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ABSTRACT 

 

In situ capturing technologies add tissue context to gene expression data, with the potential of 

providing a greater understanding of complex biological systems. However, splicing variants and full-

length sequence heterogeneity cannot be characterized at spatial resolution with current 

transcriptome profiling methods. To that end, we introduce Spatial Isoform Transcriptomics (SiT), an 

explorative method for characterizing spatial isoform variation and sequence heterogeneity. We 

show in mouse brain how SIT can be used to profile isoform expression and sequence heterogeneity 

in different areas of the tissue. SiT reveals regional isoform switching of Plp1 gene between different 

layers of the olfactory bulb, and use of external single cell data allowed to nominate cell types 

expressing each isoform. Furthermore, SiT identifies differential isoform usage for several major 

genes implicated in brain function (Snap25, Bin1, Gnas) that we independently validated by in situ 

sequencing. SiT also provides for the first time an in-depth A-to-I RNA editing map of the adult 

mouse brain. Data exploration can be performed through an online resource 

(https://www.isomics.eu), where isoform expression and RNA editing can be visualized in a spatial 

context. 

 

INTRODUCTION 
 

Derivation of multiple transcripts via post-transcriptional modifications such as alternative splicing 

and RNA editing generates substantially more transcripts than there are genes. These modifications 

increase transcriptome complexity and have important implications for cellular function, as 

evidenced by their tight regulation and role in development and tissue homeostasis1. Alternatively 

spliced transcripts are particularly important in neurogenesis and brain development, contributing 
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to the complex architecture of the mammalian central nervous system (CNS), where they regulate a 

vast array of neuronal functions through cell-type-specific expression patterns2,3. Several links have 

been reported between defective alternative splicing and a growing number of diseases including 

epilepsy, autism spectrum disorders, schizophrenia or spinal muscular atrophy4. Transcriptomic 

diversity can also be generated through adenosine-to-inosine (A-to-I) RNA editing, a process which is 

mediated by a specific family of enzymes called adenosine deaminases
5
. This process is involved in 

proper neuronal function
6
, and dysregulated and aberrant A-to-I RNA editing has also been reported 

in neurological and neurodegenerative diseases such as epilepsy, amyotrophic lateral sclerosis and 

developmental disorders7. 

 

Information on the spatial distribution of post-transcriptional modifications is crucial for a better 

understanding of their roles in physiology and disease. Recent technological advances have enabled 

high-throughput quantification of gene expression in a spatial context8. These methods can broadly 

be categorized into those that detect the presence of a predefined set of target genes and those 

where observations stem from sampling across the entire transcriptome. The latter is required for a 

priori free exploratory analysis and novel hypothesis generation. Such methods are usually based on 

in situ capture of poly-adenylated RNA on spatially barcoded reverse transcription primers, which 

allows capturing all mRNAs in the transcriptome. The captured transcripts are then sequenced ex 

situ, and their spatial barcodes are used to infer their spatial origins. Even though several new such 

in situ-capture-based methods for large-scale transcriptome profiling have recently emerged9,10,11,12, 

they only assess transcripts as 3’ cDNA tags and not as complete transcripts. The fundamental 

reason behind this is that all those methods are based on short-read library preparation and 

sequencing, which inevitably implies that full-length transcript information is lost. As the largest 

amount of diversity in the transcriptome stems from post-transcriptional modifications, a truly 

comprehensive description of the transcriptome can only be obtained by characterizing the 

complete sequences of the transcripts.  

 

The situation was similar in single-cell transcriptomics where until recently just the end of the cDNA 

was typically sequenced. Recent bioinformatics and methodological developments have enabled 

detection, characterization, and quantification of full-length transcripts in single-cell experiment 

using either short reads13 or long reads generated with Pacific Biosciences (PacBio)14 or Oxford 

Nanopore Technology (Nanopore)15,16. Long read sequencing is the only option to unambiguously 

access the full exonic structure of captured transcripts17. PacBio sequencing has a higher accuracy 

(>99%) than Nanopore sequencing (97% accuracy)18, while the latter provides a higher sequencing 

throughput since a single PromethION flow cell generates more than 100 million reads, whereas 

only 4 million usable reads are obtained with the most recent 8M PacBio SMRTcell
19

. Considering the 

vast amount of RNA molecules captured in current high throughput single-cell or spatial 

transcriptomics approaches, Nanopore sequencing is a more attractive option to generate the large 

number of reads required to reach the sequencing saturation needed for comprehensive transcript 

isoform and sequence heterogeneity exploration. 

 

We explored whether those recent developments in single-cell transcriptomics can be applied in 

spatial transcriptomics to obtain spatially resolved full-length sequence information. A recent study 

proposed a hybrid approach in which single cell transcript isoforms were characterized by PacBio 

sequencing20. The obtained isoforms were then inferred to spatial coordinates by shallow Nanopore 
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sequencing of spatial transcriptomics (Visium) libraries. However, the low coverage and the lack of 

unique molecular identifiers (UMIs) did not enable broad exploration of the spatial sequence 

heterogeneity of full-length isoforms nor RNA editing in the investigated tissue. 

 

Here, we introduce Spatial Isoform Transcriptomics (SiT), a method for comprehensive spatial 

profiling of full-length transcripts, based on commercially available spatially barcoded in situ-capture 

arrays and Nanopore long-read sequencing. We demonstrate the workflow for two different areas 

of the mouse brain and show that deep long-read sequencing identifies multiple genes that display 

spatially distinct alternative isoform expression. We also explored full-length sequence 

heterogeneity and provide for the first time a global map of A-to-I RNA editing of the adult mouse 

brain. 

 

DESIGN 

Currently there is no approach available to generate comprehensive spatially resolved databases of 

full-length RNA sequences, and define the spatial landscape of splicing and single nucleotide 

variations (SNVs). We introduce here Spatial isoform Transcriptomics (SiT), which combines an 

existing approach that yields spatial gene expression information after short read sequencing of 

cDNA reverse transcribed in situ on tissue sections with long read sequencing to generate spatially 

resolved full-length mRNA sequence data. We opted for Nanopore long read sequencing because 

the Oxford Nanopore Promethion flow cell generates the highest number of reads and this 

technology is therefore more cost-effective than others (I.e., PacBio sequencing). The approach is 

however easily transferrable to other sequencing technologies. To analyze the sequencing data, we 

took advantage of the fact that spatially barcoded cDNA has a similar design as single-cell cDNA with 

the cell barcode replaced by a spatial barcode. This similarity allowed us to adapt a strategy recently 

developed for the analysis of long read single cell RNA sequencing data (ScNaUmi-seq15) for the 

analysis of spatially resolved long read sequencing data. SIT enables spatial exploration of isoform 

expression and RNA sequence heterogeneity in an un-targeted manner, by interrogating all captured 

isoforms and SNVs rather than a single isoform or SNV at a time. 
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Figure 1. SiT methodology and datasets. 

(a) Experimental and computational steps for SiT analysis. Right side shows unsupervised gene 

expression clustering in a mouse coronal brain section (CBS2). (b) Nanopore sequencing saturation 

curves for three Visium samples showing the number of UMIs observed as a function of the number 

of Nanopore reads. Labels indicate sequencing saturations obtained with all flow cells (CBS1, CBS2, 

MOB) and with just one latest generation Promethion flow cell per sample (vertical dotted lines, 

CBS1, CBS2); (c) Mean read number (RN) per molecule (UMI) for each sample.  (d) Percentage of 

assignment at each step of the workflow: PolyA expressed as percentage of total reads; SpatialBC 

expressed as percentage of PolyA found reads; UMI expressed as percentage of reads with SpatialBC. 

