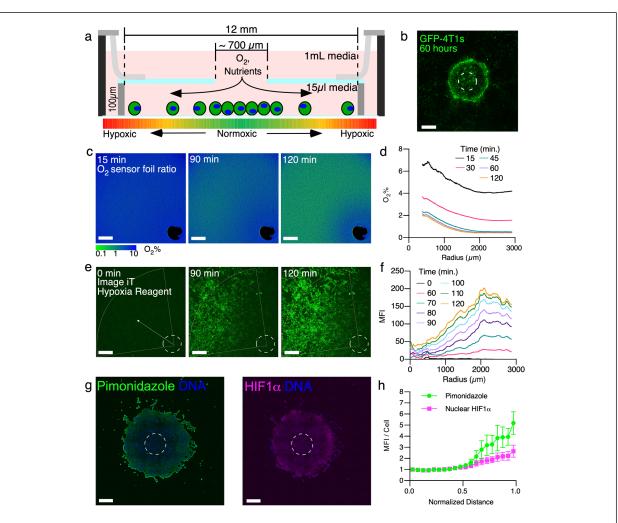
- 1 An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients
- 2 Anne C. Gilmore^{1§}, Sarah J. Flaherty¹, Veena Somasundaram², David A. Scheiblin³, Stephen J.
- 3 Lockett³, David A. Wink², William F. Heinz^{3*}
- 4
- ⁵ ¹Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center
- 6 for Cancer Research, National Cancer Institute, National Institutes of Health
- 7 ²Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer
- 8 Institute, National Institutes of Health
- 9 ³Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick
- 10 National Laboratory for Cancer Research, Frederick, MD
- 11 [§]Current address: Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital,
- 12 Memphis, TN.
- 13
- 14 Running title: Oxygen and nutrient gradient tumorigenesis model
- 15 *Keywords*: hypoxia, tumor microenvironment, live cell model
- 16 **Correspondence should be addressed to:*
- 17 William F. Heinz
- 18 Optical Microscopy and Analysis Laboratory
- 19 Frederick National Lab For Cancer Research
- 20 Leidos Biomedical Research, Inc.
- 21 P.O. Box B
- 22 Frederick, MD 21702
- 23 301-846-1239
- 24 Will.heinz@nih.gov
- 25

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

26	The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains
27	cell-generated gradients of soluble molecules. Current cell-based model systems lack this
28	complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber
29	that approximates the TME and demonstrate that breast cancer cells and macrophages
30	generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes
31	along the gradients, leading to new insights into tumorigenesis.
32	
33	Concentration gradients of soluble molecules in tissue are established by their release
34	from and consumption by cells in combination with extracellular diffusion. These gradients
35	influence the spatial organization and phenotypes of cells in solid tissues, including tumors ¹ .

36 Current experimental tissue models do not capture the complex spatial organization of 37 cells and molecules, and they can be difficult to interrogate microscopically. Standard 2D cell 38 culture does not replicate long-range (> 100 μ m) gradients of extracellular molecules within the 39 TME. Microfluidic systems can impose diffusive gradients on 2D cell cultures and are designed for microscopic interrogation^{2, 3}, but they control only a limited number of molecules of 40 41 interest, the spatial organization of cells is not the same as tissue, and the molecular gradients are not naturally cell driven. Although organoids and spheroids reflect to some extent the 42 molecular gradients that arise in actual tissues, they vary in structure⁴ and are challenging to 43 44 examine and quantify at high spatial resolution with long term live-cell microscopy⁵. 45 Hypoxic gradients in 2D cell culture were observed in 2018 in restricted exchange

46 environment chambers (REECs)⁶. Cells in this chamber, supported on a standard #1.5 glass
47 coverslip (0.17 mm thick), grow in a small (< 20 μL) lower compartment separated from a larger


An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

48	upper compartment (~ 1 mL) by a coverslip with a small central hole (~0.7 mm diameter)
49	through which O_2 and soluble molecules (e.g., nutrients, cytokines, and cellular waste products)
50	diffuse between the compartments (Fig. 1a). Thus, cells directly beneath the hole are exposed
51	to O_2 and nutrients at the concentration of the upper compartment, while cells distal to the
52	hole exist in a cell-generated hypoxic environment.
53	Here we report the application of the chamber to investigate the TME. Specifically, we
54	examine the role of O_2 and nutrient gradients on tumor and immune cell phenotype, using 4T1
55	mouse mammary tumor cells and ANA-1 mouse macrophages as exemplars. The 4T1 model
56	shares many features with triple negative human breast cancer ⁷ , and macrophages are the
57	most abundant non-cancer cells in the TME and play an immunosuppressive role in
58	tumorigenesis ⁸ . These cells types were cultured separately and in co-culture in the chamber,
59	and the spatiotemporal dynamics of O_2 gradient formation, nutrient uptake, cell migration and
60	cell survival were quantified.

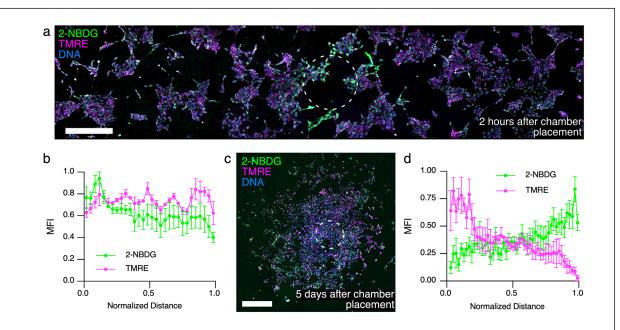
61 Results

62 GFP-tagged 4T1 cells, initially uniformly distributed (~75% confluence) in the lower 63 compartment, began migrating towards the hole within 36 h and formed a stable disk with a diameter of ~1 mm within ~60 h (Fig. 1b, Supplemental Video 1). Beyond the disk, cells 64 65 detached from the bottom of the well and died (Supplementary Fig. 1), analogous to necrotic zones in solid tumors. The resulting 4T1-disk remained alive and stable for at least three weeks 66 67 with periodic changes to media in the upper compartment. We attribute the directed motion of 68 cells to O₂ gradients within the chamber, which do not arise in standard cell culture and cannot 69 be readily observed in intact tumors or 3D cell culture models. 4T1 proliferation recovers with

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

Figure 1. In the 4T1-REEC model of the TME, cell-generated $[O_2]$ gradients correlate with intracellular hypoxia.

- a. Schematic of restrictive exchange environment chamber (REEC).
- b. GFP-expressing 4T1 cells migrate up the oxygen gradient to form a disk centered around the hole in the REEC (scale bar = 500μ m).
- c. Cell-generated extracellular $[O_2]$ gradients in a 4T1-REEC. Ratiometric images of an O_2 sensor foil over two hours (scale bar = 500 μ m).
- d. Quantification of extracellular $[O_2]$ at various time points for the 4T1-REEC in c.
- e. Intracellular hypoxic gradients. Widefield images of Image IT Hypoxia Green Reagent (IHGR), which fluoresces in response to intracellular hypoxia, in a 4T1-REEC over two hours (scale bar = $500 \ \mu$ m).
- f. MFI of IGHR versus distance from opening at various time points.
- g. Widefield image of pimonidazole (left) and HIF1 α (right) immunofluorescence staining of 7-day old 4T1 disk (scale bar = 500 μ m).
- h. Quantification of pimonidazole and nuclear HIF1 α immunofluorescence in 4T1 disks as a function of distance from opening to the edge of the disk (N=7 disks). MFI per cell is normalized to the first point.
- Dashed lines indicate the opening of the hole. MFI = mean fluorescence intensity.

