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Abstract 

Episodic memories are contextual experiences ordered in time. This is 

underpinned by associative binding between events within the same 

contexts. The role of prediction errors in strengthening declarative memory 

is well established but has not been investigated in the time dimension of 

complex episodic memories. Here we used 3-day movie viewing paradigm 

to test the hypothesis that contextual prediction errors leads to temporal 

organization of sequential memory processing. Our main findings uncover 

that prediction errors lead to changes in temporal organization of events, 

secondly, new unexpected sequences show as high accuracy as control 

sequences viewed repeatedly, and these effects are specifically due to 

prediction errors, and not novel associations. A drift-diffusion modelling 

further revealed a lower decision threshold for the newer, unexpected 
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sequences compared to older sequences reflected by their faster recall leads 

to reorganization of episodes in time. Moreover, we found individual decision 

threshold could significantly predict their relative speed of sequence memory 

recall. Taking together our results suggest a temporally distinct role for 

prediction errors in ordering sequences of events in episodic memory. 

Introduction 
Imagine while entering the office, you see your favorite actor sitting in your 

chair, much to your surprise. The memory of such an event would be harder 

to forget than others. The substantial memory consolidation of this example 

event, due to the low expectation of such events occurring within the given 

context displays the dependency of our day-to-day memories on the 

underlying contextual1, 2, 3, 4, 5 and predictive processes6, 7, 8, 9, 10. Episodes or 

events being the canonical components of episodic memory11, are not only 

marked by a clear beginning and an end, but also relatable to each other 

temporally11. As such, our memories are organized sequentially in contexts 

that evolves in time. But whether and how unpredicted events can affect this 

temporal code of our experienced memories is something that surprisingly 

remains largely unexplored.  
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Predictions are a hallmark of episodic memory recall6, 7,10. Therefore, 

whenever a context is re-experienced, the sequence of episodes is 

automatically predicted6, 9, 10, 12. Prediction errors resulting from the violation 

of these predictions have been shown to influence declarative memory by 

strengthening incidental encoding13, semantic memory acquisition14, paired 

association learning15, 16 and by playing a role in reconsolidation12. Despite 

its wide effects on declarative memory, its role in episodic memories are only 

uncovering now.  

 

A core property of episodic memory is the sequential arrangement of the 

events as and how they occurred in their respective contexts.  A context in 

its simplest form is described as any aspect of the episode that binds its 

constituent elements together, be it spatial, temporal or conceptual2, 3, 4, 5, 11. 

Daily life involves numerous instances where multiple different event 

instances share the same context. The Temporal Context Model (TCM)1, 17 

of memory posits that such memories sharing the same temporal context are 

encoded separately, creating source confusion during memory recall. 

Memories of items shared in same context have been observed to be 

weakened18. It can also be explained by an important line of work termed as 
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reconsolidation4, 19, 20, 21, 22, which posits the older memories would get 

updated which is thought to be mediated by prediction error23, 24, 12 and is 

demonstrated by an asymmetric intrusion of memories in the same context 

during recall. However, a recent theory2 which builds on and unites a lot of 

theoretical frameworks of memory, proposed contextual binding as a unified 

mechanism with the hippocampus playing a central role in item and context 

binding. In addition to hippocampal associative learning mediating context 

representation, this theory also posits that forgetting occurs mainly due to 

contextual interference from shared memories. The hippocampus, 

interestingly is also predictive in nature10, 25 and is sensitive to prediction 

mismatches26. This sets up an intriguing questions on how interactions 

between these two properties affect episodic memories.   

 

In the present study, we test the hypothesis that the contextual prediction 

errors would fundamentally alter the memorized sequence of events. 

Specifically, sequences that are predicted but not experienced in a context 

would be weakened, and the new sequence that was seen instead would be 

strengthened, as a whole. From the perspective of predictive coding27, 28 new 

surprising information drives associative learning and the ensuing sequential 

order would be strengthened over older encoded sequential information, so 
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as to minimize the errors in the future. Our key finding is that contextual 

prediction errors strengthens the newer memory sequences in time while 

weakening the order of previously encoded sequences, thereby reorganizing 

encoded temporal memories. This enhanced performance, reflected by 

faster reaction times, on subsequent modelling showed that it results from 

lower decision threshold while remembering, signifying a more automatic 

response for the newer sequences. Critically, even the reexposure of 

mispredicted segments in an event later on did not exempt it from getting 

weakened while recalling. Collectively our findings reveal how prediction 

errors play a key role in determining how episodic memories are organized 

in time. 

Results 
Formation of contextual priors and subsequent prediction errors. To 

systematically validate our hypothesis, we employed a 3-day paradigm with 

naturalistic movies strategically edited into contextually different events 

containing multiple segments (Fig. 1a). Since one of our main goals was to 

understand the crucial relationship between prediction error and the 

evidence accumulation process for the subsequent memories during 

sequence recall, we devised a way to measure the strength of individual 

temporal memories for the movie events. After watching the movies on Day1, 
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participants saw an incongruent version of the movies with different but 

contextually fitting segments added or replaced onto the original event during 

Day2 with a sequence memory test conducted on Day3. The test required 

participants to choose the correct temporal order of adjacent segments 

within the same event (Fig. 1c). Moreover, we had two conditions in which 

participants watched the movies – Substitution condition (Fig. 1b, top), where 

a segment is replaced by another segment having different content (on 

Day2), but fitting with the context, and Addition condition (Fig. 1b, bottom), 

where after viewing the New segment the Old segment was viewed again. 