Details about the spatialBC/UMI assignment strategy are in 
15

. (e) Normalized transcript coverage 

plot for Nanopore (MOB, CBS1, CBS2) and for Illumina (CBS2) sequencing. 

 

RESULTS 

 

Spatial isoform detection enabled through in situ capture and long-read sequencing. 

We fixed fresh-frozen tissue samples on spatially barcoded glass slides using methanol. After 

staining and imaging, mRNA molecules were captured in situ and tagged with barcodes and UMIs 

(10xGenomics Visium). Full-length cDNA libraries were then split for preparation of 3’ short-read 

sequencing libraries as well as long-read Nanopore libraries (Fig.1a). Resulting gene expression data 

were clustered to define distinct anatomical regions used as landmarks for analysis of regional 

isoform usage analysis. 
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We demonstrate the isoform landscape in situ in two regions of the mouse brain: the olfactory bulb 

(MOB) and two coronal sections of the left hemisphere (CBS1, CBS2). We provide a dataset of 13 

Nanopore PromethION flow cells with a total of 535 million reads, reaching a high long-read 

sequencing saturation for the three samples (Fig.1b-c). The initial Nanopore PromethION flow cells 

generated a median of 40 million reads, while the most recent flow cells yielded more than 100 

million reads (Fig.1b, Supplementary Table 1), a throughput that provided a high sequencing 

saturation of 51.6% and 62.8% for CBS1 and CBS2, respectively, with just one sequencing run. We 

used short-read data for assignment of spatial barcodes and UMIs to Nanopore reads using the 

previously described scNaUMI-seq protocol15 (Fig.1d). Our experimental approach, that included a 

cDNA size selection step for full-length cDNA enrichment (Supplementary Fig.1) provided a nearly 

uniform representation of full-length transcripts, enabling the exploration of splicing and full-length 

sequence heterogeneity (Fig.1e). 

 

Regional isoform switching in the olfactory bulb. 

To investigate the spatial isoform landscape in MOB, we followed the SiT workflow depicted in Fig.1a 

on a fresh-frozen tissue section. We generated 253 million Illumina short reads and 74 million long 

reads from two PromethION flow cells reaching a sequencing saturation of 87.2% (93.1% for short-

reads). For the long-read data, we applied a stringent filter to only retain molecules (UMIs) that 

contain all exon-exon junctions (mean exon number 6.7) of the reference isoform (Mouse Gencode 

vM24). Following this strategy, we unambiguously defined the full transcript structure for 2.19 

million UMIs, sequenced with 59.9% of the 25.5 million spatialBC-UMI associated reads (mean 6.8 

reads per UMI).  

 

Across the tissue section, we observed 23,560 different Gencode reference isoforms of 13,291 

distinct genes. Between short and long-reads, we computed a gene-level Pearson correlation of 0.91 

(Supplementary Fig.2). Per spatially barcoded spot (55μm diameter), we observed a median of 1,917 

UMIs corresponding to a median of 974 distinct isoforms (Supplementary Fig.3). Standard clustering 

of the short-read data defined five anatomic regions, as previously demonstrated21 (Fig.2a). Based 

on this unsupervised clustering, we mined for genes showing a differential isoform usage between 

regions and identified 36 such genes, out of which Myl6 and Plp1 showed the most prominent 

patterns (Methods, Supplementary Table 4). 

 

Myosin Light Chain 6 (Myl6), codes for the non-phosphorylatable alkali light chain component of the 

hexameric Myosin motor protein, that has been shown to be involved in neuronal migration and 

synaptic remodeling in immature and mature neurons22,23. Myl6 produces two main polypeptides of 

same size, that differ just in five of the last nine carboxy terminal amino acids: the non-muscle 

isoform Myl6-206 (Lc17a) and the smooth-muscle isoform Myl6-201 (Lc17b)24. Our data revealed a 

high expression of Myl6-201 in the granule cell layer while Myl6-206 is preferentially expressed in 

the olfactory nerve and mitral cell layer (Supplementary Fig.4). 

 

Proteolipid protein 1 (Plp1), a gene involved in severe pathologies associated with CNS 

dysmyelination25, demonstrated a clear regional difference in isoform expression between the inner 

granule cell layer, expressing full Plp1-201 (PLP) isoform and the outer regions of the olfactory nerve 

layer, expressing preferentially the truncated Plp1-202 (DM20) isoform (Fig.2b-c, Supplementary 

Fig.5). SiT allows to clearly identify 35 codons that are exclusively present in PLP and to quantify the 
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PLP/DM20 splicing balance in a spatial context, a balance that has been shown to be implicated in 

Pelizaeus-Merzbacher disease26. 

 

We validated the differential regional isoform expression of Myl6 and Plp1 using an independent 

hybridization-based technology, in situ sequencing (ISS), on a tissue section from another individual 

(Fig.2d, Supplementary Fig.4). 

 

Cell type inference reveals origin of Plp1 isoforms 

Each spatially barcoded spot typically captures transcripts from multiple cells. Single cell RNA-seq 

data allow to deconvolute the transcriptional signal into the likely constituent cell types of the spot, 

and to associate specific cell type(s) to spatial isoform expression data. We used a previously 

published mouse olfactory bulb single cell RNA-seq dataset
27

 to perform a deconvolution strategy 

based on the identification of pairwise cell correspondence28 (Fig.2e). This approach identified the 

myelinating-oligodendrocyte (MyOligo) cell type within the granule cell layer as the predominant 

origin of the Plp1 standard isoform and the olfactory ensheathing cell (OEC) within the olfactory 

nerve layer as the predominant producer of the truncated Plp1 isoform DM20 (Fig.2f). 
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Figure 2. SiT reveals isoform switches in the mouse olfactory bulb. 

(a) Data-driven annotation (upper panel) of mouse olfactory bulb spatial regions through 

transcriptome-clustering of short-read data. Heatmap shows the expression of prominent marker 

genes for each region. (b) Exonic structure of the different Plp1 isoforms detected by SiT (mm10 

build). (c,d) Expression of Plp1 isoforms detected by SiT (c) and ISS (d). (e) Uniform Manifold 

Approximation and Projection (UMAP) representation of the MOB single cell dataset from Tepe et al 
27

. The dot plot on the right indicates Plp1 expression per cell type. (f) Spatial spot deconvolution of 

cell types with high/prominent Plp1 expression (upper panel). Each dot corresponds to a pie graph 

indicating cell type composition in this spot. Per spatial spot correlation observed between 

deconvolution score and Plp1 isoform expression (lower panel). Results show that Plp1 is 

predominantly expressed by olfactory ensheathing cells (OEC) in the olfactory nerve layer (ONL) and 

by myelinating-oligodendrocytes (MyOligo) in the granule cell layer (GCL). 
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Deep sequencing of coronal brain sections 

SiT was then applied to two 50 µm spaced adjacent coronal brain sections (CBS1, CBS2). We 

generated short- and long-read data following the same protocol as for the MOB sample15 . The 

higher complexity of the spatial coronal brain section libraries motivated a deeper sequencing than 

for the MOB (Fig.1b). We generated a total of 174 and 287 million long reads with three and eight 

Oxford Nanopore flow cells, for CBS1 and CBS2 respectively (Supplementary Table 1). Clustering 

based on short-read gene expression data defined 12 anatomical regions (Fig.3a, Supplementary 

Fig.6) that broadly corresponded to regions in the Allen mouse brain reference atlas29 (Fig.3b). To 

assess the robustness of our method, we computed the transcriptome expression correlation 

between the two sections after image alignment and minimization of the spot-to-spot distance 

between sections (Supplementary Fig.7). We observed a Pearson correlation of 0.98 and 0.93 

respectively for short-read and long-read gene-level profiles of corresponding pairs of spatial spots 

(Fig.3c). 