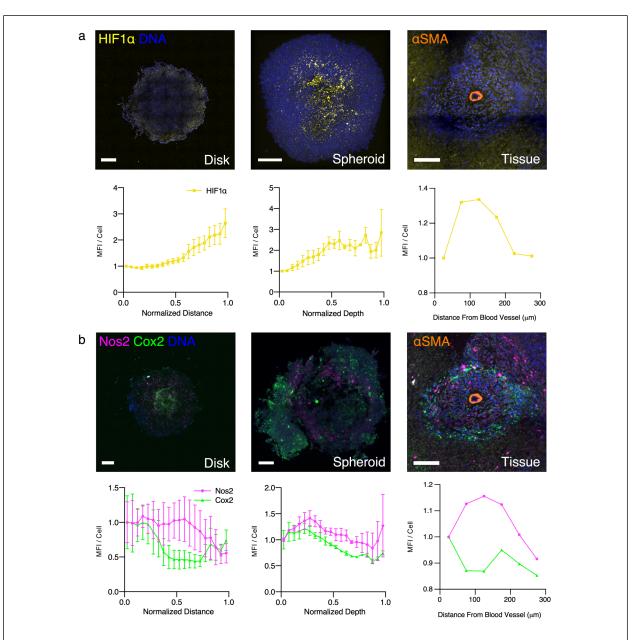

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

71	disk expansion after the chamber is removed (Supplemental Fig. 2) and normoxia is
72	reestablished. Interestingly, this experiment showed that 4T1 cells could respond to the
73	gradient of O_2 by converting to a migratory phenotype in order to coalesce near the opening in
74	the chamber. This behavior is characteristic of tumor cells in vivo and was shown here to be
75	possible without the presence of other cell types, extracellular matrix, or 3D environment.
76	After demonstrating that REECs reproduce tumor behavior, we quantitatively
77	characterized the hypoxia and nutrient gradients, and how these gradients affected 4T1
78	phenotype and metabolism. Dissolved extracellular O_2 concentration ([O_2]) measurements in
79	the REECs showed that stable radial negative gradients formed rapidly (< 2 h) after chamber
80	placement onto uniformly distributed 4T1 cells in 2D cell culture (Fig. 1c, d; Supplemental Fig.
81	3), which agreed with mathematical modeling (Supplemental Fig. 4). Fluorescence labeling of
82	the live 4T1 cells with the image-iT green hypoxia reagent (IGHR) revealed that positive
83	gradients of intracellular hypoxia formed in a similar timescale, and the hypoxic front (the
84	distance at which the IGHR signal is 90% of its maximum) was within a millimeter of the edge of
85	the opening after 2 h (Fig. 1e, f).
86	Hypoxia, through hypoxia inducible factor (HIF1 $lpha$) stabilization, can induce pro-tumor

phenotypes (Supplemental Fig. 5), including a collective-to-amoeboid transition, increased in
vimentin expression, and migration of 4T1 cells⁹. Cells in the periphery of the disks exhibit a
temporary increase in vimentin expression relative to E-cadherin expression, between 12 and
36 hours after initiation, suggesting a transient phenotypic shift to a mesenchymal state
(Supplemental Fig. 6)¹⁰. In stable disks, increased cellular hypoxia distal to the hole was
measured by pimonidazole reduction and HIF1α localization to the nuclei (Fig. 1g, h).

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

93	During initial O ₂ gradient formation (< 2 h) glucose consumption exhibited a radial
94	gradient with maximum consumption at the opening at early time points (Fig. 2a, b;). However,
95	no gradient of mitochondrial membrane potential ($\Delta\Psi$ m) was observed via
96	tetramethylrhodamine-ethyl-ester (TMRE) fluorescence 2 hours after chamber placement,
97	suggesting that oxidative phosphorylation continues for some time after hypoxia is established.
98	In fully formed disks (> 72 h), $\Delta\Psi$ m decreased while glucose consumption increased with radial
99	distance (Fig. 2c, d, Supplemental Fig. 7), consistent with a metabolic shift from oxidative
100	phosphorylation to glycolysis in the hypoxic region. Mathematical modeling predicted no


Figure 2. Nutrient uptake and metabolic activity vary with [O₂] concentration gradient between 2 hours and 5 days in the 4T1-REEC model of the TME.

- a. Widefield of image of 2-NBDG uptake and TMRE fluorescence in a 4T1-REEC 2 hours after chamber placement (scale bar = 500μ m).
- D. Quantification of 2-NBDG and TMRE fluorescence in 4T1-REECs 2 hours after chamber placement (N = 3). Correlation coefficient of 2-NBDG, TMRE = 0.1748.
- c. Widefield image of 2-NBDG and TMRE fluorescence in a 4T1-REEC 5 days after chamber placement (scale bar = $500 \ \mu m$).
- d. Quantification of 2-NBDG (N = 6 disks) and TMRE (N = 3 disks) fluorescence in 4T1-REECs 5 days after chamber placement. Correlation coefficient of 2-NBDG, TMRE = -0.5089.
 Dashed lines indicate the opening of the hole. MFI = mean fluorescence intensity.

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

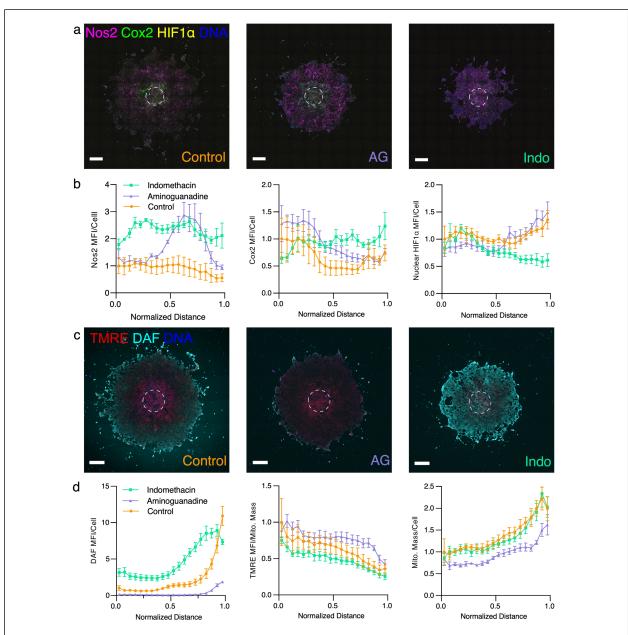
101	significant gradient of glucose in the media away from the standard serum glucose
102	concentration (22.5 mM), which is far in excess of the metabolic needs of the cells
103	(Supplemental Fig. 4). Thus, we conclude the [O ₂] gradient alone drove the metabolic shift.
104	These results demonstrate that REECs capture key features of hypoxia and metabolism in 4T1
105	tumorigenesis.
106	We utilized REECs to further understand the immunosuppressive role of the
107	inflammatory proteins inducible nitric oxide synthase (Nos2) and cyclooxygenase-2 (Cox2) in
108	the tumorigenic microenvironment. Clinically, high expression of both these proteins in ER-
109	human breast cancer is an indicator of very poor prognosis ¹¹ ; both are potential targets for
110	therapy using FDA-approved anti-inflammatory drugs in combination with standard treatments.
111	Nos2 produces nitric oxide (NO), a key regulator of cancer processes ¹² , from L-arginine and is
112	upregulated by stabilized HIF1 α in response to hypoxia and nutrient deprivation 13
113	(Supplemental Fig. 5). Therefore, we postulated that in the hypoxic regions of fully formed
114	disks, the Nos2 expression and NO flux would be high relative to Cox2-expression. We observed
115	Nos2 levels remain high relative to Cox2 in the hypoxic regions of disks, spheroids, and tissue
116	(Fig. 3a, b, Supplemental 8). We also saw a large increase in NO flux in the hypoxic regions of
117	4T1-disks, confirming our hypothesis (Figure 4a-d, control disks; Supplemental 8).
118	We observed in disks, spheroids, and tumor tissue that different 4T1 cells expressed
119	high levels of Nos2 or Cox2 and that high Nos2-expressing cells tended to be clustered together
120	(Fig. 3b, Supplemental Fig. 9) under hypoxia-induced stress conditions. The fact that Nos2 and
121	Cox2 are highly expressed in different cells indicates that these proteins likely drive the
122	expression and activity of each other via an intercellular feed-forward mechanism ¹⁴ mediated