This second condition allowed us to understand the relationship between 

prediction error and reactivation, a property of memory which strengthens 

them.  
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Fig.1 | Experiment paradigm. Participants watched two movies (divided into several 

different events having multiple segments) on Day1. The following day (Day2), they saw 

the same movies in either of two conditions - Substitution and Addition. Substitution had 

another contextually fitting segment substituting a prior encoded segment, while in 

Addition the omitted segment is viewed again (after the prediction error). A sequence 

memory task (2-AFC) of adjacent segments tested participants’ temporal order memory 

for each event on Day3. a, Example of an event seen on Day1. Each segment is 7s with 

a 1s blank screen in between (not shown). b, Day2 conditions. Substitution (top) where 

participants were predicting a segment (Old) seen the previous day (faded red dots) while 

actual segment (New) is a different one which fits with the context. Addition (bottom) 

which has the Old (predicted) segment re-experienced (hence reactivated) after the 
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prediction error is induced by the New segment. PrePE-Old temporal sequence memory 

is taken as Old sequence and PrePE-New temporal sequence is taken as New sequence. 

c, Schematic of Day3 Sequence memory test block. Each sequence was shown by 

displaying representative screenshots of those segments involved (in both normal and 

reverse order). Participants had to choose the correct order of the segments in the order 

they saw in the movie.   
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Fig. 2 | Prediction errors affect temporal order of the memory by updating prior 

encoded sequences. a, Accuracy and reaction times for Substitution condition showing 

significantly greater memory performance for the New sequences over Old sequences. 

b, In Addition condition, reactivation of the initially omitted memories leading to re-

experiencing the segments again shows no significance in memory accuracy between 

the sequences but Old sequences show significantly slower RTs. Dots represent 

participants’ individual performance (n = 24). Error bars denote s.e.m. 

 

Prediction errors reorganize temporal episodic memories. We 

hypothesized that the association strength of the inaccurately predicted Old 

sequences would be weaker compared to the New sequences because of 

the prediction error. Subsequently, we compared the sequential order 

memory between PrePE segment and Old segment with the PrePE segment 

and the New segment. Indeed, there was a significant difference in 

percentage accuracy between recalling the Old (Mean = 47.69, SE = 3.04) 

and New sequence (Mean = 58.76, SE = 3.05) in Substitution condition (t(23) 

= 3.416, p = .002, 95% CI [4.36, 17.77], BF = 16.60, d = .74) (Fig. 2a). There 

was a significant decrease in reaction time for the New sequence (Mean RT 

= 1517ms, SE = 34ms) compared to Old sequence (Mean RT = 1600ms, SE 

= 44ms) t(23) = -2.42, p = .02, 95% CI [-151.8,  -12.13], BF = 2.39 , d = .42 

(Fig. 2a). 
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Mental representation of event sequences helps predict temporal causality 

of the segments. A PrePE segment would be predictive of the upcoming Old 

segments after initial viewing. After a PE occurred however, the same PrePE 

segment was more predictive of the New segment. The effects of prediction 

errors on the accessibility of the memory sequences is reflected by this 

result. In other words, the New sequences are always recalled faster 

compared to the Old ones.  

Slower recall of reactivated memories with prediction errors. Next, we 

hypothesized that the segments omitted in Substitution if re-experienced 

again, would result in stronger memory activation of those segments. That 

is, if the mispredicted segment is re-experienced, its subsequent reactivation 

would strengthen its sequential memory. The Addition condition was used to 

test out this specific hypothesis. This allowed us to tease out the specific 

effect of PE by comparing New and Old Sequences by its interaction with 

memory reactivation. Furthermore, this also allowed us to control for a 

potential temporal recency confound in Substitution condition. In other 

words, whether the results observed in Substitution is due to the fact that 

New sequences had segments seen on Day2 compared to Old sequences 

having segments from Day1, potentially giving a recency advantage. We 

found that the group differences in mean accuracy of New (Mean = 57.71, 
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SE = 3.02) and Old (Mean = 52.62, SE = 4.25) sequences did not differ 

significantly t(23) = 0.906, p = .37, 95% CI [-6.5, 16.69], BF = 0.31, d = .28 

(Fig. 2b). This is not surprising given that in Addition condition re-

encountering of the Old segment after the prediction error occurs, in contrast 

to Substitution condition where the segment was omitted. Reaction times 

however, showed a significant difference (New Sequence Mean RT = 

1486ms, SE = 31ms, Old Sequence Mean RT = 1582ms, SE = 35ms), similar 

to the Substitution condition t(23) = -2.43, p = .02, 95% CI [-177, -14.32], BF = 

2.41, d = .58) (Fig. 2b). These results suggest a specific effect of PEs on the 

New memory sequences reflected by their faster RTs with concomitant 

slowing of Old memory sequences, even if reactivated.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.08.24.265132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.265132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fig. 3 | One-shot learning exhibited by New sequences. Similar accuracy performance 

in sequence memory recall between New (blue) and Control (yellow) sequences in a, 

Substitution and b, Addition suggesting a one-shot style learning. Control sequence is the 

sequence of Start-PrePE, which was unchanged for both conditions and days. Dots 

represent participants’ individual performance (n = 24). Error bars denote s.e.m. 