 

 
Figure 3. SiT robustness assessment using two coronal brain sections. 

(a) Data-driven annotation of mouse coronal brain regions through transcriptome clustering of short-

read data. (b) Allen Mouse Brain Atlas reference map for the coronal brain section region annotation. 

(c) Gene-level short-read and long-read transcriptome correlation between corresponding spatial 

spots of the CBS1 and CBS2 section after image alignment and distance minimization. (d) Histogram 

showing the frequency distribution of the number of isoforms per gene for CBS1 and CBS2. The 

median length of transcripts is indicated for each category. (e) Average number of isoforms per gene 

detected for each spatial region. 
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Regional isoform switching in coronal brain sections 

We sought to identify genes with differential isoform usage across the mouse brain regions. With 

our stringent filters, we only retained UMIs that could be unambiguously assigned to a Gencode 

reference isoform (i.e., all exon-exon junctions must be observed). For CBS2, we successfully 

assigned 10 million molecules (UMIs) to a precise isoform, corresponding to 33,097 distinct isoforms 

encoded by 16,899 genes. Among those genes, we observed 9,053 (53.6%) that expressed a single 

isoform and 7,846 (46.4%) that expressed multiple isoforms across the tissue section (Fig.3d). We 

obtained a median of 3,644 UMIs for each spatially barcoded spot, corresponding to a median of 

1,524 unique isoforms (Supplementary Fig.3). We noticed small variations in the number of isoforms 

per gene across the different brain regions and a slightly higher isoform complexity in the CA3 region 

of the hippocampus (Fig.3e). The numerical values for Fig.3e are also provided in Supplementary 

Table 3. We noticed that the number of detected genes increased with the number of spots per 

region. Among the multi-isoform genes, we mined for those showing a splicing pattern change 

across regions to decipher differences in spatial cell organization. We identified 126 and 166 

significant (Bonferroni-adjusted p-value < 0.05) regional isoform switching genes in CBS1 and CBS2 

respectively, out of which 61 were identified in both sections (Methods, Supplementary Table 4-5).  

 

Hypothalamus expresses high level of a Snap25a isoform 

For both sections, our data revealed a pronounced regional isoform switching for several genes 

involved in brain function (Fig.4a-b). A first example is Snap25 which is expressed as the Snap25-202 

(Snap25a) isoform in the hypothalamus, in contrast to the midbrain where Snap25-201 (Snap25b) is 

the predominant isoform (Fig.4c-d). Both isoforms result from inclusion/exclusion of two closely 

spaced sequences which encodes distinct fifth exons which results in 9 out of 206 amino acids 

changes between the two polypeptides, a difference that has been shown to play a role in plasticity 

at central synapses30. As previously described, Snap25a is the dominant transcript during embryonic 

and early postnatal development in mouse brain, while in adulthood, Snap25b becomes the 

dominant mRNA. Snap25a remains the dominant isoform in endocrine and neuroendocrine cells 

throughout life
31

. The spatial isoform expression pattern observed was confirmed by ISS (Fig.4e). 
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Figure 4. SiT reveals Snap25 isoform-switch between mouse brain regions. 

(a) Dot-plot showing the 7 most significant (adjusted p-value < 0.05) regional differences in isoform 

usage detected in CBS1 and CBS2 sections (CBS2 expression value is shown). (b) Heatmap illustrating 

the number of isoform-switching genes identified between 2 brain regions (same order for the 

horizontal and vertical axes). Genes discussed in this study are highlighted. (c) Snap25 isoforms 

(alternative exon 5) tracks and number of molecules (UMI) observed in Midbrain and Hypothalamus 

(CBS2). (d) Snap25 isoform expression in coronal brain sections revealed by SiT (left panel), Snap25-

202 contribution to total Snap25 expression in brain regions in CBS1 and CBS2 (right panel). (e) 

Snap25 isoform expression validation by in situ-sequencing (ISS). 
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Dense neuronal regions and white matter express different Bin1 isoforms 

A second example of regional isoform switching is Bin1, which belongs to the Bin-Amphiphysin-

Rvs167 (BAR) domain superfamily proteins. Bin1 is involved in the regulation of membrane 

curvature, particularly in clathrin-coated synaptic vesicles32. The Bin1 locus has been identified as a 

leading modulator of genetic risk in Alzheimer’s disease33. Our data reveals a clear regional 

differential Bin1 isoform usage. Midbrain and fiber tracts express Bin1-205 (human Bin1iso9), while 

the Bin1-201 isoform (human Bin1iso1) was expressed in a sparse pattern including in the isocortex, 

and the hippocampal formation, with enrichment in the Dentate Gyrus (DG) and the CA3 region. 

Spatial deconvolution using the single-cell Mouse Brain Atlas dataset
34

 revealed a high correlation 

between Bin1-205 isoform expression and Oligodendrocytes especially the MOL1 and MOL3 

subtypes, which delineates more precisely the expression of Bin1-205 (Bin1iso9) in these two 

subtypes of mature oligodendrocytes35 (Supplementary Fig.8). 

 

The Gnas locus shows complex isoform expression pattern across brain regions. 

A third example of regional isoform switching is Gnas, encoded by a complex imprinted locus36 as 

the alpha-subunit of the stimulatory G protein (Gsα), an important component of the cyclic AMP 

signaling pathway
37

. In both coronal brain sections, we observed a high expression of Gnas α-L 

(Gnas-208) across all regions making it the most abundant Gnas isoform. SiT identified multiple Gnas 

isoforms such as the low expressed splice variant Gnas α-S (Gnas-206) present mainly in fiber tracts 

as well as Gnas-221, a paternally imprinted allele specific isoform, expressed in isocortex and in the 

CA3 region of the hippocampus, including a restricted expression in or adjacent to the posterior 

amygdalar nucleus (PA) region according to the Allen Mouse Brain reference atlas (Supplementary 

Fig.9).  

 

SiT identified several additional differences in the regional isoform usage for an additional set of 

genes including Cnih2, Caly, Dtnpb1 and Aldoa, which were confirmed by ISS (Supplementary Fig.10). 

 

SiT reveals A-to-I RNA editing mouse brain map  

We next examined whether SiT enables exploration of Single Nucleotide Variation (SNV). We 

investigated RNA adenosine-to-inosine (A-to-I) editing events, the principal source of transcript 

sequence heterogeneity in the mammalian transcriptome. RNA editing has been shown to be 

essential for neurotransmission and other neuronal functions
38

. While other studies examined 

editing events on bulk samples from mouse brain
39

, or spatially resolved by ISS for a limited number 

of targeted editing sites40, none has yet provided an exhaustive spatially-resolved RNA editing map 

of the mouse brain. 

 

Robust SNV calling requires substantial sequencing depth, and we therefore focused on CBS2 for this 

purpose (Supplementary Table 1). We explored a total of 5,817 exonic A-to-I RNA editing sites 

described in the literature
39,41

. To ensure high confidence calls with Nanopore long reads, we defined 

an ad hoc UMI sequencing depth and a consensus call accuracy threshold for Nanopore editing site 

calls by examining the agreement between long- and short-read editing site data for the same UMI 

(RNA molecule) for 70,225 UMIs where at least one known editing site was observed in both 

Illumina and Nanopore molecules (total 88,175 editing site observations). Based on the analysis 
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shown in Supplementary Fig.11, we retained UMIs backed by at least 3 reads with a consensus 

quality at the editing site greater than 6 for further analysis. This resulted in a > 99% agreement 

between Illumina and Nanopore editing site calls. Out of the 377,304 Nanopore editing site 

observations, 249,759 (66.2%) passed those filters and were used for downstream analysis (Fig.5a, 

Methods). Globally, we observed an A-to-I RNA editing ratio of 10.56% for 2,730 distinct editing sites 

covered by at least one UMI (46.9% of the 5,817 known editing sites explored, Supplementary Table 

6). Interestingly, editing ratios displayed a non-uniform spatial distribution (Fig.5b). Consistent with a 

previous report40, we observed a significantly higher editing ratio in Thalamus (mean 17.6%; 

749/4,247 UMIs edited) than in Fiber tracts (mean 5.4%; 657/12,063 UMIs edited). We also noticed 

a positive correlation between the expression levels of the A-to-I editing enzymes (adenosine 

deaminases, ADARs) and the editing ratios for the brain regions (Fig.5c). The same variation between 

distinct brain areas was independently noticed in both coronal brain sections (Supplementary 

Fig.12), which displays similar profiles. We observed a Pearson correlation score of 0.91 between 

CBS1 and CBS2 editing ratio for the 483 editing sites showing at least 20 UMIs in CBS1 and CBS2 long 

reads profiles (Supplementary Fig.13). 

