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Abstract 

Background 

A typical task in bioinformatics consists of identifying which features are associated with a target 

outcome of interest and building a predictive model. Automated machine learning (AutoML) 

systems such as the Tree-based Pipeline Optimization Tool (TPOT) constitute an appealing 

approach to this end. However, in biomedical data, there are often baseline characteristics of the 

subjects in a study or batch effects that need to be adjusted for in order to better isolate the 

effects of the features of interest on the target. Thus, the ability to perform covariate adjustments 

becomes particularly important for applications of AutoML to biomedical big data analysis. 

Results 

We present an approach to adjust for covariates affecting features and/or target in TPOT. Our 

approach is based on regressing out the covariates in a manner that avoids ‘leakage’ during the 

cross-validation training procedure. We then describe applications of this approach to 

toxicogenomics and schizophrenia gene expression data sets. The TPOT extensions discussed in 

this work are available at https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAdj.  

Conclusions 

In this work, we address an important need in the context of AutoML, which is particularly 

crucial for applications to bioinformatics and medical informatics, namely covariate adjustments. 

To this end we present a substantial extension of TPOT, a genetic programming based AutoML 

approach. We show the utility of this extension by applications to large toxicogenomics and 

differential gene expression data. The method is generally applicable in many other scenarios 

from the biomedical field. 
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Background 

Automated machine learning (AutoML) refers to methods which assist (potentially non-expert) 

users in the optimization of model construction steps such as data preprocessing, feature 

selection, feature transformations, model selection, and hyperparameter tuning. 

The Tree-based Pipeline Optimization Tool (TPOT) [1, 2] is a genetic programming (GP) based 

AutoML which has been successfully used in biomedical applications including genetics [1], 

metabolomics [3, 4], and transcriptomics [5]. TPOT explores learning pipelines consisting of 

arbitrary combinations of selectors, transformers, and estimators (classifiers or regressors). In 

order to extend its scalability and provide more interpretable results, it is possible to specify a 

Template for the searched pipelines and to incorporate a Feature Set Selector (FSS) at the 

beginning of each pipeline to slice the input data set into smaller sets of features allowing the GP 

to select the best subset in the final pipeline [5]. 

 

A desirable feature of TPOT is the ability to adjust for relevant covariates, as this is particularly 

important in the biomedical context where there are often either baseline characteristics of the 

subjects or batch effects whose influence on the target or the features needs to be removed so to 

isolate the actual effects of the features on the target. It is important to note that, while common 

in biostatistics and epidemiology, covariate adjustment is uncommon and understudied in 

machine learning. 
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A typical covariate adjustment approach consists in ‘regressing the covariates out’ of the relevant 

variables in a data set, which could be the target, or some or all features or both (in case of 

confounding covariates). Essentially, to regress a set of covariates out of a variable, a predictor 

model for this variable based on such covariates is first built (e.g. using linear regression if the 

variable is continuous or logistic regression if it is binary or multiclass) and then the variable is 

replaced by the residuals from this model [6]. A simplified example of this can be found in [3]. 

However, the GP optimization in TPOT is based on cross-validation (CV). Consequently, simply 

regressing out the covariates from the relevant variables before feeding the data to TPOT suffers 

from ‘leakage’ because, for each CV split, a model built on the training part gets access to 

information it otherwise would not know, as it uses residuals calculated from a regression which 

employed the entire data set, i.e. both the training and the testing parts of the CV split. Such 

leakage can result in overfitting thus reducing the generalizability of the model. 

 

In this work, we present an extension of the TPOT framework, referred to as ‘resAdj TPOT’ in 

what follows, which allows covariate adjustment without leakage. To illustrate the usefulness of 

this, we analyzed a toxicogenomic data set extracted from TG-GATEs [7] representing gene 

expression array data on kidney tissue from rats exposed to individual drugs known to cause 

kidney injury. Combining resAdj TPOT with the FSS and Template features, we identified 

pathways and genes whose expression is associated with creatinine levels in rat kidney, after 

removing confounding effects such as study batch, compound treatment, dose, and sacrifice time. 

