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Abstract

Despite decades of substantial research, cancer remains a ubiquitous scourge in the
industrialized world. Effective treatments require a thorough understanding of
macroscopic cancerous tumor growth out of individual cells. Clinical imaging methods,
however, only detect late-stage macroscopic tumors, while many quantitative
experiments focus on small clusters of cancerous cells in microscopic detail but struggle
to grow full tumors in-vitro. Here, we introduce the critical scale-bridging link between
both these scopes. We are able to simulate the growth of mm-sized tumors composed of
1.5 million µm-resolved individual cells by employing highly parallelized code on a
supercomputer. We observe the competition for resources and space, which can lead to
hypoxic or necrotic tissue regions. Cellular mutations and tumor stem cells can lead to
tissue heterogeneity and change tumor properties. We probe the effects of different
chemotherapy and radiotherapy treatments and observe selective pressure. This
improved theoretical understanding of cancer growth as emerging behavior from
single-cells opens new avenues for various scientific fields, ranging from developing
better early-stage cancer detection devices to testing treatment regimes in-silico for
personalized medicine.

Author summary

Experimental and microscopy techniques are rapidly advancing biology and the 1

observability of tissue. The theoretical understanding of tissue either focuses on a few 2

cells or continuous tissue. Here we introduce the scale-bridging theoretical link that is 3

able to model single cells as well as tissue consisting of millions of those cells, harvesting 4

the power of modern supercomputers. We close the gap between single-cells and tissue 5

through access to the full time-resolved trajectories of each cell and the emerging 6

behavior of the tissue. We apply our framework on a generalized model for tumor 7

growth. Tumor heterogeneity, as well as tumor stem cells are introduced, and the 8

changes of behavior in response to cancer treatments is observed and validated. 9
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1 Introduction 10

”The global cancer burden is estimated to have risen to 18.1 million new cases and 11

9.6 million deaths in 2018. One [..] in 8 men and one in 11 women die from the 12

disease” [1]. Despite this ubiquity, cancer treatment is challenging as it is a highly 13

specific disease whose progression severely depends on the affected organ, cause, and 14

host. Tumor progression is based on many complex effects acting concurrently to 15

facilitate the uncontrolled growth of some cells. Cell-internal processes, e.g. mutations 16

up-regulating cell division or chemotherapeutic resistance, have a significant impact on 17

the size, shape, and heterogeneity of the final tumor and strongly affect treatment 18

response [2] and drug resistance [3]. Unfortunately, while such microscopic properties 19

are of high importance, they are clinically poorly accessible. Hence treatment protocol 20

and prognosis are inferred based on accessible macroscopic properties such as patient 21

condition, tumor size as visible in MRI scans and biopsies. Bridging the scales between 22

experimental single-cell findings and clinical data would significantly improve the 23

understanding of cancer as an emerging property of its cellular composition [4]. This 24

link would allow us to optimize chemo- or radiotherapeutic treatments. Ideally, 25

personalized treatment strategies could be optimized by comparing the outcome of 26

different treatment regimes. 27

One option for predicting tumor growth is leveraging the exponentially increasing 28

computing capabilities of modern supercomputers. A crucial ingredient is the simulation 29

parametrization, which is fueled by new microscopy techniques, and genomic tools that 30

have made immense progress in the observation of cells, tissue, and the temporal 31

evolution of those [5–7] as well as gene expression and mutations [8]. This already has 32

driven modeling of tissue development and dynamics in the related fields of 33

embryogenesis [9, 10], morphogenesis, tissue dynamics, homeostasis simulations [11–18], 34

and tumor growth [19–24] simulations. These and other tissue modeling approaches 35

paint an increasingly detailed picture, enabling predictive simulations that can be 36

verified by experiments and vice versa for a large variety of biological 37

phenomena [25,26]. Still, the scope of prior cancer simulations is either the detailed 38

description of individual cells or large numbers of cells as point-like agents or a 39

coarse-grained description of tissue [27]. Nevertheless, both ends of the resolution range 40

are necessary to map the complexity of tumor development, since both the individual 41

cell as well as the macroscopic environment play a crucial role. 42

Here, we simulate the growth of a tumor inside a vascularized homogeneous tissue. 43

Our cancer simulation considers competing single-cell effects leading to emerging tissue 44

scale behavior. We introduce a computational microscope that enables access to time 45

resolved trajectories of all included cellular properties, going beyond what is accessible 46

in wet-lab experiments. We see that highly proliferative cells in a surrounding tissue 47

form tumors of distinct shapes. The introduction of a nutrition dependent cell cycle 48

leads to hypoxic and necrotic regions but also requires sub-cellular resolution to treat 49

nutrient flow and other surface-based cell-to-cell interactions realistically. Tumor 50

heterogeneity is incorporated by the mutation of cells into predefined cell-types 51

reflecting driver mutations. Applying different treatment protocols of chemo- and 52

radiotherapy with invariable doses leads to drastically different treatment outcomes and 53

allows for a systematic scan of their effectiveness. Tumor stem cells (TSCs) [28] impact 54

tumor heterogeneity development as well as treatment outcome in our model and can 55

recover tumors after seemingly successful treatment. To handle the computational 56

complexity of our model, we took advantage of modern supercomputer architectures 57

and developed a new, highly parallelized software framework from scratch. Thus, we 58

can model tissues up to a clinically relevant size of mm3 composed over a million 59