 

A one-shot learning observed in the New sequences. Recent studies 

have put forth a one-shot encoding property of PEs16. We wondered whether 

this holds true in temporally extended naturalistic memories as well. We 

compared the Control sequences, (Start-PrePE) so named since they are 
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seen repeatedly on Day1 and Day2 without any changes or violations with 

the New (PE) sequences. This enabled us to contrast how much of learning 

did PEs enhance in the memory accuracy, compared to a sequence 

experienced twice.  

Remarkably, in Substitution there was no significant difference (t(23) =  0.83, 

p = .41, 95% CI [-0.054,  0.126], d = 0.23, BF = 0.29 ) between New (Mean 

= 58.76, SE = .03) and Control sequences (Mean = 62.38, SE = .03). (Fig 

3a). This indicates that learning of event sequences occurring through 

repetitive encoding and one-shot encoding can have comparable accuracies 

if a prediction error was produced in learning of the latter.  

This effect of PEs on the memories was noted in Addition condition as well 

with similar memory accuracies (t(23) =  1.54, p = .13, 95% CI [-0.022,  0.152], 

d = 0.44, BF = 0.60) between New (Mean = 57.71, SE = .03) and Control 

sequences (Mean = 64.22, SE = .029) (Fig. 3b). Firstly, this shows the effect 

is present independent of conditions and secondly it solidifies the importance 

of prediction errors in driving one-shot episodic sequence learning.  
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Fig. 4 | Effects are due to Prediction Errors and not novel associations. New 

sequences were compared to novel sequences, which was the New-PostPE sequence  

a, Accuracy and Reaction times in sequence memory of New (PE) sequence (Orange) 

and novel sequence (Purple) in Substitution condition denoting better performance in 

New sequences but not in novel sequences. b, Accuracy and Reaction times in sequence 

memory of New (PE) sequence (Orange) and Novel sequence (Purple) in Addition 

condition. Note that the novel sequence here is New-PostPE sequence of which the 

PostPE is the segment that was originally omitted but seen again.  Dots represent 

individual participant performance. Error bars represent s.e.m.  

 

The effects on temporal order memory are specifically because of PEs 

and not due to novel associations. In order to truly verify that the memory 

effects are due to PEs but no other factors like novel associations, we 

compared the New sequence (PrePE-New) with the subsequent sequence, 

PostPE-New, which was termed as Novel sequence. The reasoning being, 

since both these memory associations are encoded on Day2, unless there 

was a specific effect of PEs, both would justifiably have similar memory 

encoding. Thus, we hypothesized since the memory strengthening can only 

be due to PEs, the New sequences would have significantly better memories 

over novel associations.           
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In Substitution, there was a significant difference (t(23) = 2.12, p < .05, 95% 

CI [0.002, 0.214], BF = 1.41 , d = .67) in accuracy between New sequence, 

(Mean = 58.76, SE = .03) compared to the Novel sequence (Mean = 47.88, 

SE = .03) (Fig. 4a). This difference was significant in response times as well 

(t(23) = -3.07, p = 0.0054, 95% CI [-0.136, -0.026], BF = 8.18, d = .44) between 

New Sequence (Mean RT = 1517ms, SE = 34ms) and the Novel Sequence 

(Mean RT = 1600ms, SE = 41ms) (Fig. 4a). This shows that in Substitution, 

even though both the sequences were seen on the same day, there is a stark 

difference in memory performance specifically due to PEs and not seen in 

novel sequences. Next, we sought to replicate this in the Addition condition.  

We hypothesized that similar patterns would be present in Addition as well. 

A significant difference (t(23) = 3.29, p = 0.0031, 95% CI [0.048, 0.210], BF = 

12.8, d = .96) was observed in accuracy between New sequence (Mean = 

57.71, SE = .03) compared to the Novel sequence here as well (Mean = 

44.77, SE = .02) (Fig. 4b). Response times demonstrated significant 

differences as well (t(23) = -2.82, p = 0.0096, 95% CI [-0.175, -0.027], BF = 

5.00, d = .61) (New Sequence Mean RT = 1486ms, SE = 31ms, Novel 

Sequence Mean RT= 1588ms, SE = 36ms) (Fig. 4b). This conclusively 

shows the memory strengthening effects are exclusive when strong prior 
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expectations are violated, but not when mere associations (without any 

explicit prediction errors) are formed. 

 

 

 

Fig. 5 | Hierarchical DDM results. a, An illustration of the DDM. The drift rate v reflects 

the rate of noisy accumulation of evidence till it reaches either of the two boundaries which 

are separated by a parameter a. The process starts at point z which may or may not have 

a response bias (not included in the main model) towards either boundaries, which results 

in the model making the response choices. The response times are a combination of 

diffusion process and the non-decision time Ter, which includes no accumulation. b, 
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Posterior density plots of the group means boundary parameter (top) showing differences 

(p = 0.026) between the Old and New sequences. New sequences were recalled faster 

due to the lower decision requirement while recalling compared to the Old sequences. 

