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Abstract 

 The alteration of gene expression due to variations in the sequences of transcriptional regulatory 

elements has been a focus of substantial inquiry in humans and model organisms. However, less is known 

about the extent to which natural variation contributes to post-transcriptional regulation. Allelic Expression 

Imbalance(AEI) is a classical approach for studying the association of specific haplotypes with relative 

changes in transcript abundance. Here, we benchmarked a new TRAP based approach to associate genetic 

variation with transcript occupancy on ribosomes in specific cell types, to determine if it will allow examination 

of Allelic Translation Imbalance(ATI), and Allelic Translation Efficiency Imbalance, using as a test case mouse 

astrocytes in vivo. We show that most changes of the mRNA levels on ribosomes were reflected in transcript 

abundance, though ~1.5% of transcripts have variants that clearly alter loading onto ribosomes orthogonally 

to transcript levels. These variants were often in conserved residues and altered sequences known to 

regulate translation such as upstream ORFs, PolyA sites, and predicted miRNA binding sites. Such variants 

were also common in transcripts showing altered abundance, suggesting some genetic regulation of gene 

expression may function through post-transcriptional mechanisms. Overall, our work shows that naturally 

occurring genetic variants can impact ribosome occupancy in astrocytes in vivo and suggests that 

mechanisms may also play a role in genetic contributions to disease.  
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Introduction 

Proper regulation of gene expression is essential to normal biological function. Sequence variations 

in key regulatory elements such as promoters and enhancers can alter DNA-protein interactions, and thus 

alter the transcription of target genes. Such genomic variants have been shown to be statistically over-

represented in disease associations (Carullo and Day, 2019; Karnuta and Scacheri, 2018; Schoenfelder and 

Fraser, 2019). However, final expression of genes, especially protein coding genes, is a multistep process 

with post-transcriptional regulation also substantially modifying the amount of protein produced during 

translation of specific transcripts by the ribosome. As with DNA sequence variation, alterations in the 

sequence of the mRNA can similarly alter RNA-protein or RNA-RNA interactions, thus substantially 

modulating levels of translation. Key examples include alterations of Kozak, uORFs, and other sequences in 

5’UTRs that can modulate translation initiation (Leppek et al., 2018), as well as polyadenylation signals and 

miRNA and RNA-binding protein (RBPs) sites in 3’UTR that can influence transcript stability, localization, and 

translation efficiency (Mayr, 2017). However, little attention has been paid to how naturally occurring genomic 

sequence variation can contribute to modulating ribosome occupancy of specific transcripts (Hou et al., 

2015). Additionally, mRNA abundance and stability are not always clear indicators of ultimate protein 

synthesis; relative mRNA expression/stability and translational levels for a given gene can vary significantly, 

owing to a host of post-transcriptional events (Liu et al., 2016). Indeed, assessment of Translational Efficiency 

(TE), defined empirically as the relative number of ribosomes per transcript using combinations of Ribosome 

Footprinting and RNA sequencing (Dalal et al., 2017; Ingolia et al., 2009, 2011) has suggested that transcript 

abundance only accounts for 43%-63% of ribosome occupancy across transcripts. Further, post-

transcriptional regulation is especially important in the CNS, where both neurons and astrocytes show 

evidence of complex activity dependent and localized regulation of translation (Sakers et al., 2017; Sapkota 

et al., 2020). To what extent do variants in UTRs also have substantial impact on final levels of ribosomes on 

the mRNA? Do they also have the propensity to contribute to normal variation across a population? Does 

this occur in vivo and in tissues, such as the brain, where translation regulation is highly sophisticated?  

To address these and similar questions, we aimed to develop an approach for assessing the influence 

of genetic variation on ribosome occupancy in specific cells in the brain. We adapted a classical approach to 

the association of genetic variation to transcript abundance: Allelic Expression Imbalance (AEI). Allelic 

Expression Imbalance is a very sensitive within-subject design for associating a particular genetic haplotype 

with an imbalance of in transcript abundance, such as might be produced by alteration in transcription due to 

variants in enhancers nearby a gene. It works by analyzing the relative abundance of tag-SNPs present in 

an mRNA from heterozygous alleles. It has been widely used in humans (Chuang et al., 2017; Mohammadi 

et al., 2019) and model organisms (Chen et al., 2019; Pinter et al., 2015; Zhuo et al., 2017) to study genetic 

regulation of transcription, as well as more unusual phenomena such as imprinting (Chuang et al., 2017; 

