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Abstract: Mammalian neocortical neurons span one of the most diverse cell type spectra of any 
tissue. The regulatory strategies that neurons use during progressive development and maturation 
remain unclear. We present an integrated single-cell epigenomic and transcriptional analysis of 
individual classes of neurons from both mouse and marmoset neocortex, sampled during both 
early postmitotic stages of identity acquisition and later stages of neuronal plasticity and circuit 
integration. We find that in both species, the regulatory strategies controlling these early and late 
stages diverge: early postmitotic neurons use molecular regulatory programs with broader tissue 
distribution and greater evolutionary conservation, while programs active during later neuronal 
maturation implement more brain- and neuron-specific mechanisms showing greater 
evolutionary divergence. The data uncovers a temporally-regulated shift in regulatory choices, 
likely reflecting unique evolutionary constraints on distinct events of neuronal development in 
the neocortex. 
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Introduction:  
The mammalian cerebral cortex contains a great diversity of neurons, which differ in their 
connectivity, neurotransmitter usage, morphology, gene expression, and electrophysiological 
properties (Lodato and Arlotta, 2015). Although recent work has uncovered the molecular states 
that define different classes of terminally differentiated neurons in the adult brain (Darmanis et 
al., 2015; Gray et al., 2017; Lake et al., 2016; Mo et al., 2015; Tasic et al., 2016; Yao et al., 
2020; Zeisel et al., 2015), profiling of cortical neurons over developmental time courses has been 
limited and largely confined to transcriptional profiling of a few embryonic and neonatal stages 
(Frazer et al., 2017; Molyneaux et al., 2015), or of single adult timepoints (Cusanovich et al., 
2018; Frazer et al., 2017; Hodge et al., 2019; Lake et al., 2018; Luo et al., 2017; Nott et al., 
2019). There is not yet a holistic picture of the molecular dynamics and regulatory landscapes of 
individual cortical neuron classes, or any other class of mammalian central neurons, over 
extended trajectories of cell identity acquisition and maturation during postnatal life. This has 
precluded in-depth understanding of the molecular strategies used by neurons to acquire their 
identity, mature, and wire. Similarly, how such molecular strategies might vary across species 
has not been addressed. 

Here, we defined transcriptional and epigenomic changes in different populations of 
postmitotic cortical neurons over a timeline spanning perinatal stages to adulthood in two 
species, mouse and marmoset, to elucidate the regulatory strategies employed over progressive 
stages of postmitotic development and maturation. 

 
Results: 

 
Early and late stages of cortical pyramidal neuron postmitotic development use divergent 
regulatory programs  

Even after becoming postmitotic, cortical neurons undergo extensive development, from 
establishment of subtype identity to postnatal refinement of terminally differentiated features. It 
is largely not understood whether regulatory strategies at play during postmitotic development 
remain constant over postnatal life.  

To understand these regulatory strategies, we first applied inducible Cre mouse lines to 
examine two major classes of neocortical pyramidal neurons. We profiled Cux2-lineage layer 2/3 
(L2/3) callosal projection neurons (CPNs), which are involved in associative functions and are 
the most recently-evolved population of cortical neurons (henceforth referred to as “Cux2 
CPNs”), and Tle4-lineage layer 6 (L6) corticothalamic projection neurons (CThPNs), which are 
responsible for integration of sensory and motor information (henceforth referred to as “Tle4 
CThPNs”). Each type was isolated across a timecourse spanning establishment of class-specific 
neuronal identity and early neuronal development (embryonic day 18.5 [E18.5] and postnatal day 
1 [P1], P3, and P7), periods of cortical plasticity (P21), and neuronal maturation and integration 
into cortical circuits (P21 and P48) (Fig. 1a and Fig. S1, S2 and supplementary text). Labelled 
neurons from dissected somatosensory cortex were isolated by fluorescence-activated cell sorting 
(FACS), and profiled in bulk for gene expression by RNA sequencing (RNA-seq), for DNA 
methylation (DNAme) by whole-genome bisulfite sequencing (WGBS), and for open chromatin 
by assay for transposase-accessible chromatin using sequencing (ATAC-seq). 
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We identified features (transcribed genes, differentially accessible chromatin peaks, and 
differentially-methylated regions [DMRs]) that were dynamic over age or between cell types 
(examples in Fig. S3), and applied k-means clustering to group features with similar patterns 
(Fig. 1C-E and Fig. S4). We find that for all datasets, 40-60% of dynamic features were assigned 
to clusters that were associated with developmental stage and independent of neuronal subtype 
(Fig. 1C-F). These shared, developmentally-regulated clusters fell into two major categories: 
those predominantly active (transcriptionally upregulated, accessible, or hypomethylated) at 
embryonic and early postnatal ages (E18.5-P7; “early developmental”, yellow bars in Fig. 1C-E), 
and those predominantly active at weaning and older ages (P21-P48; “late developmental”, light 
green bars in Fig. 1C-E).  

A smaller proportion of dynamic features showed neuron-class-specific patterns; as 
expected, these clusters included known molecular markers of CPNs and CThPNs (Arlotta et al., 
2005; Galazo et al., 2016) (Fig. 1C-E). Notably, while class-specific clusters accounted for only 
23% of dynamic transcriptional features, they comprised 34% (DNAme) to 45% (ATAC) of 
dynamic epigenetic features (Fig. 1F), indicating higher neuronal subtype-specificity of 
epigenetic changes, in agreement with findings that epigenetic signatures may be particularly 
powerful in discriminating neuronal subclasses (Luo et al., 2017; McKinley et al., 2020).  

Visualization using multi-dimensional scaling (MDS), which preserves relative distance 
between datapoints, showed that, despite widespread changes over development, these two 
classes of neurons did not change in overall similarity with time in gene expression or open 
chromatin profiles (Fig. 1G and Fig. S4B-C). In contrast, the DNA methylation landscape 
becomes more divergent between neuronal subtypes over postnatal life (p<0.05, two-sided t-test; 
Fig. 1G and Fig. S4C); this increase was not driven by global changes in methylation or 
expression of DNA methylases (Fig. S5A-B), but rather by changes in distribution patterns 
across the genome. DNA methylation increased over time at genes and gene regulatory elements 
(GREs, inferred from open chromatin sites) characteristic of other cell types and of earlier 
developmental stages (Fig. S5C), consistent with its known role in stabilizing silencing of 
transcriptional programs associated with other fates or developmental stages (Guibert and 
Weber, 2013).  

We investigated the strategies for genome regulation that are common to pyramidal 
neurons across developmental time, by examining clusters whose temporal dynamics were 
shared between both cell types (“shared early” and “shared late” clusters, Fig 1C-E). Detailed 
characterization of these different feature sets uncovered a striking temporal transition in 
regulatory principles, across multiple modalities, between shared programs of early (E18.5-P7) 
vs. late (P21-P48) postmitotic neuronal development.  

First, we investigated the expression of both all genes in each cluster and of transcription 
factors (TFs) across 77 mouse brain regions and developmental timepoints from the Allen Brain 
Atlas (Thompson et al., 2014) and 294 mouse cell types and tissues from the FANTOM5 project 
(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014) (Fig. 2 B-C and 
S6A). We found that for both all genes and for TFs only, the shared late-active genes showed 
significantly more temporal and/or cell-type specificity of expression in both tissue panels (p £ 
2.576 x 10-7 for all comparisons, one-sided Mann-Whitney Test), suggesting that early gene and 
TF programs reflect more “generic” developmental processes.  
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We then characterized putative GREs identified from our ATAC-seq profiles, and found 
that GREs in shared early-developmental ATAC clusters are more than ten-fold enriched for 
annotated promoter regions (within 1 KB up- or downstream of the TSSs) and CpG islands (Fig. 
2D-E and Fig. S6B), which are strongly associated with TSSs and play an important role in gene 
regulation (Deaton and Bird, 2011). Conversely, members of the shared-late developmental 
ATAC clusters are largely TSS-distal and show lower frequency of overlap with CpG islands 
and annotated promoters (Fig. 2D-E and Fig. S6B), suggesting that they disproportionately 
function as distal regulatory elements such as enhancers or insulators. This division indicates that 
different regulatory strategies (promoter-based vs. enhancer/insulator-based) underlie early 
events of subtype identity acquisition vs. later phases of neuronal plasticity and integration. 
Interestingly, cell-type-specific ATAC clusters showed low overlap with CpG islands and 
annotated promoters regardless of developmental dynamics (Fig. 2D-E and Fig. S6B). 

To investigate the relationship between the shared early- vs late-active gene expression 
and ATAC peak clusters, we calculated the overlap between genes in the RNA-seq clusters and 
putative genes regulated by GREs in the ATAC clusters (defined as peaks within 100 kb of 
TSSs). We found that the early gene expression clusters were most strongly correlated with the 
early ATAC clusters, and similarly for the late gene expression and late ATAC clusters (Fig. 
S6C), indicating that the shared developmental transcriptional and epigenetic programs affect 
similar sets of genes.  

We next investigated the relationship between changes in chromatin state and DNAme 
state across cell types and developmental time. This analysis showed a significant overlap 
between clusters with similar dynamics, where regions losing open chromatin gained DNAme 
and vice versa, for shared early, shared late, and cell type-specific clusters (Fig S6E). However, 
the fraction of open chromatin regions exhibiting temporally-dynamic DNAme patterns was 
significantly higher in the shared-late ATAC cluster compared to the shared-early cluster 
(41.72% vs. 4.29%; Fig. 2F and Fig. S6E). This observation is in line with the elevated 
frequency of promoter and CpG island (CGI) regions in the shared early clusters, and the much 
higher frequency of distal putative regulatory elements in the shared late clusters (Fig. 2D-E, Fig. 
S6B). Promoter regions are well known to be much less prone to DNAme changes over 
development, whereas distal differentially accessible sites frequently coincide with enhancer 
regions and transcription factor binding sites that exhibit highly dynamic DNAme patterns (Ziller 
et al., 2013). This observation suggests that DNA methylation plays a greater role in regulating 
late developmental programs by mediating stable silencing of distal putative regulatory elements. 

