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ABSTRACT 

There has been increasing interest in performing psychiatric brain imaging studies using 

deep learning. However, most studies in this field disregard three-dimensional (3D) 

spatial information and targeted disease discrimination, without considering the genetic 

and clinical heterogeneity of psychiatric disorders. The purpose of this study was to 

investigate the efficacy of a 3D convolutional autoencoder (CAE) for extracting features 

related to psychiatric disorders without diagnostic labels. The network was trained using 

a Kyoto University dataset including 82 patients with schizophrenia (SZ) and 90 healthy 

subjects (HS), and was evaluated using Center for Biomedical Research Excellence 

(COBRE) datasets including 71 SZ patients and 71 HS. The proposed 3D-CAEs were 

successfully reconstructed into high-resolution 3D structural magnetic resonance 

imaging (MRI) scans with sufficiently low errors. In addition, the features extracted 

using 3D-CAE retained the relevant clinical information. We explored the appropriate 

hyper parameter range of 3D-CAE, and it was suggested that a model with eight 

convolution layers might be relevant to extract features for predicting the dose of 

medication and symptom severity in schizophrenia. 
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Introduction 

Deep learning (DL) has dramatically improved technology in speech recognition, image 

recognition, and many other fields1. Medical imaging can benefit greatly from recent 

progress in image classification and object detection using this cutting-edge technology 

2. In particular, as the global burden of psychiatric disorders increases3,4, psychiatric 

brain imaging studies using DL are anticipated to bring much benefit to society5. There 

are two major concerns about applying DL to psychiatric brain imaging: (1) treatment 

of the high dimensionality of data, and (2) the heterogeneity of psychiatric disorders6. 

 

The dimensionality of raw magnetic resonance imaging (MRI) data is very high (often 

running into the millions) and large computer resources are required to analyze them. In 

order to reduce computational demands, in most neuroimaging studies several feature 

extraction methods have been used. Region of interests (ROIs), one of the most popular 

methods of feature extraction, has contributed to the detection of various structural and 

functional abnormalities in the brains of patients with psychiatric disorders7-10. ROIs 

(often dozens or hundreds) are usually set based on neuroscience knowledge11. For 

example, average gray matter volumes or cortical thicknesses at specific ROIs are 

extracted as features and then the relationship between the features and disease clinical 

information is analyzed12-14. Even in the studies using DL, ROI-based features are often 

used as input3,15,16. In addition, many DL studies avoid using high-resolution three-

dimensional (3D) images directly, but instead DL networks are trained using two-

dimensional slices3,17,18. A limitation of these studies is that they ignore the 3D spatial 

information contained within the original MRI scans.  

 

In recent years, with improvements in computer performance and refinement of 

computational techniques, studies have investigated the ways to treat high-resolution 3D 

MRI scans as inputs to DL. For example, Wang, et al.19 successfully discriminated 
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Alzheimer’s dementia from healthy subjects using high-resolution 3D MRI data as 

input to DL. Similar attempts have been made for discriminating psychiatric disorders 

including schizophrenia20 and developmental disorders21. Although these studies 

demonstrated that DL can be applicable to the analysis of high-resolution 3D MRI data, 

discrimination-based approaches may be challenging due to the heterogeneity of 

psychiatric disorders. 

 

Heterogeneity is one of the main challenges that current psychiatric research faces6. The 

current symptom-based definitions of psychiatric disorders, standardized in the 

Diagnostic and Statistical Manual of the American Psychiatric Association (DSM)22 

and the International Classification of Diseases (ICD)23, have been highlighted as 

lacking predictive and clinical validity due to genetic and clinical heterogeneity24. For 

example, in schizophrenia, a recent study found evidence for significant overlapping of 

the relatively common risk variants that are tagged in genome-wide association studies 

(GWAS) of between several psychiatric disorders, and there may also be lower genetic 

correlation within disorders25. In addition, even in patients given the same diagnosis of 

schizophrenia, the severity of symptoms, response to medication, and prognosis often 

vary widely among patients26,27. Therefore, in psychiatric disorders research, a simple 

competition for discrimination accuracy based on the current disorder categories may be 

insufficient to elucidate on pathophysiology, although most current studies using DL are 

attempting to discriminate disease in healthy subjects3,28.  

 

One possible alternative direction for using DL techniques in psychiatric neuroimaging 

studies may be for diagnostic label-free feature extraction. In the current study, we 

focus on an autoencoder (AE) as a DL algorithm that allows feature extraction without 

labels29. Indeed, there are some studies that have used AE-based feature extraction for 

psychiatric neuroimaging. For example, Pinaya et al. extracted features from structural 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.24.213447doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.213447
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

MRI scans using AE, i.e., without using diagnostic labels. The authors successfully 

predicted the age and gender of participants, and discriminated patients with autism 

spectrum disorders (ASD) and schizophrenia from healthy subjects16. However, these 

studies used ROI-based features such as cortical thickness and functional connectivity 

as inputs to the AE. As such, the use of high-resolution 3D brain images for inputs to 

the AE remains challenging, with a few exceptions. For example, Martinez-Murcia et 

al. extracted features from high-resolution 3D brain MRI data of patients with 

Alzheimer's dementia using a 3D convolutional autoencoder (3D-CAE)30, they 

demonstrated that extracted features were useful for predicting age and Mini-Mental 

State Examination (MMSE) scores. This supports the efficacy of labeling free features 

based on 3D-CAE with high-resolution MRI. However, particularly when investigating 

psychiatric disorders, the appropriate architecture of 3D-CAE has not been fully 

investigated. 