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

Figure 3. Spatial distribution of cellular phenotypes along hypoxic gradients in 4T1-REECs, 4T1 spheroids, and 4T1 tumor tissue are similar.

- a. Distributions of HIF1 α fluorescence in 4T1 disks (N=7), spheroids (N=4), and tissue (N=1).
- Distributions of Nos2 and Cox2 fluorescence in 4T1 disks (N=3), spheroids (N=2), and tissue (N=1).

The tissue images capture a cross section of a blood vessel. Immunofluorescent staining of α -smooth muscle actin (α SMA) labels the vascular smooth muscle cells. "Normalized Distance" refers to the relative distance from the center to the edge of a disk. "Normalized Depth" refers to relative distance from the surface to the center of a spheroid. "Distance from Blood Vessel" is measured from the center of the blood vessel. MFI = mean fluorescence intensity normalized to the first point. Disk scale bar = 500 µm. Spheroid and tissue scale bars = 100 µm.


An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

124	by the release of NO and PGE2 from the cells ¹¹ . Nos2-expressing cell clumps likely lead to
125	significantly higher local concentrations of NO than could arise when Nos2-expressing cells are
126	scattered and isolated ¹⁵ and thus augment this paracrine mechanism.
127	Inhibitors of Nos2 and Cox2 interrupt the feed-forward loop and reduce tumor growth
128	rate ^{11, 13} . We therefore treated 4T1 disks in REECs with Nos2 or Cox2 inhibitors for 7 days to
129	examine the effect of the inhibitors on the distribution of protein expression, NO release,
130	$\Delta\Psi$ m, and mitochondrial mass within the disks (Fig. 4a-d).
131	Treatment with the Nos2 inhibitor aminoguanidine (AG, 1 mM) resulted in a large
132	compensatory increase in Nos2 expression in the more hypoxic regions of the disk versus the
133	untreated control, minimal NO levels, as well as increased Cox2 expression in the more
134	normoxic regions of the disk. Treatment with the Cox inhibitor indomethacin (Indo, 100 μ M)
135	likewise resulted in a compensatory increase in Cox2 expression in hypoxic regions of the disk
136	and increased Nos2 expression and NO levels across the disk relative to control. Interestingly,
137	nuclear HIF1 $lpha$ levels were lower in the hypoxic regions of Indo-treated disks relative to the
138	controls (Fig. 4a, b). Given that NO flux increases in the hypoxic region with indomethacin
139	treatment (Fig. 4c, d), this is most likely due to the known inhibitory effect of NO on HIF1 $lpha$ in
140	hypoxic conditions ¹⁶ .
141	$\Delta\Psi$ m was higher in more normoxic regions compared to hypoxic regions for both
142	treatments and controls, as expected (Fig. 4c, d). Relative to controls, $\Delta\Psi$ m was lower in Indo-
143	treated disks, indicating decreased mitochondrial activity in response to the higher levels of NO

144 across the disk, as expected. $\Delta \Psi m$ was higher in AG treated disks, particularly in the hypoxic

regions, indicating a failure to switch to anaerobic metabolism in absence of functional Nos2.

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

Figure 4. Effects of Nos2 inhibition by aminoguanidine (AG, 1 mM) or Cox2 inhibition by indomethacin (Indo, 100 μ M) on 4T1 phenotype along hypoxic gradients.

- a. Spatial distribution of Nos2, Cox2, and HIF1 α imaged by widefield immunofluorescence microscopy of 7-day old untreated 4T1 disks (control), AG-treated disks, and Indotreated disks.
- b. Nos2, Cox2, and HIF1 α distributions in 7-day old untreated 4T1 disks (control, N = 3), AG-treated disks (N = 4 for Nos2, Cox2, & HIF1 α), and Indo-treated disks (N = 4).
- c. Spatial distribution of DAF and TMRE fluorescence measured by confocal microscopy of 7-day old untreated 4T1 disks (control), AG-treated disks, and Indo-treated disks.
- d. DAF, TMRE, and ATP5A distributions in 7-day old untreated 4T1 disks (control, N = 4), AG-treated disks (N = 4), and Indo-treated disks (N = 4).

"Normalized Distance" refers to the relative distance from the center to the edge of a disk. MFI = mean fluorescence intensity normalized to the first point of the untreated control. Scale bars = $500 \mu m$.

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

147	Additionally, mitochondrial mass was lower in the AG treated disks (Fig. 4d), likely due to the
148	lack of NO, which plays an important role in mitochondrial biogenesis ¹⁷ . Indo-treated 4T1 disks
149	contained fewer cells than control disks, mirroring effects of the anti-inflammatories in tumors
150	(Supplementary Fig. 10) ^{12,13} . These results show that anti-inflammatory compounds modulate
151	cellular phenotypes along the hypoxic gradient, which demonstrates the utility of the 4T1-REEC
152	system for understanding treatment mechanisms in conjunction with hypoxia in the TME.
153	Macrophages localize to areas of hypoxia and necrosis in the TME where they play an
154	immunosuppressive role ¹⁸ . Therefore, we cultured ANA-1 macrophages in the REEC either
155	alone or with 4T1 cells. The macrophages, unlike 4T1 cells did not migrate towards the opening
156	or form disks, though they did generate a hypoxic gradient as observed via IGHR staining
157	(Supplemental Fig. 11). Macrophages treated with the pro-inflammatory cytokines IFN γ and LPS
158	express higher levels of Nos2 and thus produce more NO, which converts them to a glycolytic
159	pathway and decreases their mitochondrial metabolism and O_2 consumption ¹⁵ . This effect was
160	observed in REECs as the hypoxic front of treated macrophages was further from the hole than
161	that of untreated cells (Supplemental Fig. 11). When macrophages were co-cultured with 4T1s
162	or injected through the hole onto stable 4T1 disks, the macrophages populated the hypoxic and
163	4T1-necrotic regions (Supplemental Fig. 11). These results are consistent with macrophage
164	behavior in spheroids and <i>in vivo</i> in which IFN γ +LPS stimulated macrophages infiltrate the
165	hypoxic core of spheroids (Supplemental Fig. 12) and hypoxic regions of tumors ¹⁹ . Interestingly,
166	the area of stable 4T1 disks decreased following the injection of unstimulated macrophages.
167	Injection of stimulated macrophages or fresh media resulted in increases in 4T1 disk area
168	(Supplemental Figure 11). This suggests that the stimulated macrophage-generated increase in