Recent studies have suggested that cell-type-specific accessible chromatin sites are 
preferentially localized in putative enhancer regions compared to promoter regions (Corces et al., 
2016; Gray et al., 2017; Natarajan et al., 2012; Song et al., 2011). We therefore evaluated the 
tissue specificity of early-active vs. late-active GREs across a panel of DNase hypersensitivity 
sites in 35 adult and embryonic mouse primary tissues and cell types from the ENCODE 
database (Yue et al., 2014). Strikingly, while GREs in shared early-developmental epigenetic 
clusters frequently resided in an open chromatin state in many tissues, GREs in shared late-
developmental epigenetic clusters were on average found in an open state in significantly fewer 
tissues (ATAC clusters early vs late: p < 2.2 × 10-16 Mann-Whitney test; Fig. 2G and Fig. S6F). 
Most notably, late-active ATAC clusters are highly enriched for chromatin regions that are 
accessible in adult (8 week) mouse brain tissues, but not for those open in embryonic brain, adult 
cerebellum, adult and perinatal retina, or any non-CNS tissue. In contrast, GREs in early-active 
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ATAC clusters show high overlap with adult and embryonic brain but also show broad 
associations with open chromatin regions in many other cell types and tissues (Fig. 2G, Fig. 
S6F). The ratio of accessible sites suggests that the shared late-active regions are highly enriched 
for GREs that are specific to the adult brain, consistent with the large number of genes 
characteristic of neuron-specific processes in these clusters (Table S1-2).  

Collectively, these data suggest that genes and gene regulatory features (TFs and GREs) 
that are active in early-postmitotic stages of pyramidal neuron development are comparatively 
more widely used across many tissues and cell types, and therefore may represent more 
“generic” basic developmental programs, while those active at later stages are more cell-type 
specific, and in particular characteristic of the adult brain, and thus may control more specialized 
processes in nervous system function. 

Given these findings, we examined further potential differences between the shared early 
and late ATAC regions. We first compared the average tissue specificity of accessible sites 
across a scATAC-seq panel of 85 mouse primary tissues and cell types (Cusanovich et al., 2018) 
(see Methods).  Early-active sites showed lower average specificity (Fig. 2H), again indicating 
that these sites are more widely used across tissues.  

Previous analyses of DNA methylation have reported that sequence conservation varies 
for DMRs characteristic of different tissue types, with DMRs characteristic of ectodermal tissues 
showing highest conservation (Hon et al., 2013), and that DMRs specific to excitatory cortical 
neurons are less conserved than those specific to interneurons (Luo et al., 2017). Given these 
observations and the more ubiquitous activity across tissues of genes and GREs in the shared 
early-developmental clusters, we hypothesized that these regions might be under different 
degrees of evolutionary constraint. We thus investigated the evolutionary conservation across 
placental mammals of the ATAC peak regions in the shared developmentally-regulated ATAC 
clusters, and detected significantly higher sequence conservation of elements open at early stages 
(p < 2.2 x 10-16, Mann-Whitney Test) (Fig. 2I and Fig. S6B). Consistent with this finding, shared 
early-active GREs also showed a higher density of TF binding motifs (Fig. 2J), and lower 
sequence entropy (Fig. 2K), a metric of sequence constraint, both potentially associated with 
increased CpG density. Interestingly, across all of these metrics, the neuron subtype-specific 
gene and GRE clusters largely resembled the late shared-developmental clusters (Fig. 2B-E and 
H-L, and Fig. S6B). 

Together, these findings (summarized in Fig. 2L) suggest that early-developmental GREs 
may use more widely-shared regulatory mechanisms that are consequently under greater 
evolutionary constraint. In contrast, late-developmental GREs, which have more restricted tissue 
usage, may be more amenable to variation, and may employ more species-specific or 
evolutionarily recent mechanisms.  

 
Temporal divergence in global regulatory strategies is a general principle of cortical 
neuron maturation across species 

Next, we sought to investigate whether these regulatory principles are common to all 
neuronal classes in the cortex, and whether cortical neurons in non-human primates follow the 
same principles as in mouse, using marmoset as a model system. We performed single-cell 
(mouse) or single-nucleus (marmoset) RNA sequencing (scRNA-seq, snRNA-seq) and single-
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nucleus (mouse) or single-cell (marmoset) ATAC sequencing (snATAC-seq, scATAC-seq) on 
unfractionated cortical tissue from these two species across early and late stages of postnatal 
development. We profiled combined somatosensory and motor cortex from mice at three 
selected ages: P1, representing a period when early-active gene and GRE clusters predominate, 
P7, as an intermediate stage, and P21, representing a period when late-active gene and GRE 
clusters predominate. Marmoset somatosensory cortex was profiled at neonatal (P1-P2) and adult 
ages (2 years [Y2] for scRNA-seq, Y7-8 for scATAC-seq, based on limited tissue availability for 
this species). 

We first examined programs of gene expression across the two species. After quality 
control and filtering, the final dataset contained a total of 60,989 mouse and 36,592 marmoset 
cells across the different timepoints (Fig. 3A-B; Fig. S7-10). To identify individual cell 
populations within the dataset, we performed cell clustering on the sc/snRNAseq data and 
assigned cell identity based on expression of known canonical marker genes (Fig. 3A-D; Fig. S8; 
Fig. S10). We identified major neuronal and glial cell populations, including different 
populations of pyramidal neurons (CPN, subcerebral projection neurons [SCPN], and CThPN) 
and interneurons, astrocytes, and oligodendrocyte-lineage populations. Fig. 3C-D shows 
expression of example classical marker genes for selected populations, including Neurod2 and 
TBR1 (glutamatergic neurons), Gad2 (GABAergic interneurons), Pdgfra (oligodendrocyte 
lineage), and Aqp4 (astrocytes).  For both mice and marmoset, clusters showed separation by 
both age and cell type, with projection neuron populations being predominantly separated by age 
(Fig. 3A-B; Fig. S7C; Fig. S9C), consistent with our findings that the majority of changes in the 
mouse Cux2-CPN/Tle4-CThPN bulk sequencing datasets are developmentally-related rather than 
neuron subtype-specific (Fig 1).  

We then identified the shared-developmental and cell type-specific gene clusters. For 
each species, we selected all pyramidal neuron and interneuron populations, identified genes that 
showed differential expression across the sc/snRNA-seq datasets, and clustered them by their 
expression pattern across age and cell type as we did for the bulk pyramidal neuron sequencing 
data (Fig. 3E-F). For mice, we identified two early and two late shared developmentally-
regulated gene clusters which were shared across all pyramidal and interneuron populations 
(indicated by yellow bars, Fig. 3E-F), and for marmoset we identified one early and one late pan-
neuronal gene cluster (indicated by light green bars). We repeated the tissue- and cell type-
specificity analyses for genes and TFs in these clusters, and found that, for both species, the late 
developmental clusters showed greater specificity across both the Allen (brain) and FANTOM5 
(tissue) datasets (Fig. 3G-H and Fig. S11B, D). In addition, the marmoset shared late gene cluster 
showed greater cell type-specificity across our mouse single-cell RNA-seq dataset (Fig. 3H). 
Notably, although the pyramidal and interneuron cell types could be further clustered, both 
separating different sub-classes and further dividing some subclasses, we did not observe striking 
differences within the subclusters of individual types, indicating that heterogeneity within neuron 
populations does not explain the gene clustering results. The data indicate that the shift in global 
regulatory principles observed in CPN and CThPN applies to all cortical neuron subtypes, and to 
non-human primate cortex. 

Next, to examine regulatory characteristics of GREs across cell types and species, we 
performed single-cell (sc) or single-nucleus (sn) ATAC-seq at neonatal and juvenile/adult ages for 
both species (Fig. 4A-B and see Methods). After quality control and filtering, the final dataset 
included 19,145 mouse and 15,919 marmoset cells/nuclei (Fig. 4A-B; Fig. S12-S14). Cell-type 
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identities were assigned to cell clusters based on inferred expression of the same panel of known 
marker genes used in the sc/snRNA-seq analyses (Fig. S14A-D). Example gene tracks of selected 
canonical marker genes across each cell cluster are shown in Fig. S14B,D. Similar to the scRNA-
seq data, neuron populations were predominantly separated by age in both species (Fig. S12B and 
Fig. S13B). We then collapsed differentially-accessible ATAC peak regions by cell cluster and 
clustered these pseudo-bulk profiles. We identified early-active and late-active clusters shared 
across pyramidal neuron and interneuron classes (Fig. 4C, E). For mice, we identified one pan-
neuronal early peak cluster and one pan-neuronal late peak cluster, as well as two late peak clusters 
shared across pyramidal neuron populations but not interneurons (Fig. 4C).  

Importantly, the dynamics of the scATAC peak clusters are correlated with DNAme 
dynamics (taken from the genetically-labelled, FACS purified CPN and CThPN dataset): early 
pan-neuronal scATAC peaks remain mostly unmethylated while late pan-neuronal peaks lose 
methylation over developmental time (Fig. S16E). Interestingly, glia-specific open chromatin 
regions (such as cluster 2 and 4) show relatively low DNAme levels in P1 CPNs and CThPNs, and 
only gain DNAme in these neurons during maturation (Fig. S16F), consistent with the progressive 
silencing of alternative lineage programs by DNAme (Ehrlich and Lacey, 2013). Interneuron-
specific open chromatin regions (cluster 7), however, show consistently high DNAme levels in 
CPNs and CThPNs across all ages, suggesting that these programs may need to be silenced at an 
earlier stage in pyramidal neuron development.  

For marmoset, we likewise identified one pan-neuronal early peak cluster, and one late 
peak cluster shared across pyramidal neurons but not interneurons. However, we did not identify 
a pan-neuronal late peak cluster (Fig. 4E). This may suggest that, in marmoset, adult regulatory 
programs may diverge more between interneurons and projection neurons than they do in mice, 
which may reflect greater neuronal specialization in more evolutionarily advanced cortices 

We repeated the ATAC peak characterization previously performed on the mouse Cux2-
CPN/Tle4-CThPN bulk sequencing dataset on the snATAC-seq datasets. Consistent with the 
bulk data, we found that for both species, the shared early-active peak clusters showed greater 
enrichment for promoters and CGI, increased density of binding motifs, lower tissue specificity, 
and higher sequence conservation (Fig. 4D, F and Fig. S15C-D). Similar to the sc/snRNA-seq 
data, we did not observe significant differences within the neuronal subclusters in the shared 
developmental programs. 

