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At present, most tools for constructing genetic prediction models begin with the assumption that all 
genetic variants contribute equally towards the phenotype. However, this represents a sub-optimal 
model for how heritability is distributed across the genome. Here we construct prediction models for 14 
phenotypes from the UK Biobank (200,000 individuals per phenotype) using four of the most popular 
prediction tools: lasso, ridge regression, Bolt-LMM and BayesR. When we improve the assumed 
heritability model, prediction accuracy always improves (i.e., for all four tools and for all 14 
phenotypes). When we construct prediction models using individual-level data, the best-performing tool 
is Bolt-LMM; if we replace its default heritability model with the most realistic model currently 
available, the average proportion of phenotypic variance explained increases by 19% (s.d. 2), equivalent
to increasing the sample size by about a quarter. When we construct prediction models using summary 
statistics, the best tool depends on the phenotype. Therefore, we develop MegaPRS, a summary statistic 
prediction tool for constructing lasso, ridge regression, Bolt-LMM and BayesR prediction models, that 
allows the user to specify the heritability model.

There is a great demand for accurate genetic prediction models of complex traits. In particular, for 
precision medicine to become a reality, we require models that can reliably predict how likely individuals 
are to develop different diseases, and how well they will respond to different treatments.1,2 Many complex 
traits have substantial SNP heritability,3,4 indicating that it is theoretically possible to construct clinically-
useful linear SNP-based prediction models (polygenic risk scores).5,6 It is already understood that the 
accuracy of a polygenic risk score depends on the available sample size.7,8 Here we show that it also 
depends on the realism of the assumed heritability model.

The heritability model describes how E[h2
j], the expected heritability contributed by each SNP, varies 

across the genome.9 In human genetics, it is common to assume that E[h2
j] is constant; we refer to this as 

the GCTA Model, because it a core assumption of the software GCTA.3 In particular, the GCTA Model is 
assumed by any multi-SNP prediction tool that assigns the same penalty or prior distribution to 
standardized SNP effect sizes.4,10 Recently, we provided a method for comparing different heritability 
models using summary statistics from genome-wide association studies.11 Across tens of complex traits, the
model that fit real data best was the BLD-LDAK Model, in which E[h2

j] depends on minor allele frequency
(MAF), local levels of linkage disequilibrium and functional annotations.

In this paper, we construct prediction models for a variety of complex traits using four of the most widely-
used prediction tools: lasso, ridge regression, Bolt-LMM and BayesR.10,12–14 Existing versions of these tools
almost exclusively assume the GCTA Model (see Discussion).13–17 We instead develop versions that allow 
the user to specify the heritability model. We show that when we switch from the GCTA to the BLD-
LDAK Model, prediction accuracy always improves. When individual-level genotype and phenotype data 
are available, we recommend using our new tool Bolt-Predict to construct Bolt-LMM models. With access 
only to summary statistics and a reference panel, we recommend using our new tool MegaPRS, which 
constructs lasso, ridge regression, Bolt-LMM and BayesR models, then selects the most accurate one. Both
Bolt-Predict and MegaPRS are available in our software package LDAK (www.ldak.org).
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Results

For our main analysis, we construct prediction models for 14 phenotypes from the UK Biobank:18,19 eight 
continuous (body mass index, forced vital capacity, height, impedance, neuroticism score, pulse rate, 
reaction time and systolic blood pressure), four binary (college education, ever smoked, hypertension and 
snorer) and two ordinal (difficulty falling asleep and preference for evenings). For each phenotype, we 
have 220,000 distantly-related (pairwise allelic correlations <0.03125), white British individuals, recorded 
for 628,694 high-quality (information score >0.9), common (MAF >0.01), autosomal, directly-genotyped 
SNPs. When constructing prediction models, we use 200,000 individuals as training samples, and the 
remaining 20,000 individuals as test samples. When we require a reference panel, we use the genotypes of 
20,000 individuals picked at random from the 200,000 training samples. We measure the accuracy of a 
prediction model via R2, the squared correlation between observed and predicted phenotypes across the 
20,000 test samples (we estimate the s.d. of R2 via jackknifing, and when summarizing across phenotypes, 
compute the inverse-variance-weighted average). For a given phenotype, R2 is upper-bounded by h2

SNP, the 
SNP heritability, estimates of which range from 0.07 to 0.61 (Supplementary Table 1).

We consider three different heritability models: the GCTA Model (E[h2
j] assumed to be constant), the 

LDAK-Thin Model (E[h2
j] depends only on the MAF of SNP j), and the BLD-LDAK Model (E[h2

j] 
depends on the MAF of SNP j, local levels of linkage disequilibrium and functional annotations).11 Our 
previous work compared heritability models based on how well they fit real data.11 Specifically, we 
measured their performance via the Akaike Information Criterion (AIC), equal to 2K - 2logl, where K is 
the number of parameters in the heritability model and logl is the approximate log likelihood (lower AIC is
better). Of the 12 models we considered, AIC was lowest for the BLD-LDAK Model, highest for the the 
GCTA Model, and intermediate for the LDAK-Thin Model (we reproduce these results in Supplementary 
Table 2).

We use four tools to construct prediction models: lasso, ridge regression, Bolt-LMM and BayesR.10,12–14 
These tools differ according to their prior distributions on SNP effect sizes (Table 1). For each tool, we 
develop two versions, one that uses individual-level data and one that uses summary statistics. All eight 
versions allow the user to specify the heritability model (i.e., provide E[h2

j] for each SNP). In Methods we 
provide algorithmic details, including how each version selects prior parameters via cross-validation (using
only the training samples). For the analyses below, we always use our versions of each tool. Extended Data
Fig. 1 confirms that when we run our versions assuming the GCTA Model, they perform at least as as well,
both in terms of prediction accuracy and computational efficiency, as existing versions (namely the original
versions of Bolt-LMM and BayesR,13,14 both of which use individual-level data, and the summary statistic 
tools lassosum, sBLUP, LDPred, AnnoPred and SBayesR15,17,20–23). Additionally, we develop a new 
summary statistics tool, MegaPRS, which constructs lasso, ridge regression, Bolt-LMM and BayesR 
models, then selects the best-performing tool via cross-validation (it does this at the same time as it selects 
prior parameters for each tool).

Tool Prior distribution for SNP effect sizes

Lasso DE(λ/σ))

Ridge regression N(0,σ)2)

Bolt-LMM p N(0,σ)2
Big) + (1-p) N(0,σ)2

Small)

BayesR π1 N(0,σ)2) + π2 N(0,σ)2/10) + π3 N(0,σ)2/100) + (1-π1-π2-π3) δ0

Table 1 - Prediction Tools | Each tool uses a different prior distribution for effect sizes. DE(a) denotes a 
double exponential distribution with rate a, N(b,c) denotes a normal distribution with mean b and variance 
c, while δ0 denotes a point mass at zero. Note that the variance terms (σ)2, σ)2

Big and σ)2
Small) are determined by

the choice of heritability model, and therefore generally vary across SNPs.
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Improving the heritability model improves prediction accuracy.