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

169	extracellular NO in the chamber drives glycolysis and reduces the O_2 consumption of the 4T1
170	and ANA1 cells enough to push back the hypoxic front, thereby promoting survival and
171	proliferation of the tumor cells.
172	In conclusion, we demonstrated that the 4T1/ANA1-REEC in vitro model captures key
173	features of the tumorigenic microenvironment. It recapitulates the cell-generated oxygen
174	gradients that exist in solid tumors and via live-cell microscopy can reveal cell dynamics and
175	phenotypes that cannot be readily determined from actual tumors. Hence, the REEC system is a
176	powerful tool to investigate mechanisms of tumorigenesis, immunotherapy, and anti-

177 inflammatory treatments in live cells in a tumor-like environment.

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

178 Methods

179 **REEC design and assembly**

- 180 The REECs design was modified to improve functionality and fit 12-well glass-bottom plates
- 181 (Figure 1A). For each REEC, a through hole (~700 μm diameter) was manually machined into a
- 182 circular cover glass (18 mm diameter) using a high-speed air drill and tapered carbide bit (SCM
- 183 Systems, Inc, Menomonee Falls, WI). A stainless-steel O-ring (0.100 mm thick, 12 mm ID, 18 mm
- 184 OD) was epoxied to one side of the cover glass using UV-curable epoxy (Norland Products, Inc.).
- Laser-machined mylar clamps were epoxied to the other side of the cover glass using the same
- 186 epoxy. Between each step, the epoxy was cured for 5 minutes in a UV-Ozone cleaner (Model
- 187 342, Jelight). Chambers were UV-sterilized immediately prior to use in cell culture
- 188 (Supplemental Protocol).
- 189
- 190 The stainless-steel O-ring has as smoother, more uniform contact surface compared to the

191 laser-machined Mylar gasket that was used in previously published studies. The epoxy layer

- between the steel spacer and the cover glass adds approximately 40 μm to the height of the
- 193 chamber. Average chamber height was 138.4 μ m +/- 12.1 μ m, and the interior volume was
- approximately 15.65 μ L. The average hole diameter was 740.1 +/- 125.1 μ m.
- 195

196 Cell culture and plating for the REEC/4T1 system

197 Murine mammary triple negative breast cancer 4T1 cells were cultured in complete media

198 (DMEM media, 25 mM glucose, 10% fetal bovine serum (FBS), penicillin, and streptomycin;

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

199	Quality Biologicals). GFP-expressing 4T1 cells, 4T1-Fluc-Neo/eGFP-Puro cells (GFP-4T1, Imanis
200	Life Sciences), were grown in complete media and selected for using G418 and puromycin. Prior
201	to plating, laser-machined Mylar rims were epoxied on to a 12 well-plate. The Mylar rims
202	ensure that the Mylar clamps of each REEC are able to firmly hold the REEC against the bottom
203	of the well. 4T1 cells were then plated (200,000 cells/mL, 1 mL/well) and incubated at 37° C.
204	Once the 4T1 cells reached 70-80% confluency (~24 hours), the media was refreshed and REECs
205	were placed with sterilized forceps and pressed firmly to the bottom of the well. Media in the
206	upper chamber was refreshed every 3-4 days with the least possible disturbance to the lower
207	chamber possible.
208	
209	Mathematical model
210	The REEC/4T1 system was simulated as an annulus containing a uniform density of consumers
211	and used a diffusion-consumption model ²⁰ to characterize the time-evolution and steady state

behavior of oxygen and glucose. For a radially symmetric system, the concentration (C) of amolecular species is described by

214
$$\frac{\partial C}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(rD \frac{\partial C}{\partial r} \right) - n_{consumers} k_{consumption} f(C)$$

215 Where *n* = concentration of consumers, k = the per-cell consumption rate, and f(C) is a function

216 of concentration and can be written as

217
$$f(C) = C_{bulk} \frac{1}{1 + \frac{C_{bulk}}{C}}$$

218 At steady state, a characteristic distance can be defined as

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

219
$$\lambda = \sqrt{\frac{D}{n \cdot k}}$$

k, can be calculated from the maximum per cell molecular consumption rate, A_{max}, and the

221 concentration of the molecule of interest, Cbulk

$$A_{max} = kC_{bulk}$$

223

224 MATLAB's partial differential equation toolbox was used to model the evolution of

225 oxygen and glucose gradients within the REEC/4T1 system at 37 °C. The system was defined as

an annulus with an inner radius, r_1 , of 350 μ m and an outer radius, r_2 , of 6,000 μ m,

227 corresponding to the radius of the REEC opening and the inner radius of the REEC, respectively.

228 The inner radius was modeled as a source of the diffusing molecules with a constant

229 concentration, C_{bulk}.

230 Thus, the boundary conditions were

$$C(r_1, t) = C_{bulk}$$

232
$$\frac{\partial C(r_2, t)}{\partial r} = 0$$

233 The initial condition corresponded to the moment the chamber was placed in the well:

235 Oxygen diffusion, glucose diffusion, and glucose consumption rate values for 4T1 cells were

based on the literature²³⁻²⁷. Oxygen consumption rate (OCR) was measured directly via a

237 Seahorse XF96 metabolic analyzer (see below).

238

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

240 Table 1.

Parameter	Value	Reference
D (μm²/s)		
O ₂	3,370	21
Glucose	616	22
Amax		
(molecules/cell/s)		
02	2.98x10 ⁷	OCR measured with Seahorse XF mito-stress test with 4T1 cells.
Glucose	6.47x10 ⁷	23
C _{bulk}		
02	178 μM, 171 μM	24, 25
Glucose	25 mM	DMEM media specification (Quality Biologicals)

241

242 The oxygen concentration used in the dynamic model at $r < 350 \,\mu\text{m}$ is 171 μ M, not 178 μ M which is the value at the interface of the media and the atmosphere. It is somewhat less 243 244 because the cells immediately below the opening in the REEC consume the oxygen diffusing 245 through the opening in the coverglass. To account for this, we modeled the oxygen 246 concentration in a column of media 250 µm tall (100 µm high REEC and a 150 µm thick 247 coverglass) above a monolayer of 4T1 cells using a model based on Fick's law²⁵. At the top of the column, the media above the REEC coverglass is assumed to be fully oxygenated (178 μ M). 248 Using a 4T1 density was 200,000 cells/cm² and the Amax for the 4T1s, the O₂ concentration at 249 250 the cell layer was calculated to be 171μ M. 251 252 For each molecular species, the simulation was run for an equivalent of 48 hours for each

combination of maximum cellular molecular consumption rate, A_{max}, and cell density, *n*.