individual geometry-resolved cells over time-scales up to a year at a temporal resolution 60

of a minute. 61
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Fig 1. High-resolution Tumor Simulation: a) 1 mm3 tissue simulation with
1µm resolution of single cells. Blood vessels (dark red) distribute nutrients (blue, white
and red on sheet in background representing low, medium and high concentrations) that
facilitate cell divisions and tumor expansion. Heterogeneous tumor growth (colors
represent different cell types) results as an emergent behavior of nutrient dependant
cell-division and -death as well as mutations. The inlays show growth of cell types over
time (left), a zoom-in on the tumor surface highlights the µm resolution. b) The
color-coding of the majorly contributing cell types, each color indicates one cell type
with its individual parameter-set, colors are used for the remainder of the figures (for all
cell-types see SI:Figure 8).
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Model Description 62

Naturally, one has to balance model abstraction with its complexity, parameter 63

availability, and computational costs. Here, we choose to focus to explicitly model cell 64

geometry of both cancerous and regular tissue, mutations and cancer heterogeneity, 65

nutrient availability from blood vessels (but no angiogenesis) and treatment and 66

resistance development to both chemo- and radiotherapy in context of the host 67

environment. More specific, our spatiotemporal multi-scale model describes the 68

collective behavior of O(1 Mio) individual cells to simulate a macroscopic tissue of 69

O(1 mm3)(= 1 0003 voxel, cf. Figure 1 and SI:Movie1 and SI:Movie4). The model 70

consists of three layers. The lowest layer is a microscale 3D cellular Potts model (CPM) 71

layer which models the cells on a grid [14,29–31]. The CPM is based on a Hamiltonian 72

with local interactions. Modeling of cell-cell adhesion proportional to the cell interfacial 73

surface, nutrient transport, and cell-to-cell signaling properties are explicitly dependent 74

on the shape and surface of each cell, with each cell occupying around 103 voxel 75

corresponding to 1 000µm3. The CPM defines the mechanical properties of the cells, 76

such as compressibility, volume constraints, and adhesive forces. The Hamiltonian 77

energy function reads 78

HCPM =
∑
i∈Ω

∑
j∈N(i)

Jτ(ςi),τ(ςj)(1− δ(ςi, ςj))︸ ︷︷ ︸
Cell-to-cell adhesion

+ λv

∑
i∈Ω

(v(ςi)− V (τ(ςi)))
2

︸ ︷︷ ︸
Cell volumes

+λs

∑
i∈Ω

(s(ςi)− S(τ(ςi)))
2

︸ ︷︷ ︸
Cell surfaces

(1)

where Ω is the whole domain, and N(i) are the neighbors of voxel i. Further, ςi is the 79

corresponding cell at voxel i of type τ and ςj is the corresponding cell at the neighboring 80

voxel. The surface s of cells is calculated by a marching cubes algorithm, allowing an 81

isotropic expansion in all directions. The energy function is implemented in a modular 82

fashion allowing the addition of arbitrary additional energy terms e.g. for cell motility. 83

Periodic boundary conditions reflect the behavior of an extended macroscopic tissue.
The intermediate layer is a mesoscale surface layer, in which the diffusion of signaling
compounds, nutrition, and chemotherapeutic drugs is realized by flux through the cell
membrane to the adjoining neighbors of a cell. The transport is dependent on the local

concentrations of each cell as well as a diffusion coefficient D. The flux J
(%)
i,j for a signal

% is defined by

J
(%)
i,j =

(
Si,j
Si

+
Si,j
Sj

)
Dτ(i),τ(j)(σ

(%)
j − σ

(%)
i ), (2)

where Si is the surface from cell i and σi is the signal value in cell i and Sj , σj from cell 84

j, respectively. This is the arithmetic mean of the two surface fractions with respect to 85

the common surface. The flux Ji,j is subtracted from the signal of one cell and added to 86

the other. Here, we distinguish between cells and fixed signal suppliers, such as blood 87

vessels. For fixed signal supplier, the signal content is kept constant, i.e., the flux is 88

neither subtracted nor added for those cells. 89

The top layer is a macroscale agent-based model that handles cell phenotype 90

parametrization, cell internal signal processing, cell division, cell death, and mutations 91

of cells. The cell type defines the parametrization of a cell, the subset of tumor cell 92

types originates from the initial tumor type. Only a single parameter is changed for 93

each tumor cell type. The surrounding tissue is initialized as a non-dividing and 94

non-dying population. Cell division and cell death depend on the cell age, nutrient 95
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availability, cytostatic drug concentration, as well as division and death rates. Once cell 96

death is induced, the cell is dying with its volume over time gradually lowered to zero. 97

Mutations are possible events accompanying cell division, assigning a new phenotype to 98

one of the daughter cells. Similarly, tumor stem cells (TCS) are implemented as cells 99

with a slow cell cycle. Both mutations and TCS lead to tumor heterogeneity and affect 100

treatment response and tumor progression and rejuvenation. Chemotherapy is 101

implemented as a diffusive drug that suppresses cell division and is distributed via 102

blood vessels. Radiotherapy introduces immediate cell death of a fraction of cells and 103

globally reduces division rates proportionally to accumulated radiation exposure. The 104

model parameters are largely based on experimental measurements (cf. SI:Table 2,3). It 105

is possible to simulate arbitrary large simulation boxes with computational costs scaling 106

with O(L3) with L measuring the box edge length. Most simulations use a cubic box 107

with edge length of 320µm, with selected simulations using a box edge length of 108