 

The purpose of this study was to investigate an efficient 3D-CAE-based feature 

extraction for the neuroimaging of psychiatric disorders. More specifically, in the 

current study, we used datasets that included patients with schizophrenia, a condition 

that has frequently been reported to be heterogeneous in previous neuroimaging 

studies31. The key points of our study are: (1) to use high-resolution 3D MRI data while 

preserving spatial information, and (2) diagnostic label-free feature extraction using 3D-

CAE. For this purpose, we explored appropriate network structures of 3D-CAE by 

comparing the relationships between the features extracted by the model with different 

network structures and varying clinical information. 
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Methods 

Experimental overview 

Figure 1 illustrates an experimental overview of our study. We used two datasets, 

including participants diagnosed with schizophrenia as well as healthy subjects: a 

dataset collected at Kyoto University (Kyoto dataset) and a public dataset, The Center 

for Biomedical Research Excellence (COBRE; 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) dataset. (1) Gray matter was 

first extracted from the structural MRI data as preprocessing. (2) We then trained 3D-

CAE to extract a latent feature representation from structural MRI using the Kyoto 

dataset. Sixteen 3D-CAEs with varying network structures were prepared for 

investigation of the optimal network depth and complexity. (3) Subsequently, the 

COBRE dataset was used to evaluate the applicability to another dataset. (4) Finally, we 

evaluated whether the extracted features retained clinical information by linear 

regression of the clinical information using the COBRE dataset.  

 

Kyoto dataset description 

A total of 172 subjects were investigated in this study, including 82 patients with 

schizophrenia and 90 healthy subjects. Patients were recruited from hospitals in Kyoto, 

Japan, and diagnosed by psychiatrists using the Diagnostic and Statistical Manual of 

Mental Disorders, 4th edition (DSM-IV) 32 criteria for schizophrenia, confirmed with the 

patient edition of the Structured Clinical Interview for DSM-IV Axis I Disorders 

(SCID)33. No patients had any comorbid DSM-IV Axis I disorder. The clinical 

symptoms of all patients were estimated using the Positive and Negative Syndrome 

Scale (PANSS)34. Healthy subjects were screened with the non-patient edition of the 

SCID, confirming no history of psychiatric disorders. Exclusion criteria for all 

individuals included a history of head trauma, neurological illness, serious medical or 

surgical illness, or substance abuse. Note that participants were already diagnosed in 
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order to expedite the data collection, but the diagnostic labels were not used to train the 

networks. All study participants signed an informed consent form. The study was 

performed in accordance with the current Ethical Guidelines for Medical and Health 

Research Involving Human Subjects in Japan and was approved by the Committee on 

Medical Ethics of Kyoto University and National Center of Neurology and Psychiatry. 

 

All participants were scanned with a 3.0-Tesla Siemens Trio scanner (Siemens 

Healthineers, Erlangen, Germany). The scanning parameters of the T1-weighted 3D 

magnetization-prepared rapid gradient-echo (3D-MPRAGE) sequences were as follows: 

echo time (TE) = 4.38 ms; repetition time (TR) = 2,000 ms; inversion time (TI) = 990 

ms; field of view (FOV) = 225 mm × 240 mm; acquisition matrix size = 240 × 256 × 

208; resolution = 0.9375 × 0.9375 × 1.0 mm3. 

 

COBRE dataset description 

In this study, the COBRE dataset, which is a public dataset, was acquired as a dataset 

with different scanning sites and parameters to the Kyoto University dataset. All the 

subjects were diagnosed on and screened with the SCID. The clinical symptoms of all 

patients were estimated using the PANSS. Exclusion criteria for individuals included a 

history of head trauma, neurological illness, serious medical or surgical illness, or 

substance abuse. We included a total of 142 subjects from this database in our study, 

including 71 patients with schizophrenia and 71 healthy subjects. As stated earlier, the 

diagnostic labels were not used to train the network. 

 

MRI data were acquired using a 3.0-Tesla Siemens Tim Trio scanner (Siemens 

Healthineers). The scanning parameters of the T1-weighted 3D-MPRAGE sequences 

were as follows: TE = 1.64 ms; TR = 2,530 ms; TI = 900 ms; FOV = 256 mm × 256 

mm; acquisition matrix size = 256 × 256 × 176; resolution = 1.0 × 1.0 × 1.0 mm3.  
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Division of train, validation, and test 

The 3D-CAE was trained using the Kyoto dataset. The dataset was randomly partitioned 

into training data, validation data, and test data (138 subjects, 16 subjects and 18 

subjects, respectively). Training data, validation data, and test data were used for the 

training of the 3D-CAE, the validation of the model during training, and the final 

evaluation of generalizability within the datasets independent of the training and 

validation data, respectively. The COBRE dataset (142 subjects) was also used to 

evaluate the applicability of the network to another dataset.  

 

The regression was carried out using the COBRE dataset. The five-fold cross validation 

technique was applied. Namely, the COBRE dataset samples (142 subjects) were 

randomly divided into five subgroups (four groups for training and one group for 

validation) and cross-validated by changing the combinations of groups. This five-fold 

cross-validation process was repeated ten times. Note that only patients with 

schizophrenia had clinical information available for analysis, and regressions based on 

the clinical information were performed using data from patients with schizophrenia (71 

subjects). The details for the division of data are shown in Table 1. 

 

MRI preprocessing 

The preprocessing was conducted using Statistical Parametric Mapping (SPM12, 

Wellcome Department of Cognitive Neurology, London, 

UK; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)35 with the Diffeomorphic 

Anatomical Registration Exponentiated Lie Algebra (DARTEL) registration 

algorithm36. All of the T1 whole brain structural MRI scans were segmented into gray 

matter (GM), white matter, and cerebrospinal fluid. Individual GM images were 

normalized to the standard Montreal Neurological Institute (MNI) template with a 1.5 × 
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1.5 × 1.5 mm3 voxel size and modulated for GM volumes. All normalized GM images 

were smoothed with a Gaussian kernel of 8 mm full width at half maximum (FWHM). 