Creatinine levels provide a broad image of overall kidney health and our findings are very 

consistent with known kidney biology. Moreover, if we apply TPOT with no covariate 
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adjustments to this data set, the results are different and only tangentially associated with kidney 

disease. We also show an application to a gene expression dataset from PsychENCODE [8], 

where the selected covariates are not expected to bear much relevance. In this case we obtain 

similar results with resAdj and classic (i.e. no adjustments) TPOT, as desirable. The results of 

our comparisons between resAdj and classic TPOT confirm that our adjustment strategy has 

been useful in the first case and correctly neutral in the second. Interestingly, we also noted that 

in the second data set TPOT identified known pathways associated with differential expression 

between schizophrenic and controls which were  not detected by the more typical Gene Set 

Enrichment Analysis (GSEA) [9]. 

 

Methods 

TPOT leakage-free covariate adjustment 

TPOT leverages the scikit-learn framework [10] and uses GP to evolve machine learning 

pipelines that consist of selectors, transformers and estimators [1, 2]. The GP seeks to optimize 

machine learning pipelines with respect to a specified score (e.g. ‘balanced accuracy’, ‘r-

squared’, etc.) using CV to avoid overfitting on the provided data. Thus, in the pipeline 

optimization phase, the training set consists of a subset of the input samples (we used 75% at 

each CV split). At the end of the pipeline optimization procedure, the best pipeline is then trained 

on the entire set of input samples. 

 

Suppose that, for each of m subjects, we have values for a target variable (binary, multiclass, or 

continuous) and a collection of n features (binary, multiclass, or continuous). We represent the 

target values by an m-dimensional vector y and the feature values by an m×n matrix X. Suppose 
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also that we have values for a collection of covariates that need to be adjusted for. Given a 

covariate, depending on the context of the data set, it may make sense to adjust only the target y 

by it, or only a subset of the features (columns in X), or both the target and a subset of the 

features (the latter is appropriate when the covariate is a confounder). We adjust the values of a 

variable v (which may be either the target or a feature)  by a collection of covariates by 

‘regressing the covariates out’, with the typical approach of fitting an estimator to v on the 

covariates (e.g. linear regression if v is continuous, or logistic regression otherwise) then 

replacing the values of v  by the corresponding residuals. The latter are obtained by subtracting 

from the values of v the values predicted by the estimator (if v is continuous) or the expected 

values based on the estimator predicted class probabilities (if v is binary or multiclass). However, 

for each CV train-test split, to avoid leakage, the estimator must be fitted only using the training 

data for that split (see Additional file 1 for details). This can be easily achieved for feature 

covariate adjustments within the current TPOT/scikit-learn framework, but for target covariate 

(y) adjustment it is necessary to substantially extend the framework. 

 

For feature covariate adjustments, we have added a transformer (resAdjTransformer) to TPOT. 

This needs to be either the first step of any pipeline or the second step after an FSS (TPOT 

Template can be used to specify these). The initial input to TPOT adds the covariate columns to 

X. One hyperparameter of this transformer is a file specifying which columns of X should be 

adjusted by which covariate columns. The transformer applies the no leakage residual 

adjustments to these columns and removes the covariate columns before passing its output on to 

the other steps. If no covariate adjustment on the target is needed, classic TPOT can then be run 

as usual (Figure 1 path A). 
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For target covariate adjustment, we have added a pre-processor, which creates predefined CV 

splits and, for each split, adds 2 columns to the dataset; an indicator column to denote the 

training-testing rows and a column with precomputed no-leakage residuals for y using that split. 

In addition, y is fully replaced by the residuals (this is only used for the final Testing Score 

reported by TPOT, after the optimal pipeline has been determined via CV). The output of this 

pre-processor (whose structure is outlined in Additional file 2) can then be passed on to TPOT, 

which must be run with the same CV splits. For each relevant scorer, selector, transformer, and 

estimator in the classic TPOT, we have added a corresponding scorer,  selector, transformer, and 

estimator which, by using the indicator and corresponding residual columns, enables the pipeline 

to flow utilizing the appropriately adjusted target at each CV split. The pre-processor can 

optionally also prepare a hold-out testing set to assess the optimized pipelines output by resAdj 

TPOT runs. 

 

Note that, when the only needed adjustments are for features, classic TPOT can be run as long as 

the resAdjTransformer is incorporated within every pipeline (using Template, see Figure 1 path 

A). If the only needed adjustment is for the target, then the pre-processor and the new scorer, 

selectors, transformers, and estimators must be used with predefined CV splits (Figure 1 path B). 