Together, these data show that the transition in shared developmental programs between 
broadly-used, more highly conserved regulatory elements at earlier stages of postmitotic 
development vs. more cell type- and tissue-specific regulatory elements at later stages holds true 
across neuronal classes, and is conserved in non-human primate cortex. The data suggests that 
these regulatory principles are broadly generalized properties of neuronal maturation. 

To compare the degree of similarity between the shared-developmental gene and GRE 
programs between mouse and marmoset, we examined overlap between mouse and marmoset 
gene and ATAC peak clusters (Fig. 4G-H). We found that the shared-early gene clusters were 
among the most highly similar pairs of clusters; similarly, the shared-early ATAC peak clusters 
were among the most similar pairs between species (Fig. 4G-H). These findings indicate that 
general programs of early pan-neuronal development are more frequently shared between species 
compared to later pan-neuronal programs, which show greater species specificity. This 
observation is consistent with the broader sequence-level conservation found in both the bulk 
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pyramidal neuron and single-nucleus ATAC-seq datasets. Interestingly, interneuron-specific 
clusters were the most highly similar between species for both the gene and ATAC-seq datasets, 
suggesting that interneuron-specific developmental programs are more highly conserved (Fig. 
4G-H).  

In sum, our analysis uncovered a striking temporal shift in regulatory principles, across 
multiple modalities, between shared programs of early (perinatal) and late (juvenile/adult) 
postmitotic neuronal development, that is shared between neuronal subtypes and species. 

 

Discussion: 
The neocortex contains a great diversity of neuronal classes, which are born during 

embryogenesis but undergo substantial postnatal maturation to acquire their adult features. 
Although these long trajectories of neuronal development are critical to build a functional 
cerebral cortex, the regulatory mechanisms that govern the execution of these sequential stages 
of postmitotic neuronal development and maturation are poorly understood. 

Here we have defined a global outline of the regulatory principles underlying key steps of 
embryonic and postnatal development of cortical neurons in both rodents and non-human 
primates. In both species, we uncovered a striking developmental shift between two distinct 
strategies of epigenomic and transcriptional regulation. Early-active developmentally-shared 
programs (perinatal) employ more broadly-expressed transcription factors and more promoter-
associated, tissue-nonspecific, and evolutionarily conserved regulatory sequences. Conversely, 
developmentally-shared programs in mature neurons (juvenile/adult) employ more tissue-
restricted transcription factors and more distal, tissue- and cell-type specific (and indeed brain-
specific), and evolutionarily divergent regulatory sequences. This shift applies to multiple 
neuronal classes and cannot be explained by variation within neuronal populations. Notably, 
these rules also apply across species, including non-human primates, suggesting that this 
temporal change in regulatory programs represents a broadly-applied, core strategy for cortical 
neuron development.  

The data supports a conceptual framework in which fundamental events of cortical 
neuron development that occur during perinatal stages, such as establishment of neuronal 
identity and the acquisition of basic aspects of neuronal architecture, use molecular programs 
that are shared with other tissues, and are thus mediated by more “generic” regulatory programs, 
requiring a more-constrained degree of variation. It is tempting to speculate that this reflects the 
need for the nervous system to build its basic cell types in a reproducible and invariant manner.  
In contrast, as neurons transition to phases of neuronal, circuit, and synaptic plasticity and 
function, they employ more specialized transcriptional and epigenetic programs that may allow 
for more flexibility; the greater variation in cell and circuit behavior at later stages of cortical 
maturation may benefit from increased “customization”, reflected by more rapid species 
divergence in late developmental regulatory programs.  
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Fig. 1. Profiling of genetically-defined cortical pyramidal neuron classes. (A) Schematic of 
experimental design. (B) Representative coronal sections showing correct laminar location of 
tdTomato+ cells in the somatosensory cortex and FACS plots of Tle4-CThPNs and Cux2-CPNs 
at P7. Also see Fig. S1. (C-E) Developmental dynamics of differentially expressed genes (C), 
differentially enriched ATAC-seq peaks (D), and differentially methylated regions (DMRs) (E). 
(F) Fraction of dynamic features classified into each overall category. (G) 2D MDS plots of 
dynamic feature sets over time for each dataset. 
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Fig. 2. Divergent regulatory principles of early and late stages of neuronal development.  
(A) Schematic of analyses. (B) Summary of gene expression clusters from Fig. 1C. (C) 
Transcription factor expression specificity within the brain for TFs in different categories of 
cluster, from expression data from the Allen Brain Atlas (left). Higher values indicate more 
specific expression. Transcription factor expression specificity across 397 mouse cell types from 
the FANTOM5 project (right). (D) Summary of ATAC peak clusters from Fig. 1D. (E) Fraction 
of open chromatin regions (ATAC-seq peaks) in different categories of clusters that overlap CpG 
islands (CGI) or annotated promoter regions. (F) Fraction of DMRs in ATAC clusters of 
different categories which are static or dynamic over the timecourse. (G) Fraction of ATAC-seq 
peaks from different classes of ATAC clusters that overlap DNAse hypersensitivity sites across 
35 cell types from the mouse ENCODE project. Adult (8-week) whole-brain and telencephalon 
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samples highlighted in red; embryonic (E14.5 and E18.5) brain samples highlighted in blue. Also 
see Fig. S6F. (H) Open chromatin specificity across ATAC peak clusters, as the concordance of 
ATAC peaks with a scATAC-seq panel of 85 mouse primary tissues and cell types (Cusanovich 
et al., 2018). (I) Distribution of phyloP sequence conservation across all placental mammals for 
early- and late-developmental ATAC clusters. (J) Density of known transcription factor binding 
motifs within ATAC clusters of different types. (K) Average sequence entropy within ATAC 
clusters of different types. (L) Summary of characteristics from C and G-J for each of the shared 
developmental ATAC peak clusters individually. Also see Fig. S6B. 
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Fig. 3. Single-cell RNA sequencing demonstrates a developmental shift in specificity of 
shared gene expression programs across multiple neuronal subclasses in both mouse and 
marmoset. 
(A) UMAP representation of gene expression profiles from 60,989 single cells from mouse 
cortex at P1, P7, and P21, color-coded by major cell type. Left: UMAP plots showing cell 
distribution by age. (B) UMAP representation of 36,592 single nuclei from marmoset cortex at 
P0 and 2 years (Y2), color-coded by major cell type. Left: UMAP plots showing cell distribution 
by age. (C) Representative marker genes for major cell types in the mouse data. Also see Fig. S8 
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A, C. (D) Representative marker genes for major cell types in the marmoset data. Also see Fig. 
S10 A, C. (E) Developmental dynamics of clusters of differentially expressed genes across the 
mouse excitatory and inhibitory neuronal populations (cell type indicated by color-coded bar at 
top, corresponding to colors in A). (F) Developmental dynamics of clusters of differentially 
expressed genes across the marmoset excitatory and inhibitory neuronal populations (cell type 
indicated by color-coded bar at top, corresponding to colors in B). (G) Mouse gene expression 
specificity in the shared-early and shared-late gene clusters, within the brain (from expression 
data from the Allen Brain Atlas; left), and across 397 mouse cell types (from the FANTOM5 
project; right). Higher values indicate more specific expression. (H) Marmoset gene expression 
specificity in the shared-early and shared-late gene clusters, within the brain (from expression 
data from the Allen Brain Atlas; left), across 397 mouse cell types (from the FANTOM5 project; 
center), and across cell populations from our mouse single-cell dataset (right). Higher values 
indicate more specific expression.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263434doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263434


 
 

23 
 

 
 
Fig. 4. Developmental shift in gene regulatory principles is common to multiple neuronal 
subclasses and is conserved across mouse and marmoset. 
(A) UMAP representation of ATAC chromatin accessibility profiles from 19,145 single nuclei 
from mouse cortex at P1, P7, and P21, color-coded by major cell type. Left: UMAP plots with 
cell distribution by age. (B) UMAP representation of ATAC chromatin accessibility profiles 
from 15,919 single cells from marmoset cortex at P0 and 2 years (Y2), color-coded by major cell 
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type. Left: UMAP plots with cell distribution by age. (C) Developmental dynamics of clusters of 
differentially accessible ATAC peaks across the mouse excitatory and inhibitory neuronal 
populations (cell type indicated by color-coded bar at top, corresponding to colors in A). (D) 
Summary of CpG island overlap, promoter overlap, TF motif density, tissue specificity, and 
sequence conservation for each of the mouse shared developmentally-regulated clusters, as in 
Fig. 2K. Also see Fig. S15A-C. (E) Developmental dynamics of clusters of differentially 
accessible ATAC peaks across the marmoset excitatory and inhibitory neuronal populations (cell 
type indicated by color-coded bar at top, corresponding to colors in D). (F) Summary of CpG 
island overlap, promoter overlap, TF motif density, tissue specificity, and sequence conservation 
for each of the marmoset shared developmentally-regulated clusters. Also see Fig. S15D-F. (G) 
Overlap between genes in the mouse and marmoset single-cell gene expression clusters, showing 
the 4 most similar pairs. Also see Fig. S16A.  (H) Overlap between accessible regions in the 
mouse and marmoset single-cell ATAC chromatin accessibility clusters, showing the 5 most 
similar pairs. Also see Fig. S16C.
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Supplementary Materials: 
 
Methods 
Supplementary Text 
Figs. S1 to S16 
Tables S1 to S2 (separate Excel files) 
 

Methods: 
 
Mice 

Experiments using mice were conducted under protocols approved by the Harvard 
University Institutional Animal Care and Use Committee and followed the guidelines set forth in 
the National Institute of Health Guide for the Care and Use of Laboratory Animals. 