1 000µm. A novel computational framework, Cells In Silico, handles the distribution of 109

computing load resulting in super-linear speedup on large CPU-core numbers (O(105)) 110

on supercomputers. 111

For a detailed model, parameter, and framework description see SI:1 Methods. The 112

published open source package of Cells In Silico in the NASTjA framework can be 113

found at https://gitlab.com/nastja/nastja. 114
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Fig 2. Buildup of the Model: a) 2D slices of tumor simulation with a rectangular
blood vessel grid. Left to right: Coloring by cell types (Types see Figure 1), coloring by
averaged cell velocities (black line indicates tumor outline), coloring by nutrient
availability b) Cellular velocity in dependance of distance to tumor front, negative
values are inside tumor. c) Dependence of the tumor growth rates on metabolism
parameters. Parameter variations in the decay of nutrients and diffusion constant in the
tissue and tumor change the growth rates of the tumors. The shaded area indicates the
volume of dying cells. d) Tumor heterogeneity through mutation after cell division. A
variation of the mutation rate results in different tumor compositions. The simulation
on the left has medium, in the center a high mutation rate. On the right, the blood
vessel configuration was changed for medium mutation rates. Colouring as in Figure 1.

Results 115

Homogeneous Tumor Growth 116

Simulations of a small initial cluster of 35 cancerous non-mutating cells with high 117

proliferative potential are carried out in a medium of surrounding tissue over a 118

simulated time of one year at a one-minute time step (cf. SI:1 Methods, for simulation 119

details). Over this time period, one can observe homogeneous tumor growth (i.e., 120

composed of a single cell type) into the surrounding tissue. Nutrients represent a 121

growth-limiting factor distributed by the blood vessels that could represent oxygen and 122

or glucose. To better control the effects of nutrients, we distribute in a simulation box 123

with an edge length of 320µm blood vessels in a rectangular grid surrounding the initial 124

tumor cells (cf. Figure 2 a)). In the simulations, the nutrients diffuse from blood vessels 125

through the tissue, with each cell degrading the local nutrition concentration (cf. 126

Figure 2 a) right). A gradient of nutrient concentration develops originating from the 127

blood vessels (see SI:Movie2). 128

March 20, 2020 6/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264150doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264150
http://creativecommons.org/licenses/by-nc-nd/4.0/


As time progresses, the tumor invades the surrounding tissue. The tumor reaches a 129

finite size once the simulated volume is entirely filled by cells. Growth becomes limited 130

by compressibility, reaching a steady-state of proliferation and cell death. Tumor cells 131

deplete nutrients at a higher rate leading to the formation of experimentally known 132

intermediate states such as invasive fingers and hypoxic or even necrotic areas in the 133

center of the tumor. 134

An up-regulated metabolism in tumor cells leads to a significantly decreased growth 135

rate, while a down-regulated metabolism leads to faster growth of the tumor (cf. 136

Figure 2 c)). Our analysis of cell velocities and cell displacement shows highly mobile or 137

dynamic tumor cells at the boundary of the tumor. In contrast, the cell movements 138

within the tumor and in the surrounding tissue, are much lower (cf. Figure 2 b)). Cell 139

density and velocity have been associated with tumor invasion as well as jamming and 140

unjamming transitions within a tumor [32]. 141

Heterogeneity 142

Primary tumors develop over long periods, and tumor internal heterogeneity arises from 143

cells mutating during cell division. The limited inflow of nutrients leads to a 144

competition of the cell phenotypes, and the partition into subpopulations indicates the 145

fitness of the individual cell types. 146

We measure heterogeneity as: 147

h := 1− #T

2(#T − 1)

∑
t∈T

∣∣∣∣#At#C
− 1

#T

∣∣∣∣ ,
with At = {c ∈ C | σ(c) = t}

(3)

T are all cell types C are all cells At are number of cells of type t, # denotes 148

number. We run a set of simulations with different mutation rates and equal transition 149

rates between the predefined tumor cell phenotypes. As visible in Figure 2 d), the final 150

heterogeneity of a tumor strongly depends on the mutation rate. At low (every 200th 151

division) and medium (every 20th division) mutation rates around day 70, the initial 152

tumor cells dominate the tumor mass but get outcompeted with time as the total size of 153

the tumor is stunted by lack of compressible surrounding tissue. At low mutation rates, 154

cell types with a higher division rate and a delayed cell death, begin to dominate the 155

tumor after day 70. Medium mutation rates lead to similar yet accelerated qualitative 156

behavior. To observe the influence of the local environment, we increase the blood 157

vessel density in the simulation leads to a more rapid preeminence of fast-dividing cells. 158