Subsequently, each image was cropped to remove background as much as possible. The 

GM area was extracted from original images using a binary mask, created using 

SPM12. As a result, the size of input images to the 3D-CAE was 121 × 145 × 121 

voxels. 

 

Subsequently, the range of signal intensities in each image was normalized with a mean 

of 0 and a standard deviation of 1. The standardized value of voxel i in the sample s, 

𝑥′!,#, was calculated as follows: 

𝑥′!,# =	%
$!,#%	'!
(!

							(𝑖 ∈ 𝐺M	)

										0														(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)		
(1) 

where 𝑥!,# is the original value of intensity. 𝜇! and σ) were average and standard 

deviation of all voxels contained in the GM area of sample s, respectively.  

 

Convolutional autoencoder training 

An autoencoder is a kind of DL consisting of the encoder and the decoder. The encoder 

learns latent representations and reduces the dimension of the input. The decoder learns 

to reconstruct the input as close as possible to the original using the latent 

representations. 3D-CAE extends this architecture by using convolutional layers that 

can extract features directly from 3D images37-39. The CAE has two main hyper 

parameters: the number of convolutional layers and the number of channels, which are 

the target of the current study. 

 

The convolutional layers apply a filter to an input to create feature maps that 

summarizes the features detected in the input. The feature maps are created for the 

number of channels. Since the convolutional layer generates feature maps while 
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capturing the spatial information of the matrix, convolutional neural networks are 

beneficial to learning features of images. As the number of channels increases, the 

complexity of a model increases. Also, as the number of convolutions increases, the 

effective receptive field increases, thus allowing global and abstract features to be 

extracted. The effective receptive field is a region of the original image that can 

potentially influence the activation of neurons40,41.  

 

The impact of two hyper parameters, the number of convolutional layers, and the 

number of channels was investigated. As shown in Figure 2, the set of two 

convolution/deconvolution layers and one pooling/unpooling layer was defined as a 

convolution/deconvolution “block”. In this experiment, the number of blocks was set 

ranging from 1 block to 4 blocks. The number of channels in the extraction layer was 

varied with 1, 4, 16, and 32 channels, but, the number of channels for other layers were 

fixed at 32. As a result, we created sixteen 3D-CAE models (4 block conditions × 4 

channel conditions) to explore the effective range of hyper parameters for psychiatric 

brain imaging.  

 

Other hyper parameters were fixed and common among models. The encoder was 

composed of convolution layers (a kernel size of 3×3×3 and a stride of 1) with rectified 

linear unit (ReLU) activations and average pooling layers (a kernel size of 2×2×2 and a 

stride of 2). The decoder was composed of convolution layers (a kernel size of 3×3×3 

and a stride of 1) with ReLU activations and unpooling layers (a kernel size of 2×2×2 

and a stride of 2). The loss function consisted of the mean absolute error (MAE) 

between the input and the reconstruction. As an optimizer, we used a gradient-based 

method with adaptative learning rates called Adam42 (alpha = 0.0001, beta1 = 0.9, beta2 

= 0.999) using mini-batches with a size of eight samples. The training process was 
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performed with a maximum 50,000 training iterations. We conducted the experiments in 

Python 3.6 (https://www.python.org/) using the Chainer v.5.4.0 library43.  

 

We used a reference of training performances of 3D-CAEs, referred to as the “average 

brain”, with which the model was assumed to output the average intensities of the 

training dataset regardless of the inputs. The average brain is one of the most trivial 

solutions where the network outputs an image without learning any information about 

individual differences of the inputs. The signal intensities of voxel i of the average brain 

was determined as follows: 

𝑥
*+,	#-	

∑ %!,#
&
!'(
&

 (2) 

where s is a sample from training dataset and n is the number of samples. 

 

Regression analysis with demographic and clinical information 

Whether the extracted features retained information relevant to demographic and 

clinical information was evaluated using linear regression analysis, in which 

demographic and clinical information were predicted as an objective variable and 

extracted features were used as explanatory variables (see the lower part of Figure 1). 

Demographic and clinical information included age, scores of positive and negative 

symptoms (PANSS), dose of antipsychotic medications (chlorpromazine equivalent 

[CPZE]), Wechsler Adult Intelligence Scale (WAIS), duration of illness, and age at 

onset. For the regression analysis, in order to reduce the effects of correlated variables 

we adopted ridge regression, one of regularized linear regression methods. In the 

regression analysis, we executed a five-fold cross-validation process whereby the 

COBRE dataset was randomly divided into five group of samples (folds), and then 

samples from four folds were used for training the regression model, and the other fold 

was used for the test of the regression model. The five-fold cross-validation was 
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repeated ten times. Performance of the regression model was evaluated using the root 

mean square error (RMSE).  

 

Differences in the performances of regression models were evaluated using the two-way 

(number of channels × number of blocks) analysis of variance (ANOVA). 

Subsequently, Tukey’s multiple comparison test was performed for each group as a 

post-hoc analysis. The level of significance was set to 0.05.  

 

The 3D-CAE models were also compared with the ROI method. In the ROI method, 

using the automated anatomical labeling (AAL) template11, the GM was divided into 

116 ROIs. The average intensities of each ROI were used as the ROI-based features for 

regression analysis. Student's t-test was performed to compare the proposed 3D-CAE 

model with the ROI method. The level of significance was set to 0.05. 