If both features and target need adjustment, then all the above can be used together (Figure 1 

path C). 
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Figure 1. The 3 possible workflows for resAdj TPOT. (A) Workflow when the only needed 

adjustments are for features. The Feature Set Selector (FSS) step is optional. (B) Workflow when 

the only needed adjustments are for the target. adjY denotes the no-leakage adjustment of the 

target for each predefined CV split. (C) Workflow when adjustments are needed for both the 

target and features.  

 

Data sets 

TG-GATEs 

We selected from TG-GATEs [7] the 933 microarray gene expression assays on kidney tissue 

from rats in the interquartile range of kidney weight, where each rat was treated with one of 41 

compounds in a single dose. The dose was one of ‘control’ (untreated animal), ‘low’, ‘medium’, 

or ‘high’ (concentrations varied based on the compound) and the rat was sacrificed after a 

duration of 3, 6, 9 or 24 hours. We chose creatinine level measured at sacrifice time as the target 

of interest, because this provides a broad image of overall kidney health. After obtaining the 

CEL files from accession E-MTAB-799 in Array Express [11], we summarized and normalized 

(with RMA) the expression values using the Transcriptome Analysis Console (TAC; Affymetrix) 
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software. We encoded dose and sacrifice time by ordinal variables with 4 levels and creatinine 

measurements by an ordinal variable with 7 levels. We encoded the 41 compounds with 6 binary 

variables using the binary encoder from the Category-Encoders (http://contrib.scikit-

learn.org/category_encoders/). We defined 154 Feature Sets corresponding to the pathways 

obtained by mapping to rat the MSigDB [12] canonical pathways from KEGG and the pathways 

annotated in the Rat 230 2.0 Affymetrix Array. The features in our analyses were the 1632 

probesets mapping to these Feature Sets. 

 

PsychENCODE  

We downloaded the prefrontal cortex normalized RNAseq gene expression data from 

http://resource.psychencode.org/Datasets/Derived/DER-

01_PEC_Gene_expression_matrix_normalized.txt. We extracted 1072 control and schizophrenic 

individuals with either Caucasian or African American ethnicity, from 3 studies 

(LIBD_szControl, CMC, and BrainGVEX). Disease status was our target. We encoded each of 

disease status, sex and ethnicity by binary variables and study by 2 binary variables (using one-

hot encoding). We defined 186 Feature Sets corresponding to the MSigDB canonical pathways 

from KEGG. The features in our analyses were the 4952 genes mapping to these Feature Sets. 

 

Results 

TG-GATEs 

To fully exploit this large expression data set to identify pathways and genes directly associated 

to creatinine levels, we needed to factor out the confounding effect of compound treatment. To 

explore the latter, we clustered the expression data from the 933 assays using k-means [13, 14]. 
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We leveraged NbClust [15] to identify the value of k (between 30 and 200) maximizing the Dunn 

index [16], a measure of cluster quality defined as the ratio between minimal intercluster 

distance to maximal intracluster distance. The best Dunn index was 0.52 for k=171. We then 

measured the Biological Homogeneity Index (BHI) of the resulting clustering with respect to 

various annotations, where the BHI (defined in https://cran.r-

project.org/web/packages/clValid/vignettes/clValid.pdf) is a value in the range [0, 1], reflecting 

the average proportion of pairs in the same cluster with identical annotation. Thus, larger BHI 

values correspond to more homogeneous clusters in terms of the annotation attribute. We 

calculated the BHI for each of compound, dose, and sacrifice time. The values were 0.77, 0.31, 

and 0.66, which indicates that these are important covariates to adjust for, as they are associated 

to how the data are clustering. We also note that, since TG-GATEs combines data collected from 

different studies through the years, adjusting all features and target by compound has the 

additional benefit of removing study batch effects, as typically studies revolved around specific 

compounds. 

 

To assess the robustness of TPOT with respect to both GP stochasticity and selection of training 

and testing portions, it is crucial to run the program repeatedly with different random train/test 

splits and verify the consistency of the results across such runs, in particular in terms of selected 

pathways. We generated 100 random splits of the data into training (75%) and testing (25%) 

parts. For each split, we ran resAdj TPOT, adjusting target and all features by the encoded 

compounds, doses, and sacrifice times (following path C in Figure 1), using 500 generations and 

a population of 500 in the GP. For each run, the training data set underwent 5 CV splits and the 

adjustments during training were leakage-free thanks to the approach we described in Methods. 
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Since the target is replaced by residuals, it represents a continuous outcome. We used the 

Template ‘FeatureSetSelector-resAdjTransformer-Transformer-Regressor’ and the coefficient of 

determination (R2) to score the models. For each run we noted the optimal pipeline, including the 

selected pathway (i.e. Feature Set) and its score on the held-out testing set. Figure 2 summarizes 

the results. The ‘G-protein signaling’ and ‘Integrin-mediated cell adhesion’ pathways were 

consistently selected in most of the runs (54% and 28%, respectively) with a median R2 of ~0.57. 