Santoni et al., 2017), parent of origin effects, and allele-specific protein-RNA binding differences (Bahrami-

Samani and Xing, 2019). To study genetic regulation of translation in vivo, we combined this framework with 

Translating Ribosome Affinity Purification (Dougherty, 2017; Heiman et al., 2008) - a method for purifying the 

mRNA specifically bound to ribosomes from genetically targeted cell populations. By collecting in parallel 

total mRNA-seq as well as ribosome bound mRNA-seq from the same hybrid mice, we reasoned we could 

simultaneously analyze AEI, Allelic Translation Imbalance (ATI), and finally Allelic Translational Efficiency 

Imbalance (ATEI) to identify those alleles where ribosome occupancy was significantly altered from what was 

expected from initial transcript abundance. This builds upon a similar study using polysome profiling and 

ribosome footprinting in cultured cells to examine ATI and AETI (Hou et al., 2015). The TRAP method could 

be advantageous because it simplifies purifying actively translating mRNAs from cell lysate as compared to 

more lengthy approaches such as polysomal profiling or ribosome footprinting. More importantly, the method 

also allows uniquely cell-specific capture of the translating pool from in vivo specimens. Because we are 

interested in astrocytes, it is employed here using an astrocyte-specific promoter-driven expression of the 

TRAP construct as a test case. However, a Cre-inducible TRAP mouse could be mated to virtually any cell-

type specific Cre expression mouse for targeted allele-specific translatomics. 

The prior work in cultured cells has shown that F1 hybrids of Mus musculus and the related Mus 

spretus have ~1000 genes which show ATEI (roughly 14% of measurable transcripts), and that SNPs in the 

5’ Untranslated Region (UTR), especially those close to the start codon, contributed significantly to this, as 

well as SNPs in this region that caused predicted less stable secondary structure (Hou et al., 2015). A 
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similarly constructed follow-up study demonstrated ~600 genes with allelic decay imbalance, with increased 

instability owing largely to a greater presence of miRNA sites, exclusively in the 3’UTR (Sun et al., 2018). 

Here, we show that our similar in vivo approach can identify thousands of variants that are specifically 

associated with alterations in ribosome occupancy. We found thousands of haplotypes associated with AEI, 

and a slightly larger number that altered ATI, as well as 138 that specifically modulated ribosome occupancy 

through ATEI. Further, by annotating all variants based on their alteration of putative translation regulatory 

sequences in UTRs, we highlight numerous examples of ATEI genes with variants altering uORFs, polyA 

signals, and notably the strength of microRNA binding sites. Finally we show that these variants are 

disproportionately compensatory, with AEI and ATEI changes acting in opposition, suggesting evolution acts 

across these multiple variants to achieve a conserved level of protein production. 

  

 

Methods 

Mouse Husbandry 

 All animal procedures were approved by the Washington University Institutional Animal Care and Use 

Committee. Aldh1L1 TRAP mice (Tg(Aldh1l1-EGFP/Rpl10a)JD130Htz, JAX:030247) originally generated as 

BAC transgenics on an FVB background, were backcrossed >12 generations to C57BL/6J mice (hereafter 

BL6). Males of this line were then crossed to female FVB mice to generate N1 hybrids. Two male and two 

female N1 littermates (N = 4) were genotyped for the presence of the TRAP allele and sacrificed at P21 for 

TRAP-Seq. 

 

Immunofluorescence 

 Following euthanasia, Ald1h1L1 TRAP mice were perfused with phosphate buffered saline (PBS), 

and then 4% paraformaldehyde in PBS. Brains were cryoprotected in PBS sucrose solution, then frozen in 

OCT and then cryosectioned into 40 micron floating sections and stored in PBS 0.25% sodium azide at 4C 

until use. For assessment of astrocyte labeling, sections were blocked and solubilized with 5% normal serum 

and 0.25% triton X-100 in PBS, then incubated with Chicken anti-GFP (ab13970, abcam), and Goat anti-Glt1 

(sc-7760, Santa Cruz biotechnology), and stained with appropriate Alexa fluor conjugated secondary 

antibodies, and counterstained with DAPI. Slices were slide mounted in Prolong Antifade, and imaged by 

confocal microscopy. 