 

Results 

Reconstruction capability performance  

Figure 3a shows a representative example of learning curves for the 3D-CAE with 16 

channels and 3 blocks. Progressive decreases were shown not only with “train loss” (red 

line), but also “validation loss” (orange line) and “test loss” (green line); this indicated 

that the 3D-CAE successfully learned to reproduce the high-resolution MRI input data 

without overfitting. The level of MAEs were remarkably below the level of the 

“average brain” (dashed line), at which the model is assumed to output the average 

intensities of the training dataset regardless of the inputs (see Methods for details), 

suggesting that the 3D-CAE successfully reproduced characteristic features of the 

individual brains. In addition, the curve for “COBRE loss” (blue line), the 

reconstruction loss for the images from the COBRE dataset with the model trained by 

the Kyoto dataset, showed a similar trend. This indicated that the 3D-CAE can be 
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applied to MRI data from another site with different scanning parameters. Similar trends 

of learning curves were observed for the other fifteen 3D-CAEs with different hyper 

parameter settings, indicating that all models (sixteen 3D-CAEs with varying hyper 

parameters) successfully converged to reproduce high resolution MRI input data 

without overfitting. 

 

Figure 3b summarized the reconstruction performances (MAEs for the COBRE dataset) 

of the sixteen 3D-CAE models with respect to the number of channels and number of 

blocks. Regarding the number of blocks, it can be seen that the larger the number of 

blocks, the larger the reconstruction error. This result is intuitively understandable, in 

that models with smaller blocks are easier to reconstruct because extracted latent 

features do not abstract the original image as much (Figure 4). Regarding the number of 

channels, although the differences were small, there was a tendency for the larger the 

number of channels to be associated with smaller reconstruction errors (see Table 2 for 

more details). This result is consistent with the fact that the models with more channels 

have more expressive capability. 

 

Relevance to clinical information 

The efficacy of the proposed method was evaluated using linear regressions for 

predicting demographic and clinical information related to a psychiatric disorder, i.e., 

schizophrenia. Demographic and clinical information including age, dose of 

antipsychotic medication (CPZE), and scores of positive and negative symptoms 

(PANSS) were used as an objective variable, and all extracted features of 3D-CAE were 

used as explanatory variables. Features using the ROI-based method were also used for 

comparison with the conventional method. A linear regression analysis was used as a 

simplest method to confirm if extracted features from 3D-CAEs with different hyper 

parameters (numbers of block and channels) preserved useful information. Each of the 
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16 CAE models were analyzed 10 times, and the difference in predictive performance 

of the models was examined statistically. 

 

Figure 5 illustrates a representative example of the regression analysis results. 

Differences in the performance of regression models (RMSE) with respect to the 

number of channels with 3 blocks (Fig. 5a, b, c, d) and respect to the number of blocks 

with 16 channels (Fig. 5e, f, g, h) were demonstrated as representative examples. The 

results of the comparison with the ROI method are shown in Table 3. The detailed 

results are described in Supplementary Table S1, S2, and S3, respectively.  

 

Regarding the prediction of age, there were tendencies for the RMSEs to be smaller 

with increases in the number of channels (Fig. 5a) and with decreasing number of 

blocks (Fig. 5b). Indeed, statistical analysis revealed that there were significant 

differences between the models (channel: p<0.001; block: p<0.001). However, even the 

model with 32 channels and 1 block, which is considered one of the most predictive 

models, is equivalent to the ROI method (p = 0.346; Table 3), suggesting that for the 

prediction of age, 3D-CAE-based features were comparable to a conventional method. 

 

Regarding the prediction for CPZE, there was a tendency for the RMSEs to be smaller 

with increases in the number of channels (Fig. 5c); on the other hand, the RMSEs were 

smallest with the condition of 3 blocks (Fig. 5d). Statistical analysis revealed that there 

were significant differences between the models (channel: p<0.001; block: p<0.001). 

Post-hoc analysis revealed that there were significant differences between 1 block and 3 

blocks, and 3 blocks and 4 blocks. Moreover, the lowest level of RMSE of 3D-CAE 

was significantly lower than the RMSE from ROI-based features (p<0.001; Table 3), 

indicating that for the prediction of CPZE, 3D-CAE based features outperformed a 

conventional method.  
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Regarding the prediction of positive symptoms, there was no clear tendency with 

respect to the number of channels (Fig. 5e). On the other hand, with respect to the 

number of blocks, the RMSEs seemed to be smallest with the condition of 3 blocks 

(Fig. 5f). Statistical analysis indicated that there were significant differences between 

the models (channel: p<0.001; block: p<0.001). Post-hoc analysis revealed that there 

were significant differences between 1 block and 3 blocks. Similar trends could be 

observed in the prediction of negative symptoms (Fig. 5g, h), where there were 

significant differences between the models (channel: p<0.001; block: p<0.001). In 

comparison to the conventional method, although there was no significant difference in 

the prediction of positive symptoms between the 3D-CAE model with 3 blocks and the 

ROI method (p=0.088; Table 3), the mean RMSE (SD) was 4.67 (0.09) and 4.72 (0.04), 

respectively, suggesting that the 3D-CAE might be comparable or better than the ROI 

method. Regarding the prediction of negative symptoms, there was no significant 

difference between 3D-CAE and the conventional method (p= 0.968; Table 3). 

 

Discussion 

We have shown that (1) the proposed 3D-CAEs successfully reconstructed high-

resolution 3D MRI data with sufficiently low errors, and (2) the diagnostic label-free 

features extracted using 3D-CAE retained the relevance of various clinical information. 

In addition, we explored the appropriate hyper parameter range of 3D-CAE and our 

results suggest that a model with 3 blocks might be relevant to extract features for 

predicting the medication dose and symptom severity in patients with schizophrenia.  

 

The reconstruction errors of 3D-CAE were lower than the average brain level, 

indicating that the proposed 3D-CAEs successfully reconstructed high-resolution 3D 

brain MRI data with individual characteristics. In addition, the 3D-CAE trained with the 
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Kyoto dataset was applicable to the COBRE dataset with different scanners and 

scanning parameters. Although the current study was tested using only two datasets, the 

results suggested that the proposed method may have applicability to data from multiple 

sites and scanners, itself a challenging issue in neuroimaging studies44-48.  