Probing Treatment Regimes 159

Models to optimize chemotherapy dosage have been implemented and convincingly used 160

as early as the 70s [33, 34]. Figure 3 a) depicts the response of simulated heterogeneous 161

tumors to different conventional treatment schemes. We assume detection and onset of 162

treatment of the tumor at day 110 until day 220. The drop in the total tumor size 163

post-treatment until the final size at day 330 strongly depends on the treatment 164

protocol. For different treatment protocols, the total dose of a therapeutic agent stays 165

constant. It is redistributed into shorter peaks with higher concentrations and within 166

the same time frame between days 110 to 220. 167

Shorter pulses of chemotherapy show a greater effect than a uniform application, 168

whereas a single strong radiotherapy pulse reduces the tumor size more drastically than 169

multiple weaker pulses. Multiple pulses of radiation and chemotherapy shift the tumor 170

composition towards a more homogeneous tumor by a cumulative adaptation through 171

advantageous cell types surviving. This coincides with studies, which identify tumor 172
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Fig 3. Treatment Response: a) Tissue size and composition response to different
treatment regimes of constant accumulated doses of chemo- and radiotherapy.
Colouring as in Figure 1. The treatment protocol of chemo- (blue) and radiotherapy
(red) are depicted below the growth curve. b) Integrated tumor size (bubble size)
post-treatment and tumor heterogeneity (bubble color).

heterogeneity as a driving force in treatment resistance [35]. Somewhat surprisingly, cell 173

types with increased resistance to chemo- or radiotherapy are less favored than 174

fast-dividing cells in the relapse post-treatment. Combinations of therapies using chemo 175

and radiotherapy show a more significant effect on the tumor as one of the methods 176

alone since the growth-inhibiting effect is two-fold. As clearly visible in Figure 3 b), 177

treatment effectivity increases when going from one to four pulses of chemotherapy but 178

then drastically decreases for eight pulses. For radiotherapy, the effect on the tumor 179

also increases when dividing the dose into smaller pulses. 180

Thus, we can probe treatment regimes for a given tumor. We can systematically 181

probe the treatment effects of different treatment regimes and combinations and judge 182

effectivity based on tumor properties. 183

Tumor Stem Cells 184

Tumor stem cells (TSC) are specialized cells within a tumor which through asymmetric 185

cell divisions and a slower cell cycle, produce cancerous cells [28] and contribute to 186

tumor rejuvenation as well as treatment resistance [36]. 187

In our model, TSCs do not significantly change tumor size, growth rates, and final 188

composition on unrestricted growth (see Figure 4 e)). The subpopulation of TSCs grows 189

at a longer time scale due to a slower cell cycle (see Figure 4 e)) and are localized in 190

small clusters but evenly distributed around the tumor (see Figure 4 d and SI:Movie3)). 191

The immediate treatment response is seemingly unchanged. Where subsequent 192

chemotherapy in the heterogeneous tumor was able to suppress regrowth, TSCs can 193

facilitate a subpopulation of cells to remain as a reservoir and trigger regrowth. TSCs 194

lead to an increase in heterogeneity and boost the subpopulations of cell types that were 195

suppressed. Figure 4 a) shows that TSCs can impact the final treatment outcome 196

negatively by increasing tumor size as well as heterogeneity, especially in cases where 197

treatment was successful in tumors without TSCs, see Figure 3 b). 198

In the heatmap in Figure 4 c), the type of a cell is compared to the types of its 199

nearest neighbors. Diagonal elements are the major contributions, representing coherent 200

clusters of cells of the same type. We find that TSCs lead to smaller cell clusters and a 201

stronger mixing of cell types throughout the tumor, visible by increased off-diagonal 202

elements. This is consistent with biologically observed behavior since tumors can regrow 203

from a small number of remaining cells that are below the detection limit. [37] 204
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Fig 4. Tumor Stem Cells: a) Effect on final tumor size after treatment and tumor
heterogeneity, errors as in Figure 3. b) The final tumor size of different treatment
schemes (y-) and different simulation runs (x-axis) shows the stability of the simulation
outcome. Colouring by tumor size at t = 325 days. c) Heatmap of the frequency of local
neighborhood of cell types without (left) and with (right) TSCs. d) Localization of the
tumor stem (in green) cells at t = 73 days (left) and t = 292 days (right), integrated over
the entire volume. e) Response to different treatment schemes of chemo- and
radiotherapy (Note regrowth bottom right). Colouring as in Figure 1.

Stability 205

In order to provide predictions for the temporal development of tissue in vitro and in 206

silico for clinical applications, knowledge about the statistics and robustness of the 207

system development is essential. Variability in the simulation outcome is visible when 208

running the same simulation with different random seeds. This reveals an impact of 209

random and rare events on the macroscopic tumor development. The deviation in 210

tumor size as well as heterogeneity in Figure 3 b) and 4 a) is neglectable, where the 211

treatment weakly impacts the tumor size. Whereas for treatment schemes that 212

drastically reduce the tumor size, the local surrounding and rare events have a more 213

significant impact and lead to greater variability in the subsequent development. 214

Figure 4 b) depicts the stochasticity of the final tumor volume after different treatment 215

protocols and show increased variability in treatment schemes. In some cases, rare 216

events can toggle between disappearance or relapse of the tumor post-treatment. TSCs 217

lead to both less effective and more varying treatment outcomes. 218
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2 Discussion 219

Our model highlights the possibilities of simulating emerging macroscopic tumor 220

development resulting from microscopically explicitly shape-represented single cells. The 221

high computing and data handling complexity can be mitigated via current-day 222

supercomputing capabilities. The model makes it possible to test arbitrary ’what-if’ 223

scenarios, unrestricted by experimental constraint, with direct control over all 224

parameters of each individual cell. In our virtual tumors, we observe adhesion driven 225

cell movements and nutrition-dependent heterogeneous tumor growth. We can show 226

that different treatment plans strongly influence the final tumor cell type composition. 227