 

We next sought to compare the potential of short and long read sequencing to identify RNA editing 

events. As expected, we observed that long reads yield more information than short reads (Fig.5d) 

since the long-read sequencing allowed to investigate sequence heterogeneity beyond the 3’-end 

editing sites. This resulted in the identification of editing variation across brain regions in several key 

genes of neuronal function such as Gria2
42

, Grik5
43

, Tmem63b
44

 or Blcap
45

 (Fig.5e).  

 

AMPA receptors (AMPARs) mediate most of the fast excitatory neurotransmission in the brain and 

are formed from four different subunits. The transcript for the Gria2 (GluA2) subunit is known to be 

edited at two positions: the R/G site (mm10, chr3:80692286), which is in the ligand-binding domain 

where editing causes faster desensitization and recovery from desensitization, and the Q/R site 

(mm10, chr3:80706912) located within the channel pore, which when edited renders AMPARs 

virtually Ca2+-impermeable and thereby affects a key aspect of neurotransmission46. Consistent with 

previous observations47, we observed less editing at the R/G site (mean=55.5%, 142/256 UMIs 

edited) than at the Q/R site (mean=94.2%, 81/86 UMIs edited). We also observed regional 

differences in R/G site editing with low editing levels in subregions of the hippocampus (DG granule 

cell layer: mean=36.4%, 4/11 edited UMIs; CA1/CA2: mean=20.5%, 8/39 UMIs edited) and high 

editing levels in the isocortex region (mean=67.5%, 79/117 UMIs edited) (Fig.5e).  
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Figure 5. SiT reveals spatial variations in A-to-I RNA editing in the mouse brain. 

(a) Histogram showing the sum of known editing site observations on all UMIs (Observations, blue 

bars), the total number of UMIs covering at least one editing site (UMIs, light blue bars), the number 

of distinct known exonic editing sites described in the literature
39,41

 (orange bars) from long read 

(black numbers) and short read (white numbers) data covering editing sites before (left part) and 

after (right part) quality filtration of Nanopore UMIs (consensus sequence quality >=6 and UMI 

sequencing depth >= 3, see Supplementary Fig.11). (b) Spatial map of A-I editing ratios. (c) Editing 

ratio and gene-level expression of ADAR enzymes per region. (d) Editing site short- and long-read 

coverage colored by distance to transcripts 3’-end. (e) Spatial map of the A-I editing ratio for a 

selection of editing sites. Editing ratio computed as the average editing ratio of molecules observed 

per region.  
 

DISCUSSION 

 

Here we present SiT, the first transcriptome-wide approach to explore isoform expression and 

sequence heterogeneity in a tissue context. We demonstrate the ability of SiT to identify differential 

isoform usage across brain regions. We further validated the ability of SiT to detect A-to-I RNA 

editing events in full-length transcript sequences. In the mouse olfactory bulb, we demonstrated a 

clear isoform switch of Plp1, a gene coding for the major myelin protein in the nervous system, 

between the outer regions of the olfactory nerve layer and the inner granule cell layer. In coronal 

brain sections we showed differential isoform usage for several other key genes, including Snap25, 

Bin1 or Gnas. We further established the spatial pattern of A-to-I RNA editing events in an unbiased 

manner, to provide for the first time a map of global editing ratios in the adult mouse brain and 

show that SiT enables investigation of individual editing sites in a spatial context. We opted for 
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Nanopore sequencing since this technology has a far lower cost per read than PacBio sequencing. 

However SiT can easily be adapted for PacBio sequencing.  

 

One limitation of SiT is that only 26 - 40% of the Nanopore reads both matched the reference 

genome and were assigned to a valid spatial barcode and a UMI for the three sections while 63 - 

90% of the Illumina reads met those criteria. The principal reasons for the high fraction of 

unassigned Nanopore reads are
15

: (i) elimination of low quality Nanopore reads where no spatial 

barcode and UMI can be identified. Further improvements in Nanopore sequencing accuracy will 

increase assignment efficiency significantly. (ii) About 20% of the sequences do not contain the RT 

primer with the cell barcode and the UMI and are discarded. Optimization of the library preparation 

should significantly increase assignment efficiency, for instance by further depletion of unwanted 

cDNA sequences that do not contain a polyA tail. (iii) While our Illumina-guided cell barcode and 

UMI assignment strategy is highly accurate
15

, the efficiency of UMI assignment to Nanopore reads 

depends on the sequencing saturation of the short read dataset which was 71%, 73% and 93% for 

the CBS1, CBS2 and MOB section respectively. Nanopore reads with UMIs that were not found in the 

Illumina dataset cannot be assigned and are lost. Development of an Illumina-free assignment 

strategy will help recovering molecules missed during Illumina sequencing and increase the 

efficiency of UMI assignment. Another limitation of SiT is that the resolution is so far limited to the 

resolution provided by the Visium technology. Several alternatives were recently described that 

increase the resolution of spatial transcriptomics (Slide-SeqV2
48

, DBiT-seq
49

). SiT can be readily 

adapted to those approaches which generate full length cDNA. A last point, also shared with all 

single-cell approaches, regards the limitations on the number and integrity of captured mRNA 

molecules. Only half of the captured molecules contain all exons of a Gencode isoform and are 

unambiguously attributed to a full-length isoform. The rest corresponds to truncated cDNA, likely 

derived from degraded RNA (Supplementary Fig.1). Further optimizations of the Visium workflow 

aiming at reduced RNA degradation prior to cDNA synthesis and at more efficient capture of mRNA 

molecules should address those limitations. 

 

Our results show that a throughput of 100 million long reads, now obtained routinely with one 

PromethION flow cell, is sufficient to explore the spatial landscape of transcript isoform expression 

in a typical Visium™ experiment. Increased sequence accuracy and throughput of the nanopore 

technology will further benefit to the SiT approach. We anticipate that such progresses should make 

SiT more and more applicable in many different environments, including in different clinical 

contexts. A straightforward application would certainly be in cancerology to resolve spatially the 

expression of pathological isoforms (e.g., fusion transcripts) and cancer mutations in order to better 

characterize the heterogeneity of tumour biopsies. SiT could thus contribute to the advent of more 

efficient therapeutic avenues. 
 
SiT expands the spatial transcriptomics toolbox to long-read based exploration of transcript isoforms 

and SNVs, such as RNA editing or somatic mutations. These observations have thus far escaped 

detection due to the limitations of conventional short-read sequencing approaches. In combination 

with whole-brain molecular maps50, we show here how this approach offers a new opportunity to 

understand the spatial and molecular organization of complex organs. 
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The SiT methodology is based on commercially available reagents and enables a deepened 

investigation of the isoform landscape, including studies of imprinting, fusion transcripts, and SNV 

expression in a spatial context. SiT will enable a better description of complex transcriptomes. As 

such, it provides an important additional resource to enrich existing Cell Atlas initiatives, as 

illustrated here through the on-line resource of mouse brain that we provide 

(https://www.isomics.eu/). 