 

Regression analyses demonstrated that CAE-based features were efficient to predict 

medication dose and symptom severity in patients with schizophrenia, even though 

CAE-based features were extracted without using a diagnostic label of schizophrenia. 

Moreover, it was comparable or better than the ROI-based features. This suggests that 

the proposed model may be useful as a method of label-free feature extraction for 

neuroimaging studies of other psychiatric disorders with heterogeneity problems that 

are similar to those seen in schizophrenia. 

 

Regarding the number of channels, 16- to 32-channel models demonstrated better 

performance. This is easy to understand because the more channels the model has, the 

more expressive it is1, 39, 49. However, since increasing number of channels inevitably 

results in increasing computational power needs, estimation of the appropriate number 

of channels is still important. Our results suggest that the number of channels may be 

sufficient at 16 or 32 for reconstructing structural brain MRI scans. Regarding the 

number of blocks, our results indicated that information from a local receptive field 

(small number of block) was sufficient for predicting age. On the other hand, prediction 

of schizophrenia-related clinical data required information from more global receptive 

fields (larger block numbers, such as 3-block). As the number of blocks increases, the 

effective receptive fields expand and global features of the brain can be extracted19, 41, 42, 

50. In our model, the 3 blocks model contained eight convolutional layers, and effective 

receptive fields of the feature unit were about 68 × 68 × 68 voxels, corresponding to 

about 30 percent of the brain. This fact is consistent with the previous neuroimaging 
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studies showing that positive symptoms are associated with the volume of multiple 

brain regions, including the middle temporal gyrus, middle frontal gyrus, and 

amygdala51-55. Similarly, the dose of antipsychotic medication administered has been 

reported to be associated with the volume of multiple brain regions, including the 

superior frontal gyrus, medial temporal gyrus, and amygdala51-54, 56. The superiority of 

CAE-based features may be related to the detection of local signal interactions inherent 

in the convolutional methods; this is in contrast to the ROI-based method, in which 

information is averaged for each ROI and the local signal interactions are discarded.  

 

There are some limitations to our study. First, the number of dimensions of the features 

extracted by our proposed model was larger than those of the ROI-based features (116 

dimensions). Even the model with the smallest number of dimensions, 1 channel and 4 

blocks, had 336 dimensions. In this study, we used a relatively simple network and did 

not explore complex architecture. However, it may be possible to extract lower-

dimensional features without losing the quality of information by elaboration of 

network architectures. Second, the datasets used in this study only included patients 

diagnosed with schizophrenia as well as healthy subjects. Considering the heterogeneity 

of psychiatric disorders, it will be necessary to examine the applicability of diagnostic 

label-free feature extraction using 3D-CAE to other psychiatric disorders in the future. 

Third, this study was not able to show the best architecture, due to the limited number 

of data samples for statistical power and computational costs for exploring a wide range 

of hyper parameters. Fourth, the biological implications of the current results remained 

unclear. For example, in predicting age, it is not yet clear why the relevance decreases 

as the number of blocks increases. In addition, the visualization of highly active neurons 

using Smooth Grad57 or Grad-CAM58 may be useful for investigating the 

correspondence between the extracted features and actual brain regions, although more 

computing power and time are needed.  
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In this paper, we presented 3D-CAE-based feature extraction for brain structural 

imaging of psychiatric disorders. We found that 3D-CAE can extract features relevant 

to clinical information from high-resolution 3D MRI data without diagnostic labels. Our 

data suggests that 3D-CAE models with effective hyper parameter settings may be able 

to extract information related to the medication dose and symptom severity in patients 

with schizophrenia. Moreover, further investigations should focus on the 

correspondence between the features extracted by the CAE and the accumulated 

findings from the conventional neuroimaging studies. 
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Figure 1. Experimental overview. 1. Preprocessing: The gray matter was extracted from 

the structural MRI, and standardized and smoothed using SPM. 2. CAE training: A 

schematic diagram is shown. 3D images of the Kyoto dataset were input, features were 

extracted, and the original image was reconstructed. 3. Feature extraction: the model 

trained using the Kyoto dataset was adopted to the COBRE dataset without updating the 

weights. 4. Linear regression: Each extracted feature was an explanatory variable, and 

demographic and clinical information were objective variables. Regression errors were 

evaluated, and the relationship between features and demographic and clinical 

information was investigated. 3D, three-dimensional; CAE, convolutional autoencoder; 

COBRE, Center for Biomedical Research Excellence; CPZE, dose of antipsychotic 

medication; MRI, magnetic resonance imaging; SPM, Statistical Parametric Mapping. 
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Figure 2. Our proposed CAE architecture. One convolution/deconvolution block was 

defined as repeating two convolution/deconvolution layers and one pooling/unpooling 

layer. The number of blocks was set from 1 to 4. The number of channels in the 

extraction layer was set from 1 to 32. Sixteen patterns of models with different numbers 

of blocks and channels were developed. In order to explore the effective number of 

channels and blocks, the reconstruction capability and relevance to clinical information 

were evaluated. act., activation function; CAE, convolutional autoencoder; ch., channel; 

Conv., convolution; Dcnv, deconvolution; pad., padding; pool, pooling; Relu, Rectified 

Linear Unit; unpool, unpooling. 
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Figure 3. Learning performance of models. (a) shows the learning loss curve for a 16-

channel and 3-block model. The red line shows the training loss, indicating that the 

learning has progressed and the loss has fallen sufficiently. The validation loss and test 

loss were also decreased, so the model was not overfitting. The blue line indicates the 

loss at the other site (COBRE), and the loss degraded as well. It can be seen that the 

MAE of our proposed models was well below the level of Ave.brain at which the model 

was assumed to output the average brain. This suggested that our 3D-CAE models have 

successfully reconstructed the brain images with individual characteristics. Similar 

learning curves were found for other models.  