 

TRAP and RNAseq 

TRAP was performed on P21 whole brain homogenates as described previously (Heiman et al. 2008 

and Sapkota et al. 2020). RNA was extracted from the input and TRAP samples using the RNA Clean & 

Concentrator Kit (Zymo Research). RNA quality and concentration were measured using a NanoDrop 

spectrophotometer and a High Sensitivity RNA ScreenTape (Agilent Technologies). All samples had RNA 

integrity scores >7.0. 

 

Barcoded libraries were prepared with the NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB 

#E7770) and the NEBNext rRNA Depletion Kit (NEB #E6310), according to the manufacturers’ instructions. 

Each library was screened for quality and adapter dimers on a High Sensitivity D1000 ScreenTape (Agilent 

Technologies), then sequenced on an Illumina HiSeq 3000 using 150bp, single-end reads. 

 

Data is available at GSE156414. 

 

Standard TRAP and RNAseq analysis 

Sequencing results were quality checked using FastQC (version 0.11.7). Illumina sequencing 

adaptors were removed using Trimmomatic (version 0.38) (Bolger et al., 2014), and reads aligning to the 

mouse rRNAs were removed using bowtie2 (version 2.3.5) (Dobin et al., 2013). Surviving reads were then 

aligned to the mouse transcriptome (Ensembl Release 93) using STAR (version 2.7.0d) (Langmead and 

Salzberg, 2012). The number of reads mapped to each gene were counted using htseq-count (version 0.9.1).  
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  Differential expression analysis was done using edgeR (version 3.24.3) (Robinson et al., 2010). Only 

genes with > 1 CPM in at least 4 out of 8 samples were retained for further analysis (13,645 genes). A 

negative binomial generalized log-linear model (GLM) was fit to the counts for each gene. Likelihood ratio 

tests (LRT) were conducted for comparing RNASeq samples with TRAPSeq samples. Known astrocyte 

genes are defined as described in (Dougherty et al., 2012). 

  

Genome and annotation 

FVB genome from NCBI (https://www.ncbi.nlm.nih.gov/assembly/GCA_001624535.1) and BL6 

genome from Ensembl (GRCm38.p4) were merged to construct a pseudo-genome for allele specific 

alignment. Sex chromosomes X and Y were removed from the final pseudo-genome. Pseudo-annotation was 

also constructed by combining FVB annotation from UCSC mouse strain assembly hub (Ensembl version 

86) and BL6 annotation (Ensembl version 86). Only genes existing in both FVB and BL6 were kept in the 

final pseudo-annotation. 

 

Allele-specific expression analysis 

Reads that passed the quality check and did not align to the mouse rRNAs, as above, were aligned 

to the pseudo-genome with multimapping disallowed using STAR (version 2.7.0d) (Langmead and Salzberg, 

2012). This resulted in only reads containing SNPs, thus enabling unique alignment to either FVB or BL6 

sequences, being retained. The exon regions were extracted from the pseudo-annotation. The number of 

reads overlapped with each exon were counted using bedtools (version 2.27.1). Gene counts were calculated 

by summing up the counts of their exons. From these counts, each sample was divided into two pseudo-

samples representing its FVB and BL6 counts for each gene for the purposes of edgeR analysis. 

 

Library complexity 

Gene counts lower than 20 were removed and remaining counts were normalized based on upper 

quartile normalization. The BL6 expression bias of each gene was calculated as the proportion of BL6 

normalized counts from the total allele specific normalized counts. Library complexity was measured by fitting 

a beta-binomial distribution of BL6 bias using the VGAM package. The shape parameters, a and b, of beta-

binomial distributions were estimated. The dispersion values (r < 0.05 ) were used to indicate whether the 

libraries are sufficiently complex. The library complexities were ranged from 0.056 – 0.071 (Fig. S2).  