 

METHODS 
 
Mouse Brain Samples 

Olfactory bulbs were isolated from C57BL/6 mice (>2 months old), snap-frozen in Isopentane (Sigma-

Aldrich) and embedded in cold optimal cutting temperature (OCT, Sakura) before sectioning. The left 

hemisphere was isolated from an C57BL/6J (8-12 weeks old) mouse and processed in the same way. 

Olfactory bulbs from two different individuals were used for the Visium and ISS experiments, 

whereas the same sample of the left hemisphere was used for both methods. 
 

10x Genomics Visium experiments 

The Visium Spatial Tissue Optimization Slide & Reagent kit (10xGenomics, Pleasanton, CA, USA) was 

used to optimize permeabilization conditions for mouse brain tissue. Two coronal sections of the left 

hemisphere (IDs: CBS1 and CBS2) and one section of olfactory bulb (ID: “MOB”) were processed 

according to the manufacturer’s protocol. Spatially barcoded full-length cDNA was generated using 

Visium Spatial Gene Expression Slide & Reagent kit (10xGenomics) following the manufacturer’s 

protocol. Tissue permeabilization was performed for 6 and 9 min (CBS1, CBS2) and 12 min (MOB). 

cDNA amplification was conducted with 12 (CBS) and 17 (MOB) cycles. A fraction of each cDNA 

library was used for Nanopore sequencing, whereas 10 µl was used in the 10xGenomics Visium 

library preparation protocol of fragmentation, adapter ligation, and indexing. The libraries were 

sequenced on a NextSeq500 (Illumina), with 28 bases from read 1 and 91 from read 2, and at a 

depth of 253, 217, and 210 million reads for MOB, CBS1, and CBS2 samples, respectively. The raw 

sequencing data was processed with a pre-launch of the Space Ranger pipeline (10xGenomics) and 

mapped to the mm10 genome assembly. 

 

Oxford Nanopore sequencing 

Nanopore sequencing of libraries prepared with cDNA from the 10xGenomics workflow yields 20-

50% reads without the 3’ adapter sequence and thus lacks the spatial barcode and UMI. To deplete 

such DNA, we initially selected for cDNA that contains a biotinylated 3’ primer. 10 ng of the 

10xGenomics Visium PCR product were amplified for 5 cycles with 5’-

AAGCAGTGGTATCAACGCAGAGTACAT-3’ and 5’ Biotine-AAAAACTACACGACGCTCTTCCGATCT 3’. 

Excess biotinylated primers were removed by 0.55x SPRIselect (Beckman Coulter) purification and 

the biotinylated cDNA (in 40 µl EB, Qiagen) was bound to 15 µl 1x SSPE washed Dynabeads™ M-270 

Streptavidin beads (Thermo) in 10 µl 5x SSPE for 15 min at room temperature on a shaker. Beads 

were washed twice with 100 µl 1x SSPE and once with 100 µl EB. The beads were suspended in 100 

µl 1x PCR mix and amplified for 8 cycles with the primers NNNAAGCAGTGGTATCAACGCAGAGTACAT 

and NNNCTACACGACGCTCTTCCGATCT to generate enough material (1 – 2 µg) for Nanopore 

sequencing library preparation. To deplete small fragments which are typically of little interest for 
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transcript isoform analysis (cDNA from degraded RNA, ribosomal RNAs), small cDNA (< 1 kB) was 

depleted with a 0.5x SPRI select purification. If fragments between 0.5 and 1 kB need to be retained, 

SPRIselect concentration should be increased to 0.8x. Nanopore sequencing libraries were prepared 

with the LSK-109 or LSK-110 kit from Oxford nanopore (1 µg cDNA) following the instructions from 

the manufacturer. PromethION flow cells were loaded with 200 ng libraries each. PCR amplifications 

for Nanopore library preparations were made with Kapa Hifi Hotstart polymerase (Roche Sequencing 

Solutions): initial denaturation, 3 min at 95°C; cycles: 98°C for 30 sec, 64°C for 30 sec, 72°C for 5 min; 

final elongation: 72°C for 10 min, primer concentration was 1 µM.  

  

Oxford Nanopore data processing 

Nanopore reads were processed according to the scNaUmi-seq protocol15 with slight modifications. 

Briefly, to eliminate reads that originate from chimeric cDNA generated during library preparation, 

we initially scanned reads for internal (> 200 nt from end) Template Switching Oligonucleotide (TSO, 

AAGCAGTGGTATCAACGCAGAGTACAT) and 3’ adapter sequences (CTACACGACGCTCTTCCGATCT) 

flanked by a poly(T) (poly(T)-adapter). When two adjacent poly(T)-adapters, two TSOs or one TSO in 

proximity of a poly(T)-adapter were found, the read was split into two separate reads.  Next the 

reads were scanned for poly(A/T) tails and the 3’ adapter sequence to define the orientation of the 

read and strand-specificity. Scanned reads were then aligned to Mus musculus mm10 with minimap2 

v2.17 in spliced alignment mode.  Spatial BCs and UMIs were then assigned to nanopore reads using 

the strategy and software previously described for single cell libraries
15

. SAM records for each spatial 

spot and gene were grouped by UMI after removal of low-quality mapping reads (mapqv=0) and 

potentially chimeric reads (terminal Soft/Hard-clipping of > 150 nt). A consensus sequence per 

molecule (UMI) was computed depending on the number of available reads for the UMI using the 

ComputeConsensus sicelore-2.0 method. For molecules supported by more than two reads (RN > 2), 

a consensus sequence was computed with SPOA51 using the sequence between the end of the TSO 

(SAM Tag: TE) and the base preceding the polyA sequence (SAM Tag: PE). Quality values for 

consensus nucleotides were assigned as -10*log10(n Reads not conform with consensus nucleotide / 

n Reads total), maximum set to 20. Consensus cDNA sequences were aligned to the Mus musculus 

mm10 build with minimap2 v2.17 in spliced alignment mode. SAM records matching known genes 

were analyzed for matching Gencode vM24 transcript isoforms (same exon makeup). To assign a 

UMI to a Gencode transcript, we required a full match between the UMI and the Gencode transcript 

exon-exon junction layout authorizing a two-base margin of added or lacking sequences at exon 

boundaries, to allow for indels at exon junctions and imprecise mapping by minimap2. Detailed 

statistics of each step of Nanopore read processing are provided in Supplementary Table 1. 

 

Data analysis and count matrices storage 

Raw gene expression matrices generated by Space Ranger were processed using R/Bioconductor 

(version 4.0.2) and the Seurat R package (version 3.9.9). We created Seurat objects for each of the 

three samples (MOB, CBS1 and CB2) with different assays for the analysis as follows: (i) “Spatial” 

containing gene-level raw short read data from the Space Ranger output, (ii) “ISOG” containing the 

gene-level Nanopore long read data, (iii) “ISO” containing isoform-level transcript information where 

only the molecules where all exons are observed are kept, (iv) “JUNC” containing each individual 

exon-exon junction observation per isoform, and (v) “AtoI” containing exonic editing sites from the 

RADAR database (mm9 UCSC liftover to mm10) and from the Licht et al., 2019, study, for which we 
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observed at least one UMI in our dataset. The “AtoI” assay stored non edited UMI count (@counts 

slot), edited UMI count (@data slot), and the editing ratio (@scale.data slot) per editing site. 