Both pathways play known roles in kidney function: G-protein signaling is responsible for 

mediating response to various types of physical damage to the cell in a broad range of renal 

diseases [17, 18]. Integrin-mediated cell adhesion plays a crucial structural role in the portions of 

the kidneys responsible for collecting waste from the circulatory system [19]. Therefore, 

considering that creatinine is an indicator of kidney health and is not restricted to a specific 

mechanism of kidney injury, when adjusting for relevant covariates, TPOT preferentially selects 

biologically plausible pathways. 

 

We also assessed features and covariates by calculating their permutation importance using eli5 

v0.10.1 (https://github.com/TeamHG-Memex/eli5) across the 100 runs and then computing the 

weighted (by testing score) average of the mean score decrease as a percentage of the score . As 

illustrated in Figure 3, the adjustments by compound and sacrifice time are highly relevant. 

Moreover, the top 20 features (ranked by importance scores) include genes that are biologically 

significant in terms of modulating kidney function. For example, the gene with the highest 

importance score, Akap9, codes A-Kinase Anchoring Protein 9, which is highly expressed in 

kidney tissue, is implicated in retention of T-lymphocytes in kidney tissue under states of 

inflammation [20], and is one of the most commonly mutated genes in metastatic renal 
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carcinoma [21]. The gene Gnb1, which codes for G Protein Subunit β 1, comprises both the 

second and third most important features (at two genetic loci), and is highly expressed in kidney 

glomeruli and tubules [22]. Like Akap9, Gnb1 is also implicated in kidney disease, where 

downregulation of the gene is associated with worsened prognosis of clear-cell renal cell 

carcinoma [23], as well as in resistance to tyrosine kinase inhibitor drugs in human models of 

kidney cancer [24]. Similar patterns can be seen in other important features, although we omit 

them for brevity. 
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Figure 2. Boxplots for the results of 100 runs of resAdj TPOT on the TG-GATEs data set. 

Each point corresponds to one run, where the x-coordinate indicates the pathway (Feature Set) 

selected in the optimal pipeline for that run and the y-coordinate indicates the R2 on the held-out 

Testing dataset. 

 

The clustering results underscore how adjusting for covariates in this data set is crucial to 

properly examine the net effect of genes on creatinine levels. Indeed, running classic TPOT (i.e. 

no covariate adjustments) on the expression features, yields quite different results. We used the 
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same 100 random splits into training and testing parts and, for each split, we ran TPOT with the 

template ‘FeatureSetSelector-Transformer-Classifier’ and balanced accuracy as a scorer since, 

without adjustments, the target is the original multiclass variable (7 levels of creatinine). Again, 

we used 500 generations and a population of 500 in the GP. As illustrated in Additional file 3, 

the most frequently selected pathway was ‘Smooth-muscle contraction’ (45% of the runs) 

followed by ‘mRNA-processing’ (14%). Parenthetically, scores cannot be directly compared 

with the runs in resAdj TPOT since the scorers are different (balanced accuracy versus R2). Even 

though both pathways that were identified as important in the resAdj runs (‘G-protein signaling’ 

and ‘Integrin-mediated cell adhesion’) also show up in some of the classic runs, they are partially 

obscured by a number of other pathways that are largely uninformative or irrelevant in terms of 

kidney disease, primarily pathways that mediate the functionality of the heart and blood vessels. 

Although these are peripherally involved in kidney function due to the kidneys' role in the 

circulatory system, there are no obvious connections between these pathways and kidney injury 

in particular. 