 

AEI, ATI, and ATEI analyses 

All raw gene counts were input to edgeR (version 3.28.0) for differential expression analysis. Only 

genes with > 1 CPM in at least 4 out of 8 samples were retained for further analysis (9,021 genes). A negative 

binomial generalized log-linear model (GLM) was fit to the counts for each gene. Then the likelihood ratio 

tests (LRT) were conducted for comparing allelic expression, allelic translation, and allelic translation 

efficiency. The comparison models are listed as below:  

AEI = FVBRNASeq – BL6RNASeq 

ATI = FVBTRAPSeq – BL6TRAPSeq 

ATEI = (FVBTRAPSeq – BL6TRAPSeq) – (FVBRNASeq – BL6RNASeq) 

  

Differentially expressed genes in each category were defined by having FDR < 0.1. Results of all 

comparisons are included in Supplemental Tables 2 and 3.  

  

UTR annotation pipeline 

There are a few feature elements in non-coding regions that are known as translation regulators, 

including the number of AUGs in the 5’ UTR, the number of Kozak sequences in the 5’ UTR, the number of 

polyA signals in the 3’ UTR, the stop and start codon, and the Kozak score at the transcription initiation site 

(TIS). In order to identify the potential deleterious variants which could disrupt those translation regulators in 

non-coding sequences, a UTR annotation pipeline (Fig. 4A) was developed to annotate variants on whether 

and how it alters any of these feature elements in UTRs. As non-coding sequences playing a role in gene 

regulation may be conserved within a genome, the UTR annotation pipeline also queried conservation scores 
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of variants’ positions to identify variants overlapping with highly conserved regions in the downstream 

analysis. The conservation scores are from the UCSC phastCons60way and phyloP60way.  

  

Annotation of Variants 

FVB specific variants relative to the reference mouse genome BL6 were obtained from the Mouse 

Genomes Project SNP and indel Release Version 5 (ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/). 

Variants were annotated using the UTR annotation pipeline to identify variants that disrupt the feature 

elements in non-coding regions. Gene models from Ensembl release 80 were used for annotation. 

 

MiRNA analysis 

Variants that overlapped with the ATEI genes were selected for miRNA analysis. For each variant, 34 

nucleotides up- and downstream of the varying sequence was pulled from the BL6 genome as BL6 mRNA. 

The corresponding FVB mRNA was generated using BL6 mRNA and variant information. BL6 mRNA and 

FVB mRNA were separately input into miRanda v3.3a (Enright et al., 2003) to predict their target miRNAs 

with score threshold as 80 and energy threshold as -14 kcal/mol. In order to compare the miRNA target 

difference between BL6 and FVB caused by the variant, miRNAs that bind to regions outside of variant 

positions were filtered out. Then the minimum free energy (MFE) of each miRNA from BL6 and FVB were 

compared, and miRNAs were called only if their absolute MFE is larger than 0 (Fig. 4C).  

 

Code Availability 

 Code is available on bitbucket: 

 https://bitbucket.org/jdlabteam/allelic_translation_imbalance/src/master/. 

 

Results 

 

Development of an in vivo approach to identify transcripts with allelic translational efficiency 

imbalances 

 Our goal was to measure ATEI from a specific cell type in the brain, and to determine the magnitude 

of impact of common genetic variation on transcript ribosome occupancy. To achieve this, we crossed two 

fully sequenced common strains of inbred mice (Fig. 1A), differing with 6,617,019 known small nucleotide 

variants(SNVs), including SNPs and indels, 110,559 of which occur in mature transcripts (Fig. 1B). Overall, 

2354 genes only differ by one SNV in the transcript. We selected these lines rather than the more distantly 

related Mus spretus to 1) increase the probability of finding ATEI transcripts with only a single (and thus likely 

causal) SNP, and 2) to model the magnitude of variation that might be seen between two individuals of the 

same species, such as across individual humans. We included the astrocyte TRAP allele, which enabled 

purification of ribosomes specifically from astrocytes in the brain (Fig. 1C:cartoon), and conducted both 

RNAseq and TRAPseq from the same lysates. Immunofluorescence analysis revealed that GFP-RPL10A 

expression was mainly localized to astrocytes as seen by colocalization with the astrocyte marker GLT1 (Fig. 

1D). Quality control analyses confirmed that TRAP was reproducible across replicates (Fig. 1E), and that it 

enriched specifically for known astrocyte transcripts as expected (Fig. 1F). 