For Figure 1, we construct prediction models using individual-level data from all 200,000 training samples.
Using a single processor, this takes approximately 4 hours (ridge regression), 20 hours (Bolt-LMM) or 50 
hours (lasso or BayesR), and requires 35Gb memory (for lasso, Bolt-LMM and BayesR, the runtimes can 
be reduced substantially by using multiple CPUs). Figure 1a shows that for all four tools and for all 14 
phenotypes, R2 always increases when we replace the GCTA Model with either the LDAK-Thin or BLD-
LDAK Model. Supplementary Table 3 provides numerical values; replacing the GCTA Model with the 
BLD-LDAK model increases R2 of Lasso models by 1-56% (mean 22%, median 13%), increases R2 of 
ridge regression models by 13-39% (mean 22%, median 23%), increases R2 of Bolt-LMM models by 5-
29% (mean 14%, median 12%) and increases R2 of BayesR models by 0-25% (mean 15%, median 17%). 
Of the four prediction tools, Bolt-LMM almost always performs best (in particular, it produces the most 
accurate prediction model for each of the 14 phenotypes). Figure 1b shows that for Bolt-LMM, replacing 
the GCTA Model with the LDAK-Thin Model increases average R2 by 13% (SD 2), while replacing the 
GCTA model with the BLD-LDAK Model increases average R2 by 19% (SD 2).

Fig. 1 | Impact of the heritability model when using individual-level data. We construct lasso, ridge 
regression, Bolt-LMM and BayesR prediction models using individual-level data from all 200,000 training
samples, then measure their accuracy via R2, the squared correlation between observed and predicted 
phenotypes across 20,000 test samples. a, Points report the percentage increase in R2 for individual 
phenotypes when each tool is switched from assuming the GCTA model to either the LDAK-Thin or BLD-
LDAK Model (boxes mark the median and inter-quartile range across the 14 phenotypes). b, Bars report R2

averaged across the 14 phenotypes (vertical segments mark 95% confidence intervals); colors indicate the 
assumed heritability model, while blocks indicate the prediction tool. The horizontal lines mark average R2 
for classical polygenic risk scores and a 95% confidence interval.
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Fig. 2 | Dependency of Bolt-LMM prediction accuracy on sample size. We construct Bolt-LMM 
prediction models using individual-level data from between 100,000 and 200,000 training samples, then 
measure their accuracy via R2, the squared correlation between observed and predicted phenotypes across 
20,000 test samples. a, Points report R2 averaged across the 14 phenotypes; colors indicate the assumed 
heritability model. The lines of best fit are obtained by regressing average R2 on a + bn, where n is the 
number of training samples; for the GCTA Model, we use the best fit line to predict average R2 if the 
sample size was 26% higher than specified (dashed line). b, Points report R2/h2

SNP for individual 
phenotypes, where h2

SNP is the estimated SNP heritability (the maximum possible R2). The lines of best fit 
are obtained by regressing R2/h2

SNP on 1 – exp(a + b n), where n is the number of training samples.

For Figure 2, we focus on the best-performing tool, Bolt-LMM, and vary the number of training samples. 
Figure 2a shows that to increase average R2 by 19% (the increase we observed above when we replaced the
GCTA with the BLD-LDAK Model), it is necessary to increase the number of training samples by about 
26%. Figures 2b and Supplementary Table 1 report estimates of R2/h2

SNP for individual phenotypes, which 
indicate the accuracy of each prediction model relative to the maximum possible. Using 200,000 training 
samples, the models achieve between 13% (difficulty falling asleep) and 62% (height) of their potential. 
The lines of best fit suggest that if we had individual-level data for 400,000 samples, the prediction models
would explain between 23% and 78% of SNP heritability.

For Figure 3, we construct prediction models using summary statistics computed from all 200,000 training 
samples. Using a single processor, this takes under two hours (regardless of which tool we use), and 
requires less than 10Gb memory. Figure 3a shows that, the same as when using individual-level data, R2 
always increases when we replace the GCTA Model with either the LDAK-Thin or BLD-LDAK Model. 
Supplementary Table 4 provides numerical values; we now find that the best-performing tool depends on 
the phenotype, and thus it is advantageous to instead use MegaPRS (which constructs models using all four
tools, then selects the best one via cross-validation). Figure 3b shows that for MegaPRS, replacing the 
GCTA Model with the BLD-LDAK Model increases average R2 by 17% (SD 2). Extended Data Fig. 2 
shows that this improvement is equivalent to increasing the number of training samples by about 25%.
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Fig. 3 | Impact of the heritability model when using summary statistics. We construct lasso, ridge 
regression, Bolt-LMM, BayesR and MegaPRS prediction models using summary statistics from all 
200,000 training samples, then measure their accuracy via R2, the squared correlation between observed 
and predicted phenotypes across 20,000 test samples. a, Points report the percentage increase in R2 for 
individual phenotypes when each tool is switched from assuming the GCTA model to either the LDAK-
Thin or BLD-LDAK Model (boxes mark the median and inter-quartile range across the 14 phenotypes). b, 
Bars report R2 averaged across the 14 phenotypes (vertical segments mark 95% confidence intervals); 
colors indicate the assumed heritability model, while blocks indicate the prediction tool. The horizontal 
lines mark average R2 for classical polygenic risk scores and a 95% confidence interval.

Extended Data Figs. 3-5 show that improving the heritability model improves prediction performance if we
instead measure accuracy using mean absolute error or (for the binary phenotypes) area under the curve, 
and when we increase the number of SNPs from 629,000 to 7.5M by including imputed genotypes. For 
Extended Data Fig. 6 and Supplementary Table 5, we consider five additional phenotypes: asthma, breast 
cancer, prostate cancer, type 2 diabetes and rheumatoid arthritis. For these diseases, there are relatively few
cases in UK Biobank (average 7,000, range 1,000-21,000), so we instead train prediction models using 
summary statistics from published studies24–28 (average sample size 139,000 individuals, range 58,000-
215,000). Again, we see that prediction accuracy improves when we replace the GCTA Model with the 
LDAK-Thin or BLD-LDAK Model.