Posterior density plots of the group means drift-rate parameter (bottom) showing no 

difference between the Old and New sequences but only between High and Low 

confidence responses (p <0.001). c, The subsequent adjustment in decision criteria made 

by the participants (boundary parameter) for recalling newer memories (compared to old 

ones) were significantly correlated with change in reaction times in Addition (Purple) r = 

0.74, p < .001 and Substitution (Pink) r = 0.61, p = .0016. Dots represent individual 

participants. 

 

Prediction errors reduce decision threshold during sequence recall of 

newer memories. The main model allowed both drift rate and boundary 

parameters to vary with Stimulus (Old and New memory sequences). This 

allowed us to compare which of the two parameters demonstrated the 

empirical effect of PEs, which is the reaction time of the participant in 

choosing the temporal order between two segments. Drift rate also varied 

across Confidence (High Confidence and Low Confidence) (Supplementary 

Table 1).  

Thus our key question from a modelling perspective was to test whether 

faster memory retrieval performance is dependent on lower decision 
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threshold or faster drift rates. The best fitting model (Supplementary Fig. 4) 

had both drift rates and boundary parameter allowed to vary with the 

Stimulus, that is Old and New sequences. Drift rate was also allowed to vary 

with Confidence measures for each trial response. The HDDM model reliably 

accounted for reaction times. Moreover, a posterior predictive check was 

conducted to assess model performance (by generating 100 datasets from 

the model) which could predict the observed RTs (Fig. 6a, Fig. 6c).  

Significant differences between the Boundary parameter a of Old and New 

sequences explained the empirical data (BoundaryOld group means = 1.747, 

95% credible interval [1.657-1.846], BoundaryNew group means = 1.642, 95% 

credible interval [1.558-1.730], p = 0.026) (Fig. 5b, top). Specifically, New 

sequences with PEs required lower threshold to arrive at a decision 

compared to Old sequences. In other words, a reduced threshold need to 

cross allows PE based memories to be recalled faster during making 

decisions on their temporal order. 

We estimated the drift-rate parameter v, to quantify the differences between 

RTs in Old and New sequences. The drift-rate parameter v, crucially did not 

show any significant differences between the Old and New sequences in 

both Low (Drift-rate Low ConfidenceOld group means = -0.153, 95% credible 
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interval = -0.445 - 0.129, Drift-rate Low ConfidenceNew group means = -0.326, 

95% credible interval = -0.666-0.009, p = 0.217) and High Confidence 

responses (Drift-rate High ConfidenceOld group means = 0.389, 95% credible 

interval = 0.221-0.556, Drift-rate High ConfidenceNew group means = 0.52, 

95% credible interval = 0.358-0.685, p = 0.867) (Fig. 5b, bottom). This is also 

in line with the behavioral result of participants’ subjective confidence 

judgements which did not significantly differ between Old and New 

sequences, in both Substitution and Addition (Supp Fig. 3). However, drift-

rates did show significant differences between Low Confidence and High 

Confidence responses, across the Stimulus (Drift-rate High 

ConfidenceNew+Old group means = 0.455, Drift-rate Low ConfidenceNew+Old 

group means = -0.24, p < .001). This means that rate of evidence 

accumulation while recalling the temporal order of memory determines the 

subjective confidence accompanying those responses. Intuitively, a faster 

drift rate resulting in rapid memory activation might signal more subjective 

confidence in the memories.  

Change in decision boundaries correlate with change in reaction times 

across participants. We wanted to quantify how much of the within-subject 

reaction time differences between Old and New sequences were driven by 

the changes in decision boundaries. For this, we used the ratio of Boundary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.08.24.265132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.265132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

parameter a(Old)/ Boundary parameter a(New) to quantify the change in 

evidence requirement and correlated this quantity with the ratio of 

RT(Old)/RT(New) as a measure of change in reaction times for each participant. 

If prediction errors were affecting the decision thresholds, then there should 

be a correlation between how much the memories for Old sequences were 

weakened (as reflected by their increased reaction times compared to the 

New sequences) and how much the participants’ decision boundaries were 

increased for these sequences.  

Significant correlations were found in both Substitution (r = 0.61, p = .0016) 

and Addition (r = 0.74, p < .001) revealing how the changes in the decision 

boundary drives corresponding changes in participants’ reaction times. (Fig. 

5c) 
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Fig. 6 | Model accurately fits the observed RT a, Behavioral RT data correlates with 

model generated RT data in Substitution for Old sequence (left), r = 0.81, p < .00001 and 

New sequence (right), r = 0.81, p < .00001. b, Reaction time fits of model with empirical 

RT data in Substitution for New sequence(left) and Old sequence(right). c, Behavioral RT 

data correlates with model generated RT data in Addition for Old sequence(left), r = 0.61, 

p = .0014 and New sequence (right), r = 0.70, p = .00012. d, Reaction time fits of model 

with empirical RT data in Addition for New sequence(left) and Old sequence(right). Data 

(Purple), Model (Green). Dots represent individual participants.  
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Discussion 
Using episodic memory to encode events temporally helps us not only in 

communicating our experiences precisely to others, but also to initiate future 

event predictions so as to adjust behaviours accordingly. Converging 

evidence of the contextual and predictive functions of hippocampus, the core 

structure behind episodic memory, suggests a dual nature of memory recall. 