We then separately counted transcript fragments that mapped unambiguously to either the FVB or 

BL6 from each sample. We structured the data as strain-specific ‘pseudo-samples’ in a manner that allowed 

us to readily adapt standard EdgeR (3.28.0) RNAseq package assumptions to measures of AEI (from 

RNASeq), as well as Allelic Translation Imbalance (from TRAPseq) (Fig. 2, Table S1: raw counts, by sample 

by parent). This further enabled us to sensitively identify ATEI again using an EdgeR framework as transcripts 

where the TRAPseq allelic differences were not proportional to RNAseq allelic differences, indicating 

regulation ATEI in vivo (Fig 2F). Quality control analyses confirmed that pseudo-samples clustered well by 

both TRAP and strain (Fig. 3A), showing strong reproducibility. Our approach performed reasonably well, 

with both AEI and ATI showing roughly equal proportions of variant reads from each BL6/FVB genome (Fig. 

S2). Thus, we were able to identify 3505 and 3762 transcripts showing AEI and ATI respectively (FDR < .1, 

Fig. 3B,C, Tables S2 and S3). Correlation between ATI and AEI overall was strong (r = 0.95, Fig. 3D), 

indicating that the majority of AEI from differences in transcription/transcript abundance carries over to 

change ribosome occupancy. However, we did detect 138 transcripts where ATEI clearly occurs (FDR < 0.1, 
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Fig 3D,E, and Fig. S1 for top 15 ATEI genes). Overall it appears common variants impact translation efficiency 

in 1.53% of transcripts in astrocytes under these conditions. This suggests a proportion of transcripts show 

such translational regulation, and that this type of variation could contribute to final protein expression levels 

(and occasionally serve as a mechanism for disease associations). Gene Ontologies indicated these 

transcripts impacted all classes of genes with equal likelihood, suggesting this class of regulation is not 

specific to any particular biological processes (not shown).  

 

Variants that alter uORFs and poly-Adenylation signals occur more often in ATEI transcripts 

We next developed a pipeline to identify potential molecular consequences of variations in UTRs (Fig. 

4A), enabling us to test several hypotheses regarding which classes of variants might be enriched in ATEI-

exhibiting transcripts. A variety of sequences such as uORFs, Kozaks, Start and Stop Codons, as well as 

PolyAdenylation signals (PAs) could all plausibly alter TE. We scanned all variant-containing transcripts to 

determine whether any common variants altered any of these, and if this occurred more often in ATEI 

transcripts than expected by chance. We found that uORFs and polyA signals were altered more often in 

ATEI transcripts than expected by chance (odds ratio > 3, Fisher’s exact test p-value < 1.39e-02) (Fig. 4B, 

Tables S6 and S7). Unfortunately, all of ATEI transcripts with these variants do have more than one SNP in 

the transcript, thus it is impossible, short of generating congenic mouse lines, to definitively establish the 

precise causal variant(s). Nonetheless, some interesting possibilities emerge. Five variants in ATEI 

transcripts altered uORFs; 3 of them added a new uORF, and 2 of them disrupted an existing uORF. The 

disrupted uORFs did not affect mRNA expression, but were associated with either up- or down-regulated 

translation. For example, Lyrm5 lost one uORF in FVB, correlating with increased TE (Fig. 4C), which 

indicates that the BL6 uORF may typically repress translation at downstream main ORF. Likewise, Itgad has 

one uORF in BL6 and lost it in FVB, which made no significant change in mRNA level but was associated 

with a -3.9 log fold change in translation (Fig. 4D). In addition, the phastCons conservation score is as high 

as 0.99, suggesting this sequence, and thus this uORF, has a conserved function on gene translation. 

Similarly, five ATEI genes have variants altering PAs in 3’ UTR, 2 of them gained an extra PAs and 3 of them 

lost a PAs. Among genes that are not differentially expressed in AEI, losing PAs enhanced their TE while 

gaining PAs reduced TE. For example, Lyrm5 increased TE after losing one PAs (although this gene also 

lost one uORF, so it is unclear which change led to the TE increase), whereas Lsm14b and Fam163a had 

reduced TE after gaining one PAs. Overall, this suggests that variants impacting these features contribute to 

the differences in translation efficiency between these common alleles. 