Discussion

Most prediction tools start with the assumption that each SNP contributes equal heritability.4 We have 
shown that the accuracy of four of the most widely-used prediction tools substantially improves when we 
assume a more realistic heritability model. As explained in Methods, changing the assumed heritability 
model typically requires at most a small increase in computational demands (in our analyses, switching to 
the LDAK-Thin Model required no additional computation, while switching to the BLD-LDAK Model 
increased the total run time by less than an hour).
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A strength of our study is that we have considered a variety of complex traits. These include continuous, 
binary and categorical phenotypes, that have have low, medium and high SNP heritability, and are both 
closely and distantly related to diseases. Therefore, the fact that we observed improvement for all the 
phenotypes we analyzed, makes us confident that similar improvements will be observed for many more 
complex traits.

When performing heritability analysis, we previously recommended choosing the model with lowest AIC.11

We now recommend the same when constructing prediction models. Based on average AIC, the BLD-
LDAK, LDAK-Thin and GCTA models rank first, second and third, respectively, which matches the 
ranking of models based on average prediction accuracy.  For Extended Data Fig. 7, we additionally 
consider the GCTA-LDMS-I and Baseline LD models, those currently recommended by the authors of 
GCTA and LDSC, respectively.29,30 Based on AIC, these two models rank between the LDAK-Thin and 
BLD-LDAK Models (Supplementary Table 2), which similarly matches their ranking based on prediction 
accuracy.

Except for ours, we are not aware of any individual-level data prediction tools that can both analyze 
biobank-sized datasets (say, over 50,000 samples) and allow the user to specify the heritability model. We 
are aware of two summary summary statistic prediction tools where the user can specify the heritability 
model, AnnoPred and LDPred-funct.22,23 AnnoPred is similar to Bolt-LMM. It assumes that SNP effect 
sizes have the prior distribution p0 N(0,σ)2) + (1-p0) δ0 (this matches the Bolt-LMM prior distribution when 
σ)2

Small=0), then incorporates the chosen heritability model by allowing either σ)2 or p0 to vary across 
SNPs.22 Extended Data Fig. 1 shows that AnnoPred is outperformed by our summary statistic version of 
Bolt-LMM, regardless of whether we assume the BLD-LDAK Model (our recommended model) or the 
Baseline LD Model (recommended by the authors of AnnoPred). LDPred-funct is similar to ridge 
regression. It first estimates effect sizes assuming the the prior distribution N(0,σ)2), where σ)2 varies 
according to the chosen heritability model, then regularizes these estimates via cross-validation.23 Extended
Data Fig. 1 shows that LDPred-funct is outperformed by our summary statistic version of ridge regression, 
regardless of whether we assume the BLD-LDAK Model (our recommended model) or the Baseline LD 
Model (recommended by the authors of LDPred-funct).

Aside from demonstrating the advantage of using a more realistic heritability model, we note three 
additional conclusions from our analyses (evident from Figs. 1 & 3). It is generally better to estimate SNP 
effect sizes jointly rather than individually (ridge regression, Bolt-LMM and BayesR tend to outperform 
classical polygenic risk scores). It is generally better to use a multi-distribution prior for effect sizes rather 
than a single distribution (Bolt-LMM and BayesR tend to outperform ridge regression). It is generally 
better to create polygenic prediction models rather than sparse ones (this is the reason why our individual-
level data version of lasso, which produces models where the majority of effect sizes are zero, tends to 
perform poorly, and is generally outperformed by our summary statistic version of lasso, whose models 
have more non-zero effect sizes15). Furthermore, Extended Data Figs. 2, 5 show that when feasible, it is 
generally better to construct models using individual-level data, rather than summary statistics, and to 
include imputed genotypes, rather than restrict to directly-genotyped SNPs.

Finally, we feel that our analyses provide optimism regarding the prospects of precision medicine. With the
advent of population-based biobanks (e.g., Japan Biobank, China Kadoorie Biobank, deCODE and the 
Estonian Genome Project31–34),  and the creation of global collaborations for many complex traits and 
diseases (e.g., the GIANT Consortium and the Psychiatric Genomics Consoritum35,36), sample sizes over 
100,000 are now relatively common. We have shown that with 200,000 samples we can construct 
prediction models explaining a substantial proportion of SNP heritability (typically between 25 and 50%). 
However, our work shows that to speed up the arrival of precision medicine, we should not only continue 
to increase the sample size, but also strive to create more realistic heritability models.
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Methods

Suppose there are n individuals and m SNPs. Let X denote the matrix of genotypes (size n x m, where 
column Xj contains the genotypes for SNP j), and Y denote the vector of phenotypes (length n). For 
convenience, we assume the Xj and Y are standardized, so that Mean(Xj) = Mean(Y) = 0 and Var(Xj) = 
Var(Y) = 1. We assume that the Χ2(1) test statistic for SNP j from single-SNP analysis is Sj = n rj

2 / (1 – rj
2),

where rj = XjY/n is the correlation between SNP j and the phenotype (this assumes the analysis performed 
linear regression, but remains a good approximation for Sj computed using logistic regression37). Each of 
lasso, ridge regression, Bolt-LMM and BayesR assumes the linear model

E[Y] = Xj β1 + X2 β2 + … + Xm βm = X β           (1)

where βj is the effect size for SNP j, and β = (β1, β2, …, βm)T. Because Xj and Y are standardized, the 
heritability contributed by SNP j is h2

j = β2
j.

Heritability models. The heritability model takes the form11

E[h2
j] = aj1 τ1 + aj2 τ2 + … +  ajK τK           (2)

where the ajk are pre-specified SNP annotations, while the parameters τk are estimated from the data.37 In 
total, we consider five heritability models (see Supplementary Tables 6 & 7 for formal definitions): the 
one-parameter GCTA Model assumes E[h2

j] is constant;3 the one-parameter LDAK-Thin and 20-parameter 
GCTA-LDMS-I Model allow E[h2

j] to vary based on MAF and local levels of linkage disequilibrium;11,30 
the 66-parameter BLD-LDAK and 75-parameter Baseline LD Models allow E[h2

j] to vary based on MAF, 
linkage disequilibrium and functional annotations.11,29 The GCTA Model is the most common in statistical 
genetics.4 The GCTA-LDMS and Baseline LD Models are the recommended models of the authors of 
GCTA and LDSC, respectively. The BLD-LDAK Model is our preferred model, however, we recommend 
the LDAK-Thin Model for applications that demand a simple heritability model.11

For a given phenotype, we estimate the τk in Equation (2) using our software SumHer, which uses 
summary statistics from single-SNP analysis and a reference panel.37 SumHer has two steps: first it uses the
reference panel to calculate a tagging file (this file contains E[S j], the expected value of Sj, given the 
heritability model), then it regresses the summary statistics onto the tagging file (i.e., regresses S j onto 
E[Sj]). The computational demands of SumHer depend on the complexity of the heritability model; for our 
analyses, it took approximately 20 minutes when assuming the GCTA or LDAK-Thin Model, and about 
one hour when assuming the BLD-LDAK Model (each time requiring less than 10Gb memory). As well as 
estimating τk, SumHer also reports ej, the estimate of E[h2

j] obtained by replacing the τk in Equation (2) 
with their estimated values.