Here we used a movie stimulus with distinct contexts, each of which elicited 

a contextually specific prediction error to demonstrate this property. Our 

results strongly suggests updating of the temporal event structure upon 

encountering contextual mismatches. Specifically, the temporal order of 

older, inaccurately predicted sequences of memories in a given context was 

significantly weaker. This concomitant increase in memory strength for the 

newer memory sequences, was observed suggesting that PEs can 

selectively disrupt episodic memories in the time domain. Finally, by 

conceptualizing the sequence memory retrieval as an evidence 

accumulation process over time via a hierarchical drift-diffusion model, we 

offer insights into how PEs decreased evidence requirement for the new 

sequences during recall. 
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Extant literature suggests how PEs can affect declarative memory13, 14, 15, 16 

and even destabilize it23, 12. But an emphasis on how temporal components 

of episodic memories are affected by PEs is mostly unexplored. When the 

predictive power of the memorized sequence of events decreased, they are 

weakened, leading to a reconfiguration of the temporal order such that the 

newer sequences are accepted as the most probable ones in that context. 

This was observed without an explicit reward function or multiple trial 

learning occurring, suggesting a mere context violation with single exposure 

can shape temporal memories profoundly. A very recent work29 which 

computationally modelled neuroimaging data while participants listened to 

temporally extended narratives demonstrated the construction and forgetting 

of memories were best captured by a hierarchically organized temporal 

context, where interaction between current and prior contexts decide 

memory formation. Interestingly, this was decided by a surprise or prediction 

error signal in the hierarchical model. Another recent study30 showed 

electrophysiological signatures of prediction error in episodic recall while 

participants noted a difference between an expected image and its prior 

encoded state. Our paradigm ensured that a prior temporal context of 

memories is encoded and violated at specific segments, thereby teasing out 
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the specific behavioural effect of PEs on the sequential arrangement of 

memories.  

 

Furthermore, in a second condition conceptually similar to the first, we made 

the participants re-experience the mispredicted segments, after inducing the 

PE to reactivate those sequences strongly. This enabled us to understand 

the interaction between reactivation, a cardinal property of memory and 

prediction error. Strongly reactivating memories have been shown to 

strengthen them31, 32. Strikingly, despite these Old sequences having similar 

accuracies compared to the New sequences, there was a stark increase in 

response times. In other words, even though the segments were seen again, 

participants were slower in recalling the temporal order signifying the fact 

that even re-experiencing the memories did not protect the temporal order 

from being affected by surprise. It could be that the memory of the rewatched 

segment itself wasn’t affected, rather the original temporal order in which it 

was encoded. In doing so, we uncovered an interaction between memory 

reactivation and PEs. Taken together, the main emerging finding from the 

above two key empirical results are a specific effect of PEs in slowing the 

recall of older, mispredicted memory sequences. We sought to model 

empirical observations to gain insight as to why this could possibly happen. 
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Deploying a hierarchical drift diffusion model allowed us to disentangle the 

mechanisms underlying these reaction time differences. That is, whether the 

slower reaction times were due to slower evidence accumulation rate or a 

higher decision threshold. Model output showed the effects of PE are due to 

increased decision threshold for the Old sequences, and subsequent 

decrease in threshold for the New sequences. Importantly, this relative 

change in decision threshold correlated significantly with the relative change 

in response times within participants. This suggests a more bottom-up, 

automatic decision while recalling the New sequences. We interpret this 

observation as participants deploying more top down control while recalling 

Old event sequences which reduced when they recalled the New sequences, 

due to the latter requiring less evidence to decide. The extent of this 

reduction was reflected in the speed differences observed in recalling these 

two sequences. In contrast, no such support was found in favour of evidence 

accumulation rate accounting for the effects of PEs. However, the speed of 

evidence build up did determine subjective confidence in the memory 

sequences. This confirms our behavioural finding where confidence 

measures did not change significantly due to the PEs, in line with similar 
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studies12. Together with the behavioural results, this can explain some 

outstanding findings in the literature21, 12, 33. 

 

The distinctive feature of reconsolidation studies is the intrusions of one set 

of memories when recalling another when both are learned in the same 

context. For example, a list of words intrudes into a second list, when both 

are learned separately in the same context20, 21. Such intrusions are by 

nature, asymmetric, in the sense that only the second list can intrude onto 

the first and never the other way around. We interpret this longstanding 

finding in the light of our result as follows. During remembering the temporal 

order of memories sharing the same context, a source confusion ensues1, 17 

and the PE sequences owing to their lower decision threshold are recalled 

faster. While freely recalling memories, due to the decreased evidence 

required, PE memories intrudes into an older memory sharing the same 

context, reflecting as errors in remembering. The opposite is harder since 

older memories require more evidence and hence the asymmetry in 

temporal recall. 