Cux2-lineage CPNs were labelled using a Cux2-CreERT2 knock-in line (NIH Neuroscience 
Blueprint Cre Driver Network, 2009). Tle4-lineage CThPNs were labelled with a Tle4-2A-
CreERT2 mouse line (Matho et al., 2020). The CRE-inducible tdTomato reporter line Ai14 
(Madisen et al., 2010) was used to detect recombined cells. Cux2-CreERT2;Ai14 or Tle4-2A-
CreERT2;Ai14 double homozygous male mice were crossed with WT C57BL/6J females. Cre 
recombination was induced at E17.5, after the major wave of CPN neurogenesis (E15.5-E17.5) is 
complete (Fame et al., 2011). 4-Hydroxytamoxifen (4-OHT; Sigma) dissolved in corn oil was 
administered to pregnant mice at 1 mg 4-OHT/10g body weight.  

For FACS isolation, CRE recombination was induced at E17.5 and the somatosensory 
cortex from transgenic animals was dissected and dissociated at E18.5, P1, P3, P7, P21 and P48. 
Tissue dissociation was performed as described (Arlotta et al., 2005), and td-Tomato-positive 
cortical pyramidal neurons were isolated by FACS. We performed RNA sequencing (RNA-seq) 
and assay for transposase-accessible chromatin using sequencing (ATAC-seq) at E18.5, P1, P3, 
P7, P21 and P48, and whole-genome bisulfite sequencing (WGBS) at P1, P21, and P48. Each 
library represents a pool of tissue from 10 animals (5 male and 5 female) from two litters. Two 
biological replicates were performed for each age and neuron type for each assay. 

 
Marmoset 

Marmoset tissue was obtained from the laboratory of Guoping Feng at the Massachusetts 
Institute of Technology. All marmoset experiments were approved by the Institutional Animal 
Care and Use Committee of Massachusetts Institute of Technology and followed the guidelines 
from the National Institute of Health’s Guide for the Care and Use of Laboratory Animals. For 
tissue collection, adult marmosets were deeply sedated with ketamine (20-40 mg/kg, IM) and/or 
alfaxalone (5-10 mg/kg, IM), followed by intravenous injection of sodium pentobarbital (10– 30 
mg/kg). Because venous access was not possible in neonates, infant marmosets were sedated 
with intraperitoneal injection of sodium pentobarbital (10– 30 mg/kg). When pedal withdrawal 
reflex was eliminated and/or respiratory rate was diminished, animals were transcardially 
perfused with ice-cold PBS or Sucrose-HEPES buffer. Whole brains were rapidly extracted into 
fresh buffer on ice. A series of 2-mm coronal blocking cuts were rapidly made using a custom-
designed marmoset brain matrix. Slabs were transferred to a dish with ice-cold buffer, and 
regions of interest were dissected using a marmoset atlas as reference. Samples of somatosensory 
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and motor cortex were flash-frozen in RNAlater (Invitrogen) or immediately processed for cell 
dissociation. 

 
 

RNA-seq of genetically-identified projection neuron populations 
Pools of 5,000-10,000 cortical pyramidal neurons were sorted directly into TRIzol-LS 

buffer (Invitrogen) and RNA was extracted according to the manufacturer’s protocol. 10 ng total 
RNA was used for library preparation using the SMART-Seq v4 Ultra Low Input RNA Kit 
(Clontech) and the Nextera XT DNA Library Preparation Kit (Illumina) according to the 
manufacturer’s protocols. All libraries were sequenced according to the manufacturer’s protocols 
on the HiSeq 2500 system (Illumina), using 125bp paired-end reads, at a depth of >20 million 
reads per library. 

 
ATAC-seq of genetically-identified projection neuron populations 

Pools of 3,000-5,000 cortical pyramidal neurons were sorted into Opti-MEM media (Life 
Technologies). Nuclei were extracted and libraries prepared following a previously published 
protocol (Buenrostro et al., 2013). All libraries were sequenced according to the manufacturer’s 
protocols on the HiSeq 2500 system, using 50bp single-end reads, at a depth of ~50 million reads 
per library. 

 
WGBS of genetically-identified projection neuron populations 

Pools of 5,000-10,000 cortical pyramidal neurons were sorted into PBS. The EZ DNA 
Methylation-Direct Kit (Zymo Research) was used to perform bisulfite conversion and libraries 
were prepared with the EpiGnome Methyl-Seq Kit (Illumina). All libraries were sequenced 
according to the manufacturer’s protocols on the HiSeq 2500 system, using 125bp paired-end 
reads, at a depth of >200 million reads per library. 

 
Single-cell/single-nucleus RNA sequencing 
Mouse 

Somatosensory and motor cortex from wild-type animals was dissected and dissociated at 
P1, P7, and P21. Tissue dissociation was performed as described (Arlotta et al., 2005), and live 
cells were isolated by FACS sorting as DAPI-negative, Vybrant DyeCycle Ruby (Thermo 
Fisher)-positive events. Libraries were prepared using the 10x Genomics Chromium Single Cell 
3' kit v2 (10x Genomics) according to the manufacturer’s protocol.  
 
Marmoset 

Somatosensory and motor cortex from wild-type animals was dissected and flash-frozen in 
RNAlater (Invitrogen). Nuclei were extracted by a previously-published protocol (Ma et al., 
2018), and debris was removed by FACS purification of DAPI-positive nuclei. Nuclei were 
sequenced using the 10x Genomics Chromium Single Cell 3' kit v2 (10x Genomics) according to 
the manufacturer’s suggested protocol for nuclei.  
 
Single-cell/single-nucleus ATAC sequencing 
Mouse 

Somatosensory and motor cortex from wild-type animals was dissected at P1, P7, and P21. 
Libraries were prepared as described in (Lafave et al., 2020), a modification of (Cusanovich et 
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al., 2015). Briefly, cells were fixed with 0.1% formaldehyde and incubated at room temperature 
for 5 min. The fixation was stopped by adding glycine to the final concentration of 125 mM. The 
sample was incubated at room temperature for 5 min and washed in PBS. The cell concentration 
was counted, and approximately 1600-2000 cells per well were distributed into each well of a 
96-well plate. Cells were transposed with 96 uniquely barcoded Tn5 at 37°C for 30 min with 
shaking at 300 rpm. The reaction was stopped by adding 0.5 M EDTA and incubated at 37°C for 
15 min. All the cells were then pooled and MgCl2 was added to the pooled sample to quench 
EDTA. The sample was re-distributed onto another 96-well plate with 20 cells in each well by 
FACS sorting. Reverse crosslinking buffer and barcode PCR primers were added to each sample. 
The plate was incubated at 55°C for 16 hours for reverse crosslinking. Tween 20 was then added 
to quench SDS before PCR amplification.  

The PCR reaction was carried out at the following conditions: 72°C for 5 min 
(extension), 98°C for 5 min, and then thermocycling at 98°C for 10 s, 70°C for 30 s and 72°C for 
1 min for 12-15 cycles. Libraries were pooled and purified using Qiagen MinElute PCR 
purification column. The libraries were quantified using KAPA library quantification kit. 
Libraries were sequenced on the Next-seq platform (Illumina) using a 150-cycle kit (Read 1: 47 
cycles, Index 1: 36 cycles, Index 2: 36 cycles, Read 2: 47 cycles). 

 
Marmoset  

Somatosensory and motor cortex from wild-type animals was dissected and dissociated 
with the Worthington Papain Dissociation System (Worthington Biochemical Corporation), and 
live cells were isolated by FACS sorting as DAPI-negative, Vybrant DyeCycle Ruby (Thermo 
Fisher)-positive events. Libraries were prepared using the 10x Genomics Chromium Single Cell 
ATAC kit (10x Genomics) according to the manufacturer’s protocol. 
 

 
Immunohistochemistry 

To confirm class specificity of labelling, CRE recombination was induced at E17.5 by 
tamoxifen administration, and mice were sacrificed at E18.5, P1, P3, P7, P21 and P48 for co-
immunostaining with the canonical layer markers CUX1, CTIP2, and SATB2. 

Brains were fixed and stained using standard methods (Arlotta et al., 2005). Briefly, mice 
were deeply anesthetized with tribromoethanol and perfused transcardially with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde in PBS (PFA). Brains were post-fixed 
in 4% PFA overnight, washed in PBS, embedded in low-melting point agar, and sectioned at 20 
micrometers using a Leica VT 1000s vibrating microtome. 

Immunohistochemistry was performed as previously described (Arlotta et al., 2005). 
Primary antibodies and dilutions were as follows: mouse anti-Satb2, 1:50 (Abcam, ab51502); rat 
anti-Ctip2, 1:100 (Abcam, ab18465); rabbit anti-Cux1, 1:300 (Santa Cruz, sc-13024). Secondary 
antibodies were from the Molecular Probes Alexa series. Imaging was performed using a Nikon 
90i fluorescence microscope equipped with a Retiga Exi camera (Q-IMAGING). Analysis was 
done with Volocity image analysis software v4.0.1 (Improvision). 
 
 
Bioinformatics analysis 
 
Data processing 
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Bulk RNA-Seq: Raw reads were trimmed using trimmomatic (Bolger et al., 2014) version 
0.33, removing 8bp from the 5’ and 25 bp from the 3’ end. Subsequently, reads were aligned to 
the ENSEMBL NCBI37 (mm9) genome build (downloaded from the Illumina iGenomes file 
collection), using tophat2 (Kim et al., 2013) version 2.0.13 with default parameters. 
Subsequently, differential gene expression analysis and FPKM quantification was performed 
using cuffdiff (Trapnell et al., 2013) version 2.2.1 for all pairwise comparisons. Differentially 
expressed genes were defined as all genes that showed a significant (FDR≤0.05) change in gene 
expression with ≥1.5 log2 fold-change in at least one comparison, and were expressed at levels 
greater than 10 FPKM in at least one condition within that comparison, resulting in n=4,419 
differentially expressed genes across the entire dataset.  