 

In (b), the reconstruction performance of each of the 16 models were compared. The 

relationships between MAE, number of channels, and number of blocks are shown. The 

horizontal axis indicates the number of blocks, which is color-coded by the number of 

channels. As the number of blocks increased, the MAE tended to be larger, and as the 

number of channels increased, the MAE tended to be slightly smaller.   

3D-CAE, three-dimensional convolutional autoencoder; COBRE, Center for 

Biomedical Research Excellence; MAE, mean absolute error. 
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Figure 4: Visualization of extracted features. The extracted features were mapped for four 

models with 16 channels. From left to right: the model with one, two, three, and four 

blocks. The middle slices of the horizontal slice from 3D features are shown. In the one-

block model, the morphology of the brain can be seen, but with four blocks, the images 

are more abstract. 
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Figure 5. Regression performance plot. The left side (a, b, c, d) shows the model 

differences by number of channels for the four models with 3 blocks as an example. The 

right side (e, f, g, h) shows the model differences by number of blocks for the four 

models, with 16 channels as representative examples. Regarding age, as shown in (a) 

and (e), the RMSEs were smaller with increasing number of channels and decreasing 

number of blocks. Regarding CPZE, as shown in (b) and (f), the RMSEs were smaller 

with increasing number of channels. On the other hand, the RMSEs may be smaller in 

block 3. Regarding positive symptoms and negative symptoms, as shown in (c) and (d), 

there was no apparent trend in the number of channels. As shown in (g) and (h), the 

RMSE may be smaller in block 3. The results of each regression with the ROI method 

is also included for reference. It suggests that a model with 3 blocks may be appropriate 

for extracting schizophrenia-related information. *** p <0.001, ** p <0.01, * p <0.05 

(two-way analysis of variance followed by Tukey's multiple comparison test).  

CPZE, chlorpromazine equivalent; RMSE, root mean square error. 
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Kyoto (N=172)     COBRE (N=142) 

 
HS SZ Total    HS SZ Total 

Train 76 62 138   5-fold cv 71 71 142 

Validation 8 8 16           

Test 10 8 18       

Total 90 82 172        

Table 1. Division of dataset. The Kyoto dataset was used to develop the 3D-CAE 

model and was divided into train, validation and test dataset. The COBRE dataset was 

prepared for verification. At the time of regression, 5-fold-cross validation was 

performed.  
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  Train loss Valid loss Test loss COBRE loss 
Ave. Brain 0.318 - - 0.333 
ch1b1 0.016 0.016 0.016 0.023 
ch4b1 0.016 0.016 0.016 0.023 
ch16b1 0.014 0.014 0.016 0.020 
ch32b1 0.015 0.015 0.014 0.018 
ch1b2 0.037 0.038 0.037 0.050 
ch4b2 0.026 0.027 0.025 0.040 
ch16b2 0.026 0.025 0.024 0.032 
ch32b2 0.024 0.024 0.028 0.034 
ch1b3 0.114 0.131 0.137 0.190 
ch4b3 0.065 0.071 0.068 0.102 
ch16b3 0.053 0.057 0.055 0.080 
ch32b3 0.050 0.054 0.053 0.079 
ch1b4 0.179 0.337 0.228 0.33 
ch4b4 0.161 0.212 0.205 0.301 
ch16b4 0.155 0.211 0.203 0.293 
ch32b4 0.149 0.203 0.196 0.286 

Table 2. Reconstruction error for each model. Where the 'Ave. Brain' of train loss was 

the average brain in the Kyoto dataset and the 'Ave. Brain' of COBRE loss was the 

average brain in the COBRE dataset.  
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16 channels and 3 blocks model   

 3D-CAE (ch16b3) ROI P-value 
Age 10.29 (0.18) 10.03 (0.10) 0.001 
Positive symptoms 4.67 (0.09) 4.72 (0.04) 0.088 
Negative symptoms  4.67 (0.07) 4.69 (0.07) 0.968 
CPZE 197.85 (3.76) 214.75 (4.33) < 0.001 
VIQ 14.92 (0.17) 14.72 (0.05) 0.003 
PIQ 14.65 (0.11) 13.83 (0.09) < 0.001 
Duration of illness 11.87 (0.10) 11.23 (0.16) < 0.001 
Age of onset 7.00 (0.11) 7.47 (0.15) < 0.001 
32 channels and 1 block model   

 3D-CAE (ch32b1) ROI P-value 
Age 9.97 (0.16) 10.03 (0.10) 0.346 
Positive symptoms 4.84 (0.16) 4.72 (0.04) 0.037 
Negative symptoms  4.89 (0.10) 4.69 (0.07) < 0.001 
CPZE 206.57 (4.61) 214.75 (4.33) 0.001 
VIQ 15.17 (0.17) 14.72 (0.05) < 0.001 
PIQ 14.56 (0.13) 13.83 (0.09) < 0.001 
Duration of illness 11.36 (0.17) 11.23 (0.16) 0.100 
Age of onset 7.05 (0.13) 7.47 (0.15) < 0.001 

Table 3. The results of t-test. The differences between 3D-CAE and ROI are shown as 

mean (standard deviation) and p-value. The significant better performances were 

marked in red. The 3D-CAE method was superior to the ROI method in predicting 

CPZE and Age of onset. It seemed that the model with 3 blocks was also comparable or 

better than the ROI method in Positive symptoms and Negative symptoms. 
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 channel block interaction 
Age  < 0.001   < 0.001  < 0.001 
CPZE  < 0.001  < 0.001 0.6126 
Positive symptoms  < 0.001  < 0.001  < 0.001 
Negative symptoms   < 0.001  < 0.001 0.047 
VIQ 0.3186  < 0.001  < 0.001 
PIQ  < 0.001 0.025 0.112 
Duration of illness  < 0.001  < 0.001  < 0.001 
Age of onset 0.002  < 0.001 0.017 

Supplementary Table S1: The results of ANOVA. Since there are significant 

differences in most demographic and clinical information, it can be said that there were 

differences in the performances depending on the hyper parameters.  
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Supplementary Table S2: Regression performance for each model and ROI methods. 