Prediction tools. All four tools assume the error terms in Equation (1) are normally distributed: Y ~ N(Xβ, 
σ)2

e), where σ)2
e is the residual variance. The tools differ in their prior distributions for SNP effect sizes. 

Lasso10 uses a double exponential distribution βj ~ DE(λ / E[h2
j]0.5). Ridge regression12 uses a single 

Gaussian distribution, βj ~ N(0, E[h2
j]). Bolt-LMM13 uses a mixture of two Gaussian distributions

βj ~ p N(0, (1-f2)/p E[h2
j]) + (1-p) N(0, f2/(1-p) E[h2

j])

BayesR14 uses a mixture of three Gaussian distributions and a point mass at zero.

βj ~ π1 N(0, sE[h2
j]) + π2 N(0, sE[h2

j]/10) + π3 N(0, sE[h2
j]/100) + (1-π1-π2-π3) δ0,

where s = 1/(π1 + π2/10  + π3/100). For each tool, we set E[h2
j]=ej (the estimate from SumHer), and σ)2

e = 1-
Σeej. The remaining priors parameters (λ, p, f2, π1, π2 and π3) are decided using cross-validation, as explained
below.
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Model fitting using individual-level data. The function big_spLinReg (available within our R package 
bigstatsr16) fits lasso models using coordinate descent.38,39 Given a value for λ, the βj are updated iteratively 
(starting from zero) until they converge. Within each iteration, each β j within the “strong set” (the subset of
predictors determined most likely to have non-zero effect39) is updated once, by replacing its current value 
with its conditional posterior mode. λ starts at a value sufficiently high that β j=0 for all SNPs, then is 
gradually lowered to allow an increasing number of SNPs to have non-zero effect. big_spLinReg uses ten-
fold cross-validation to decide when to stop reducing λ.

The functions Ridge-Predict, Bolt-Predict and BayesR-Predict (available within our software package 
LDAK9) use variational Bayes. Bolt-Predict uses the same algorithm for estimating βj and deciding 
parameter values as the original Bolt-LMM software.13 Given values for p and f2, Bolt-Predict updates the 
βj iteratively (starting from zero), until the approximate log likelihood converges. Within each iteration, 
each βj is updated once, by replacing its current value with its conditional posterior mean. Bolt-Predict 
considers 6 values for p (0.01, 0.02, 0.05, 0.1, 0.2 and 0.5) and three values for f2 (0.1, 0.3 and 0.5), 
resulting in 18 possible values for (p,f2). First Bolt-Predict estimates effect sizes for each of the 18 pairs, 
using data from 90% of training samples. Then it identifies which pair results in the best fitting model 
(measured as the mean squared difference between observed and predicted phenotypes for the remaining 
10% of training samples). Finally, for the best-fitting pair, it re-estimates effect sizes using data from all 
training samples. Note that the original Bolt-LMM software begins by using REML40 to estimate the E[h2

j];
Bolt-Predict does not require this step because it instead uses estimates from SumHer. Extended Data Fig. 
1 shows that the results from Bolt-Predict, when run assuming the GCTA Model, are very similar to those 
from the original Bolt-LMM software (both have average R2 0.028, s.d. 0.0006).

The prior distribution used by ridge regression is equivalent to that used by Bolt-LMM when p=0.5 and 
f2=0.5. Therefore, Ridge-Predict uses the same algorithm as Bolt-Predict, except it is no longer necessary 
to perform the cross-validation step. Extended Data Fig. 1 shows that results from Ridge-Predict are very 
similar to those from the original Bolt-LMM software when the latter is run with p=0.5 and f2=0.5 (both 
have average R2 0.00025, s.d. 0.0005). Extended Data Fig. 1 also shows that results from Ridge-Predict are
very similar to those from Best Linear Unbiased Prediction41 (BLUP), to be expected considering BLUP 
uses the same prior distribution on effect sizes (note that BLUP is much more computationally demanding, 
because it must compute and eigen-decompose a genome-wide kinship matrix).

The original version of BayesR estimates parameters using Markov Chain Monte Carlo (MCMC).14 
However, we do not have sufficient resources to apply this version to the full UK Biobank data (we 
estimate that this would require approximately 900Gb and weeks of CPU time). Therefore, BayesR-Predict
instead uses variational Bayes. The algorithm is the same as for Bolt-LMM, except it is now necessary to 
select suitable values for π1, π2 and π3. In total, we consider 35 different triplets: the first is the ridge 
regression model (π1, π2, π3 )=(0,0,1); the remaining 34 are obtained by allowing five values (0, 0.001, 
0.005, 0.01, 0.02) for each fraction, with the restrictions π3 ≥ π2 ≥ π1 and π1 + π2 + π3 > 0. We investigated 
omitting the restriction π3 ≥ π2 ≥ π1, in which case there are 125 different triplets, however, we found that 
while this takes approximately four times longer to run, it did not significantly improve prediction 
accuracy. In Extended Data Fig. 1, we compare our implementation of BayesR to the original version (for 
computational reasons, we analyze only 20,000 individuals and 122,000 SNPs); the accuracy of our 
implementation is consistent with that of the original version (average R2 0.00034 vs 0.00033, SD 0.0001), 
yet our implementation is approximately 60 times faster (takes under 20 minutes, compared to 20 hours) 
and requires 10 times less memory (2Gb instead of 20Gb).

The runtimes reported in the main text (approximately 50, 4, 20 and 50 hours for big_spLinReg, Ridge-
Predict, Bolt-Predict and BayesR-Predict, respectively) correspond to using a single CPU. However, for 
big_spLinReg, Bolt-Predict and BayesR-Predict, we also provide parallel versions. For Bolt-Predict and 
BayesR-Predict, the parallel versions use the fact that models corresponding to different parameter choices 
can be generated independently (i.e., on different CPUs). For big_spLinReg, this is not possible (because 
the final βj for one value of λ are used as the starting βj when λ is reduced), but instead, each of the ten 
cross-validation runs can be performed independently. Additionally, for the functions Ridge-Predict, Bolt-
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Predict and BayesR-Predict, LDAK automatically creates a save-point every 10 iterations, so that the job 
can be restarted if it fails to complete within the allocated time. 