Next, genes were clustered using k-means clustering on the log2 transformed and z-scored 
FPKM values of all differentially expressed genes using 100 random starts. In order to determine 
the number of clusters, we used the gap-statistics as implemented in the R package cluster 
(Maechler, 2019) in combination with the Tibshirani 2001 method (Tibshirani et al., 2001) based 
on the standard deviation evaluating k=2 to 20, identifying 12 clusters in total. Finally, we 
classified each cluster manually based on its expression dynamic into one of 5 categories: shared 
developmental clusters (1-5), Cux2 CPN-specific (6-8), Tle4 CThPN-specific (9-11), and other 
(12), as shown in Fig. 1C. 

 
Bulk ATAC-Seq 

ATAC-Seq raw reads were aligned to the genome build NCBI37 downloaded from the 
Illumina iGenomes collection using bowtie2 (Langmead and Salzberg, 2012) with default 
parameters. Subsequently, aligned reads were filtered for duplicates using MarkDuplicates from 
the picard software toolbox (broadinstitute.github.io/picard) (Broad Institute of MIT and 
Harvard, 2020). Next, we performed peak calling for each sample group using the IDR 
framework (Li et al., 2011) in combination with the macs2 peak caller, with two independent 
biological replicates in each group. All peaks detected at an IDR ≤0.1 in each group were 
retained for further analysis. We then performed differential peak enrichment analysis across all 
pairwise group comparisons using the diffBind package (Ross-Innes et al., 2012; Stark and 
Brown, 2011) in combination with DESeq2 (Love et al., 2014). To that end, we employed the 
DBA_SCORE_TMM_READS_EFFECTIVE score for normalization and subsequent differential 
enrichment analysis. We defined all peaks exhibiting significant (FDR≤0.01) differential 
enrichment above a log2 fold change of 1.5 and a minimum enrichment ≥1 TMM normalized 
reads in at least one condition as differential, resulting in n=66,784 differentially enriched 
ATAC-seq peaks across the entire dataset. Subsequently, we averaged over all replicates for each 
group and transformed the resulting TMM value to log2 space. Next, we conducted k-means 
clustering on z-scored and log2 transformed TMM values on all differentially enriched regions 
using 100 random starts. We again used the gap statistics in combination with the Tibshirani SE 
method to identified 13 clusters. We then classified each cluster as developmental, neuron class-
specific, or other according to its dynamic enrichment patterns (Fig. 1D).  

Finally, we associated each differentially active ATAC-Seq peak with the closest 
ENSEMBL gene TSS using the ChIPpeakAnno package (Zhu et al., 2010). Selected gene names 
based on this association are shown in Fig. 1D.  

 
Bulk WGBS 
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Raw sequencing reads were trimmed 8bp from the 5’ end and 40 to 60bp from the 3’ end, 
depending on library quality. Next, reads were aligned to the genome build NCBI37 using bsmap 
(Xi and Li, 2009) version 2.9 with parameter settings -v 0.1 -s 16 -q 20 -w 100 -S 1 -u –R. 
Aligned data was then filtered for PCR duplicates using the MarkDuplicates function 
implemented in the picard toolbox. Next, CpG methylation calling was performed on the 
duplicate filtered data using the mcall function implemented in the MOABS suite (Sun et al., 
2014) with default parameters. We identified n=44,127 differentially methylated regions, using 
p-value ≤ 0.01 and methylation difference ≥ 0.3. Clustering analysis identified 10 clusters with 
distinct temporal and cellular context dynamics. 

 
Single-cell ATAC 

Base calls were converted to FASTQ format using bcl2fastq (Illumina). Raw sequencing 
reads were trimmed using custom python scripts to remove adapter sequences. The reads were 
aligned to mm10 or CalJac3 genome using Bowtie2 (Langmead and Salzberg, 2012) with 
maximum fragment length set to 2 kb, and all other default settings (bowtie2 -X2000 --rg-id). 
The data were demultiplexed tolerating one mismatched base within barcodes. Mitochondrial, 
unpired and low-quality reads were removed using SAMtools (Li et al., 2009) (samtools view -b 
-q 30 -f 0x2). Duplicate sequences were removed using the picard toolkit (Broad Institute of MIT 
and Harvard, 2020). 

 
Data analysis 
 
Identification of differentially methylated regions (DMRs) 

DMRs were identified using the R package DSS (Park and Wu, 2016). To that end, we 
performed all pairwise comparisons across sample groups. For each of these pairwise 
comparisons, we applied the following 3 functions from the DSS package to the appropriate 
biological replicates. First, utilized dmlTest with smoothing=T and smoothing.span=200. Next, 
we identified differentially methylated CpGs using the callDML function with a threshold of 
p=0.001. Finally, we identified DMRs using the callDMR function directly using the posterior 
probability that the methylation difference exceeds a certain value. We set the parameters 
delta=0.3, p.threshold=0.01, minCG=3 and dis.merge=400; all other parameters were left at their 
default settings. Next, we merged all DMRs identified across the pairwise comparisons into one 
DMR set, collapsing DMRs that overlap by at least one base pair into a single DMR. For further 
downstream analysis and visualization, we employed the methylKit package (Akalin et al., 
2012). In particular, we computed the methylation level and coverage of each DMR in each 
sample, defined as the weighted average of CpG methylation levels weighted by coverage. We 
then only retained those DMRs that were covered by more than 5 reads in at least 3 samples. 
Next, we averaged the methylation levels of each DMR across replicates and assigned the DMRs 
to different groups based on their methylation differences between the replicate averaged, DMR-
level methylation values. DMRs that exhibited an absolute methylation difference ≥ 0.3 between 
any pair of samples and exceed a size of 100bp were defined as differentiation DMRs.   

We then performed clustering using k-means, initially identifying 12 clusters that we 
collapsed upon further inspection into 10 distinct clusters. We again annotated each cluster 
according to its dynamic enrichment patterns (Fig. 1E). 

We determined global CpG and non-CpG methylation levels as the fraction of methylated 
CpGs over the total number of detected CpGs (and correspondingly for non-CpGs) for all 
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ATAC-Seq regions overlapping with DMRs and covered by at least 10 reads in 80% of the 
samples using the function in the regionCounts function in methylKit package, and report the 
corresponding feature methylation values in Fig. S4C.  

 
Multidimensional scaling analysis 

We performed multidimensional scaling using the cmdscale R function with 1 minus the 
absolute Person Correlation Coefficient as metric, reducing the dimensionality to 2 dimensions. 
We then computed the distances of individual samples shown in Fig. 1G and corresponding text 
as the 2-dimensional Euclidean distance. As input, we used the log2+1 transformed FPKM values 
of all expressed genes (≥10FPKM in at least one condition) (RNA-Seq), the log2+1 and quantile 
normalized ATAC-Seq TMM values (ATAC-Seq) and the methylation level of all 1kb tiles of 
the mouse genome covered by at least five reads in more than 2 samples. In order to estimate 
confidence intervals for the computed Euclidean distances reported in the text, we randomly 
removed 20% of all genes/peaks/tiles, repeated the multidimensional scaling and recomputed the 
distances. We repeated this process 1000 times for each assay and report the corresponding 
confidence level estimates in the text. 
 
Specificity analysis for bulk RNA-Seq clusters 

We report specificity analysis for differentially expressed TFs as well as gene expression 
clusters. These specificity analyses are conducted using 3 distinct datasets that were processed in 
the following manner: 

FANTOM5 (19): We computed the expression specificity of all genes and all TFs in each 
expression cluster across 294 mouse cell types and tissues based on CAGE data from the 
FANTOM5 consortium (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 
2014). To that end, we downloaded the CAGE-tag data for promoter regions from the 
FANTOM5 cell and tissue collection from http://fantom.gsc.riken.jp/5/. We then collapsed all 
CAGE-tag peaks for each gene by summing up the tag counts, including only primary cell types. 
Subsequently, we collapsed replicates for each cell type or tissue by averaging. 

Allen Brain in situ (Lein et al., 2007; Thompson et al., 2014): The Allen brain data was 
downloaded from their website (http://www.alleninstitute.org).We obtained in situ hybridization 
counts for the developing mouse brain at 7 distinct fetal time points and 11 different brain 
substructures through direct correspondence with http://www.alleninstitute.org. We then 
intersected the resulting list of genes with the list of transcription factors/genes in each 
expression cluster and determined the expression specificity of each TF/gene across the 77 
conditions (see below for further details) from this atlas. We plot the distribution of specificities 
for each cluster in Fig. 2C. 

Mouse single cell RNA-Seq data: Here, we used the log2 normalized expression values 
averaged over the all cells in a particular cell cluster using the AverageExpression() function in 
Seurat. We then utilized these pseudo-bulk expression values for each gene across all identified 
cell types as input for the specificity analysis. 

Similarly, we computed the expression specificity of all genes and all TFs in each cluster 
across 294 mouse cell types and tissues based on CAGE data from the FANTOM5 consortium 
(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). To that end, we 
downloaded the CAGE-tag data for promoter regions from the FANTOM5 cell and tissue 
collection from http://fantom.gsc.riken.jp/5/. We then collapsed all CAGE-tag peaks for each 
gene by summing up the tag counts.  
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We then computed expression specificity for each TF/gene following previous approaches 
using the tau specificity measure (Ravasi et al., 2010) according to (Kryuchkova-Mostacci and 
Robinson-Rechavi, 2017): 

 
 

 
τ=∑ni=1(1−xiˆ)n−1;  xiˆ=ximax1≤i≤n(xi) 

𝑠 =
𝑒
𝑙 ∗ log)

𝑒
𝑙 ∗ 𝑓 

 
With e being the vector of gene expression values of length f and l being 𝑙 = ∑𝑒,.  
 
Specificity analysis for single-cell/single-nucleus ATAC clusters 

In order to assess the specificity of each ATAC peak in the bulk or single cell/nucleus 
ATAC dataset, we downloaded pre-computed ATAC peak specificity scores computed over 
more than 80 distinct cell types of an entire mouse using single cell ATAC-seq data from 
Cusanovich et al. (Cusanovich et al., 2018). 
We then intersected our peak library with the Cusanovich dataset and report the Cusanovich 
specificity values for all peaks that overlap with at least one peak in the Cusanovich dataset. 
 