The discrete segmentation of continuous ongoing experiences, proposed by 

Event Segmentation Theory34, is thought to be mediated by prediction errors 
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arising due to sudden, unpredicted contextual shifts. This effect on temporal 

structure can be recovered from pupillary arousal signals related marker for 

prediction error as shown by a recent study35. Such predictive principles in 

episodic memory are only now beginning to find common links with other 

prediction based learning systems in the brain6. Most tasks that induce 

prediction errors have a reward task structure learned over many trials13, 15. 

However, in our paradigm each segment created a PE only once, which was 

sufficient to destabilize the prior encoded sequence of events. It might be as 

if the accessibility of episodic memories depends on information about PEs 

as well while recalling, in addition to reward or value. Paradigms with both 

reward and non-reward, repetitive prediction errors would be required to 

address this. The lowered decision (criterion) requirement in the newer 

sequences also adds credence to predictive coding frameworks of episodic 

memory, where newer unexpected information is inherently prioritized to 

update internal models. 

Alternatively, the results of our experiment can be explained with a temporal 

advantage effect. Particularly, since participants saw the New segments 

during Day2, they will have a recency advantage during Day3 compared to 

segments encoded during Day1. However, we tried to minimize this recency 

effect by specifically instructing the participants to encode both days’ scenes 
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with equal priority. Furthermore, our hypothesized effect of PEs on temporal 

order was reported in the Addition condition as well, which had the memory 

segments of Day1 re-experienced, possibly ruling out this confound.  

Comparison of the New sequence memories with PEs to novel association 

sequences showed significant differences in memory strength and 

accessibility. Thus, we validated that the reported effects are due to violation 

of predictions only, and not due to novel associations. If the effects were 

purely due to association between events, then there should not have been 

any differences between the two sequences. But our results prove 

convincingly otherwise. Generally, in encoding temporal order of sequences, 

the association strength between two episodes depends on the informational 

relation on which they differ36. Thus, the more surprise involved, the more 

information gets equated with the association37. While we did not quantify 

the surprise elicited per segment mathematically, one can hypothesize the 

New PE sequences carry more surprise than the novel sequences following 

it.  

One compelling question to keep in mind when understanding the effect of 

PEs on temporal arrangement of memories, is how it measures up with 

events of repeated experience. Repeated patterns help us to predict 

upcoming events with higher precision. In our experiment, the control 
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sequences were repeated unchanged across both days’ viewings. Intuitively 

speaking, these should have better accuracies than New sequences that 

were seen on just once, owing to multiple exposures. Yet strikingly, the 

memory accuracies were similar, implying a one-shot learning for the New 

sequences. This is because it took these sequences only a single exposure 

to gain a performance similar to the repetitive sequences. Further work is 

needed to disentangle how the brain implements two routes of learning 

sequences – one-shot and repetitive learning38. A recent study16 has shown 

that one-shot learning is seen with PEs in paired association learning. We 

extend this finding to the time domain as memory sequences with PEs 

showed similar accuracies as control sequences.  

 

A promising future endeavor is investigating whether such sequential 

reorganization of prior encoded memories can be observed in language 

processing as well as in navigation. Recalling, ordering and integrating 

memories in time is widely considered to be a function of MTL structures10, 

38, 39, 40, 41, 42. The hippocampus, in addition to its central role in processing 

spatial, temporal and contextual information43, 44 has also been hypothesized 
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to be a generator of sequences45. Future studies can uncover how contextual 

recall and prediction occur in this structure distinctly.   

 

In closing, we combine the contextual and predictive properties of episodic 

memories, demonstrating how this mediates the temporal ordering of events. 

Future studies can correlate behavioural indices with neural measures in 

health and in disease. Since impaired temporal memory recall is one of the 

earliest signs of preclinical Alzheimer’s disease and mild cognitive 

impairment, our work can have important implications in developing aids to 

strengthen complex real-life memories. In addition, it also can inspire 

creating cognitive tools to weaken undesirable older memories in PTSD and 

anxiety.  
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Methods 
Participants: Twenty-four healthy young right-handed adults participated in 

this experiment (16 males, 8 females, ages 22-35, Mean: 27, SD: 3.3). The 

study was approved by the Institutional Human Ethics Committee of National 

Brain Research Centre, India (IHEC, NBRC).  All participants signed 

informed consent in consonance with the Declaration at Helsinki, declared 

normal or normal to corrected vision and no history of hearing problems, 

neurological and neuropsychiatric disorders.  

Materials: Participants saw 2 short films on Day 1. The selected films had 

engaging plots with multiple different contexts, spatially and conceptually 

with slightly surprising storylines. Secondly, being short films, they had no 

famous or otherwise identifiable actors whom the participants could easily 

recognize. This control on prior memory formation was a necessary step in 

our study. We wanted the natural scenes to appear as a ‘first impression’ in 
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which aspects like characters and storyline remain unknown beforehand. 

Third, being an episodic sequence encoding task, it was imperative that the 

performance should be measured objectively. In conventional study designs 

with naturalistic stimuli, authors typically measure memory performance 

based on questionnaires, interviews etc. In order to have the same 

methodological rigor of controlled memory tasks we needed to edit the movie 

and scenes appropriately to suit our goal. 