We model cancer therapeutic agents in our system and show agreement with 228

experimentally measured behaviors, reflecting growth curves [38] cf. SI:Table 3. Each 229

simulation results in a fully spatio-temporally resolved trajectory, which allows tracing 230

even single-cell events. Tumor stem cells introduce a source of treatment resistivity and 231

are capable of facilitating a relapse of the tumor after seemingly successful treatment. 232

Fundamental differences in the treatment response between tumors with and without 233

TSCs were highlighted in this work, such as elevated intra-tumor heterogeneity and 234

mixing. The stemness of a tumor has been experimentally associated with enhanced 235

heterogeneity and treatment resistance [39,40]. 236

We observe that the tumor invasion is mostly driven close to the surface of the 237

tumor and can investigate the changing tumor composition over time. In some 238

simulation regimes, rare events influence not only details of the individual simulation 239

but can influence the macroscopic , such as the resurgence of tumors post-treatment. 240

This improved theoretical understanding of cancer growth as emerging behavior opens 241

new research avenues. One could envision application in improved early-stage cancer 242

detection by characterizing detectible early growth pathways. Once parameter sets for 243

specific cancer types have been developed, such simulations could revolutionize clinical 244

treatment via optimized, personalized medicine regimes in-silico. 245
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Supporting information 246

3 Methods 247

The model of Cells In Silico is composed of three different layers. Figure 5 depicts an 248

overview of the layers and model parts that are acting on them. 249

Fig 5. The schematic shows an overview of the simulation layers and actions of the
agent-based model used in Cells in Silico.

Each layer represents a different length scale. Our model is based on a cellular Potts 250

model acting on the microscopic layer, see Section 3.2. We add a general transport 251

mechanism to our model. The diffusion of signals such as nutrients and drugs through 252

the simulated area is modeled on the mesoscopic layer, which is described in Section 3.3. 253

An agent-based model controls cellular events such as cell-divisions and cell deaths; this 254

macroscopic layer is explained in Section 3.4. The parallel version of our model is 255

implemented using the massively parallel NAStJA framework [41]. Besides, 256

synchronization steps ensure a consistent state of the entire domain; these are the halo 257

exchange as well as the local exchange of global cell properties is described in Ref. [42]. 258

3.1 Parallelization 259

The simulation area is discretized by a three-dimensional field containing a regular 260

rectangular grid of voxels with a size of 1µm. Each voxel contains an integer value that 261

denotes the cell ID. Voxels that have the same cell ID belong to an individual biological 262

cell. The cellular Potts model (microscale) is acting on this data. 263

The whole domain is decomposed into small blocks, and these blocks are distributed 264

to the different MPI (Message Parsing Interface) ranks, see Figure 6. The field in each 265

block is enlarged by a halo layer, which overlaps with the fields of the neighboring 266

blocks by one layer. This halo layer is updated for each block in every time-step to 267

ensure consistency over the entire field. Besides the grid containing the cell IDs, each 268

block holds global properties of all cells that are at least partially inside in the block, 269

such as the cells volume V , surface S, see Figure 5. 270

In each time-step, a sequence of actions is executed independently on each MPI rank, 271

see Figure 7. Actions that iterate over the field, such as the CPM propagation are 272
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Fig 6. The domain is decomposed and distributed to MPI ranks. So each rank holds
one block. Each block contains a field with the cell IDs and additional cell data. A field
is a three-dimensional array on which the actions are performed.

Initialization

Time loop

Sweep CPM

Sweep di�usion

Halo exchange

Division

Signaling

Aditional data exchange

Write output data

Fig 7. The actions in one time loop are structures in modules. Additional modules can
be added depending on the simulated system.

called sweeps. Divisions and mutations are actions that are called every time step. After 273

all sweeps and actions, the synchronization steps such as the halo and data exchange, as 274

well as IO actions, are executed. 275

Through a modular structure and parallelization of all sub-modules of the 276

simulations we achieve excellent scaling behaviors up to a large number of cores 8. 277

3.2 Microscale: Cellular Potts Model and Hamiltonian 278

The cellular Potts model was introduced by Glazier and Graner 1992 to simulate 279

adhesion driven cell sorting [43]. 280

It is based on a Potts model that describes integer spin states on a regular lattice, in 281

both two and three dimensions. The temporal propagation of the system is performed 282

by Monte Carlo sweeps over the field. Interactions are only possible between nearest 283

neighbors and are accepted with the Metropolis criterion and the energy function. 284
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Fig 8. Weak scaling behavior. The efficiency of simulating large scale tissue on the
Jureca supercomputer, using up to 256 nodes with 24 cores each. It is shown for a
subdomain distribution with a 3D block edge length of 100 and 200.