Bulk ATAC-peak overlap with DHS data 

In order to create a catalog of gene regulatory elements in the mouse genome, we 
downloaded a set of DNAse HS I peak tracks from the mouse ENCODE consortium (Yue et al., 
2014). Subsequently, we collapsed replicates for each condition and required that each peak was 
present in at least two replicates. This step resulted in DNAse I tracks for 35 distinct primary 
mouse cell types and tissues. Next, we merged all DNAse I tracks into a union peak set using the 
reduce() function in the IRanges R package (Lawrence et al., 2013). Subsequently, we size 
standardized the resulting union peak set to 350bp by extending 175bp from the center of each 
peak. Next, we assigned a binary value for each peak in each of the 35 cell types, depending on 
whether or not the peak was present in the individual cell type-level peak set. We then used this 
union peak set and overlapped all ATAC-peaks from the mouse bulk ATAC-seq dataset with this 
library. We report the percent of peaks in each cluster that overlap DNAse I HS sites in each cell 
type.  

 
Definition of genomic features 

CpG islands were defined as previously described (Bock et al., 2012). Promoters were 
defined as all NCBIm37 ENSEMBL version 67 TSS, extended by 1kb upstream and 
downstream. 

 
Transcription factor binding site (TFBS) density analysis 

TFBS density was determined based on FIMO motif instance matches below or equal to a 
p-value of 10-4. The density was then calculated as the total number of motif instances across all 
member regions of the cluster divided by the size standardized peak length in bp. The 
distribution of TFBS densities across all motifs is then reported for each ATAC-Seq peak cluster. 

 
Entropy analysis 
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In order to compute the Shannon Entropy of the size standardized ATAC-Seq peak 
sequence we used the entropy() function in the sequtils (Cock et al., 2009) python package.  
 
Integrative analysis 

In order to evaluate the concordance of changes in the transcriptome, open chromatin and 
DNA methylation landscape, we associated each ATAC-peak or DMR with its nearest gene 
within 100kb upstream or downstream. Peaks/DMRs without any assigned gene were not 
considered. Subsequently, we performed a hypergeometric test between all pairs of ATAC-
peak/DMR clusters and bulk expression clusters in gene space to assess the significance of 
overlap. Following multiple-testing correction using the Benjamini-Hochberg Method 
(Benjamini and Hochberg, 1995), we report the odds-ratio of associations significant below a q-
value of 0.001 in Fig. S6C-D. 
 
Phylogenetic conservation analysis 

We performed phylogenetic conservation analysis for ATAC-seq cluster groups by 
computing the average placental mammal phyloP scores (Pollard et al., 2010) for each region. 
We then plot the distribution of these mean scores. 
 
Signature gene set analysis 

First, we associated each of our consensus DMRs with the nearest mouse ENSEMBL TSS 
within 100kb using the ChIPPeakAnno R package (Zhu, 2013; Zhu et al., 2010). Subsequently, 
we performed gene-set-level analysis and determined the mean methylation level of all DMRs 
associated with a member gene of each signature gene set using the aforementioned DMR-gene 
associations. We used signature gene sets for CThPNs, CPNs and sub-cerebral projection 
neurons (SCPNs) obtained from the DeCoN resource (Molyneaux et al., 2015) as well as 
manually curated gene sets for glial and interneuron cell types from published transcriptomic 
data (Cahoy et al., 2008; Zhang et al., 2014). We then report the mean methylation level of all 
DMRs associated with each gene set in Fig. S5C for each time point and cell type.  

 
Global methylation level analysis 

Global CpG methylation level was defined as the total number of detected methylated Cs in 
CpG context over the total number of CpGs sequenced. Similarly, we defined the global non-
CpG methylation level comprising all other dinucleotide contexts. 
 
Mouse single cell RNA-seq analysis 

Mouse single cell RNA-seq data was processed using Cell Ranger version 3.0.1 (10x 
Genomics) using standard parameters and genome assembly GRCm38 downloaded from the 
10X Genomics homepage. Following initial alignment and processing by cellranger count, all 
replicates across all time points were aggregated using the cellranger aggr function, 
downsampling the individual libraries to a similar overall coverage by cell.  

All following analyses were conducted in R using the Seurat package (version 2.3.4) (Butler 
et al., 2018; Stuart et al., 2019). Only cells with at least 1000 genes, a mitochondrial read fraction 
below 10% and not more than 6000 genes or 15000 UMIs were retained.  

Subsequently, we initially performed cell clustering and subtype identification separately 
for each time point P1, P7 and P21. For that purpose, we subset the data for each time point and 
then apply the following workflow: Expression data was normalized using the LogNormalize 
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method and variable genes were identified based on the mean/dispersion relation (initially using 
the following parameters x.low.cutoff = 0.05, x.high.cutoff = 3, y.cutoff = 0.05).  

Next, the data was scaled using the ScaleData function, regressing out percentage of 
mitochondrial reads and UMI count per cell. We then compute the first 100 PCAs and examine 
the resulting Elbow Plot for variance explained by each PC. Based on that, we selected the first 
35-40 PCs for subsequent dimensionality reduction by UMap (min_dist = 0.2 to 0.5) and cluster 
identification using the Seurat FindClusters (resolution = 0.4 to 0.6, nn.eps = 0.5) function. 

We conducted several rounds of PCA, clustering and Umap embedding, successively 
removing clear outlier cell clusters based on the UMAP (4 for P1, 2 for P7 and 2 for P21).  

Following cleanup and cluster identification by time point, we analyzed all time points 
jointly, assigning the cell original cluster definitions based on the individual time point analysis. 
For that purpose, we used as cutoffs in the variable gene feature analysis: x.low.cutoff = 0.025, 
x.high.cutoff = 3, y.cutoff = 0.05, 50PCs, a resolution of 0.9 in the clustering analysis and a 
min_dist=0.4 in the umap. 

Next, we performed cell type identification for each cluster using a set of manually curated 
marker genes for each cell type. In order to assign identities, we examined the expression of all 
marker genes individually using the UMAP. In addition, we computed the AverageExpression 
for each cluster and examined the pseudo-bulk profiles. In particular, we computed joint cell type 
scores for each cluster and potential identity by normalizing the average cell type scores for each 
cluster to the maximum observed score for each cell type separately. Moreover, we performed 
hierarchical clustering, correlation analysis, PCA and MDS evaluation of the pseudo-bulk 
profiles to identify outlier clusters and investigate the relationship between cell clusters in more 
detail. Based on these analyses, we were able to assign specific identities to most cell clusters. 
However, several clusters appeared to have mixed identities (in particular clusters of 
interneurons). We thus conducted several rounds of subclustering for these to refine the identities 
of these cells. We collapsed distinct clusters with the same subtype identity (e.g. cluster CPN_1 
and CPN_4 etc.)  into a single subtype cluster to reduce the complexity for subsequent analysis 
(final cluster N=32).  
 
Differential expression analysis 

In order to identify differentially expressed between time points within distinct cell type 
classes, assigned each cell cluster to 7 sets of general cell classes that we analyzed separately: 
excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, neurons, glia, and all cell 
types.  

We then performed differential expression analysis in pairwise fashion between P1 and P7, 
P1 and P21, and P7 and P21 for each of the aforementioned cell type classes using the 
FindMarker function in Seurat and the MAST method for differential expression testing. 

In this manner, we obtained 7 distinct lists of genes differentially expressed across 
development. Next, we averaged the expression of all cells within one cluster using the 
AverageExpression function in Seurat. In order to avoid biases driven by cluster complexity and 
cell number, we downsampled each cluster to a maximum of 500 cells per cluster prior to 
averaging. Next, we performed clustering on z-score transformed expression values of each of 
the 7 differentially expressed gene sets separately. For that purpose, we used the clusGap 
function in the R package cluster (Maechler, 2019) using kmeans with a maximum of 20 clusters 
and the B parameter set to 60. We then select the final number of clusters based on the Tibshirani 
2001 criterion (Tibshirani et al., 2001) for the standard deviation as implemented in the cluster 
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package. Finally, we perform kmeans clustering with 100 random starts using the identified 
number of clusters and average over the z-scored genes in each cluster.  

Lastly, we performed expression specificity analysis for all gene clusters in a similar 
manner as for the bulk data, using the Allen Brain in situ dataset, the FANTOM5, and (for 
marmoset) the mouse scRNA-Seq dataset for comparison for all differentially expressed genes as 
well as for transcription factors only. 
 
Marmoset single nucleus RNA-seq analysis 

Marmoset snRNA-seq data was processed using the Cell Ranger version 2.1.0 and aligned 
to a pre-mRNA custom build transcriptome of assembly version ASM275486v1.93. We selected 
this assembly due to the improved transcript and gene annotation available compared to previous 
assemblies. All replicates were first processed independently using Cell Ranger count and then 
aggregated, downsampling all libraries to the same complexity per cell. Subsequently, the data 
was processed using Seurat following a similar workflow as for the mouse scRNA-seq, retaining 
only cells with more than 1000 genes and genes detected in more than 10 cells. Initially, variable 
genes were again identified using the mean/dispersion relation with the following parameters: 
x.low.cutoff = 0.05, x.high.cutoff = 3, y.cutoff = 0.05. During initial QC of the 5 individual 
marmoset libraries, we observed a separation by experimental batch, where all three libraries (D0 
and Y2) from experimental batch 1 and the two libraries from batch 2 (D0 and Y2) grouped 
together. Given that developmental time point and experimental batch are not confounded in our 
experimental design, we performed batch correction using CCA as implemented in the Seurat 
package. Here, we discarded all cells where the variance explained by CCA is <2-fold. 
Following correction, a clear separation by time point and cell type became apparent, as 
originally observed when processing each experimental batch separately. We thus proceeded 
with the CCA corrected data following the same strategy as for the mouse scRNA-Seq data, 
performing PCA and using 20 dimensions in subsequent analyses, identifying clusters with a 
resolution of 1.8 and creating a UMAP embedding with a min_dist of 0.3. 