We divided the movie into different events with each event being defined by 

a distinct underlying context conceptually/spatially. Each event had multiple 

segments in them. For example, a series of segments occurring in a kitchen 

at night, in a bar, by the car park all constitute separate events. Each 

segment is defined by the actions/interactions happening between entities 

(people) concerning the underlying event. Thus, we divided the whole movie 

into different contextual events with different segments making up an event 

(Fig. 1). The movies were taken from YouTube, with rights for scientific 

purpose obtained from the creators. One was titled The Betrayed, about a 

wife finding out her husband’s affair with her best friend, with the latter trying 

to cover it up. Second was titled The Man and the Thief was about a young 

man helping out a girl at a railway station only to be duped by her in the end 

when she steals his wallet.  Both movies had a combined 15 events where 
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prediction errors occurred. Each event had 4 segments. Each segment was 

7s long, with a 1s interstimulus interval, where a black blank screen is 

presented between every segment. This also allowed us to reorient 

participants’ attention between the scenes. 

Experimental procedure. 

Day 1: Formation of Priors: All participants saw both movies during Day1 

prior formation. The order of the movies seen was counterbalanced across 

participants. Each event had 4 segments on Day1, for both movies. They 

were named (in order of their appearance in the event) Start, PrePE, Old and 

PostPE. Each event began with the Start segment.  

Day 2: Inducing Prediction Errors: To induce PEs, the original versions of the 

movie were edited into 3 versions. First version being the Prior was shown 

to all the participants on Day1. The second version was the Substitution 

version with a segment substituting another within an event and the third 

version was the Addition version with an additional segment inserted in an 

event. These scenes termed New segments were contextually fitting so as 

to avoid making abrupt transitions while watching. Importantly, because of 

this, we could reliably introduce contextual PEs in both movies. Furthermore, 

on Day2, participants saw the two movies in either of these two versions. 
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First segment of every event was termed as Start since it was always the 

first event to be shown in a segment and was unchanged across both days’ 

viewings (for this reason, it acted as Control). This also enabled the subjects 

to predict the upcoming segments in that specific event on Day2. Second 

segment was termed the Pre-Prediction Error segment (PrePE henceforth) 

since the prediction violation segment always happened after this. This 

segment was also similar to a Control in that it did not deviate from prior 

viewing as well. The segment that followed PrePE was termed as Old 

because this segment was shown on Day1 but was replaced on Day2 in the 

Substitution condition. The segment replacing it on Day2, the prediction error 

segment, was labelled as New. The segment that occurred in the event right 

after the New segment was termed Post-Prediction Error (PostPE 

henceforth) because it always followed the Prediction error segment.  

In the Addition condition, Start and PrePE remained the same, similar to 

Substitution. The Prediction error segment, New, occurs after PrePE. The 

Old segment as seen on Day1 which was expected to happen after PrePE, 

was seen after the New event hence termed aptly as PostPE in this 

condition.  
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Thus, in the Substitution condition, on Day2 each event had a Start segment, 

followed by the PrePE segment, then the New segment inducing prediction 

error (since subjects were predicting Old), and afterwards PostPE segment. 

In the Addition condition, the Old (which was seen after the New), functioned 

as the PostPE segment. We purposely put the PE segments in the middle of 

events, rather than beginning or end to control for primacy and recency 

effects, respectively.   

Betrayed was 5mins 42s in both Prior formation and Substitution condition, 

and 6mins 55s in Addition condition. It had 11 different events of which 9 

were altered during second days viewing. The Man and the Thief had 6 

contexts instead with a duration of 3mins 14s in Prior and Substitution 

condition, and 4mins 2s in Addition. All the 9 events had 4 segments (termed 

from start to end: Start, PrePE, Old, PostPE) during Prior viewing. Old 

segment gets replaced by New in Substitution while in Addition, New is 

inserted in between PrePE and Old incurring a total 5 episodes in one 

contextual event in this condition. Hence in Addition, we deliberately took out 

a segment from each event in the Prior version only to be added back in 

Day2 so as to induce the contextual prediction errors.  
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Participants were instructed to pay full attention to both Days’ movies and 

not to use any specific strategies of encoding. They were asked on Day2 if 

they noticed changes in scenes compared to the previous day to confirm for 

attention for both days’ viewings, but were not asked to recall them in any 

way. 

Day 3: Sequence Memory Test: On Day3 participants underwent a sequence 

memory test. The Sequence Memory test was a two-alternative forced task 

choice (2AFC) task. A screenshot from each segment was shown besides a 

screenshot of an adjacent segment within an event and subjects were asked 

to choose the first one that came in the movie. The stimulus presentation on 

Day3 was using PsychoPy software (46).   

It was designed in such a way that segments exclusive to one day (such as 

New and Old in Substitution condition) were not seen together to prevent a 

conflict of decision. Since participants were instructed to encode both Days’ 

movies equally without giving preference to one, there were no 

discrepancies between choices. 

