, the colonies were 

streaked out on plates on selective medium lacking either Leu, Trp and His (histidine 

biosynthesis gene His3 is used as reporter in Y2H assay) (‘medium-3’). The plates were 

incubated at 30°C for 3-4 days, and growth was assessed. The positive growth of yeast on 

selective ‘medium-3’ indicates a   physical interaction between protein molecules fused with 

AD and BD. Each assay was prepared as three independent biological replicates with three 

technical repeats.  

 

Proteomic analysis:  Multidimensional protein identification technology and Mass 

spectrometry data processing were identical to the described in detail at (Cloud et al. 2019);  

Multidimensional protein identification technology (MudPIT) and Mass spectrometry data 

processing were identical to that described in Cloud et al. 2019. MudPIT: TCA-precipitated 

protein pellets were solubilized using Tris-HCl pH 8.5 and 8 M urea, followed by addition of 

TCEP (Tris(2-carboxyethyl)phosphine hydrochloride; Pierce) and CAM (chloroacetamide; 

Sigma) were added to a final concentration of 5 mM and 10 mM, respectively. Proteins were 

digested using Endoproteinase Lys-C at 1:100 w/w (Roche) at 37oC overnight. Samples were 

brought to a final concentration of 2 M urea and 2 mM CaCl2 and a second digestion was 

performed overnight at 37oC using trypsin (Roche) at 1:100 w/w. The reactions were stopped 

using formic acid (5% final). The digested size exclusion eluates were loaded on a split-triple-

phase fused-silica micro-capillary column and placed in-line with a linear ion trap mass 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.23.263095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263095


 42 

spectrometer (LTQ, Thermo Scientific), coupled with a Quaternary Agilent 1100 Series HPLC 

system. The digested Non-stop and control FLAG-IP eluates were analyzed on an LTQ-

Orbitrap (Thermo) coupled to an Eksigent NanoLC-2D. In both cases, a fully automated 10-

step chromatography run was carried out. Each full MS scan (400-1600 m/z) was followed by 

five data-dependent MS/MS scans. The number of the micro scans was set to 1 both for MS 

and MS/MS. The settings were as follows: repeat count 2; repeat duration 30 s; exclusion list 

size 500 and exclusion duration 120 s, while the minimum signal threshold was set to 100. Mass 

Spectrometry Data Processing: The MS/MS data set was searched using ProLuCID (v. 1.3.3) 

against a database consisting of the long (703 amino acids) isoform of non-stop, 22,006 non-

redundant Drosophila melanogaster proteins (merged and deduplicated entries from GenBank 

release 6, FlyBase release 6.2,2 and NCI RefSeq release 88), 225 usual contaminants, and, to 

estimate false discovery rates (FDRs), 22,007 randomized amino acid sequences derived from 

each NR protein entry. To account for alkylation by CAM, 57 Da were added statically to the 

cysteine residues. To account for the oxidation of methionine to methionine sulfoxide, 16 Da 

were added as a differential modification to the methionine residue. Peptide/spectrum matches 

were sorted and selected to an FDR less than 5% at the peptide and protein levels, using 

DTASelect in combination with swallow, an in-house software. 

 The permanent URL to the dataset is: ftp://massive.ucsd.edu/MSV000082625. The data is also 

accessible from: ProteomeXChange accession: PXD010462 

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD010462. MassIVE | 

Accession ID: MSV000082625 - ProteomeXchange | Accession ID: PXD010462. 

 

RNAi in S2 cells: S2 Schneider  DRSC cells (Drosophila Genomics Resource Center #181, 

RRID:CVCL_Z992) were maintained in Schneider’s media supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin (Thermo-Fisher, Catalog number: 15070063, 

5000 U/ml) RNAi in S2 cells was performed as described in (Abed et al. 2011).  
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Conditional expression of transgenes in specific gut cells: Conditional expression of 

transgenic lines in specific midgut cells was achieved by activating a UAS-transgene under the 

expression of the cell-specific Gal4-drivers together with the tubGal80ts construct (Jiang et al., 

2009). Flies were raised at 18°C. 2-4 days old, F1 adult progeny were transferred to the 

restrictive temperature 29°C (Gal80 off, Gal4 on) for two days unless indicated otherwise, 

dissected and analyzed. At least three biological independent repeats were performed for each 

experiment. Where possible, multiple RNAi lines were used. 