Model fitting using summary statistics. Our tool MegaPRS (available within our software package 
LDAK9) has three steps. Suppose we have full summary statistics (computed using all training samples), 
partial summary statistics (computed using, say, 90% of training samples), and a reference panel. 
MegaPRS begins by using the reference panel to calculate SNP-SNP correlations. Next it constructs a 
variety of lasso, ridge regression, Bolt-LMM and BayesR models, first using the partial summary statistics 
(we refer to these as the “partial models”), then using the full summary statistics (the “full models”). 
Finally, MegaPRS identifies the most accurate of the partials models, based on how well each predicts 
phenotypes for the individuals excluded when calculating the partial summary statistics, then reports effect 
sizes for the corresponding full model. We provide full details for each step below. For our analyses, each 
step took less than 30 minutes, and required less than 10Gb memory. Note that our other summary statistic 
tools use the same algorithm as MegaPRS, except that in the second step they consider only one type of 
model (e.g., our summary statistic version of lasso constructs only lasso models). In Extended Data Fig. 1, 
we confirm that our summary versions of lasso, ridge regression, Bolt-LMM and BayesR perform at least 
as well as existing summary statistic software (specifically, we compare our lasso with lassosum,15 our 
ridge regression with sBLUP, LDPred-inf and LDPred-funct20,21,23, our Bolt-LMM with LDPred2 and 
AnnoPred,22,42 and our BayesR with SBayesR17).

MegaPRS exploits that, in the absence of individual-level data, X jY can be recovered from the results of 
single-SNP regression (as explained above, we assume Sj = n rj

2 / (1 – rj
2), where n is the sample size and rj 

= XjY/n), while XjXk can be estimated from the reference panel (specifically, MegaPRS uses X jXk = n cjk
2, 

where cjk is the observed correlation between SNPs j and k in the reference panel). In the first step, 
MegaPRS searches the reference panel for local pairs of SNPs with significant cjk (by default, we consider 
pairs within 3cM and define significant as P<0.01). MegaPRS saves the significant pairs in a binary file, 
which requires 8 bytes for each pair (one integer to save the index of the second SNP, one float to save the 
correlation). For the UK Biobank data, there were 260M significant pairs (on average, 413 per SNP), and 
so the corresponding binary file had size 1.9Gb.

In the second step, MegaPRS estimates effect sizes for 325 models (100 lasso models, 11 ridge regression 
models, 131 Bolt-LMM models and 83 BayesR models; see Supplementary Table 8 for full details). Like 
our individual-level data tools, MegaPRS uses either coordinate descent (lasso models), or variational 
Bayes (ridge regression, Bolt-LMM and BayesR models). This is possible because for all four prior 
distributions, the posterior distribution for βj can be expressed in terms of XjY and XjXk. For example, 
when constructing Bolt-LMM Models, the conditional posterior distribution of β j is p’N(μBig,vBig) + (1-
p’)N(μSmall,vSmall), where

μBig = Xj
T (Y - Xβ + Xj βj) / (Xj

TXj σ)2
e/σ)2

Big+1) vBig = σ)2
e / (Xj

TXj σ)2
e/σ)2

Big+1)

μSmall = Xj
T (Y - Xβ + Xj βj) / (Xj

TXj σ)2
e/σ)2

Small+1) vSmall = σ)2
e / (Xj

TXj σ)2
e/σ)2

Small+1)

p’ = [1 + (1-p)/p σ)2
Big / σ)2

Small exp([μ2
Small/vSmall -  μ2

Big/vBig]/2)]-1

When performing coordinate descent or variational Bayes using summary statistics, we found it was not 
feasible to iterate over all SNPs in the genome. This was due to differences between estimates of X jXk from
the reference panel and their true values (a consequence of the fact that individuals in the reference panel 
are different to those used in the original association analysis, and because we assume X jXk=0 for pairs of 
SNPs that are either distant or not significantly correlated). These differences accumulate over the genome,
resulting in poor estimates of Xj

TXβ = Σek Xj
T Xkβk, and therefore poor estimates of the conditional posterior

distribution of βj. To avoid these problems, MegaPRS uses sliding windows (see Extended Data 8 for an 
illustration). By default, MegaPRS iteratively estimates effect sizes for all SNPs in a 1cM window, 
stopping when the estimated proportion of variance explained by these SNPs converges (changes by less 
than 0.00001 between iterations). At this point, MegaPRS moves 1/8 cM along the genome, and repeats for
the next 1cM window. Within each window, MegaPRS assumes σ)2

e = 1 (this approximation is reasonable 
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because the expected heritability contributed by a single window will be close to zero). If a window fails to
converge within 50 iterations, MegaPRS resets the βj to their values prior to that window. We found this 
happened very rarely. For example, our main analysis constructed 13,650 models (14 phenotypes x three 
heritability models x 325 prior distributions), and not once did a region fail to converge.

In the third step, MegaPRS measures the accuracy of the partial models via R, the correlation between 
observed and predicted phenotypes for the individuals excluded when computing the partial summary 
statistics. If XE and YE denote the standardized genotypes and phenotypes of the nE excluded individuals, 
respectively, then R = β’TXE

TYE /(nE β’TXE
TXEβ’)1/2, where β’ is the vector of estimated effect sizes. Note 

that if we do not have access to individual-level data for the excluded individuals, we can instead recover 
XE

TYE from summary statistics (calculated across the excluded individuals) and estimate XE
TXE from a 

reference panel.

When analyzing the UK Biobank phenotypes, it is straightforward to compute partial summary statistics 
(because we have access to individual-level data, we are able to repeat the single-SNP analysis using only 
90% of training samples). This is not the case when analyzing asthma, breast cancer, prostate cancer, 
rheumatoid arthritis and type 2 diabetes, for which we use summary statistics from published studies. 
Therefore, we instead create “pseudo” partial summary statistics.43 Let γ = (γ1, γ2, …, γm)T denote the vector
of true SNP effect sizes from single-SNP analysis (note that γj will usually differ from βj, because βj 
reflects how much SNP j contributes directly to the phenotype, whereas γ j reflects how much contribution 
it tags). Given XTY/n, the estimate of γ from all n training samples, our aim is to generate XA

TYA/nA an 
estimate of γ from nA samples (where nA=n-nE). Our approach is similar to that of Zhao et al.,43 who 
propose sampling XA

TYA/nA from N(XTY/n, nE/nA V/n), where V is the variance of XTY. However, while 
Zhao et al. restrict to independent SNPs, and subsequently derive V = I + XTYYTX/n2, where I is an 
identity matrix, we instead use V = XTX, as proposed by Zhu and Stephens.44 If the matrix X’ denotes the 
genotypes of the reference panel (size n’ x m), we can achieve this sampling by setting XA

TYA/nA = XTY/n 
+ (nE/nA)1/2 X’T/n’1/2 G, where G is a vector of length n’ with elements drawn from a standard Gaussian 
distribution. Additionally, we calculate (XE

TYE)/nE = (XTY – XA
TYA)/nE, the complementary estimate of γ, 

which we use when measuring the accuracy of the partial models (as explained above).