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

- 254 Convergence to steady state was defined as a change in RMS difference of less than 0.1 %
- 255 between successive profiles.
- 256

257 Oxygen consumption rate measurements

- 258 4T1 cells' OCR was measured using the XF96 Seahorse Metabolic Analyzer (Agilent
- 259 Technologies, California). 4T1s were plated (1×10⁵ cells) in each well (200 μL) of a Seahorse
- 260 microplate. The plates were then incubated at 37°C for 2 hours to allow time for the 4T1 cells
- to adhere. Mitochondrial stress tests were performed per manufacturer's instructions. The OCR
- was measured as cells were treated sequentially with oligomycin (inhibitor of complex V in the
- 263 electron transport chain (ETC)), trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP,
- 264 Sigma-Aldrich, a depolarizer of the mitochondrial membrane potential), and rotenone and
- antimycin-A (inhibitors of complex I and III in the ETC, respectively). Basal respiration, ATP-
- linked respiration, and spare capacity were calculated using the Seahorse software.
- 267

268 **4T1 mouse mammary tumor model**

The NCI-Frederick Animal Facility, accredited by the Association for Accreditation of Laboratory Animal Care International, follows the Public Health Service Policy for the Care and Use of Laboratory Animals. Animal care was provided in accordance with the procedures outlined in the Guide for Care and Use of Laboratory Animals. Protocols for in vivo studies were approved by the Frederick Animal Care and Use Committee (ACUC). Female BALB/c mice obtained from the Frederick Cancer Research and Development Center Animal Production Area were housed five per cage. Eight to ten-week-old female BALB/c mice were subcutaneously injected with

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

276	2×10^5 4T1 cells. The allograpft tumor volume was measured by Vernier caliper and calculated
277	as volume (mm ³) = (width ² × length)/2. When the tumors reached 2000 mm ³ , typically 30 days
278	post injection, the mice were euthanized, tumors were collected for analysis. Tumors were flash
279	frozen in liquid nitrogen and the tissues were cut into 10 μm thick sections by the
280	Pathology/Histotechnology Laboratory at NCI – Frederick.
281	
282	Fixation
283	4T1 cells cultured in 12-well plates were fixed in 4% v/v paraformaldehyde for 15 minutes.
284	Samples were rinsed three times in PBS and then blocked and permeabilized in blocking buffer
285	(3% BSA w/v, 0.3% Triton-X100 in 1X DPBS) for 1 hour.
286	
287	Fresh frozen sections of 4T1 tumors were fixed in 4% v/v paraformaldehyde for 30 minutes.
288	Samples were rinsed three times in PBS and then blocked and permeabilized in blocking buffer
289	for 1.5 hours.
290	
291	Immunofluorescence Staining
292	After being fixed, blocked, and permeabilized, cultured 4T1 cells were stained with antibodies
293	diluted in blocking buffer. Incubation times, temperatures, dilutions, and secondaries (if
294	necessary) were used as described in Table 2. For overnight incubations, the samples were kept
295	in a humidified chamber. Cells were then washed three times with 1X PBS and stained with
296	DAPI (300nM; ThermoFisher Scientific) for 15 minutes in 1X PBS. Cells were rinsed an additional
297	three times with 1X PBS prior to storage or imaging.

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

298

299	After being fixed, blocked, and permeabilized, fresh frozen sections of 4T1 tumors were stained
300	overnight at 4°C with antibodies diluted in blocking buffer, as described in Table 2. Samples
301	were rinsed three times with PBS, stained with DAPI (300nM) for 30 minutes, rinsed again, and
302	sealed for imaging on the Nikon Eclipse Ti widefield fluorescence microscope.

303

304 Table 2:

Antibody &	Clone	Vendor – Catalog	Host	Dilution	Time	Temp.
fluorophore		number				
E-cadherin, direct	24E10	Cell Signaling	Rabbit	1:100	O/N	4°C
conjugate		Technologies – 3199S				
(AlexaFluor-488)	504110		5.1.1.1	1 0	<u> </u>	
Vimentin, direct	D21H3	Cell Signaling	Rabbit	1:50	O/N	4°C
conjugate		Technologies – 9855S				
(AlexaFluor-555)		Theyree Fisher		1.1000	15	RT
DAPI	NA	ThermoFisher	NA	1:1000	15 min	RI
Nos2, direct	EPR16635	AbCam – 209595	Rabbit	1:100	1 h	RT
conjugate					or	
(AlexaFluor-568)					O/N	4°C
Cox2, direct	D5H5	Cell Signaling	Rabbit	1:100	1 h	RT
conjugate		Technologies – 13596S			or	
(AlexaFluor-488)					O/N	4°C
HIF1α,	EPR16897	AbCam – 208420	Rabbit	1:100	O/N	4°C
direct conjugate						
(AlexaFluor-647)						
ATP5A1	NA	AbClonal – A5884	Rabbit	1:100	O/N	4°C
(Mitochondrial						
ATPase, Primary)						
(Anti-rabbit CF-	NA	Biotium – 20178	Donkey	1:100	O/N	4°C
640R secondary						
for ATPase)						
lpha-Smooth Muscle	1A4	ThermoFisher - 41-	Mouse	1:400	O/N	4°C
Actin, direct		9760-82				
conjugate (eFluor-						
488), eBioscience						

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

305

306 Multiplexed Immunofluorescence

- After imaging with appropriate filter sets for the directly conjugated antibodies, cell and tissue 307 samples were guenched^{26, 27} using a solution comprised of 1 part hydrogen peroxide, 1 part 308 309 sodium bicarbonate (pH 10) and 3 parts water for 15 minutes at room temperature. Samples 310 were then washed three times with 1X PBS and imaged to ensure quenching. Samples were re-311 blocked with blocking buffer as described above and re-stained with a new set of directly 312 conjugated antibodies. The guenching cycle can be repeated for at least four rounds of staining 313 without noted damage. DAPI does not quench and can be used to register images for 314 processing. Imaging was performed on the Nikon Eclipse Ti widefield fluorescence microscope. 315 316 Stimulation of ANA-1 macrophages 317 Murine ANA-1 macrophage cell line was established by infection of normal bone marrow from C57BL/6 mice with J2 recombinant virus^{28, 29}. They were cultured in complete media. ANA-1s 318 were stimulated via treatment with IFNy (100 U/mL) and LPS (20 ng/mL) for 18 to 24 hours. The 319 320 media was then removed and replaced with fresh stimulation media and subsequent 321 experiments were performed immediately. 322 323 **ANA-1 injection into 4T1 REECs** 324 In order to allow time for disks to form, REECs were placed on a 70-80% confluent monolayer of
- 4T1-GFP-luc cells, using the method described above, 3 days prior to ANA-1 injection. ANA-1
- 326 cells were stimulated with IFNγ and LPS, as described above, 1 day prior to ANA-1 injection. On