Subsequently, data analysis was conducted similar to the mouse scRNA-Seq data, assigning 
cell types and cell classes, performing differential expression analysis between time points 
within each of 7 cell classes, collapsing clusters with similar subtype identity and performing 
gene clustering within each cell group to identify gene clusters. 
 
Read alignment and pre-processing 

Base calls were converted to FASTQ format using bcl2fastq (Illumina). Raw sequencing 
reads were trimmed using custom python scripts to remove adapter sequences. The reads were 
aligned to mm10 or CalJac3 genome using Bowtie2 (Langmead and Salzberg, 2012) with 
maximum fragment length set to 2 kb, and all other default settings (bowtie2 -X2000 --rg-id). 
The data were demultiplexed tolerating one mismatched base within barcodes. Mitochondrial, 
unpaired and low-quality reads were removed using SAMtools (Li et al., 2009) (samtools view -
b -q 30 -f 0x2). Duplicate sequences were removed using the picard toolkit (Broad Institute of 
MIT and Harvard, 2020). In order to counteract differential complexity across the libraries, each 
library was sampled to a similar fragment depth per cell.  
 
Single-cell and single-nucleus ATAC analysis 

Mouse and marmoset libraries were first downsampled to similar overall complexity in 
terms of reads/cell across all conditions. Cleaned data was processed with the scasat (Baker et 
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al., 2019) pipeline using macs2 as peak caller with parameters set to -q 0.2 --nomodel –
nolambda, giving rise to a peak x cell matrix count matrix. For genome size, we used -g mm for 
mouse and -g 2.1e+9 for marmoset. We then size-standardized all peaks to 500 bp and 
recomputed the peak x cell count matrix, only considering reads overlapping the size-reduced 
peaks.  

Only cells with at least 1,000 reads and 300 peaks from the master list overlapping with at 
least one read, but not more than 15,000 reads and 8,000 peaks were retained for analysis. In 
addition, only peaks present in at least 20 cells were retained. 

Subsequently, this matrix was processed using R implementing a custom processing 
pipeline based on the strategy outlined in Cusanovich et al. 2018 (Cusanovich et al., 2018) and 
refined by Andrew Hill (Hill, 2019), following the log-LSI workflow. Briefly, the count matrix is 
first binarized and then transformed using the TF-IDF method (Cusanovich et al., 2015) log 
scaling the results. Next, PCA is performed on the transformed matrix using 50 dimensions, 
following cell cluster identification based on Seurat’s FindCluster() function with resolution set 
to 0.5 and UMAP embedding with a min_dist of 0.3. Importantly, we split each cluster 
containing cells from different time points into separate clusters for each time point and then 
filter out all clusters with less than 100 cells. 
 
Cell type identification 

In order to reliably identify distinct cell types, we next computed gene activity scores for all 
genes based on the presence of ATAC peaks. To that end, we utilized the R package cicero 
(Pliner et al., 2018) since it implements an approach not only considering peaks located within 
the promoter/gene body of each gene, but also weights the contribution of each peak to the 
overall gene score based on the correlation of the gene peaks with each other. To that end, we 
imported the preprocessed data into a cicero atac_cds object providing the cluster id and UMAP 
coordinates defined based on the aforementioned LSI analysis. Next, we estimated library size 
factors and reliable peaks using default parameters followed by running cicero’s main function 
with default parameters to compute the connectivity graph of all peaks. Next, we annotated all 
peaks with the annotate_cds_by_site function using transcription start coordinates for all 
ensemble genes retrieved from biomaRt defining the region +/- 5kb of each TSS as promoter 
region. With this annotation in place, we constructed the raw gene activity matrix using the 
build_gene_activity_matrix function, followed by normalizing the resulting scores using the 
function normalize_gene_activities. 

Next, we average the computed gene scores for each cell cluster and normalize the 
aggregated score for each gene to the maximum across all pseudo-bulk cell clusters. We then 
again compute cell type scores for each scATAC cell cluster by averaging a set of known marker 
genes (same as for scRNA-Seq) for each cluster and plotting results along with hierarchical 
clustering, PCA and MDS analysis of the pseudo-bulk gene scores. Based on these analyses, we 
remove outlier clusters (e.g. very low complexity) and assign a final cell type annotation. Based 
on this cleaned dataset, we perform differential accessibility analysis, aggregating the signal of 
all cells in each cluster using cicero’s aggregate_by_cell_bin function followed by a negative 
binomial based differential accessibility test implemented in differentialGeneTest function using 
the cluster id as factor to test. In addition to the cell-cluster based test, we also perform a second 
test on the time point variable to identify specifically those peaks variable across distinct time 
points. We then define all peaks significant below a q-value of 0.5 in either of the two analysis as 
dynamic peak set for subsequent analysis. The results are not particularly sensitive to this 
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threshold, as we tested qvalue thresholds between 0.1 and 0.5. However, given the limited power 
for each peak, we decided to include all peaks with evidence for differential accessibility. We 
opted to an 0.5 threshold as this gave us a similar fraction of variable peaks as the bulk ATAC 
analysis conducted earlier. 

All subsequent analyses were conducted on this dynamic peak set, after excluding all cells 
of unidentified identity. Next, we normalized the read counts for each cell by the respective size 
factor and averaged the resulting values across all cells within one cluster, giving rise to pseudo-
bulk profiles. Next, we normalized these profiles for each peak across all pseudo-bulk clusters by 
dividing each row (corresponding to peaks) by the 95th quantile across all cell clusters, capping 
all values at 1. This gave rise to a normalized accessibility score in the unit interval. These values 
were then used for clustering analysis, following the same strategy as for the scRNA-seq, again 
assigning each cell cluster to one of 7 categories and then performing k-means with 100 random 
starts and clustering on the respective subset of cell clusters for all peaks in the dynamic peak set. 
Again, the cluster number was determined using the clusGap package and Tibshirani 2001 SE 
criterion. The resulting peak clusters were then subjected to the same characterization as the peak 
clusters from the bulk scATAC analysis. For the specificity analysis, the cluster coordinates were 
lifted from mm10 to mm9 using the USCS liftover tool (http://genome.ucsc.edu/) (Kent et al., 
2002). 
 
Defining early, late, and cell type-specific clusters 

In order to assign clusters to a particular activity pattern to individual region clusters, we 
predefined a set of patterns according to possible dynamics of interest: These included temporal 
(e.g. specific to P1, P7, P21, or P1_P7 or Y0 and Y2, excitatory neurons, inhibitory neurons as 
well as specific to a particular cluster). These patterns were summarized in a prototype binary 
indicator matrix of dimensions number of cell clusters times number of patterns. For each pattern 
and cell cluster, the indicator matrix cell was set to 1 if that cell cluster was associated with that 
pattern. For example, setting the indicator variable for P1_CPN_1 and P1_CPN_3 both to 1 in 
the P1 pattern definition. 

We then computed the cosine similarity between each of these pattern vectors with the 
normalized accessibility score vector for each region cluster, taking the average of accessibility 
score for all regions within one region cluster for each cell cluster separately. This analysis gave 
rise to a similarity measure of each cluster’s dynamic to a predefined set of temporal/cell type 
dynamics. Based on the maximum observed similarity to a predefined pattern, we then assigned 
the pattern label to the corresponding cluster. 
 
Mouse single cell ATAC peak methylation analysis 

Prior to DNA methylation analysis, we performed a liftover of the size-standardized 
(500bp) scATAC peaks from mm10 to mm9 using the UCSC liftover tool. Next, we computed 
DNAme levels in a similar manner as for the bulk data, using the scATAC peaks instead of the 
DMR regions as input, only considering regions that were covered by at least 5 reads in at least 8 
of the 12 WGBS samples. We report the distribution of methylation levels for each of the 
scATAC region clusters across CPN and CThPN neurons at P1, P21 and P48. 
 
TF binding site enrichment analysis 

For each set of regions of interest (DMRs, ATAC peaks) we performed motif detection 
analysis using FIMO (Grant et al., 2011) with a p-value filter of less than 10-4 and a joint motif 
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data base comprising the TRANSFAC Professional library (version 2011) (Fogel et al., 2005), 
and a set of previously published motifs by Jolma et al. (Jolma et al., 2013). All genomic regions 
were size standardized (if not already) prior to motif analysis to 500bp (scATAC, bulk ATAC) or 
350bp for DNAse and DMRs. 

In order to perform motif enrichment analysis, a suitable class of genomic background 
regions is needed. Since a large fraction of DMRs likely correspond to gene regulatory elements 
and overlap with DNAse I HS sites, we used the union of DNAse I HS sites across a large panel 
of mouse cell types and tissues from the mouse ENCODE project (Yue et al., 2014). To that end, 
we downloaded all DNAse I HS peak sets from GEO, size-standardized them to 350 bp, and 
created a union peak set using the GenomicRanges R package (Lawrence et al., 2013). 
Subsequently, we size-standardized the union peak set and performed motif detection analysis on 
the union set as described above. With this set of background regions in hand, we performed 
motif enrichment analysis for each DMR and ATAC-Seq peak cluster separately. Since motif 
enrichment analysis is fairly sensitive to differences in GC content, we performed the enrichment 
analysis in a GC content-stratified fashion. To that end, we binned all regions within one cluster 
into 20 bins in 0.05 intervals. Next, we determined the number of motif instances for each motif 
in our library within all regions in one GC content bin. We then performed an identical analysis 
for a set of randomly sampled DNAse HS I regions with a similar GC content distribution from 
the mouse ENCODE background region set, and repeated this process 500 times. We then 
summed across all GC content bins and computed an empirical p-value and enrichment level for 
each motif in each cluster. We retained all motifs enriched at a p-value below 0.01 and an 
enrichment over background level above 1.5. Next, we associated each motif with its 
corresponding transcription factors and retained for each transcription factor the motif with the 
highest enrichment over background ratio. Finally, we filtered the resulting list for those 
transcription factors that also show differential expression in at least one condition within our 
dataset, based on the criteria outlined in the gene expression analysis section.  