In Extended Data Fig. 9 we show that for the UK Biobank phenotypes, the estimated accuracy of the 
partial models is similar whether we construct the models using actual partial summary statistics (then 
calculate R directly from XE and YE), or construct them using pseudo partial summary statistics (then 
calculate R by recovering XE

TYE from the complementary estimate of γ and estimating XE
TXE from a 

reference panel). We note two caveats. Firstly, we observed that the estimate of R can be unreliable when 
the reference panel used to estimate XE

TXE is used also to create the pseudo partial summary statistics or by
MegaPRS to estimate SNP-SNP correlations. Therefore, when running MegaPRS using pseudo partial 
summary statistics, we recommend using three independent reference panels (either by sourcing two extra 
reference panels, or by dividing the original reference panel into three). Secondly, we found that estimates 
of R can be unreliable when there are very strong effect loci within regions of long-range linkage 
disequilibrium (this was only an issue for rheumatoid arthritis, where a single SNP within the major 
histocompatibility complex explains 2% of phenotypic variation). Therefore, when estimating R, we 
recommend excluding a region of long-range linkage disequilibrium if it contains a SNP that explains at 
least 1% of phenotypic variation (see URLs for lists of regions) .

Data. We accessed UK Biobank data via Project 21432. The 14 phenotypes we analyze are the same as for 
our previous study: body mass index (data field 21001), forced vital capacity (3062), height (50), 
impedance (23106), neuroticism score (20127), pulse rate (102), reaction time (20023), systolic blood 
pressure (4080), college education (6138), ever smoked (20160), hypertension (20002), snorer (1210), 
difficulty falling asleep (1200) and preference for evenings (1180). Starting with 487k individuals, we first 
filtered based on ancestry (we only kept individuals who were both recorded and inferred through principal
component analysis to be white British), then filtered so that no pair remained with allelic correlation 
>0.0325 (that expected for second cousins). Depending on phenotype, there were between 220,399 and 
253,314 individuals (in total, 392,214 unique), from which we picked 200,000 and 20,000 to use as 
training and test samples, respectively. 
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The imputed data contains 97M SNPs, but in general we used only the 628,694 autosomal SNPs with info 
score >0.9, MAF >0.01 and present on the UK Biobank Axiom Array (the exception is for Extended Data 
Fig. 5, where we did not require that SNPs were present on the Axiom Array). We converted dosages to 
genotypes using a hard-call-threshold of 0.1 (i.e., dosages were rounded to the nearest integer, unless they 
were between 0.1 and 0.9 or between 1.1 and 1.9, in which case the corresponding genotype was 
considered missing). After this conversion, on average, 0.1% of genotypes were missing. Note that 
big_spLinReg does not allow missing values, so for these analyses, we used a hard-call-threshold of 0.5. 
For all analyses, we used adjusted phenotypes, obtained by regressing the original phenotypic values on 13
covariates: age (data field 21022), sex (31), Townsend Deprivation Index (189) and ten principal 
components. To obtain summary statistics, we performed single-SNP analysis using linear regression 
(regardless of whether the phenotype was continuous, binary or categorical). When we required a reference
panel, we used genotype data from 20,000 UK Biobank individuals, randomly picked from the 86k 
common to the training samples of each phenotype (when analyzing asthma, breast cancer, prostate cancer,
rheumatoid arthritis and type 2 diabetes, we constructed two extra reference panels, each containing an 
additional 20,000 UK Biobank individuals). 

We downloaded summary statistics for asthma,26 breast cancer,28 prostate cancer,27 rheumatoid 
arthritis24 and type 2 diabetes25 from the websites of the corresponding studies. We chose these diseases as 
they were the ones for which we could find at least 1000 cases in the UK Biobank and summary statistics 
from a genome-wide association study of at least 50,000 samples (that did not use UK Biobank data). We 
excluded SNPs that had ambiguous alleles (A&T or C&G) or were not present in our UK Biobank dataset, 
after which on average 470,000 SNPs remained (range 191,000 to 559,000). For more details, see 
Supplementary Table 5.

Sensitivity of MegaPRS to setting choices. In Extended Data Fig. 10, we test the impact on prediction 
accuracy of changing the definitions of local and significant when calculating SNP-SNP correlations, the 
window settings and convergence threshold used when estimating effect sizes, and the choice of reference 
panel. In general, the impact on accuracy is fairly small. It is largest when we replace the UK Biobank 
reference panel (20,000 individuals) with genotypes of European individuals from the 1000 Genome 
Project45 (489 individuals). In this case, average R2 reduces by approximately 3% (about two thirds of this 
is due to reducing the number of individuals, one third due to replacing UK Biobank genotypes with 1000 
Genome Project genotypes).

Other tools. When running Bolt-LMM, BayesR, lassosum, sBLUP, LDPred-funct, LDPred2, AnnoPred 
and SBayesR (Extended Data Fig. 1), we generally used the recommended settings of each software (see 
the Supplementary Note for explicit scripts). For lassosum, LDPred2 and AnnoPred, we selected prior 
parameters via cross-validation, using the same approach as when running our summary statistic tools (i.e.,
by constructing partial and full models, as described above). For sBLUP, we found that  average R2 
improved if we repeated the analyses excluding high linkage disequilibrium regions.17,23 For AnnoPred, we 
found it was necessary to exclude SNPs from the major histocompatibility region (otherwise, the software 
would fail to complete). Figures 1 & 3 include results from Classical polygenic risk scores. For these, we 
used the estimates of βj from single-SNP analysis; we considered six p-value thresholds (P≤5e-8, P≤.0001, 
P≤0.001, P≤0.01, P≤0.1, all SNPs) and four clumping thresholds (s2

jk≤0.2, s2
jk≤0.5, s2

jk≤0.8, and no 
clumping), reporting results from the pair of thresholds that resulted in highest R2.

URLs

LDAK, http://www.ldak.org; big_spLinReg and LDPred2, https://privefl.github.io/bigsnpr; Bolt-LMM, 
https://data.broadinstitute.org/alkesgroup/BOLT-LMM; BayesR, sBLUP and SBayesR, 
https://cnsgenomics.com/software/gctb; LDPred-funct, https://github.com/carlaml/Ldpred-funct; 
AnnoPred, https://github.com/yiminghu/AnnoPred; UK Biobank, https://www.ukbiobank.ac.uk.
High-LD regions, https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
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Extended Data Figures

Extended Data Fig. 1 | Comparison with existing software. Points report the improvement in prediction 
accuracy for each phenotype when we switch from using existing versions of each tool to our versions. 
Accuracy is measured via R2, the squared correlation between observed and predicted phenotypes across 
20,000 test samples; improvements above 50% are truncated. Boxes mark the median and inter-quartile 
range across the 14 phenotypes. The top row considers versions of tools that use individual-level data, the 
bottom row considers versions that use summary statistics. The colors of boxes indicate the assumed 
heritability model (GCTA, LDAK-Thin, BLD-LDAK or Baseline LD Model), while the colors of the x-
axis labels indicates the type of prediction tool (lasso, ridge regression, Bolt-LMM or BayesR).