The Hamiltonian is defined by the sum of several energy terms, reads,

HCPM =
∑
i∈Ω

∑
j∈N(i)

Jτ(ςi),τ(ςj)(1− δ(ςi, ςj))︸ ︷︷ ︸
Cell-to-cell adhesion

+ λv

∑
i∈Ω

(v(ςi)− V (τ(ςi)))
2

︸ ︷︷ ︸
Cell volumes

+ λs

∑
i∈Ω

(s(ςi)− S(τ(ςi)))
2

︸ ︷︷ ︸
Cell surfaces

where Ω is the whole domain, and N(i) are the neighbors of voxel i. Further, ςi is the 285

corresponding cell at voxel i and ςj is the corresponding cell at the neighboring voxel. 286

Cell-to-cell adhesion is modeled by an energy contribution that is proportional to the 287

shared surface (see 1.2.1)of different cells. J is the adhesion coefficient matrix giving the 288

adhesion between two cells of types τ(ςi), τ(ςj), δ is the Kronecker delta, v(ςi) is the 289

volume of cell ςi, V (τ(ςi)) is the target volume of the cell type, λv is a coupling term 290

regulating the strength of the volume constraint. s(ςi) is the surface of the cell ςi, 291

S(τ(ςi)) is the target surface of the cell type, λs is a coupling term adjusting the 292

strength of the surface constraint. 293

The system propagation in the cellular Potts model is based on random nearest 294

neighbor interactions. The cell ID of a voxel can be changed to the cell ID of a randomly 295

chosen nearest neighbor. Then, the energy difference ∆E of this local conformational 296

change is calculated via the Hamiltonian energy function. Changes with negative energy 297

differences are accepted, and positive energy differences have an exponentially decaying 298

acceptance probability paccept, this is the Metropolis acceptance criterion. 299

paccept =

{
1, if∆E < 0,

e−
∆E
T , otherwise.
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0.5

Fig 9. Manhattan surface calculation (left) and a two-dimensional representation of the
marching cube surface calculation (middle). With a surface of 8 of the red cell(6.24 with
marching cubes), blue and green cells have a surface of 6 (5.12 using marching cubes).
The marching cubes are shifted at denoted by the black rectangle, i.e., for each voxel,
there are four marching cubes in 2D and eight in 3D. On the right side is a detailed
version of one marching cube, determined the surface for the red cell. The edges get the
value 1 when it lies inside the red cell, 0 otherwise. The surface then is the 0.5 iso-line.

To perform the propagation of the entire grid, each voxel requires a uniform chance 300

of sampling. For parallel execution, the system propagation has to be performed in 301

every block, whereby it must be ensured that the changes in one block do not affect the 302

changes in the neighboring blocks. In order to avoid the accumulation of errors at the 303

block borders, a randomly chosen subset of 1/25 of all voxels that lie on cellular surfaces 304

are sampled. The grid values are updated after such sweep over the whole block. 305

Therefore all calculations are done on the grid state from the previous time step. 306

Surfaces and Volumes of the cells are updated in the current block and communicated 307

to all neighboring blocks. To ensure uniform sampling of the grid as well as avoiding 308

runtime effects from earlier actions in a sweep, a visitor pattern is introduced that only 309

allows changes in particular voxels, respecting the surface calculation metrics. 310

3.2.1 Surface Calculation 311

The surface calculation metric is independent of the energy function. The calculation of 312

the surface of objects on a cubic grid is not unique, depending on the chosen surface 313

metric dependencies preferring some spacial directions that may occur, leading to 314

anisotropies in the emerging structures. Traditionally, a Manhattan metric is used to 315

calculate the surface in the cellular Potts model. The distance d between two points ~a,~b 316

is defined by the sum of the absolute differences of their coordinates, 317

d(~a,~b) =
∑
i |ai − bi|. In two dimensions, this corresponds to counting the edges of the 318

voxels and in the three-dimensional to counting the surfaces of the voxels. Under this 319

metric, a unit circle has the same surface as a unit square. Likewise, in three 320

dimensions, an ideal sphere of diameter a corresponds to a cube of edge length a after 321

minimizing the surface. Particularly in the three-dimensional case, cell clusters tend to 322

assume a cubic shape, when using the Manhattan-distance for the surface calculations, 323

introducing a non-isotropic grid dependence in the model. In order to ensure a more 324

isotropic sampling of the filed and to diminish grid artifacts, we use the marching cubes 325

algorithm [44,45]. The centers of eight voxels form the edges for the cube of the 326

marching cube algorithm. Then we distinguish between all edges that have the cell ID 327

that surface is calculated and all other cell IDs. Technically, we calculate the iso-surface 328

for 0.5 by set the corners of the calculated cell ID to 1 and all others to 0. The surfaces 329

of both algorithms are presented in Figure 9. 330

3.3 Mesoscale: Signal and Nutrient Transport 331

The simulation considers the transmission and propagation of multiple substances, such 332

as nutrients and drugs. We define a class of signaling, e.g., nutrient contents, of each 333
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cell σ
(%)
i , denoting the concentration of signal % in cell i. Those represent either oxygen 334

and glucose as nutrients for the cell, cell-to-cell signaling compounds or drugs. The 335

diffusion of nutrients can be approximated by flow through the surfaces of the cells. 336

Actions, such as cell-division, -death, and -mutations, may depend on these signals and 337

nutrient contents. 338

Diffusion The diffusion of signals between the cells occurs through the surface of
these cells. We determine the shared surface Si,j for each pair of cells i, j with i 6= j.
The diffusion depends on the type of cells, so we define for each combination of types a

diffusion constant Dτ(i),τ(j), τ(i) denoting the cell type of cell i. The flux J
(%)
i,j for a

signal % is defined by

J
(%)
i,j =

(
Si,j
Si

+
Si,j
Sj

)
Dτ(i),τ(j)(σ

(%)
j − σ

(%)
i ),

where Si is the surface from cell i and σi is the signal value in cell i and Sj , σj from cell 339

j, respectively. The first bracket is the arithmetic mean of the two surface fractions 340

with respect to the common surface. The flux Ji,j is subtracted from the signal of one 341

cell and added to the other. Here, we distinguish between cells and fixed signal 342

suppliers, such as blood vessels. For fixed signal supplies, the signal content is kept 343

constant, i.e., the flux is neither subtracted nor added for those cells. 344

Decay Metabolic processes take place inside the cells. We used a simple mesoscale
model in which the signals are changed relative to their value,

σ
(%)
i

∣∣∣
t+1

= d
(%)
τ(i) · σ

(%)
i

∣∣∣
t
.