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

327	the day of ANA-1 injection, ANA-1 cells were incubated in serum-free media with CellTracker
328	Red CMTPX Dye (5 μ M, ThermoFisher) for at 37 °C for 30 minutes. The ANA-1 cells were then
329	spun down and diluted in complete media (+/- IFN γ and LPS) to ~10,000,000 cells/mL.
330	Immediately prior to injection, the media in the upper chamber of the REECs was refreshed
331	with complete media (+/- IFN γ and LPS). The concentrated ANA-1 solution (10 μ L, containing
332	$^{\sim}$ 100,000 ANA-1 cells) was injected through the opening, directly into the lower chamber of the
333	REEC. For controls, complete media (10 μL , +/- IFN γ and LPS) containing no ANA-1 cells was
334	injected instead. Images were taken every 2 hours for 48 hours on the Nikon Eclipse Ti widefield
335	fluorescence microscope with a 4X dry objective and using a live cell heated stage.
336	
337	Extracellular O_2 concentration quantification in REECs via O_2 sensor foils
338	To quantify the spatial variation of dissolved $[O_2]$ in the media across the REEC we used O_2
338 339	To quantify the spatial variation of dissolved $[O_2]$ in the media across the REEC we used O_2 sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated
339	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated
339 340	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence
339 340 341	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence correlates with dissolved O ₂ concentration. The O ₂ sensor foils were glued to the inside top
339340341342	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence correlates with dissolved O ₂ concentration. The O ₂ sensor foils were glued to the inside top surface of the REEC (made with 200 μ m thick stainless-steel washers to maintain a 100 μ m
 339 340 341 342 343 	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 μ m thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence correlates with dissolved O ₂ concentration. The O ₂ sensor foils were glued to the inside top surface of the REEC (made with 200 μ m thick stainless-steel washers to maintain a 100 μ m chamber height above cells) and a hole was drilled through both the glass and the foil. The
 339 340 341 342 343 344 	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 µm thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence correlates with dissolved O ₂ concentration. The O ₂ sensor foils were glued to the inside top surface of the REEC (made with 200 µm thick stainless-steel washers to maintain a 100 µm chamber height above cells) and a hole was drilled through both the glass and the foil. The response of the sensor foils to [O ₂] was calibrated prior to placement on cells using glucose
 339 340 341 342 343 344 345 	sensor foils (PreSens Precision Sensing GmbH, Germany) 100 µm thick hydrogels impregnated with particles with [O ₂]-dependent luminescence. The ratio of the red to blue luminescence correlates with dissolved O ₂ concentration. The O ₂ sensor foils were glued to the inside top surface of the REEC (made with 200 µm thick stainless-steel washers to maintain a 100 µm chamber height above cells) and a hole was drilled through both the glass and the foil. The response of the sensor foils to [O ₂] was calibrated prior to placement on cells using glucose oxidase/catalase solutions of known [O ₂] using the Nikon microscope with the 4X objective lens,

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

349	REEC with 4T1 cells in phenol red-free media (1 mL), images of the sensor foil were collected
350	every 15 minutes using the 4X objective lens. A flat-field correction was applied to the images,
351	and the red/blue intensity ratio as a function of distance from the center of the hole was
352	converted via the calibration curve to dissolved [O ₂] values (Supplemental Figure 3).
353	
354	Extracellular hypoxia gradient dynamics in REECs via Image-iT Green Hypoxia Reagent
355	To measure the development of gradients of intracellular hypoxia of live cells in the REECs, cells
356	were incubated with Image-iT Green Hypoxia Reagent (IGHR) (10 μ M; Invitrogen) at 37 °C for 30
357	minutes prior to chamber placement. After chamber placement, 4T1 cells were imaged using
358	standard FITC excitation and emission filters at 4X or 20X magnification on a Nikon Eclipse Ti
359	widefield fluorescence microscope. For controls, IGHR treated 4T1 cells were placed in
360	incubators set to 0.1%, 1%, or 5% O_2 or in a standard incubator (~20%) for 2 hours. Cells were
361	immediately imaged (Supplemental Figure 3).
362	
363	Intracellular Hypoxia quantification in REECs
364	To measure levels of intracellular hypoxia in cell disks, media in the upper chamber was
365	replaced with complete media supplemented with pimonidazole (200 μ M; Hypoxyprobe, Inc.,
366	Massachusetts) after disk formation. In hypoxic cells, pimonidazole is reduced and forms
367	adducts with thiol groups. After sufficient time for the pimonidazole to diffuse through the
368	chamber and be taken up by cells (~6 hours), chambers and media were removed, and the disks
369	were immediately fixed, blocked, and permeabilized as described above. A monoclonal
370	antibody specific to pimonidazole adducts and conjugated with a fluorescein probe

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

371	(Hypoxyprobe-Green Kit (FITC-Mab); Hypoxyprobe, Inc.) was applied for 1 hour at room
372	temperature, or overnight at 4 $^\circ$ C. Samples were rinsed three times with 1X PBS and imaged
373	using standard FITC excitation and emission filters at 20X magnification on the Nikon Eclipse Ti
374	widefield fluorescence microscope. For controls, cultured 4T1 cells were treated with complete
375	media which had been supplemented with pimonidazole and deoxygenated (<1% O_2) with
376	glucose oxidase and catalase. HIF1 $lpha$ expression was determined by immunofluorescence and
377	correlated with pimonidazole adduct formation (Figure 1h).
378	
379	Glucose Gradient dynamics in REECs
380	2 hours after chamber placement, (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-
381	Deoxyglucose (2-NBDG) (100 μ M; ThermoFisher Scientific) with Hoechst (1 μ g/mL) in low-
382	glucose media (5 mM glucose, 10% FBS) was diffused into the chamber for 30 minutes at 37 °C.
383	This dye was often combined with tetramethylrhodamine, ethyl ester (TMRE) (1 nM;
384	ThermoFisher Scientific) in order to obtain simultaneous metabolic measurements. Chambers
385	were removed, rinsed three times in 1X PBS, and imaged using standard excitation and
386	emission filters at 20X on the Nikon Eclipse Ti widefield fluorescence microscope. Samples
387	could be fixed. For measurements in the disk, similar methods were used 7 days after chamber
388	placement on a Zeiss 710 Laser Scanning Confocal Microscope with a 10X dry objective.
389	
390	Live/Dead Staining
391	4-6 days after chamber placement, media was replaced with media containing the live/dead
392	cell stains ethidium homodimer (2 μ M), calcein AM (3 μ M), and Hoechst (1 μ g/mL;

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

- 393 ThermoFisher) for 30 minutes. Cells were then imaged on the Nikon Eclipse Ti widefield
- 394 fluorescence microscope using a live cell heated stage.
- 395
- 396 Celigo Image Acquisition and Analysis
- 397 Cells were cultured in 12-well plates with chambers for up to 21 days with weekly media
- 398 replacement. The plate was scanned using the Cell Counting feature in the Celigo Imaging
- 399 Cytometer (Nexelom Biosciences) with the brightfield algorithm to detect cells. Cells were
- 400 segmented using the built-in software.
- 401

402 Nos2 and Cox Inhibitor treatments

- 403 Immediately prior to chamber placement, the media in each well was replaced with treatment
- 404 media: complete media supplemented with either the Cox inhibitor indomethacin (100 μM) or
- 405 the Nos2 inhibitor aminoguanidine (1 mM). Cells were maintained in the REECs for 3-7 days
- 406 using treatment media before fixation and immunofluorescence staining. For controls, standard

407 complete media was used.