Screenshots of adjacent segments within an event were shown side by side 

(in normal and reversed order randomly) and participants were asked to 

indicate which one came first in the sequence. This enabled us to probe into 
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the sequential association strength between those two segments, within an 

event. We had categorized the association strength between the Start 

segment and Pre-PE segment within an event as Control sequence. PrePE 

segment and Old segment (PrePE-Old) which reflected the strength of the 

older (Prior) sequence was termed Old sequence. PrePE segment to New 

segment (PrePE-New) was called New sequence and finally the sequence 

of New segment to PostPE (New-PostPE) segment as Novel association 

sequence. Trials were binned across participants into these categories by 

movies and conditions for analysis.  

Trials were shown for 2500ms with 500ms ITI between them. Subjects were 

asked to answer as accurately and fast as possible. After the response 

subjects had to choose their confidence on a 3-point scale - High 

Confidence, Low Confidence and Guess. There were 180 trials in total per 

participant. We calculated the accuracy by including only the High 

Confidence and Low Confidence hits; Guesses were completely excluded 

from analysis. Confidence performance of High Confidence responses were 

derived by counting the percentage total of High Confidence hits per total 

hits (High Confidence + Low Confidence). 
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Behavioral Data Analysis of Sequence memory: In order to determine the 

sequence memory performance, we categorized the trials into New 

sequences (temporal order judgements between PrePE and New 

segments), and Old sequences (temporal order judgements between PrePE 

and Old segments). All trials were binned into either Addition or Substitution 

by participants depending on which version of the movie they watched on 

Day2. Furthermore, we also categorized trials into Novel sequences 

(temporal order judgements between New and PostPE segments) in 

Substitution and Addition as well.  

Subjective confidence in memories is usually teased out via either numerical 

scales (1-10) or nominal scales (sure, not sure). Here we deployed a version 

of nominal scale having High confidence, Low confidence and Guess as 

labels in a 3-point scale to test the strength of subjective opinion. We 

calculated and compared the percentage number of High Confidence 

responses given by participants out of the total (High Confidence + Low 

Confidence) responses in Old and New sequences. 

Statistical Analysis: In addition to the normal statistical tests, we also did a 

Bayes factor (BF) analysis on the paired t-tests47 using a default Jeffreys 

Zellner Siow (JZS) prior using the BayesFactor package in R.  
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Hierarchical Drift-Diffusion Model:  We used a Hierarchical version of the 

DDM to fit the behavioral data48. The DDM49 is one of a general class of 

sequential sampling models aptly suited for reaction time data from two-

alternative forced choice paradigms50. It operates under the assumption that 

decisions are made by accumulated evidence from a noisy sensory signal. 

The decision is made when the evidence crosses a threshold. The main 

parameters in DDM is a drift rate, a rate of accumulation of evidence and the 

thresholds of the boundaries for these to cross or evidence required for the 

decision to be made. Additional components include a response bias, which 

determines whether the responses towards either boundaries are biased or 

not depending on the starting position. The total reaction time is assumed to 

be a combination of processing time required to make that decision, as well 

as encoding time of the stimulus and the time required for the motor 

execution response. The latter two are assumed not to vary, and are 

combined as another component called non-decision time. Thus, the DDM 

gives the response choice depending on which boundary threshold (upper 

or lower) is crossed and gives the response time as a combination of the 

total time required to cross these boundaries and the non-decision time 

involved49, 50.  
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The HDDM toolbox48 in python was used to model the data. Bayesian 

inference which naturally fits a hierarchical DDM, can be used to not only 

recover the parameters but more importantly to estimate the uncertainty 

involved in the model parameters. They also provide solutions for parameter 

estimations of individual participants which are assumed to be drawn from a 

group-level prior distribution and are constrained by it. Furthermore, 

Bayesian methods are more powerful when the trial numbers are low which 

is desirable since the usual DDM requires larger datasets. The joint 

posteriors of all the model parameters are estimated by standard Markov 

Chain Monte Carlo (MCMC) methods51. A direct Bayesian inference was 

performed on the posteriors of different conditions by computing the overlap 

between their distributions. 

In our main model, we allowed both drift rate and boundary parameters to 

vary with Stimulus, that is Old and New memory sequences. This was to 

compare which of the two parameters demonstrated the empirical effect of 

PEs, i.e., reaction time. Drift rate also varied across Confidence. Confidence 

here being High Confidence and Low Confidence as Guesses were 

discarded from main analysis. Non-decision time parameter was set to vary 

across Substitution and Addition. We also generated other models with 

different combinations of drift rate and boundary varying with Stimulus and 
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Confidence. Models were adjudicated using Deviance Information Criterion 

(DIC) which penalizes Additional model complexity52. DIC values above 10 

are generally considered significant, with the lowest having best goodness-

of-fit. (Supplementary Fig. 4, Supplementary Table 1)  

For each model, we used MCMC methods to generate 100,000 samples 

from the posterior distribution and discarded the first 20,000 samples as 

burn-in. After visually inspecting the chains and autocorrelation for proper 

convergence, the Gelman Rubin R-hat statistic was confirmed to be between 

98-1.0253. The latter was computed by running the (main) model 3 times, and 

checking within-chain and between-chain variance. All procedures were 

done as described in the HDDM toolbox in python48. 
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