Though we had expected these kinds of variants would mostly influence ATEI genes, we were 

surprised to see a disproportionate amount of these events occurring in AEI (and the correlated ATI) 

transcripts as well. Variation that alters use of uORFs can influence stability, frequently by triggering 

nonsense-mediated decay (NMD) if a premature stop codon (PTC) is formed by their use (Mendell et al., 

2004; Wittmann et al., 2006; Yepiskoposyan et al., 2011). Variation that alters polyA signals can cause 

truncations or extensions which introduce or remove elements that can alter a transcript’s post-transcriptional 

regulation, such as an AU-rich element, among others, and abnormally long 3’ UTRs that can arise from 

polyA variation are also triggers for NMD (Tian and Manley, 2017). Changes in mRNA stability can have a 

profound effect on the translational state of a transcript, and vice versa (Roy and Jacobson, 2013). Overall, 

we identify 126 AEI transcripts with uORF changes and 103 AEI transcripts with pAS changes. With each 

event having an Odds ratio of about 3, this suggests that 60 to 80 of the AEI differences are actually due to 

these SNPs impacting stability of the transcript as opposed to these SNPs(or others in linkage) altering 

transcriptional levels. Looking across these variants, however, we did not see a consistent direction of effect 

on RNA abundance for those variants altering predicted uORFs or PAs. Thus, these classes of variants 

appear to have equal chances of promoting or decreasing RNA stability overall.  

 

ATEI variants show higher impacts on predicted miRNA binding sites 

Another key regulatory feature of UTRs is binding sites for miRNAs, so we also tested whether ATEI 

genes had increased SNPs falling in predicted miRNA binding sites. miRNAs are small (less than 35nt) RNAs 

that bind predominantly to 3' UTR sequences, thereby recruiting Argonaute proteins to a transcript and 

leading to suppression of translation and potentially RNA decay (Rana, 2007). miRNA binding can be 

somewhat predicted by alignment, with key residues being bases 2-8 at the 5’ end. The miRanda prediction 
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algorithm assigns scores to putative UTR target sequences based on a weighted average of all residues 

(Enright et al., 2003). We adapted this algorithm to calculate alignments for both alleles at all positions of 

variation in 3’ UTR between the mouse strains, and screened for variants that strongly altered the predicted 

binding (Fig. 5A). We compared these changes to a set of randomly selected control genes with matched 

length UTRs to the ATEI genes. Our first findings were that ATEI transcripts contain more SNPs than control 

transcripts (Fig. 5B), and these tend to fall in more conserved residues (Fig. 5C). Looking at the maximum 

absolute change of minimum free energy(MFE) of all transcripts, we found that ATEI transcripts had a 

significantly higher MFE change between alleles than control transcripts. (Fig. 5D), which indicates that 

variants in ATEI UTRs tend to more strongly alter predicted miRNA::mRNA interaction. In many cases, some 

SNPs completely disrupted an miRNA binding site or introduced one (Fig. 5E, Fig 5F, Table S8). Finally, we 

repeated the analysis using miRNAs that were definitely expressed in astrocytes, leveraging our prior in vivo 

biochemical studies (Hoye et al., 2017; Liu and Wang, 2019). The same effect was true when limiting our 

analyses to these miRNAs (Fig. 5G). Thus, a subset of ATEI changes appear likely to be mediated by 

alterations in miRNA binding sites. 

 

Most ATEI changes are disproportionately compensatory for AEI changes. 

 Final protein abundance is in part controlled by both transcriptional regulation and translational 

regulation. Our differential expression analysis showed 3505 genes were significantly different at the mRNA 

level and 3762 genes have significantly different transcript ribosomal occupancy, in which 2938 genes were 

overlapped (Fig. 6A).  We examined the direction of effect of the ATEI mutations relative to any AEI that might 

be occurring to determine whether the ATEI variants further exacerbate that difference (reinforce), or 

compensate for it thus negating some of the impact (compensate). Examining the direction of effect for any 

ATEI-transcripts that also had significant AEI, We found that 65 changes were compensatory and 37 were 

reinforcing, a difference unlikely to be due to chance (Fig. 6B) (p = 0.02824, Fisher’s Exact Test). This result 

agrees with previous studies (Blevins et al., 2019; Hou et al., 2015; McManus et al., 2014), which suggests 

that post-transcriptional regulation attenuates the effect of transcriptional variance, and illustrates its 

importance in evolution as it often buffers transcript regulation divergence to maintain protein abundance. 