Conditional G-TRACE analysis: G-TRACE analyses was as described in (Flint-Brodsly et al. 

2019) using Myo-Gal4; G-TRACE flies were crossed to UAS-LacZ; Gal80ts (control) or UAS-

Non-stop RNAi ; Gal80ts and the appropriate genotypes were raised at 18°C (a temperature 

where no G-TRACE signal was detected). At 2-4-days, adult females were transferred to 29°C 

and linage tracing was performed.  

Gut dissection and immunofluorescence detection: Gut fixation and staining were carried out 

as previously described (Shaw et al., 2010; Flint-Brodsly et al. 2019).  

Gut integrity and animal survival: Young female flies from the indicated genotype were 

collected into a fresh vial (10 flies per vial), that were kept in a humidified, temperature-

controlled incubator at 29°C for the indicated time period. Smurf assay was performed as 

described in (Flint-Brodsly et al. 2019). Flies were transferred into vials containing fresh food 

every two days and were scored for viability at the indicated time points. LT50 (lethal time in 

days at which 50% of the flies died) Statistical analysis was calculated using the GraphPad 

Prism 5.00 (GraphPad Software, San Diego, CA, USA). 

 

Genomic studies:  

RNA-sequencing:  RNA Sample Preparation: RNA-seq was performed similar to the described 

in (Flint-Brodsly et al 2019). In brief, Adult Drosophila (2-4 days old) females, from 4 
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biological repeats, in which UAS-Non-stop RNAi or control UAS-GFP RNAi were expressed 

in ECs using MyoIAts and dissected in Ringer’s solution on ice. The solution was then 

discarded, and the guts were disrupted by adding 350µl RLT+β ME buffer (350µl RLT+ 3.5µl 

β-ME). Guts were than vortex for homogenization. 350 µl of 70% ethanol was then added and 

mixed well by pipetting. Guts were uploaded into RNeasy spin column and RNA purified 

according to the manufacture instructions. Sample quality (QC) Quality measurements for total 

RNA were performed using the TapeStation 2200 (Agilent). 

Library preparation and data generation of RNA-sequencing: Eight RNA-seq libraries were 

produced using the NEBNext® Ultra Directional RNA Library Prep Kit for Illumina (NEB, cat 

no. E7420) according to manufacture protocol and starting with 100 ng of total RNA. mRNA 

pull-up was performed using the Magnetic Isolation Module (NEB, cat no. E7490). Two out of 

the twelve libraries (samples B1 & B2) were disqualified based on low library yield and high 

levels of adaptor dimer. The remaining ten libraries were mixed into a single tube at an equal 

molar concentration. The RNA-seq data was generated on two lanes of HiSeq2500, 50SR. 

NGS QC, alignment and counting 50 bp single-end reads were aligned to Drosophila reference 

genome and annotation file (Drosophila melanogaster BDGP6 downloaded from ENSEMBL) 

using TopHat (v2.0.13) allowing 2 mismatches per read with options -very-sensitive. The 

number of reads per gene was counted using Htseq (0.6.0). 

Descriptive and RNA-seq DEGs analysis:  Samples' clustering and differential expressed genes 

(DEGs) were calculated using Deseq2 package (version 1.10.1). The similarity between 

samples was evaluated using correlation matrix, shown a heat plot and Principal Component 

Analysis (PCA). Samples belonging to the same group were more similar then samples from 

different experimental groups (Figure 5 Figure Supplemental 1A). The expression ~12,000 fly 

transcripts were compared using DESeq2 and list of the differentially express genes (DEGs) 

was extracted into excel files. At adjusted p-value (p-adj) &lt;0.01 and LogFC &gt; 1 or LogFC 

&lt; -1, 1428 DEGs were found between guts derived from the control vs Non-stop RNAi 
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targeted EC. Moreover, the expression of Not was found to be downregulated by -0.88 log2FC 

between Non-stop RNAi vs. Ctrl with p-adj of less than 10-9. 