 

In terms of feature importance, the difference between classic and resAdj TPOT is striking. Each 

of the top two most important genes in the covariate adjusted runs (Akap9 and Gnb1, but not the 

second locus of Gnb1) are notably absent from the list of the top 20 features from the unadjusted 

runs (see Additional file 4), implying that the covariate adjustment filters out spurious 

correlations that would otherwise obscure mechanistically significant features, at least when 

applied to data sets with a focus on toxicogenomic response. Rather, the top gene from the 

classic runs is Sf3b1, which is only tangentially associated with kidney disease via copy number 

variation, through no known mechanism [25]. 
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Figure 3. Permutation importance from 100 runs of resAdj TPOT on the TG-GATEs data 

set. The top 20 features and 7 covariates are shown. The gene names are displayed on the y-axis 

and the weighted (by testing score) averages of the mean score decrease as a percentage of the 

score are displayed on the x-axis. The analyses were done at the probeset level, and for Rhoa 

there were two probesets among the top 20 features. 
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3.2. PsychENCODE 

In this data set, we considered sex and ethnicity as potential covariates affecting the target 

(disease status), and ethnicity and study as potential covariates affecting the features (measured 

gene expression).  We therefore ran similar clustering analyses and BHI calculations to those 

done on TG-GATEs. Varying k from 10 to 240 for clustering of the 1072 expression assays, the 

best Dunn index was 0.47 corresponding to k=201. The BHI values of the corresponding 

clustering for the potential covariates affecting gene expression were 0.04 for both ethnicity and 

study, close to 0 and much smaller than the covariates we analyzed in TG-GATEs, indicating 

that these covariates do not have a strong effect on the expression. Thus, on these data, it is 

desirable to get similar results when running resAdj and classic TPOT. Indeed, this was the case. 

We proceeded similarly to TG-GATEs to set up 100 runs for each of resAdj and classic TPOT, 

noting the pathways identified in the optimal pipelines and computing permutation importance 

scores for the genes (see Additional files 5-8 for corresponding plots). In either classic or resAdj 

modality, for about 80% of the runs the pathway from the optimal pipeline was ‘Calcium 

Signaling’. The latter is an important pathway for the pathophysiology of schizophrenia, as 

implicated by several previous studies [26–31]. This pathway contained the top strongest genes 

based on permutation importance in both TPOT modalities, namely PTAFR, GNAL, CAMK2G, 

and PRKCG. The remaining runs, in both modalities, identified three other pathways whose 

association with schizophrenia is supported in the literature: ‘neuroactive ligand-receptor 

interaction’ [27, 30, 32], ‘MAPK signaling’ [33–35], and ‘pathways in cancer’ [35]. In addition 

to these, one of the classic runs identified ‘Long-Term potentiation’ (albeit with a lower score), 

which too has been reported as associated with schizophrenia [36]. We note that none of these 5 

pathways were identified when we ran the typical GSEA [9] analyses on this data set. GSEA did 
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not identify any of the MSigDB canonical pathways as significant at FDR<25%. Additional file 

9 lists the pathways with GSEA unadjusted p-values < 0.05.  

 

Discussion 

An important need for applications of AutoML methods, and machine learning in general, to 

biomedical data analyses is the ability to incorporate covariate adjustments. In this work, we 

have presented an approach to adjust the target and/or any subset of the features by a collection 

of relevant covariates in the context of TPOT, a GP-based AutoML approach. Our method 

enables adjustments while properly avoiding leakage during pipeline training. We have 

illustrated its usefulness by an application to a toxicogenomic dataset where adjustments were 

necessary in order to identify pathways and genes associated to creatinine levels in the presence 

of confounders. In this application we obtained results which were robust (across 100 runs) and 

very consistent with known kidney biology. We then applied resAdj TPOT to a different gene 

expression data set (schizophrenia), obtaining results which were extremely stable and supported 

by biological literature. In the latter data set we had an indication that confounding was less of an 

issue, and indeed we observed that resAdj led to the same results as classic TPOT, as desired. In 

general, though, selecting which covariates are important for adjusting which of the features or 

target is a delicate step, as different choices could significantly impact the results. Thus, 

developing approaches and tools aimed at assisting users in this endeavor is as an important area 

of research that needs to move in parallel with the refinement of approaches like ours.  

 

Another area that needs to be further explored is how to best encode nominal variables (i.e. 

categorical variables with no natural order relationship) in the context of our method. When the 
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number of values N of a nominal variable is small, one-hot encoding can be a simple solution. In 

this case, the variable is replaced by N-1 new binary ‘dummy variables’. However, for large 

values of N, this encoding may not work well. In fact, when we tried it for the compound 

variable in our TG-GATEs data set, we obtained models with very low R2 (data not shown). In 

our case, switching to a binary encoding with six variables led to good results with high testing 

scores. But a systematic study of the effects of different encoding choices on our method is an 

important aspect for future research.  