Where σ
(%)
i

∣∣∣
t

is the signal % in cell i at time t and d
(%)
τ(i) is the relative change of the 345

signal % depending on the type of cell i. 346

3.4 Macroscale: Agent-based Method 347

On the macroscale, cell attributes such as the cell age, the signal level, cell type, etc. are 348

used to generate actions based on these values. The parameters can be linked from cell 349

biological experiments and simulations (cf. Table 2). 350

Cell types A cell type is assigned to each cell, which determines the parametrization 351

and phenotype of that cell. The cell type defines the characteristics of the individual 352

cells, i.e., the target volume V0, the target surface S0, and the thresholds 353

TRSVol,TRSAge. In that way, not each cell has to be individually parameterized. Cells 354

that divide usually generate two new cells of the previous cell type. Cell types allow 355

classification of each cell in the simulation as well as the tracking of cell type 356

sub-populations. Through the definition of a predefined set of cell types and mutation 357

between those types, the parameter space is controlled, and the accumulation of purely 358

favorable traits in a single cell type is prevented. Each cell type only has a single 359

variation in respect to the initial tumor cells. It is possible to define an arbitrary 360

number of cell types for different use cases. Here we define a set of 27 cell types for the 361

heterogeneous tumor growth (see Figure 13) 362

Blood vessels and solid We introduced a subset of cells that is not participating in 363

the spacio-temporal propagation via the cellular Potts model. Those cells are solid 364

structures, which can model blood vessels or the extracellular matrix. They are able to 365

participate in cell-to-cell signaling and may act as sources for signals. 366
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3.4.1 Actions of the Agent-based Model 367

Cell division In each time-step, each cell is checked for cell-division. Whether a cell 368

divides depends on several internal and external factors. Division conditions are: 369

• Volume above a threshold V > VDiv = 0.9 · V0 370

• Nutrition above a threshold CDivMin 371

• Age above a certain threshold AgeDivMin 372

• Comparing random number ∈ [0, 1] with Division Rate RDiv 373

• Chemotherapy content below a threshold TRSCh 374

If all conditions are met, a random plane through the cell centre is chosen. The cell is 375

split along that plane. Due to the parallelization of the model, the cell-division has to 376

be communicated to neighboring blocks. The cell is split, and the two arising cells are 377

reinitialized, measuring surface and volume. One keeps the cell ID of the mother cell 378

while the other receives a new cell ID. After a cell-division, the cellular age is set to zero. 379

Post division both cells expand due to pressure by the volume and the surface energy 380

term. Specific cell types can also be excluded from cell-division, such as the surrounding 381

tissue in our simulations. 382

Cell death Cell death conditions are: 383

• Nutrition below a threshold CDeath 384

• Age above a certain threshold AgeDeathMin 385

• Comparing random number ∈ [0, 1] with death Rate RDeath 386

• If all above conditions are not met comparing random ∈ [0, 1] with default death 387

Rate RDeath/1000 to account for natural cell death 388

Cell death is induced by changing the cell type of the cell to a dedicated cell type 389

that describes dying cells. For this cell type the goal volume in the Hamiltonian is 390

changed over time V0Apop(t) = V0 − χ · age, effectively lowering the volume of the cell to 391

zero voxels. Once the cell reaches V = 0, the cell is deleted. 392

Mutation After cell-division, the two daughter cells are reinitialized. If a mutation 393

event occurs (mutation Rate RMut), one of the daughter cells is initialized with a 394

randomly chosen cell type. The range of cell types that can be chosen is predefined. 395

The transition matrix between all cell types can be defined so that the transition 396

probabilities between cell types varies. Here, we use a constant transition probability. 397

4 Simulations 398

4.1 Time-step 399

The cellular Potts model is a discrete-time Markov chain. Incremental nearest neighbor 400

interaction Monte Carlo steps model the fluctuations and movements of cell membranes. 401

We observe initially exponential growth of the in-silico tumor when modeling the 402

free growth of a tumor in an environment with sufficient nutrients and without 403

treatment. We find that a size doubling time of T = 8 552 MonteCarloSweeps(MCS) in 404

our model corresponds to an untreated tumor with an experimentally determined 405
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Fig 10. Growth of a tumor in surrounding tissue without external influences is used to
define the timestep. Multiple simulation runs with different seeds are shown, and the
time constant of the growth is fitted.