Here we summarize the different analyses; for more details see Methods, while for scripts see the 
Supplementary Note. In general, we trained models using the full training data for each phenotype 
(200,000 individuals and 628,694 SNPs). However, this was not computationally feasible for BLUP (best 
linear unbiased prediction) and the original BayesR software, so for these we instead restricted to 50,000 
individuals and 628,694 SNPs, and to 20,000 individuals and 99,852 SNPs (Chromosomes 1 & 2), 
respectively. Further, when comparing with AnnoPred, it was necessary to exclude the major 
histocompatibility complex (Chr6:25-34Mb), as otherwise AnnoPred would often fail to complete. For 
Bolt-LMM-Ridge, we run the original Bolt-LMM software with the options “--pEst .5 --varFrac2Est .5” 
(i.e., forcing the ridge regression model). For sBLUP-No-High-LD, we run sBLUP with SNPs in high-LD 
regions excluded.23 We compared results from LDPred-funct to those from our version of ridge regression. 
Strictly, this comparison is not fair (our version is disadvantaged), because LDPred-funct uses a 
generalized version of the ridge regression model (having estimated effect sizes, these are then regularized 
via cross-validation). However, we observed that this regularization made little difference to accuracy (we 
found that results from LDPred-funct were very similar to those from LDPred-inf, which omits the 
regularization).
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Extended Data Fig. 2 | Prediction accuracy of MegaPRS. We construct MegaPRS prediction models 
using summary statistics from between 100,000 and 200,000 training samples, then measure their accuracy
via R2, the squared correlation between observed and predicted phenotypes across 20,000 test samples. a, 
Points report R2 averaged across the 14 phenotypes; colors indicate the assumed heritability model. The 
lines of best fit are obtained by regressing average R2 on a + bn, where n is the number of training samples;
for the GCTA Model, we use the best fit line to predict average R2 if the sample size was 25% higher than 
specified (dashed line). b, Points compare the accuracy of MegaPRS models constructed using summary 
statistics (x-axis) to the accuracy of Bolt-LMM models constructed using individual-level data (y-axis); 
colors indicate the phenotype (numbers in brackets indicate the percentage improvement in R2 when 
switching from summary statistics to individual-level data).
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Extended Data Fig. 3 | Measuring prediction accuracy via mean absolute error. We construct lasso, 
ridge regression, Bolt-LMM, BayesR and MegaPRS prediction models using all 200,000 training samples, 
then measure their accuracy based on the mean absolute error between observed and predicted phenotypes 
across 20,000 test samples. Bars report mean absolute error averaged across the 14 phenotypes (vertical 
segments mark 95% confidence intervals); colors indicate the assumed heritability model, while blocks 
indicate the prediction tool. The horizontal lines mark average mean absolute error for classical classical 
polygenic risk scores and a 95% confidence interval. a, The models are constructed using individual-level 
data. b, The models are constructed using summary statistics (note that when running MegaPRS, we do not
consider lasso models, for the reason explained below).