 

Discussion/Conclusions 

SNPs and larger mutations can be deleterious to the proper regulation of transcript abundance and 

protein production, owing to the introduction or disruption of key elements, many of which lie outside the 

coding region for a given gene. In this work we sought to analyze how such effects could present in two 

closely related Mus musculus strains, as a proxy for how two humans who differ in genome sequence from 

one another may present differences in these processes. We established, in F1 progeny of a cross between 

C57BL/6J and FVB/NJ mice, that thousands of transcripts both differ in expression levels and differ in 

astrocyte-specific ribosome occupancy. While >90% of the ribosome occupancy as measured by TRAP could 

be explained by transcript levels, we found over a hundred ‘ATEI’ transcripts for which there was a significant 

difference between the change in expression vs. the change in ribosome occupancy, indicating a role for 

these variants beyond control of mRNA abundance. This suggests that common variants might alter 

translation efficiency in 1-2% of transcripts in vivo.  

More detailed analysis of UTR elements revealed that within these ATEI genes, uORFs and poly-A 

signals were more likely to be disrupted than expected by chance. Additionally, many variants changed the 

MFE of miRNA binding sites, with several specifically potentially disrupting existing sites or introducing new 

sites. Also, those SNPs that were found in the ATEI transcripts were in positions that were more conserved 

when compared to those in control transcripts, suggesting these positions were indeed regulatory. 

Unfortunately though, only a minority of ATEI transcripts had just a single SNP in them, meaning in many 

cases it can be challenging to determine which variant in a linked block is causal. Regardless, many of the 

genes displaying ATEI also altered both AEI and ATI, indicating the translation efficiency is rarely regulated 

in a vacuum, and is consistent with prior observations indicating the translatability of a transcript can also 

alter transcript abundance. Further analysis of the direction of effect of the variant (i.e., higher or lower steady 

state levels and ribosome-associated levels) revealed that the majority of transcripts displaying ATEI had a 

compensatory effect, which is to say that the AEI and ATEI directions of effect were opposite to each other, 

as opposed to reinforcing, wherein they moved in the same direction. This is in agreement with several 
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studies which performed similar analyses, and suggests an evolution of buffering variants exists to maintain 

appropriate protein abundance. 

It must be noted that while the ribosome-bound mRNA affinity purified from the brain homogenates 

was astrocyte specific (GFP-RPL10A expression being driven by the astroctye-specific Aldh1l1 promoter) 

and used for ATI analysis, total brain RNA was used for AEI analysis and subsequent ATEI analysis. Moving 

forward, the parallel AEI studies could also be compartmentalized solely to a single cell type by first sorting 

brain homogenates or nuclei from TRAP lines by presence of GFP signal through fluorescence-assisted cell 

sorting (FACS) (Reddy et al., 2017). Such a sorting may remove any analysis artifacts that could arise through 

cell type-specific differences in expression, as there is significant variation in the transcriptome of different 

cell types (Delile et al., 2019; Jovičić et al., 2013; Shang et al., 2018; Zhong et al., 2018) and miRNA 

landscape (Jovičić et al., 2013), maintenance of which is critical for neural development. Likewise, it is 

interesting that the overall correlation between ribosome occupancy (measured by TRAP) and RNAseq was 

quite high (Figure 3D), and higher than expected from prior studies comparing RNAseq to Ribosome 

Footprinting(RF) or Polysome profiling, where the correlation has been substantially lower (Dalal et al., 2017; 

Ingolia et al., 2009, 2011). This suggests that TRAP could be underestimating the regulation due to translation 

and the 1-2% of transcripts showing ATEI due to common variants here might be a lower end estimate. 

Indeed, in mouse fibroblasts, Hou et al identified 14% of transcripts as showing ATEI, though that was 

comparing much more distally related mouse strains (~35M SNPs diverged as opposed to 6M here), so it 

cannot be determined from this experiment alone. Head-to-head comparisons with the same cells and strains 

might be needed to see if there is indeed a difference in sensitivity between using TRAP compared to 

polysome profiling or RF. Regardless, it is clear that even if TRAP ends up less sensitive than polysome 

profiling for picking up ATEI in future benchmark studies, it is sufficiently sensitive to detect some changes 

and would continue to fill a unique niche with its ability to assess specific cell types in vivo. 