Listed on Age, CPZE, Positive symptoms, Negative symptoms, VIQ, PIQ, Duration of 

illness and Age of onset. The average of the regression results was shown. Red ink 

indicated better performance than that of the ROI method. It seems that the CAE 

method was superior to the ROI method in predicting CPZE, Positive symptoms, 

Negative symptoms, and Age of onset. 

  Age CPZE 
Positive 

symptoms 

Negative 

symptoms 
VIQ PIQ 

Duration of 

illness 

Age of 

onset 

ROI 10.03 (0.01) 214.75 (4.33) 4.72 (0.04) 4.69 (0.07) 14.72 (0.05) 13.83 (0.09) 11.23 (0.16) 7.47 (0.15) 

ch1b1 10.08 (0.16) 208.79 (4.54) 4.67 (0.03) 4.69 (0.07) 14.92 (0.08) 14.59 (0.12) 11.43 (0.12) 7.04 (0.12) 

ch4b1 10.21 (0.22) 206.94 (4.48) 4.66 (0.04) 4.70 (0.07) 14.91 (0.06) 14.69 (0.15) 11.46 (0.13) 7.10 (0.10) 

ch16b1 10.04 (0.16) 206.40 (4.82) 4.83 (0.16) 4.82 (0.09) 14.98 (0.12) 14.56 (0.11) 11.43 (0.16) 7.08 (0.12) 

ch32b1 9.97 (0.16) 206.57 (4.61) 4.84 (0.16) 4.89 (0.10) 15.17 (0.17) 14.56 (0.13) 11.35 (0.17) 7.05 (0.13) 

ch1b2 10.38 (0.17) 208.14 (4.28) 4.66 (0.04) 4.68 (0.07) 14.87 (0.07) 14.67 (0.13) 11.95 (0.13) 7.02 (0.17) 

ch4b2 10.42 (0.14) 203.72 (4.21) 4.64 (0.05) 4.69 (0.07) 14.92 (0.04) 14.61 (0.10) 11.71 (0.15) 7.01 (0.12) 

ch16b2 10.18 (0.10) 201.98 (4.12) 4.75 (0.10) 4.75 (0.08) 14.88 (0.10) 14.55 (0.09) 11.60 (0.14) 6.96 (0.10) 

ch32b2 10.06 (0.10) 201.01 (4.12) 4.77 (0.12) 4.79 (0.09) 14.86 (0.11) 14.52 (0.09) 11.59 (0.14) 6.89 (0.12) 

ch1b3 10.83 (0.23) 203.50 (4.60) 4.64 (0.02) 4.68 (0.07) 14.83 (0.08) 14.73 (0.12) 11.94 (0.13) 7.17 (0.16) 

ch4b3 10.73 (0.21) 202.33 (4.07) 4.63 (0.04) 4.68 (0.07) 14.84 (0.11) 14.70 (0.11) 12.03 (0.10) 6.95 (0.10) 

ch16b3 10.29 (0.18) 197.85 (3.76) 4.67 (0.09) 4.69 (0.07) 14.91 (0.17) 14.65 (0.10) 11.87 (0.10) 7.00 (0.11) 

ch32b3 10.09 (0.08) 196.85 (3.08) 4.69 (0.10) 4.71 (0.07) 14.80 (0.12) 14.53 (0.09) 11.78 (0.10) 6.96 (0.11) 

ch1b4 10.47 (0.14) 209.73 (7.02) 4.65 (0.04) 4.68 (0.07) 14.88 (0.07) 14.75 (0.09) 11.83 (0.14) 7.19 (0.21) 

ch4b4 10.72 (0.17) 207.91 (3.90) 4.71 (0.08) 4.71 (0.07) 14.86 (0.13) 14.69 (0.12) 11.95 (0.13) 7.31 (0.27) 

ch16b4 10.28 (0.15) 207.04 (4.09) 4.75 (0.09) 4.74 (0.08) 14.86 (0.12) 14.55 (0.12) 11.92 (0.13) 7.16 (0.16) 

ch32b4 10.07 (0.13) 205.11 (4.55) 4.75 (0.15) 4.79 (0.09) 14.83 (0.15) 14.53 (0.10) 11.67 (0.12) 7.06 (0.08) 

Supplementary Table S2: Regression performance for each model and ROI methods. Listed on Age, CPZE, 

Positive symptoms, Negative symptoms, VIQ, PIQ, Duration of illness and Age of onset. The average of the 

regression results was shown. Red ink indicated better performance than that of the ROI method. It seems that 

the CAE method was superior to the ROI method in predicting CPZE, Positive symptoms, Negative 

symptoms, and Age of onset. 
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Models with 1 block      

 ch4-ch1 ch16-ch1 ch32-ch1 ch16-ch4 ch32-ch4 ch32-ch16 
Age 0.387 0.939 0.470 0.147 0.020 0.811 
CPZE 0.806 0.656 0.705 0.994 0.998 1.000 
Positive symptoms 1.000 0.015 0.008 0.012 0.006 0.996 
Negative symptoms  0.986 0.007 < 0.001 0.018 < 0.001 0.354 
VIQ 0.997 0.678 < 0.001 0.553 < 0.001 0.003 
PIQ 0.321 0.957 0.960 0.132 0.134 1.000 
Duration of illness 0.969 1.000 0.688 0.983 0.415 0.636 
Age of onset 0.666 0.810 0.992 0.994 0.822 0.927 
Models with 2 blocks      