408

409 Nitric Oxide Production in REECs

410 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF) (ThermoFisher) was used to

- 411 measure and spatially resolve nitric oxide (NO) production in disks. 7 days after chamber
- 412 placement, wells were washed three times in 1X PBS to remove all phenol red and BSA, which
- 413 interfere with DAF fluorescence. To ensure that the lower compartment of the chamber was
- 414 adequately washed, the 1X PBS was gently pipetted up and down directly over the opening. The

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

415	4T1 cells were then incubated in phenol-red free, serum free media with DAF (10 μ M) and
416	Hoechst (µg/mL) at 37 $^\circ\text{C}$ for 45 minutes. This dye was often combined with TMRE in order to
417	obtain simultaneous measurements of mitochondrial membrane polarization state. Samples
418	were then immediately imaged on a Zeiss 710 Laser Scanning Confocal Microscope with a 10X
419	dry objective using standard FITC emission and excitation filters.
420	
421	Metabolic Gradient Quantification in REECs
422	Cells were incubated in phenol red free media with TMRE at 37° C for 20 minutes for cells in
423	standard culture, or 45 minutes for cells in a REEC. TMRE was used simultaneously with 2-NBDG
424	or DAF Diacetate. Cells were imaged with or without chamber removal, depending on the
425	experiment. For controls, the electron transport chain was inhibited with FCCP or antimycin A
426	and rotenone. These treatments caused the TMRE signal to decrease significantly within 15
427	minutes. TMRE was imaged on a Zeiss 710 Laser Scanning Confocal Microscope with a 10X dry
428	objective using Texas Red excitation and emission filters.
429	
430	To confirm that mitochondrial mass was consistent across the disk, disks were then fixed,
431	blocked, and permeabilized, as described above. The disks were stained with an ATP-synthase
432	antibody (Abclonal, A5884, Rabbit) diluted 1:100, and incubated at 4° C overnight. Cells were
433	rinsed and incubated with an anti-rabbit secondary at room temperature for 1 hour and then
434	imaged on a Zeiss 710 Laser Scanning Confocal Microscope with a 10X dry objective.
435	
436	Spheroid Growth, Clearing, and Imaging

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

437	A spheroid formation assay was performed in ultra-low attachment round bottom 96 well
438	plates (Nexcelom, Lawrence, MA, USA). 4T1 cells or 4T1-GFP-luc cells (for co-culture
439	experiments) were plated in each well (200 μ L, 6 x 10 ³ /mL) with serum-free DMEM
440	supplemented with basic Fibroblast Growth Factor (20 ng/mL) and B-27 supplement (1:50;
441	Thermo Fisher Scientific). Media was supplemented on Day 4. Monoculture spheroids were
442	fixed, cleared, immunolabeled with antibodies and imaged on Day 7 (see below). For coculture
443	experiments, ANA-1 macrophages were stimulated for 18 hours followed by treatment with
444	CellTracker Red CMTPX dye (10 μ M) at 37°C for 45 minutes and were then added to the
445	spheroids (2 x 10^5 cells/well). The ANA-1-spheroid cocultures were fixed, cleared,
446	immunocytochemically stained with antibodies and imaged on Day 7 (see below).
447	
447 448	Spheroids were cleared for imaging using the Ce3D method ³⁰ . Briefly, spheroids were fixed in
	Spheroids were cleared for imaging using the Ce3D method ³⁰ . Briefly, spheroids were fixed in 4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36
448	
448 449	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36
448 449 450	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36 hours in a humidified environment. Spheroids were then stained with directly conjugated
448 449 450 451	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36 hours in a humidified environment. Spheroids were then stained with directly conjugated antibodies for proteins of interest (HIF1 α , Nos2, Cox2) at 4°C for 36 hours. Spheroids were
448 449 450 451 452	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36 hours in a humidified environment. Spheroids were then stained with directly conjugated antibodies for proteins of interest (HIF1 α , Nos2, Cox2) at 4 °C for 36 hours. Spheroids were stained with DAPI (300 nM) for 30 minutes and then rinsed three times with 1X PBS. The
448 449 450 451 452 453	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36 hours in a humidified environment. Spheroids were then stained with directly conjugated antibodies for proteins of interest (HIF1 α , Nos2, Cox2) at 4°C for 36 hours. Spheroids were stained with DAPI (300 nM) for 30 minutes and then rinsed three times with 1X PBS. The spheroids were then embedded in 1.5% low-melt agarose. Samples were placed in clearing
448 449 450 451 452 453 454	4% v/v paraformaldehyde containing 0.5% Triton-X100. Spheroids were blocked at 37°C for 36 hours in a humidified environment. Spheroids were then stained with directly conjugated antibodies for proteins of interest (HIF1 α , Nos2, Cox2) at 4°C for 36 hours. Spheroids were stained with DAPI (300 nM) for 30 minutes and then rinsed three times with 1X PBS. The spheroids were then embedded in 1.5% low-melt agarose. Samples were placed in clearing solution (0.1% v/v Triton-X100, 13% N-methylacetamide, 66% w/v Nycodenz AG) at room

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

- The cleared spheroids were imaged on a Leica TCS SP8 Laser Scanning Confocal microscope at
- 459 20X with oil to match the index of refraction of the clearing solution (slightly higher than 1.5). Z-
- 460 stacks were taken through the center of the spheroids.
- 461
- 462 Image Processing and Data Analysis

Images taken on the Nikon Eclipse Ti widefield fluorescence microscope were typically stitched 463 464 and background corrected using a rolling ball technique in Nikon Elements software, then 465 processed in Imaris (Bitplane). Image brightness and contrast were adjusted to optimize the 466 visual dynamic range for display. Imaris was used for cell segmentation and to extract position, 467 fluorescence intensity, and geometrical statistics on each cell. Custom R scripts were used to 468 process the output of Imaris statistics, including average cell intensity for each channel and position. For cell disks, cells were binned into annuli every 50 µm from the center, and the 469 470 mean fluorescence intensity (MFI) per cell in that bin was calculated. Disks that could not be 471 segmented were analyzed in FIJI using the Radial Profile plug-in, which averages the intensity 472 value of all pixels at each radius from a fixed point. For the spheroid and tissue images, custom 473 MATLAB functions were used to calculate fluorescence intensity and depth (spheroid) or 474 position (tissue) for each pixel and averaged as above. For disks and spheroids intensity profiles, 475 R scripts were used to average those radial mean values within 50 µm wide annuli. For cell 476 disks, radial values were normalized to disk radius, and MFI were normalized to the value at r = 0 for that disk or the control group disk. For the NBDG/TMRE data, MFI were normalized to the 477 478 maximum MFI value for each profile, and the normalized curves were averaged. For spheroids, 479 depth values were normalized to the maximum depth of each spheroid (such that 0 represents

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

- 480 the surface and 1 is the maximum depth), and MFI were normalized to the value at the
- 481 spheroid surface. For tissue, MFI was normalized to the first position in the profile. All data are
- 482 presented as mean +/- SEM unless otherwise noted. Statistical significance, determined using
- 483 Welch's two-tailed t-test, and Pearson correlation coefficients were calculated in GraphPad
- 484 Prism and Microsoft Excel.

485 Data Availability

- 486 The data that support the findings of this study are available from the corresponding author
- 487 upon request.

488 Code Availability

- 489 The code supporting the plots and other findings in the manuscript are available from the
- 490 corresponding author upon request.

491 References

- 492 1. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G. & Amelio, I. The hypoxic tumour
- 493 microenvironment. *Oncogenesis* **7** (2018).
- 494 2. Byrne, M.B., Leslie, M.T., Gaskins, H.R. & Kenis, P.J.A. Methods to study the tumor
- 495 microenvironment under controlled oxygen conditions. *Trends in Biotechnology* **32**, 556-
- 496 563 (2014).
- 497 3. Keenan, T.M. & Folch, A. Biomolecular gradients in cell culture systems. *Lab on a Chip* 8,
 498 34-57 (2007).