Fig 11. Tumor size response of a single cell type tumor of varying resistivities. From
left to right: No Treatment, low, medium and high resistance against treatment.
Chemotherapy schemes on the top row and radiation therapy schemes on the bottom
row.

doubling time of 150 h (see Figure 10). Comparison with growth observed in-vivo (cf. 406

Table 2) we assume exponential growth of the tumor volume 407

VTumor(t) = exp(ln(2) · t/T ) + c and derive T = 150 h from the experimental data for a 408

non-treated tumor. Therefore 1 MCS equals 1.05 min and 1 kMCS = 0.73 days. 409

4.2 Simulations 410

General simulation parameter can be found in Table 2. 411

4.2.1 Initial Simulations 412

Treatment of one cell type Homogeneous tumor growth in a non-dividing 413

surrounding tissue. Simulations are conducted in a box with an edge size of 320µm. 414

Variation of treatment resistivity and resulting tumor response of a two-pulse treatment 415

with radio- and chemotherapy, respectively. 416

Treatment of resistivity heterogeneous cell type Heterogeneous tumor growth 417

in a surrounding tissue with a box edge size of 320µm. Variation of treatment 418

resistivity and resulting tumor response of a two-pulse treatment with radio- and 419

chemotherapy, respectively. 420

4.2.2 Heterogeneity 421

In tumor development, cells acquire more mutations until one mutation provides 422

properties that enable the tumor to expand and spread. This mutation process continues 423

during the whole lifetime of the tumor. Hence, a tumor does not consist of just one 424
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Fig 12. Treatment response to a heterogeneous tumor. The cell types are a different
subset of cells than used for heterogeneity simulations in the main text, cell types only
differ in treatment resistivity. Chemotherapy schemes on the top row and radiation
therapy schemes on the bottom row.
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Fig 13. Colour coding of all cell types. The inner circle holds cell types with
down-regulated parameters, while the outer circle holds up-regulated parameters.

cancerous cell type, but a variety of cellular phenotypes that compete over resources 425

and complicate tumor treatment since the effect of therapies differs between the types. 426

Therefore tumor heterogeneity is a crucial factor in planning cancer treatments [35]. 427

We implemented the mutation of cells into our model by introducing the possibility 428

of a change of cell-type of one of the daughter cells after division. These mutations are 429

reflecting one ore multiple somatic mutations that affect the behavior of the cell and 430

lead to an altered behavior. Each of the predefined cell types represents one cellular 431

phenotype and has exactly one parameter up- or down-regulated. The transition rates 432

are constant from and to every cell type. Cell to cell adhesion, cell-division ages and 433

nutrient thresholds, cell death age and thresholds as well as nutrient uptake, and 434

division and death rates were altered. 435

4.2.3 Treatment 436

Since cancer is such a versatile condition, many different forms of treatment exist with 437

chemotherapy, radiation therapy, and immunotherapy being the most prominent. In a 438

growing tumor, the balance of cell-division and cell death is shifted towards cell-division, 439

leading to an uncontrolled expansion of the tumor. The goal of classical cancer 440

therapies is to shift that balance towards the favor of the cell death rate, leading to 441

depletion, and finally, the vanishing of cancerous cells. Chemotherapy and radiotherapy 442

aim at damaging cells and therefore altering the division and apoptosis rates for all cells. 443

Since cancerous cells have a significantly shorter life-cycle and weakened repair 444

mechanisms in comparison to healthy tissue, the damage affects tumor cells to a greater 445

extent than the surrounding healthy tissue. Therefore a specific dosage and protocol 446

have to be used to do enough damage to shrink the tumor while keeping the damage to 447

all other parts of the organism to a minimum. There are different chemotherapy 448
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Fig 14. Overview over the treatment schemes of chemo- and radiotherapy.

protocols for each type of cancer, most opting for a pulsed administration over a longer 449

time in order to maximize efficiency and reduce the development of resistance. In our 450

model, chemotherapy is realized by a cytostatic agent that is delivered from the blood 451

vessels and diffuses into the tissue at defined times. Depending on the local drug 452

concentration cells down-regulate their division. 453

Radiation therapy is realized by a down-regulation of the cell-division rates and cell 454

death initiation with a set probability for each tumor cell. The effect of radiation is 455

homogeneous over the whole simulated area, since the radiated areas are clinically much 456

bigger than the simulated domain. Four different treatment plans are compared for 457

each, radio- and chemotherapy and applied alone, and in combination, to the 458

heterogeneous tumor simulation. 459

4.2.4 Up-scaling 460

An interesting question is how the tumor development and treatment response depend 461

on the tumor age and size. We take advantage of the scalability of our simulation 462

framework and scale up the simulations by a factor of 27 so that the simulation covers 463

1 mm3 of tissue. The surrounding tissue is initialized to be densely vascularized. 464

In the tumor growth we see due to the bigger size of the tumors, more complex 465

structures arising. The tumor grows into the direction of the closest blood vessels and 466

even divides up into smaller compartments. Holes in the tumor emerge, and apoptotic 467

regions are repopulated with the surrounding tissue. 468
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Table 1. Supplementary Movies 469

SI:Movie1: Time resolved
visualization of Figure 1.

SI:Movie2: Time resolved
visualization of Figure 2
a).

SI:Movie3: Time resolved
visualization of Figure 4
d).

SI:Movie4: Localization of
three different cell types
and the temporal develop-
ment, integrated over the
entire volume. Cell types
are: tumor stem cells (red),
high division rate (green)
and low cell death age
(blue).

470
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Table 2. Model parameters that were used in the simulations. 471
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Table 3. Fitted tumor growth time constants from various in vivo experiments, mostly
on mouse models. Time constants T (in hours) were fitted for tumors without and with
treatment (chemotherapy and/or radiotherapy). Through manual literature mining,
experimental parameters of growth rates of tumors were extracted. Exponential growth
was fitted to control tumor growth and to treated tumor growth. 473
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