We see that for all tools, improving the heritability model (i.e., replacing the GCTA Model with 
either the LDAK-Thin or BLD-LDAK Model) improves average prediction accuracy (reduces average 
mean absolute error). However, we note that relative to the other tools, our standard summary statistics 
version of lasso performs poorly. This is because when choosing the smoothing parameter λ, the value that 
maximizes R2 is in general not the value that minimizes mean absolute error. Therefore, if the aim is to 
construct prediction models from summary statistics that minimize mean absolute error, we recommend 
using MegaPRS*, which replaces the standard lasso solver with lasso*, a non-sparse version (specifically, 
lasso* uses posterior mean estimates of effect sizes, instead of posterior modes, which ensures all effect 
sizes are non-zero).
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Extended Data Fig. 4 | Measuring prediction accuracy via area under curve. We construct lasso, ridge 
regression, Bolt-LMM, BayesR and MegaPRS prediction models using all 200,000 training samples, then 
for the four binary phenotypes (college education, ever smoked, hypertension and snorer) measure their 
accuracy based on area under the receiver operating curve for the 20,000 test samples. Bars report area 
under curve averaged across the four phenotypes (vertical segments mark 95% confidence intervals); 
colors indicate the assumed heritability model, while blocks indicate the prediction tool. The horizontal 
lines mark average area under curve for classical classical polygenic risk scores and a 95% confidence 
interval. a, The models are constructed using individual-level data. b, The models are constructed using 
summary statistics.
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Extended Data Fig. 5 | Including imputed SNP genotypes. We construct prediction models using all 
200,000 training samples, then measure their accuracy via R2, the squared correlation between observed 
and predicted phenotypes across 20,000 test samples. First we restrict to 629,000 directly-genotyped SNPs 
(the same as for our main analysis), then we increase the number of SNPs to 7.5M by including imputed 
genotypes. When using individual-level data, we construct Bolt-LMM models; when using summary 
statistics, we use MegaPRS. Note that when including imputed genotypes, it was not computationally 
feasible to analyze all SNPs together, so we instead analyzed each chromosome separately. We then 
merged effect sizes across chromosomes before performing cross-validation, so that we continued to select 
prior parameters based on genome-wide data (rather than separately for each chromosome). a, Points 
report the percentage increase in R2 for individual phenotypes when each tool is switched from assuming 
the GCTA Model to either the LDAK-Thin or BLD-LDAK Model (boxes mark the median and inter-
quartile range across the 14 phenotypes). The dark blue boxes show that when using imputed data, R2 
generally increases, similar to when using directly-genotyped data (light blue boxes). The purple boxes 
show that the improvement in accuracy by switching from the GCTA Model to the BLD-LDAK Model is 
generally larger than the improvement in accuracy by including imputed SNPs.  b, Bars report R2 averaged
across the 14 phenotypes (vertical segments mark 95% confidence intervals); colors indicate the assumed 
heritability model.
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Extended Data Fig. 6 | Asthma, breast cancer, prostate cancer, rheumatoid arthritis and type 2 
diabetes. For each disease, we use summary statistics from published studies to construct lasso, ridge 
regression, Bolt-LMM, BayesR and MegaPRS prediction models, then test their accuracy based on how 
well they predict for UK Biobank individuals. a, Bars report R2, the squared correlation between observed 
and predicted phenotypes across UK Biobank individuals, averaged across the five diseases (vertical 
segments mark 95% confidence intervals); colors indicate the assumed heritability model. b, Bars report 
area under the receiver operating curve for the UK Biobank individuals, averaged across the five diseases 
(vertical segments mark 95% confidence intervals); colors indicate the assumed heritability model.
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Extended Data Fig. 7 | Alternative heritability models. We construct prediction models using all 
200,000 training samples, then measure their accuracy via R2, the squared correlation between observed 
and predicted phenotypes across 20,000 test samples. When constructing models using individual-level 
data, we use Bolt-LMM; when constructing models from summary statistics, we use MegaPRS. In addition
to the GCTA, LDAK-Thin and BLD-LDAK Models, we also consider the GCTA-LDMS-I30 and Baseline 
LD Model,29 the models recommended by the authors of GCTA3 and LD Score Regression46, respectively. 
a, Points report the percentage increase in R2 for individual phenotypes when we switch from assuming the
GCTA, LDAK-Thin, GCTA-LDMS-I or Baseline LD Model to the BLD-LDAK Model (boxes mark the 
median and inter-quartile range across the 14 phenotypes). b, For each heritability model, bars report R2 
averaged across the 14 phenotypes (vertical segments mark 95% confidence intervals).
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Extended Data Fig. 8 | A sliding window approach for estimating effect sizes using summary 
statistics. When performing estimating effect sizes using summary statistics (for which we used either 
coordinate descent or variational Bayes), we found it was not feasible to iterate over all SNPs in the 
genome. Therefore, we instead used sliding windows, illustrated above (numbers indicate the order in 
which windows are processed). By default, we iteratively estimate effect sizes for all SNPs in a 1cM 
window, stopping when the estimated proportion of variance explained by these SNPs converges. Then we 
move 1/8 cM along the genome, and repeat for the next 1cM window. If a window fails to converge within 
50 iterations, we reset the effect sizes to their values prior to that window (note that this happens very 
rarely, and not once for our main analysis).
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Extended Data Fig. 9 | Cross-validation using pseudo summary statistics. We select prior parameters 
for each tool via cross-validation. When constructing prediction models using summary statistic, this cross 
validation requires (independent) training and test summary statistics (for example, one constructed using 
90% of training samples, the other constructed using the remaining 10%). For asthma, breast cancer, 
prostate cancer, rheumatoid arthritis and type 2 diabetes, we are unable to compute these directly, as we do 
not have access to the data used to generate the summary statistics. Therefore, we instead create pseudo 
partial summary statistics (for details, see Methods). This figure demonstrates that this approach is 
effective. Each plot reports R, the correlation between observed and predicted phenotypes across test 
samples, for each of the 325 models considered by MegaPRS (100 lasso models, 11 ridge regression 
models, 131 Bolt-LMM models and 83 BayesR models). For the black lines, the models are constructed 
using full summary statistics, and R is calculated using the test datasets (this can be viewed as the “true 
R”); for the red lines, the models are constructed using the pseudo training summary statistics, and R is 
estimated using the pseudo test summary statistics (the “estimated R”). The first 14 boxes correspond to 
the UK Biobank phenotypes; the last six to asthma, breast cancer, prostrate cancer, rheumatoid arthritis 
(twice) and type 2 diabetes. Note that in practice, there is no need to create pseudo summary statistics for 
the UK Biobank phenotypes, as with access to individual-level data, we can compute the actual summary 
statistics; we do so here only for demonstration. We see that in general, the black and red lines mirror each 
other, indicating that we can reliably use pseudo summary statistics to select model parameters. The 
exception is for rheumatoid arthritis, a consequence of there being very strong effect loci within the major 
histocompatibility complex (MHC), a region of long-range linkage disequilibrium. However, in this case, 
we find it suffices to exclude the MHC region when using the pseudo summary statistics (we continue to 
include the region when using the full summary statistics).
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Extended Data Fig. 10 | Sensitivity analysis of MegaPRS. Points report the percentage increase in R2, 
the squared correlation between observed and predicted phenotypes across 20,000 test samples, for 
individual phenotypes when we change settings from their default values (boxes mark the median and 
inter-quartile range across the 14 phenotypes). For the five red boxes, we change settings when calculating 
SNP-SNP correlations: by default, we record correlations within 3cM that are significant (P<0.99, which 
corresponds to those with magnitude greater than √0.0003), using a reference panel of 20,000 individuals; 
here we instead record correlations within 1cM, or record all correlations, or record those whose 
magnitude is greater than √0.01, or reduce the reference panel to 2000 individuals, or reduce the reference 
panel to 489 individuals. For the three light-blue boxes, we change settings when estimating effect sizes: 
by default, we estimate effect sizes for a 1cM window, then move 1/8th of a window along the genome and
repeat; here we instead use a 3cM window, or move 1/4th of a window along the genome, or move 1/16th 
of a window along the genome. For the two dark-blue boxes, we scale the estimates of SNP-SNP 
correlations by 0.9 or 0.8. For the first orange box, we replace the UK Biobank reference panel with 489 
Europeans individuals from the 1000 Genome Project (note that here we compare results with those 
obtained using a reference panel of only 489 UK Biobank individual); for the second orange box, we do 
the same except scale estimates of SNP-SNP correlations by 0.8. For the first purple box, we reduce the 
convergence tolerance from 0.00001 to 0.000001. For the second purple box, we only construct lasso 
models, replacing the sparse solver (effect sizes are conditional posterior modes) with a non-sparse solver 
(effect sizes are conditional posterior means). For the third purple box, we only construct Bolt-LMM 
models, reducing the number of possible pairs for (p,f2) from 132 to 18. For the fourth purple box, we 
construct only BayesR models, using a shrinkage version of the prior distribution (we replace the point 
mass at zero with a Gaussian distribution with variance σ)2/1000).

Overall, we find that the performance of MegaPRS is fairly robust to the changes of settings. The 
largest impact is if we replace the UK Biobank reference panel with a 1000 Genomes panel. In this case, 
R2 reduces on average by about 2% due to reducing the number of individuals from 20,000 to 489 (fifth 
box on the top row) and on average a further 1% due to replacing UK Biobank genotypes with 1000 
Genome genotypes (third box of the bottom row). We note that there is a small advantage using shrunk 
estimates of SNP-SNP correlations (first two boxes on bottom row), and that by shrinking, we can offset 
some of the reduction due to substituting in the 1000 Genome reference panel (fourth box on bottom row). 
Lastly, we note that the non-sparse version of the lasso tends to out-perform the sparse version (sixth box 
of the bottom row), reflecting once more that polygenic prediction models generally outperform sparse 
models.
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