 ch4-ch1 ch16-ch1 ch32-ch1 ch16-ch4 ch32-ch4 ch32-ch16 
Age 0.911 0.007 < 0.001 0.001 < 0.001 0.197 
CPZE 0.103 0.011 0.003 0.788 0.477 0.954 
Positive symptoms 0.954 0.108 0.031 0.034 0.008 0.944 
Negative symptoms  0.999 0.157 0.018 0.203 0.026 0.775 
VIQ 0.478 0.971 1.000 0.747 0.430 0.953 
PIQ 0.587 0.066 0.015 0.568 0.235 0.923 
Duration of illness 0.002 < 0.001 < 0.001 0.360 0.290 0.999 
Age of onset 0.995 0.743 0.135 0.864 0.210 0.621 
Models with 3 blocks      

 ch4-ch1 ch16-ch1 ch32-ch1 ch16-ch4 ch32-ch4 ch32-ch16 
Age 0.664 < 0.001 < 0.001 < 0.001 < 0.001 0.076 
CPZE 0.909 0.013 0.003 0.067 0.017 0.941 
Positive symptoms 0.952 0.838 0.484 0.532 0.221 0.930 
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Negative symptoms  1.000 0.996 0.780 0.998 0.797 0.883 
VIQ 1.000 0.491 0.948 0.534 0.927 0.218 
PIQ 0.921 0.312 0.001 0.680 0.006 0.092 
Duration of illness 0.229 0.484 0.014 0.009 < 0.001 0.301 
Age of onset 0.001 0.015 0.002 0.809 0.999 0.875 
Models with 4 blocks      

 ch4-ch1 ch16-ch1 ch32-ch1 ch16-ch4 ch32-ch4 ch32-ch16 
Age 0.004 0.031 < 0.001 < 0.001 < 0.001 0.016 
CPZE 0.851 0.635 0.190 0.980 0.605 0.827 
Positive symptoms 0.433 0.131 0.097 0.889 0.822 0.999 
Negative symptoms  0.835 0.361 0.015 0.847 0.106 0.429 
VIQ 0.984 0.954 0.758 0.999 0.923 0.966 
PIQ 0.616 0.001 < 0.001 0.023 0.012 0.995 
Duration of illness 0.179 0.421 0.056 0.950 < 0.001 0.001 
Age of onset 0.549 0.985 0.436 0.348 0.034 0.648 
Models with 1 channel      

 b2-b1 b3-b1 b4-b1 b3-b2 b4-b2 b4-b3 
Age 0.004 < 0.001 < 0.001 < 0.001 0.629 < 0.001 
CPZE 0.992 0.126 0.978 0.213 0.904 0.053 
Positive symptoms 0.987 0.536 0.677 0.739 0.858 0.996 
Negative symptoms  0.984 0.981 0.981 1.000 1.000 1.000 
VIQ 0.456 0.083 0.741 0.762 0.965 0.478 
PIQ 0.407 0.038 0.013 0.604 0.355 0.974 
Duration of illness < 0.001 < 0.001 < 0.001 0.996 0.177 0.263 
Age of onset 0.999 0.303 0.167 0.237 0.125 0.986 
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Models with 4 channels      

 b2-b1 b3-b1 b4-b1 b3-b2 b4-b2 b4-b3 
Age 0.081 < 0.001 < 0.001 0.003 0.004 0.998 
CPZE 0.326 0.082 0.954 0.878 0.131 0.025 
Positive symptoms 0.852 0.538 0.146 0.947 0.024 0.006 
Negative symptoms  0.930 0.880 0.999 0.999 0.869 0.805 
VIQ 0.986 0.328 0.703 0.184 0.492 0.918 
PIQ 0.489 0.993 0.999 0.335 0.406 0.999 
Duration of illness 0.001 < 0.001 < 0.001 < 0.001 0.001 0.510 
Age of onset 0.651 0.198 0.029 0.827 0.001 < 0.001 
Models with 16 channels      

 b2-b1 b3-b1 b4-b1 b3-b2 b4-b2 b4-b3 
Age 0.182 0.003 0.005 0.343 0.450 0.997 
CPZE 0.106 < 0.001 0.986 0.144 0.051 < 0.001 
Positive symptoms 0.344 0.013 0.329 0.414 1.000 0.432 
Negative symptoms  0.242 0.003 0.105 0.258 0.971 0.490 
VIQ 0.413 0.720 0.190 0.957 0.961 0.753 
PIQ 0.998 0.235 0.998 0.167 1.000 0.168 
Duration of illness 0.038 < 0.001 < 0.001 < 0.001 < 0.001 0.834 
Age of onset 0.181 0.433 0.485 0.947 0.006 0.026 
Models with 32 channels      

 b2-b1 b3-b1 b4-b1 b3-b2 b4-b2 b4-b3 
Age 0.321 0.149 0.276 0.970 1.000 0.985 
CPZE 0.024 < 0.001 0.858 0.130 0.139 < 0.001 
Positive symptoms 0.602 0.066 0.444 0.554 0.994 0.714 
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Negative symptoms  0.075 < 0.001 0.100 0.224 0.999 0.177 
VIQ < 0.001 < 0.001 < 0.001 0.761 0.945 0.973 
PIQ 0.840 0.958 0.968 0.988 0.982 1.000 
Duration of illness 0.002 < 0.001 < 0.001 0.019 0.565 0.292 
Age of onset 0.018 0.246 0.995 0.615 0.009 0.160 

 
Supplementary Table S3: The results of post-hoc analysis. The differences between the 

different hyper parameter for a model with a particular number of blocks or channels were 

shown. The numbers listed were p-values and red ink indicated a significant difference. 
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