 

10xGenomics Visium data-driven annotation of anatomical regions 

The Spatial assay was normalized with SCTransform using standard parameters. The first 30 principal 

components of the assay were used for UMAP representation and clustering (resolution = 0.4). Brain 

regions defined by clustering were assigned to known anatomical regions based on the Allen Mouse 

Brain Atlas. Spot clustering was similar between short and long read data (Supplementary Fig.14). As 

short read data contains more UMIs per spot, our different gene markers representations are based 

on short read data. 

 

Spatial spot deconvolution 

For MOB, spatial spots were deconvoluted using SPOTlight (version 0.1.4) and signature genes 

identified from main Tepe et al., 2018 
27

 WT samples Plp1 expresser cell types (mean normalized 

expression > 1) identified using Seurat FindAllMarkers (logfc.threshold = 0.25, min.pct = 0.1). Cell 

types contributing to at least 8% were selected and SPOTlight deconvolution scores were used for 

correlation computation with Plp1 isoforms expression. The same approach was performed for 

coronal brain section (CBS1 and CBS2) using Zeisel et al., 2018 34 external dataset (mean expression > 

1 UMI/cell). 

 

Differential splicing detection 

Seurat FindMarkers function (logfc.threshold = 0.25, test.use = "wilcox", min.pct = 0.1) was used to 

detect genes showing at least 2 isoforms as markers of different brain regions using the Nanopore 

isoform-level “ISO” assay. Results were filtered for non-majority isoforms, i.e., not the isoform 

showing the highest bulk expression, requiring Bonferonni-adjusted p.value ≤ 0.05. 

 

Coronal brain sections transcriptome correlation 

Images were masked then Aligned using MaskImages and AlignImages STUtility
52

 R package (version 

1.0.0) function before we computed and minimized the physical distance between spots to defined 

pair of spots showing the smallest distance between sections. We then computed the whole 

transcriptome correlation per pair of spots using cor.test function from Stats R package using gene-

level short-read (Spatial assay) and long-read (ISOG assay) UMI count matrices. 

 

Long-read calibration for high-confidence RNA editing call 

To only keep high confidence base calls, the Nanopore data were filtered by exploring the 

percentage of agreement between both sequencing methods as a function of long read number (RN) 

per molecule and Nanopore consensus base quality value (Supplementary Table 7). Long-read 

molecules having a minimum read number of 3 (MINRN=3) and a base quality value at the editing 

position of 6 (MINQV=6) were chosen to be of sufficient quality for editing sites calling using the 

SNPMatrix sicelore-2.0 method.   

 

Editing ratios 

Samples CBS2 and MOB were used for calculating global editing ratios. To test the significance of our 

findings, resampling of capture-spots across the sample were performed. Observed editing ratios 

per spot were kept and each spot was randomly assigned a region-label from the pool of original 
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labels without replacement 10k times. A normal distribution was fitted to the simulated editing 

ratios to calculate the probability of observing a value equal to, or more extreme, than the observed 

value. Region-level individual editing site editing ratio was computed as the total edited molecules 

divided by the total molecules observed at the editing site position within each region.  

 

In situ sequencing validation 

Ten µm cryosections of the olfactory bulb and coronal sections of the left hemisphere were placed 

on SuperFrost Plus microscope slides (ThermoFisher Scientific), stored at -80 °C and shipped on dry 

ice to CARTANA for library preparation, probe hybridization, probe ligation, rolling circle 

amplification, and fluorescence labeling using the HS Library Preparation Kit (P/N 1110) and for the 

in-situ sequencing using the ISS kit (P/N 3110) and sequential imaging using a 20x objective. The 

result table of the spatial coordinates of each molecule of all targets together with the reference 

DAPI image per sample were provided by CARTANA. 

 

Data availability 

All relevant data have been deposited in Gene Expression Omnibus under accession number 

GSE153859 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153859). 

 

Code availability 

All custom software used is available on Github (https://github.com/ucagenomix/sicelore).  R figures 

and analysis scripts are available on Github (https://github.com/ucagenomix/SiT). Seurat object .rds 

files for the three samples are available on demand and interactively browsable in the dedicated SiTx 

R Shiny application accessible at https://www.isomics.eu. 

 

Acknowledgements 

This project was supported by Institut National contre le Cancer (PLBIO2018-156), FRM 

(DEQ20180339158), the Inserm Cross-cutting Scientific Program HuDeCA 2018, the National 

Infrastructure France Génomique (Commissariat aux Grands Investissements, ANR-10-INBS-09-03, 

ANR-10-INBS-09-02), the 3IA@cote d'azur (ANR-19-P3IA-0002), the Swedish Research Council, Swedish 

Foundation for Strategic Research, European Union’s H2020 Research and Innovation Program 

under grant agreement no. 874656 (discovAIR), Conseil départemental 06, Knut and Alice 

Wallenberg Foundation (2018.0172), Erling-Persson Family Foundation (HDCA), and Science for Life 

Laboratory. We would like to thank the National Genomics Infrastructure (NGI) Sweden for providing 

infrastructure support. We thank Ludvig Bergenstråhle and Alma Andersson for advice and helpful 

discussions. 

 

Contributions 

K.T., A.M., R.W. performed the experiments. K.L, J.B. analyzed the data. P.B., R.W. and J.L. 

supervised the research. All authors contributed to the writing of the manuscript. 

 

 

Ethics declarations 
 

Competing Interests 

J.L. and K.T. are scientific consultants to 10xGenomics Inc.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


 

 

References 

 
1. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and 

tissue identity. Nature Reviews Molecular Cell Biology vol. 18 437–451 (2017). 
2. Su, C. H., Dhananjaya, D. & Tarn, W. Y. Alternative splicing in neurogenesis and brain 

development. Frontiers in Molecular Biosciences vol. 5 12 (2018). 
3. Herbrechter, R., Hube, N., Buchholz, R. & Reiner, A. Splicing and editing of ionotropic 

glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell. 

Mol. Life Sci. 2021 7814 78, 5605–5630 (2021). 
4. Lipscombe, D. & Lopez Soto, E. J. Alternative splicing of neuronal genes: new 

mechanisms and new therapies. Current Opinion in Neurobiology vol. 57 26–31 
(2019). 

5. Yang, Y., Okada, S. & Sakurai, M. Adenosine-to-inosine RNA editing in neurological 
development and disease. https://doi.org/10.1080/15476286.2020.1867797 18, 999–
1013 (2021). 

6. Sapiro, A. L. et al. Illuminating spatial A-to-I RNA editing signatures within the 
Drosophila brain. Proc. Natl. Acad. Sci. 116, 2318–2327 (2019). 

7. Costa Cruz, P. H. & Kawahara, Y. Rna editing in neurological and neurodegenerative 
disorders. in Methods in Molecular Biology vol. 2181 309–330 (Humana Press Inc., 
2021). 

8. Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially Resolved Transcriptomes—Next 
Generation Tools for Tissue Exploration. BioEssays 1900221 (2020) 
doi:10.1002/bies.201900221. 

9. Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide 
expression at high spatial resolution. Science (80-. ). 363, 1463–1467 (2019). 

10. Stickels, R. R. et al. Sensitive spatial genome wide expression profiling at cellular 
resolution. doi:10.1101/2020.03.12.989806. 

11. Liu, Y. et al. High-Spatial-Resolution Multi-Omics Atlas Sequencing of Mouse Embryos 
via Deterministic Barcoding in Tissue. SSRN Electron. J. (2019) 
doi:10.2139/ssrn.3466428. 

12. Chen, A. et al. Title: Large field of view-spatially resolved transcriptomics at nanoscale 
resolution Short title: DNA nanoball stereo-sequencing. 
doi:10.1101/2021.01.17.427004. 

13. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution 
using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020). 

14. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in 
thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018). 

15. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error 
corrected Nanopore single cell transcriptome sequencing. Nat. Commun. 11, 1–8 
(2020). 

16. Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables 
the sequencing of highly multiplexed full-length single-cell cDNA. Proc. Natl. Acad. Sci. 

U. S. A. 115, 9726–9731 (2018). 
17. Sakamoto, Y., Sereewattanawoot, S. & Suzuki, A. A new era of long-read sequencing 

for cancer genomics. J. Hum. Genet. 65, 3 (2020). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


18. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data 
analysis. Genome Biol. 2020 211 21, 1–16 (2020). 

19. Mincarelli, L., Uzun, V., Rushworth, S. A., Haerty, W. & Macaulay, I. C. Combined 
single-cell gene and isoform expression analysis in haematopoietic stem and 
progenitor cells. doi:10.1101/2020.04.06.027474. 

20. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas 
of the postnatal mouse brain. Nat. Commun. 12, 1–16 (2021). 

21. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by 
spatial transcriptomics. Science vol. 353 78–82 (2016). 

22. Kneussel, M. & Wagner, W. Myosin motors at neuronal synapses: drivers of 
membrane transport and actin dynamics. Nat. Rev. Neurosci. 14, 233–247 (2013). 

23. Vallee, R. B., Seale, G. E. & Tsai, J.-W. Emerging roles for myosin II and cytoplasmic 
dynein in migrating neurons and growth cones. Trends Cell Biol. 19, 347 (2009). 

24. Chen, P. et al. The expression and functional activities of smooth muscle myosin and 
non-muscle myosin isoforms in rat prostate. J. Cell. Mol. Med. 22, 576–588 (2018). 

25. Nave, K. A. Myelination and support of axonal integrity by glia. Nature vol. 468 244–
252 (2010). 

26. Regis, S., Grossi, S., Corsolini, F., Biancheri, R. & Filocamo, M. PLP1 gene duplication 
causes overexpression and alteration of the PLP/DM20 splicing balance in fibroblasts 
from Pelizaeus-Merzbacher disease patients. Biochim. Biophys. Acta - Mol. Basis Dis. 
1792, 548–554 (2009). 

27. Tepe, B. et al. Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular 
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. Cell 

Rep. 25, 2689-2703.e3 (2018). 
28. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF 

regression to deconvolute spatial transcriptomics spots with single-cell 
transcriptomes. Nucleic Acids Res. 49, e50–e50 (2021). 

29. Sunkin, S. M. et al. Allen Brain Atlas: An integrated spatio-temporal portal for 
exploring the central nervous system. Nucleic Acids Res. 41, D996 (2013). 

30. Irfan, M. et al. SNAP-25 isoforms differentially regulate synaptic transmission and 
long-term synaptic plasticity at central synapses. Sci. Reports 2019 91 9, 1–14 (2019). 

31. Bark, C. I., Hahn, K. M., Ryabinin, A. E. & Wilson, M. C. Differential expression of 
SNAP-25 protein isoforms during divergent vesicle fusion events of neural 
development. Proc. Natl. Acad. Sci. U. S. A. 92, 1510–1514 (1995). 

32. Zhang, B. & Zelhof, A. C. Amphiphysins: Raising the BAR for synaptic vesicle recycling 
and membrane dynamics. Traffic vol. 3 452–460 (2002). 

33. Chapuis, J. et al. Increased expression of BIN1 mediates Alzheimer genetic risk by 
modulating tau pathology. Mol. Psychiatry 18, 1225–1234 (2013). 

34. Zeisel, A. et al. Molecular Architecture of the Mouse Nervous System. Cell 174, 999-
1014.e22 (2018). 

35. De Rossi, P. et al. Predominant expression of Alzheimer’s disease-associated BIN1 in 
mature oligodendrocytes and localization to white matter tracts. Mol. Neurodegener. 
11, (2016). 

36. Bastepe, M. The GNAS Locus: Quintessential Complex Gene Encoding Gs&#945;, 
XL&#945;s, and other Imprinted Transcripts. Curr. Genomics 8, 398–414 (2008). 

37. Turan, S. & Bastepe, M. GNAS Spectrum of Disorders. Current Osteoporosis Reports 
vol. 13 146–158 (2015). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


38. Behm, M. & Öhman, M. RNA Editing: A Contributor to Neuronal Dynamics in the 
Mammalian Brain. Trends in Genetics vol. 32 165–175 (2016). 

39. Licht, K. et al. A high resolution A-to-I editing map in the mouse identifies editing 
events controlled by pre-mRNA splicing. Genome Res. 29, 1453–1463 (2019). 

40. Lundin, E. et al. Spatiotemporal mapping of RNA editing in the developing mouse 
brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC 

Biol. 18, 1–15 (2020). 
41. Ramaswami, G. & Li, J. B. RADAR: A rigorously annotated database of A-to-I RNA 

editing. Nucleic Acids Res. 42, D109 (2014). 
42. Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of 

neurodevelopmental disorders. Nat. Commun. 2019 101 10, 1–16 (2019). 
43. Chew, L. J. et al. Characterization of the Rat GRIK5 Kainate Receptor Subunit Gene 

Promoter and Its Intragenic Regions Involved in Neural Cell Specificity. J. Biol. Chem. 
276, 42162–42171 (2001). 

44. Wu, D. et al. Distant coupling between RNA editing and alternative splicing of the 
osmosensitive cation channel Tmem63b. J. Biol. Chem. 295, 18199 (2020). 

45. Schulz, R. et al. Transcript- and tissue-specific imprinting of a tumour suppressor 
gene. Hum. Mol. Genet. 18, 118 (2009). 

46. Pachernegg, S., Münster, Y., Muth-Köhne, E., Fuhrmann, G. & Hollmann, M. GluA2 is 
rapidly edited at the Q/R site during neural differentiation in vitro. Front. Cell. 

Neurosci. 9, 69 (2015). 
47. Wen, W., Lin, C.-Y. & Niu, L. R/G editing in GluA2Rflop modulates the functional 

difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. 
Sci. Reports 2017 71 7, 1–15 (2017). 

48. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution 
with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021). 

49. Y, L. et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic 
Barcoding in Tissue. Cell 183, 1665-1681.e18 (2020). 

50. Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, (2020). 
51. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome 

assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017). 
52. Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and 

molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, (2020). 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


Full-length cDNA

Fragmentation 
and 3’ library 
preparation

Full-length 
library  

preparation

Spatial BC

28bp 91bp

Illumina sequencing

Nanopore sequencing

Gene/Spatial BC/UMI association

Spatial BC/UMI
assignment of

Nanopore reads Expression

Tissue preparation, imaging  and 
generation of spatially barcoded cDNA

a

50 200100 150 250 3000

4

8

12

16

100

75

50

25

00

0

2

4

6

1

3

5

720

Reads (millions) Normalized distance along transcript (5p->3p)

b

d

e

Regions
Midbrain
Hippocampus area
Isocortex−1
Isocortex−2
Olfactory area
Fiber tracts
Retrosplenial area
CA1/CA2
Thalamus
Hypothalamus
CA3
DG

Differential Isoform-level

Gene-level data-driven annotation

%
 a

ss
ig

nm
en

t
R

ea
d 

nu
m

be
r

pe
r U

M
I (

R
N

)

c

PolyA SpatialBC UMI

MOB CBS1 CBS2

U
M

Is
 (m

illi
on

s)

20 40 60 80 1000

N
orm

alized coverageN
or

m
al

iz
ed

 c
ov

er
ag

e

0.0 0.0

0.2 0.5

1.00.4

0.6

0.8

1.0

1.2

1.5

2.0

2.5

Illumina

Nanopore
MOB
CBS1
CBS2

CBS2

MOB
CBS1
CBS2

Nanopore

87.2%

51.6%

62.8%

66.8%
83.1%

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


Regions

Granule Cell Layer (GCL+RMS)