 

Our no-leakage adjustments leverage the typical approach of replacing a variable by its residuals 

obtained by regressing out the covariates via linear or logistic regression, depending on the type 

of variable. However, in principle, other estimators could be used, i.e. other classifiers for binary 

or multiclass variables and other regressors for continuous variables. Possibly, a first pass 

assessment of the best estimators to use for the adjustments could be done using TPOT itself. 

Refining and extending resAdj TPOT to this end is another interesting path for future 

developments. 

 

Conclusions 

Our resAdj TPOT approach represents a first step towards addressing a relevant need for 

AutoML applicability to biomedical big data analyses, where covariate adjustments are often 

necessary. The applications we presented in this work leveraged toxicogenomics and differential 

gene expression data. But there are many other scenarios where resAdj TPOT could provide a 

useful analysis option. For example, it could aid in epistasis analyses of genotype data, where 

covariate adjustments (e.g. genetic principal components, age, sex, etc.) is typically crucial. 
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More generally, the increased availability of resources such as the UK Biobank [37] providing a 

rich and large basket of phenotypes and genotypes, enables a plethora of interesting data 

explorations for which methods such as resAdj TPOT represent a very useful tool. We anticipate 

this work will have broader impact on machine learning. 

 

List of abbreviations 

AutoML = Automated Machine Learning 

CV = Cross Validation 

FSS = Feature Set Selector 

GP = Genetic Programming 

GSEA = Gene Set Enrichment Analysis 

resAdj = residual adjustment 

TPOT = Tree-based Pipeline Optimization Tool 
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Additional files 

Additional file 1. Additional methods. Details for the leakage-free covariate adjustment. 

(AdditionalFile1.pdf). 

 

Additional file 2. resAdj TPOT pre-processor output. Structure and column description of the 

output from this pre-processor (AdditionalFile2.pptx). 

 

Additional file 3. Boxplots for the results of 100 runs of classic TPOT on the TG-GATEs data 

set. Each point corresponds to one run, where the x-coordinate indicates the pathway (Feature 

Set) selected in the optimal pipeline for that run and the y-coordinate indicates the balanced 

accuracy on the held-out Testing dataset. (AdditionalFile3.pdf). 

 

Additional file 4. Permutation importance from 100 runs of classic TPOT on the TG-GATEs 

data set. The top 20 features are shown. The gene names are displayed on the y-axis and the 

weighted (by testing score) averages of the mean score decrease as a percentage of the score are 

displayed on the x-axis. The analyses were done at the probeset level, and for some of the genes 

there were two probesets among the top 20 features. (AdditionalFile4.png). 

 

Additional file 5. Boxplots for the results of 100 runs of resAdj TPOT on the PsychENCODE 

data set. Each point corresponds to one run, where the x-coordinate indicates the pathway 

(Feature Set) selected in the optimal pipeline for that run and the y-coordinate indicates the R2 on 

the held-out Testing dataset. (AdditionalFile5.pdf). 

 

Additional file 6. Permutation importance from 100 runs of resAdj TPOT on the 

PscychENCODE data set. The top 20 genes (features) and 2 covariates are shown. The gene 

names are displayed on the y-axis and the weighted (by testing score) averages of the mean score 

decrease as a percentage of the score are displayed on the x-axis. (AdditionalFile6.png). 
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Additional file 7. Boxplots for the results of 100 runs of classic TPOT on the PsychENCODE 

data set. Each point corresponds to one run, where the x-coordinate indicates the pathway 

(Feature Set) selected in the optimal pipeline for that run and the y-coordinate indicates the 

balanced accuracy on the held-out Testing dataset. (AdditionalFile7.pdf). 

 

Additional file 8. Permutation importance from 100 runs of classic TPOT on the 

PscychENCODE data set. The top 20 genes (features) are shown. The gene names are displayed 

on the y-axis and the weighted (by testing score) averages of the mean score decrease as a 

percentage of the score are displayed on the x-axis. (AdditionalFile8.png). 

 

Additional file 9. GSEA results on the PsychENCODE data set. Pathways with unadjusted p-

values<0.05. (AdditionalFile9.xlsx). 

 

Additional file 10. TG-GATEs assays used. The list of 933 assays used in this work 

(AdditionalFile10.txt). 
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