ATAC (Assay for Transposase-Accessible Chromatin) sequencing:   Adult Drosophila (2-4 

days old) females, from 3 biological repeats, in which Non-stop RNAi or GFP RNAi control 

were expressed in ECs using MyoIAts were dissected in ice cold Ringer’s solution, and 

immediately placed in 25µl of ice cold ATAC lysis buffer (10 mM Tris-HCl, pH 7.4,10mM 

NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630). Lysed guts were then centrifuged at 500xg for 

15 minutes at 4’C and the supernatant was discarded. The rest of the ATAC-seq protocol was 

performed as described in (Buenrostro et al., 2013). The final library was purified using a 

Qiagen MinElute kit (Qiagen) and Ampure XP beads (Ampure) (1:1.2 ratio) were used to 

remove remaining adapters. All samples were quantified using Qubit DNA HS assay. The final 

library was first checked on an Agilent Bioanalyzer 2000 for quality and the average fragment 

size. Successful libraries were sequenced with NextSeq 75 cycles high-output flow-cell, 

targeting ~25 million reads/sample. 

Bioinformatic analysis of ATAC-seq:  Raw reads were trimmed for adapters and aligned to the 

Drosophila melanogaster reference genome using bowtie2. Redundant duplicated reads that 

aligned to the exact locations were removed from the aligned results, and then converted to the 

tagAlign format with consideration of the strand shift ("+" strand reads shifted by 4bp, and "-" 

strand reads shifted by -5bp). The tag-Align format alignment results were used to call peaks 

using MAC2. Narrow peaks with p<0.1 were reported. Peaks were compared across biological 

duplicates and pseudo duplicates (i.e., random subsets from a sample) to get IDR peaks that are 

supposed to be consensus across duplicates. Test for the difference between the two groups 

(control & Noti) has been performed with the Bioconductor R package DiffBind. Significance 

is set by FDR<0.1.  

Comparisons between RNA and ATAC sequencing data: The two data sets of DEGs and DBAs 

were analyzed to create a list of significant differentially bound peaks that are close to genes 
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from the top 1428 DE genes. The thresholds that have been used to associate the peaks to genes 

is within 10kb upstream and 10kb downstream of the genes. To look for common binding 

motives between the two data sets, the genes were sub-divided into 4 categories: 1. peaks 

overlapping promoters. 2. peaks upstream of promoters. 3. peaks in genic region. 4. peaks 

downstream of genes. Next, I performed motif finding informatics using CONSENSUS, 

MDScan and MEME software. 

Gene ontology analysis of mRNA expression and ATAC-seq was performed using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID 

http://david.abcc.ncifcrf.gov/home.jsp;  v6.7 and v6.8) using default settings (2-fold p<0.05 

Benjamini P value for analysis E-03) (Huang et al., 2009). 

Biological processes with a p-value lower than 0.05 were further analyzed with Revigo (Supek 

F et al., 2011). Gene ontology analyses via Cytoscape: ClueGO app (v2.2.5) in Cytoscape (v 

3.4.0) was used to conduct GO enrichment analyses. In our study, ClueGO was used to identify 

different functional groups in the following terms: Biological Process (BP), Cellular 

Component (CC) and Molecular Function (MF) enrichment analysis. A p-value ≤ 0.05 was 

used as the cut-off criterion.  

Statistical analysis: Data was collected from three independent experiments. Statistical 

analysis, z-test comparisons were performed using Prism6 ANOVAs software. Significance is 

indicated by *** = P<0.001 and ** = P<0.01. 
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