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

 Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L.A. Spheroid-based drug 	ug screen:
---	------------

- 500 Considerations and practical approach. *Nature Protocols* (2009).
- 501 5. Nath, S. & Devi, G.R. Three-dimensional culture systems in cancer research: Focus on
- 502 tumor spheroid model. *Pharmacology and Therapeutics* **163**, 94-108 (2016).
- 503 6. Hoh, J.H., Werbin, J.L. & Heinz, W.F. Restricted exchange microenvironments for cell
- 504 culture. *BioTechniques* **64**, 1-6 (2018).
- 505 7. Pulaski, B.A. & Ostrand-Rosenberg, S. Mouse 4T1 Breast Tumor Model. *Current*

506 *Protocols in Immunology* **39**, 20.22.21-20.22.16 (2000).

- 507 8. Noy, R. & Pollard, Jeffrey W. Tumor-Associated Macrophages: From Mechanisms to
 508 Therapy. *Immunity* 41, 49-61 (2014).
- 509 9. Lehmann, S. et al. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-

510 Amoeboid Dissemination in Epithelial Cancer Cells. *Current Biology* (2017).

- 511 10. Nieto, M.A., Huang, R.Y.-j., Jackson, R.A. & Thiery, J.P. Review EMT : 2016. *Cell* 166, 21512 45 (2016).
- 513 11. Basudhar, D. et al. Coexpression of NOS2 and COX2 accelerates tumor growth and
- 514 reduces survival in estrogen receptor-negative breast cancer. *Proceedings of the*

515 *National Academy of Sciences* **114**, 13030-13035 (2017).

- 516 12. Somasundaram, V. et al. Molecular Mechanisms of Nitric Oxide in Cancer Progression,
- 517 Signal Transduction, and Metabolism. *Antioxidants & Redox Signaling* **30**, 1124-1143
- 518 (2018).
- 51913.Heinecke, J.L. et al. Tumor microenvironment-based feed-forward regulation of NOS2 in
- 520 breast cancer progression. *Proc Natl Acad Sci U S A* **111**, 6323-6328 (2014).

An *in vitro* tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

521	14.	Basudhar, D. et al. Understanding the tumour micro-environment communication
522		network from an NOS2/COX2 perspective. Br J Pharmacol 176, 155-176 (2019).
523	15.	Somasundaram, V. et al. Inducible nitric oxide synthase-derived extracellular nitric oxide
524		flux regulates proinflammatory responses at the single cell level. Redox Biology 28,
525		101354 (2020).
526	16.	Olson, N. & Van Der Vliet, A. Interactions between nitric oxide and hypoxia-inducible
527		factor signaling pathways in inflammatory disease. Nitric Oxide - Biology and Chemistry
528		25 , 125-137 (2011).
529	17.	Cyr, A. et al. Endotoxin Engages Mitochondrial Quality Control via an iNOS-Reactive
530		Oxygen Species Signaling Pathway in Hepatocytes. Oxid Med Cell Longev 2019, 4745067
531		(2019).
532	18.	Vitale, I., Manic, G., Coussens, L.M., Kroemer, G. & Galluzzi, L. Macrophages and
533		Metabolism in the Tumor Microenvironment. Cell Metab 30, 36-50 (2019).
534	19.	Jeong, S.K. et al. Tumor associated macrophages provide the survival resistance of
535		tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated
536		signals. Immunobiology 222, 55-65 (2017).
537	20.	Oyler-Yaniv, A. et al. A Tunable Diffusion-Consumption Mechanism of Cytokine
538		Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System.
539		Immunity 46 , 609-620 (2017).
540	21.	Pettersen, E.O., Larsen, L.H., Ramsing, N.B. & Ebbesen, P. Pericellular oxygen depletion
541		during ordinary tissue culturing measured with oxygen microsensors. Cell Proliferation
542		38 , 257-267 (2005).

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

- 543 22. Suhaimi, H., Wang, S. & Das, D.B. Glucose diffusivity in cell culture medium. *Chemical*
- 544 *Engineering Journal* **269**, 323-327 (2015).
- 545 23. Simões, R.V. et al. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to
- 546 Changes in the Microenvironment. *Neoplasia* **17**, 671-684 (2015).
- 547 24. Wenger, R., Kurtcuoglu, V., Scholz, C., Marti, H. & Hoogewijs, D. Frequently asked
- 548 questions in hypoxia research. *Hypoxia* **3**, 35 (2015).
- 549 25. Al-Ani, A. et al. Oxygenation in cell culture: Critical parameters for reproducibility are
- 550 routinely not reported. *PLoS One* **13**, e0204269 (2018).
- 551 26. Gerdes, M.J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-
- 552 embedded cancer tissue. *Proceedings of the National Academy of Sciences* **110**, 11982-
- 553 11987 (2013).
- 554 27. Lin, J.R., Fallahi-Sichani, M., Chen, J.Y. & Sorger, P.K. Cyclic Immunofluorescence (CycIF),
- 555 A Highly Multiplexed Method for Single-cell Imaging. *Current protocols in chemical*
- *biology* **8**, 251-264 (2016).
- 557 28. Blasi, E., Radzioch, D., Durum, S.K. & Varesio, L. A murine macrophage cell line,
- 558 immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. *Eur*
- 559 *J Immunol* **17**, 1491-1498 (1987).
- 560 29. Blasi, E. et al. Selective immortalization of murine macrophages from fresh bone
- 561 marrow by a raf/myc recombinant murine retrovirus. *Nature* **318**, 667-670 (1985).
- 562 30. Li, W., Germain, R.N. & Gerner, M.Y. Multiplex , quantitative cellular analysis in large
- tissue volumes with clearing-enhanced 3D microscopy (C e 3D). Proceedings of the
- 564 National Academy of Sciences (2017).

An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, et al., 2020.

565 Acknowledgments

566	This project has been funded in whole or in part with Federal funds from the National Cancer
567	Institute, National Institutes of Health, under Contract No. 75N91019D00024 and by the
568	Intramural Program of the NIH, NCI, Center for Cancer Research. The content of this publication
569	does not necessarily reflect the views or policies of the Department of Health and Human
570	Services, nor does mention of trade names, commercial products, or organizations imply
571	endorsement by the U.S. Government. NCI-Frederick is accredited by AAALAC International
572	and follows the Public Health Service Policy for the Care and Use of Laboratory Animals. Animal
573	care was provided in accordance with the procedures outlined in the "Guide for Care and Use
574	of Laboratory Animals" (National Research Council; 2011; National Academy Press; Washington,
575	D.C.). In addition, we would like to thank Dan McVicar for the generous use of his Seahorse XF
576	Analyzer.

577 Author contributions

578	WFH, SJL, and DAW conceived the project, and ACG, SJF, VS, and WFH designed the
-----	---

- 579 experiments. ACG and SJF constructed the REECs, performed all experiments with the
- 580 chambers, wrote analysis software, and processed and analyzed the images. VS grew the
- 581 spheroids and performed the mouse experiments and assisted ACG with the Seahorse
- 582 measurements. ACG imaged the spheroids and tissue samples. DAS assisted with multiplexed
- 583 immunofluorescence imaging and image analysis. WFH implemented the mathematical model.
- 584 ACG, SJF, and WFH wrote the manuscript, and all authors critically reviewed the manuscript.

585 Ethics declarations

586 **Competing interests**

⁵⁸⁷ The authors declare no competing interests