 
Similarity in cell types across ages 

To compute the similarities among cell types within each age group and compare them, we 
first merged single cell data into pseudo-bulk by computing the average expression for each cell 
type at each time point (using the AverageExpression function from Seurat package v3.1.0 in R 
v3.6.3). We then performed the principle component analysis (using prcomp function included in 
R as its base package), taking the top 10 principle components (ordered by the fraction of total 
variance explained), to project the data onto the 2-D using the UMAP algorithm (umap package 
v0.2.4.0 in R).  

 
Gene ontology enrichment analysis 
We prepared input gene lists for each bulk RNA-seq shared early and shared late cluster 

based on our gene clustering. Enrichment analysis was done using the Panther overrepresentation 
test available through the Gene Ontology Consortium (Ashburner et al., 2000; Mi et al., 2019; 
The Gene Ontology Consortium, 2019) web interface. Test type was set to Fisher’s exact test, 
and false discovery rate was computed for each term. Selected GO terms for the shared-
developmental clusters are presented in Table S1-S2. 
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Supplementary Text 
 
It has been reported that the Cux2-CreERT2 line used here also labels a subset of cortical 
interneurons (Franco et al., 2012; Gil-Sanz et al., 2015). To evaluate the effects of this on our 
analysis, we performed single-cell sequencing of a total of 14,792 cells for the Cux2 CPN and 
Tle4 CThPN populations at three ages, labelled using the same induction strategy used for our 
primary analysis (Fig. S2). Of these, 239 cells were positive for expression of the interneuron 
marker Gad1 (1.61%), 339 cells were positive for the interneuron marker Gad2 (2.29%), and 118 
cells were positive for both (0.798%), for a total of <5% cells positive for either marker. We 
conclude that the effect of interneuron contamination on our analysis is minimal. 
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Fig. S1. Isolation of genetically labelled CPNs and CthPNs. 
(A) Representative coronal sections showing correct laminar location of tdTomato+ cells in the 
somatosensory cortex at the different developmental stages. (B) Representative FACS results for 
purification of Cux2 CPN and Tle4 CthPN populations at the different developmental stages; 
boxes indicate collected populations. (C) Representative images of pre-and post-sorting Tle4 and 
Cux2 neuronal populations at P48, showing good purity and viability even at this older age. 
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Fig. S2. Verification of subtype identity of genetically-labelled mouse PN subtypes by 
single-cell RNAseq of FACS-purified Cux2 CPN and Tle4 CThPN. 
(A) UMAP showing distribution of cells by line and age. (B) UMAP showing cell clusters after 
k-means clustering. (C) Average expression of selected marker genes in each cluster. (D-F) 
UMAPs showing expression of selected marker genes in each cell, including pan-neuronal 
markers (D) and markers for interneurons (E), CPN (F), and CThPN (G). The majority of cells 
express markers corresponding to the expected pyramidal neuron subtypes, with only minor 
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contribution of interneurons. (H) UMAPs showing number of UMIs and number of genes 
detected in each cell. 
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Fig. S3. Example gene tracks for genes classified into different transcriptional categories. 
Examples showing Genome Browser views of RNA sequencing, ATAC-seq, and WGBS tracks, 
for examples of genes in (A) shared-developmental and (B) class-specific categories. Red: Cux2 
CPNs; Blue: Tle4 CThPNs. 
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Fig. S4. Characterizing bulk datasets 
(A) Dendrograms showing relationships between samples from different ages for each dataset. 
(B) MDS distance values for the MDS analysis presented in Fig. 1G. (C) Ratio of distances at P1 
vs. P48 for each dataset. (D) Number of features (genes, ATAC peaks, or DMRs) in each cluster 
for each dataset. 
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Fig. S5. DNA methylation at dynamic loci. 
(A) Global DNA methylation levels at CpG (left) and non-CpG sites (right) across ages. (B) 
Average expression of differentially expressed DNA methyltransferases across ages. (C) Median 
methylation levels of all DMRs within 100kb of signature genes for the specified cell types at 
each age. Boxes indicate gene sets corresponding to earlier ages of the same cell fate. (D) 
Normalized gene expression patterns, shown as z-scores, for the sets of signature genes used in 
panel C. (E) Size distribution of DMRs within each cluster. Bar: median; box: 25-75th quantile; 
whisker: 1.5 x inter-quartile range.   
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Fig. S6 Characterization of RNAseq and ATACseq clusters by cluster. 
(A) Expression specificity of genes in each RNAseq cluster as in Fig. 2C, for each individual 
cluster. (B) Analyses of ATAC peak clusters as in Fig. 2E and H-K, for each individual cluster. 
(C) Correlation between individual RNAseq and ATAC clusters. (D) Correlation between 
individual DNAme and ATAC clusters. (E) Fraction of DMRs in the ATAC clusters that are 
dynamic vs. static over time as in as in Fig. 2F, for each ATAC cluster. (F) Overlap of early and 
late shared ATAC clusters with DNAse I hypersensitivity sites in a panel of tissues and cell types 
from the ENCODE database, by tissue. 
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Fig. S7. Characterization of mouse unfractionated single-cell RNAseq dataset. 
(A) UMAPs showing each cell cluster, broken down by age. (B) UMAPs showing number of 
UMIs and number of genes detected in each cell. (C) Similarity between cell clusters, as a 
UMAP representation of the top 10 principal components (PCs) after PCA computed on the 
average gene expression space. 
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Fig. S8. Characterization of mouse unfractionated single-cell RNAseq dataset. 
(A) Expression of gene sets representing combined expression of panels of known cell-type 
marker genes for each cell cluster. (B) Dendrogram representing similarity between cell clusters. 
(C) Average expression and percent of cells expressing for selected marker genes within cells of 
each assigned cell identity. 
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Fig. S9. Characterization of marmoset single-cell RNAseq dataset. 
(A) UMAPs showing each cell cluster, broken down by age. (B) UMAPs showing number of 
UMIs and number of genes detected in each cell. (C) Similarity between cell clusters, as a 
UMAP representation of the top 10 principal components (PCs) after PCA computed on the 
average gene expression space. 
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Fig. S10. Characterization of marmoset single-cell RNAseq dataset. 
(A) Expression of gene sets representing combined expression of panels of known cell-type 
marker genes for each cell cluster. (B) Dendrogram representing similarity between cell clusters. 
(C) Average expression and percent of cells expressing for selected marker genes within cells of 
each assigned cell identity. 
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Fig. S11. Gene cluster specificity. 
(A) Mouse neuronal gene clusters, repeated from Fig. 3 for ease of reference, in unsorted order. 
(B) Cell-type specificity of all genes in the Allen (left) and FANTOM5 (right) datasets, for each 
gene cluster. (C) Cell-type specificity of transcription factors (TFs) in the Allen (left) and 
FANTOM5 (right) datasets, for each gene cluster. (D) Marmoset neuronal gene clusters, 
repeated from Fig. 3 for ease of reference, in unsorted order. (E) Cell-type specificity of all 
genes in the Allen (left) and FANTOM5 (right) datasets, and in our mouse scRNA-seq dataset 
for each gene cluster. (F) Cell-type specificity of transcription factors in the Allen (left) and 
FANTOM5 (center) datasets, and in our mouse scRNA-seq dataset (right), for each gene cluster.  
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Fig. S12. Characterization of mouse single-nucleus ATAC-seq dataset. 
(A) UMAPs showing each cell cluster, broken down by age. (B) UMAP showing depth of sequencing 
for each cell. (C) Similarity between cell clusters, as a UMAP representation of the top 10 principal 
components (PCs) after PCA computed on the average gene expression space. 
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Fig. S13. Characterization of marmoset single-cell ATAC-seq dataset. 
(A) UMAPs showing each cell cluster, broken down by age. (B) UMAP showing depth of sequencing 
for each cell. (C) Similarity between cell clusters, as a UMAP representation of the top 10 principal 
components (PCs) after PCA computed on the average gene expression space. 
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Fig. S14. Cell-type assignments for scATAC datasets. 
(A) Average gene score for mouse assigned cell identities using the same panel of cell-type 
marker gene sets as in Fig. S8. (B) Gene score for example individual marker genes. (C) Mouse 
gene tracks for example marker genes across each assigned cell identity. (D) Average gene score 
for marmoset assigned cell identities using the same panels of cell-type marker gene sets as in 
Fig. S10. (E) Gene score for example individual marker genes.  (F) Marmoset gene tracks for 
example marker genes across each assigned cell identity. 
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Fig. S15. Specificity analyses of mouse and marmoset scATAC peak clusters. 
(A) Mouse ATAC peak clusters, reproduced from Fig. 4 for ease of reference, in unsorted order 
(left), and correlation with age vs. cell type for each cluster (right). (B) Mouse ATAC cluster 
characteristics as in Fig. 4, for each individual cluster, and number of regions per cluster (Cluster 
sizes). (C) Marmoset ATAC peak clusters, reproduced from Fig. 4 for ease of reference, in 
unsorted order (left), and correlation with age vs. cell type for each cluster (right). (D) Marmoset 
ATAC cluster characteristics as in Fig. 4, for each individual cluster, and number of regions per 
cluster (Cluster sizes).  
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Fig. S16. Correlation of mouse vs. marmoset gene and ATAC clusters. 
(A) Overlap between mouse and marmoset gene clusters for neuronal cell types only (as 
presented in text), showing the top 4 pairs. (B) Overlap between mouse and marmoset gene 
clusters for neuronal and glial cell types taken together (for comparison as a control), showing 
the top 6 pairs. (C) Overlap between mouse and marmoset ATAC clusters for neuronal cell types 
only, showing the top 5 pairs. (D) Overlap between mouse and marmoset ATAC clusters for 
neuronal and glial cell types taken together, showing the top 4 pairs. (E) Methylation of ATAC 
peaks in each mouse shared-developmental neuronal ATAC cluster in the mouse bulk DNAme 
dataset in Fig. 1. (F) Methylation of ATAC peaks in each mouse shared-developmental neuronal 
and glial ATAC cluster, determined from the mouse bulk WGBS dataset presented in Fig. 1. 
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