Mitral Cell Layer (MCL)

Outer plexiform Layer (EPL)

Glomerular Layer (GL)

Olfactory Nerve Layer (ONL)

136.830MbchrX 136.825Mb 136.835Mb

>protein coding

>protein coding

e f

Astro1
Astro2
Astro3
EC1
EC2
Mes1
Mes2
MicroG1
MicroG2
MicroG3
Mono
Mural1
Mural2
MyOligo
Mα
N1
N10
N11
N12

N13
N14
N15
N16
N2
N3
N4
N5
N6
N7
N8
N9
OEC1
OEC2
OEC3
OEC4
OEC5
OPC
RBCs

0 1 2 3

Plp1 average
expression

Plp1 percent
expressed

25 50 75 100

UMAP_1

U
M

AP
_2

-10

10

10

5

50

0

-5

-5

-10

N2
OEC MyOligo

OPC

ISS probe 201

ISS probe 202

Nrgn Meis
2
Mbp Slc3

2a
1

Bin1Spp
1
Ntng

1
Shis

a3

Slc1
7a

7

Scn
1b
Cno

t3
Bc1 Slc1

a2

Ta
tdn

1

Lrr
c1

7
Nrsn

1
Th Vsn

l1
Shis

a9

Eom
es

Cldn
5
MgpApo

d
Apo

e
Fa

bp
7

-1

-0.5

0

0.5

1

1.5

Plp1-201
Plp1-202

ISS 

Avg. scaled expr.

d

b

a

Plp1-201

Plp1-202

Plp1-201

N
or

m
al

iz
ed

 c
ou

nt
s

1

2

3

Plp1-202
0

c
SiT 

Plp1-201
Plp1-202

MyOligo N2 OEC1 OEC2 OEC3 OEC4 OEC5 OPC

0.4

0.2

0.0

co
rre

la
tio

n

Cell types

Plp1-201
Plp1-202

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


a
Regions

Midbrain
Hippocampus area
Isocortex−1
Isocortex−2
Olfactory area
Fiber tracts
Retrosplenial area
CA1/CA2
Thalamus
Hypothalamus
CA3
DG

90
53

36
97

20
13

11
17 51

8

24
4

13
9

50 24 44

87
58

34
86

18
95

96
2 51

2

23
8

10
9

60 22 400

2500

5000

7500

1 2 3 4 5 6 7 8 9 >=10
Detected Isoforms

N
um

be
r o

f g
en

es

CBS1
CBS2

Is
of

or
m

s 
nu

m
be

r p
er

 g
en

e

1.10

1.15

Illumina
gene-level

Sp
ot

−t
o−

sp
ot

 w
ho

le
 

tra
ns

cr
ip

to
m

e 
co

rre
la

tio
n

b

Nanopore
gene-level

0

0.25

0.50

0.75

1 r = 0.98 r = 0.93c d

1.00

1.05

Midb
rai

n

Hipp
oc

am
pu

s a
rea

Iso
co

rte
x−

1

Iso
co

rte
x−

2

Olfa
cto

ry 
are

a

Fib
er 

tra
cts

Retr
os

ple
nia

l a
rea

CA1/C
A2

Th
ala

mus

Hyp
oth

ala
mus CA3

DG

M
edian transcript length (kb)

1

2

3

CBS1 CBS2

CBS1
CBS2e

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


Hypothalamus

d

136.71Mb 136.72Mb 136.73Mb 136.74Mb 136.75Mb 136.76Mb 136.77Mb 136.78Mb

Midbrain

2,543 UMIs

53 UMIs

255 UMIs

Snap25-201 (b)
Snap25-202 (a)

Sn
ap

25
-2

01
Sn

ap
25

-2
02

CBS1

139 UMIs

c

Snap25

a b

ISS 

ISS probe 202

ISS probe 201

Midb
rai

n

Hipp
oc

am
pu

s a
rea

Iso
co

rte
x−
1

Iso
co

rte
x−
2

Olfa
cto

ry 
are

a

Fibe
r tr

ac
ts

Retr
os

ple
nia

l a
rea

CA1/C
A2

Tha
lam

us

Hyp
oth

ala
mus

CA3
DG

0

1

2

Gnas

Bin1

Caly

Dtnbp1

Cnih2

Nanopore
gene-level

−1

0

1
2 Nanopore

isoform-level

Percent
Expressed

0
25
50
75
100

202
201

201
202

206
208
221

205
201

203
204

206
201

203
201

Snap25

Aldoa

−1

−1
0

1
2

Average
Expression

Bin1

Cnih2
Gnas

Caly
Dtnbp1
Aldoa

chr18

CBS2

Illumina
gene-level

> protein coding

> protein coding

Midbrain

Hippocampus area

Isocortex−1

Isocortex−2

Olfactory area

Fiber tracts

Retrosplenial area

CA1/CA2

Thalamus

Hypothalamus

CA3

DG

0 10% 20% 30%

Snap25-202 contribution 
to Snap25 expression

# of isoform
switching genes

10 20 30

Hippocampus area

Isocortex−1

Isocortex−2

Olfactory area

Fiber tracts

Retrosplenial area

CA1/CA2

Thalamus

Hypothalamus

CA3

DG

Midbrain

CBS2CBS1

0
1

2

3

ISS 

N
or

m
al

iz
ed

 c
ou

nt
s

e

Snap25-201

Snap25-202

SiT Regions

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/


a

e

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

Ed
iti

ng
 ra

tio

Adar

Ca3 Dg Fiber tracts

Hammons horn

Hippocampus

Hypothalamus

Isocortex−1

Isocortex−2

Isocortex−3

Midbrain

Olfactory area

Thalamus

Adar

Adarb1

Adarb2

−2

−1

0

1

2

3

Ca3 Dg Fiber tracts

Hammons horn

Hippocampus

Hypothalamus

Isocortex−1

Isocortex−2

Isocortex−3

Midbrain

Olfactory area

Thalamus

Adar

Adarb1

Adarb2

−2

−1

0

1

2

3

Adarb1
Adarb2

CA3

DG

Fiber tracts

CA1/CA2

Hippocampus area

Hypothalamus

Isocortex-1

Isocortex-2

Retrosplenial area

Midbrain

Olfactory area

Thalamus

Hypothalamus

Isocortex−1

Isocortex−2

Isocortex−3

Midbrain

Olfactory area

Thalamus

A
d

a
r

A
d

a
r
b

1

A
d

a
r
b

2

−
2

−
1

0 1 2 3

Hypothalamus

Isocortex−1

Isocortex−2

Isocortex−3

Midbrain

Olfactory area

Thalamus

A
d

a
r

A
d

a
r
b

1

A
d

a
r
b

2

−
2

−
1

0 1 2 3

3-2
Centered exp. in log-space

26,374
edited

(G)

377,304

249,759

0

100000

200000

300000

To
ta

l n
um

be
r

UMIs

Filtered

223,385
non

edited
(A)

c

d

Editing ratio

1

10

100

1,000

10,000

1 10 100 1,000 10,000

Long reads (UMIs)

Sh
or

t r
ea

ds
 (U

M
Is

)

Transcript 3’end
distance (nt.)

0−500

1000−2000
2000+

500−1000

251,556

b

Gria2 R/G
Gria2 Q/R

Grik5 Q/R
Blcap Y/C

Tmem63b Q/R

0.00

0.50

1.00

Blcap Y/CGrik5 Q/R Tmem63b Q/R

0.25

0.75

Editing
ratio

88,175

Observations

70,225

Observations

3,093

1,284

2,730

editing sites

Covered

Long reads
Short reads

Gria2 R/G Gria2 Q/R

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2020.08.24.252296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.252296
http://creativecommons.org/licenses/by/4.0/