By the same token, mRNA abundance analysis gives an idea of how variants alter a transcript’s 

expression, but it is unclear which process is being hindered or enhanced. Several methods for exploring 

nascent RNA production exist, such as capturing chromatin-associated RNA, Polymerase II-associated RNA, 

and metabolic labeling of newly synthesized RNA (Wissink et al., 2019). Additionally, measurement of RNA 

decay can be accomplished by either metabolic labeling of RNA and subsequent washout and time point 

monitoring of decay, or halting all transcription, such as with the use of actinomycin D, and collecting the time 

point samples. Combining these might allow a more comprehensive view of allelic effects at each step of an 

mRNAs life. 

We do believe that the analytical approach presented here, of each sample into 2 ‘pseudo-samples’ 

by ancestry and using standard count-based packages for RNAseq analysis, presents an elegant solution to 

standardizing analysis for AEI, ATI, and ATEI in model organisms. This simplified approach should enable 

more labs to conduct screens to identify genetic regulators of translation, whether using TRAP, polysome 

profiling, or RF, and we have shared our pipeline as a repository on bitbucket as example code to facilitate 

future studies. Likewise, we hope that our pipeline for annotating UTR variants might also be of use for those 

interested in the potential consequences of mutations in UTRs, and we have likewise made this available for 

download.  

Regardless of the technical considerations, we have shown here that non-coding SNPs can be 

associated with very strong changes in translational efficiency in vivo. At their most extreme levels, non-

coding allelic variants that alter mRNA or final protein abundance sufficiently could give rise to effect levels 

similar to haploinsufficiency. Loss of a single copy of many highly constrained genes can result in severe 

disorders such as autism(Samocha et al., 2014). And UTR variants of sufficient effect might phenocopy such 

gene deletions. Outside of rare variants, most common SNPs statistically linked to disease that are 

discovered by genome-wide association studies (GWAS) map to non-coding regions (Zhang and Lupski, 

2015). The non-coding region is being investigated especially in the context of neurodevelopmental disorders, 

and 3’ UTR variants have been implicated in autism spectrum disorder, intellectual disability, schizophrenia, 

and attention-deficit/hyperactivity disorder, among others (Wanke et al., 2018). Further investigation into 

allelic variants, especially de novo ones, and their impacts on expression regulation will help our 

understanding of their potential pathogenicity. 
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Figure and Table Legends. 

 

 

Figure 1: Experimental approach and confirmation of astrocyte TRAP. 

A) Schematic of experimental design: BL6 with the Aldh1L1 TRAP allele and FVB mice were crossed to 

generate F1 hybrids with one copy of each strain’s allele. B) Histogram of numbers of transcript-encoded 

variants per mature gene transcript, between BL6 and FVB. C) Schematic of TRAP - cell type specific 

expression of a GFP tagged ribosomal protein in astrocytes enables enrichment of ribosome-bound 

transcripts from these cells. D) Immunofluorescence of cortical sections showing GFP-RPL10A, astrocyte-

specific marker GLT1 (RFP conjugated antibody), DAPI, and merged panels showing colocalization of GFP 

and RFP. E) TRAP and input RNA sequencing were reproducible and F) TRAP showed the expected 

enchiment of astrocyte transcripts (red), including known astrocyte marker genes.   
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Figure 2: Schematic for analytical approach to identify AEI, ATI, and ATEI. 

A) BL6 and FVB genome sequences were concatenated into a single genome file (i.e. with 40 chromosomes). 

B) TRAPseq and RNASeq reads were aligned to this pseudo genome requiring unique alignments, thus 

discarding any reads lacking SNPs that would distinguish FVB from B6 alleles. D) A Merged annotation was 

also assembled from the two strains, and following counting reads aligning to each gene, E) each sample 

was divided into two ‘pseudo-samples’ by separating the reads aligning to the B6 and FVB isoform of each 

gene. F) Statistical models used for EdgeR to compare pseudosamples to detect AEI, ATI, and ATEI, 

resulting in G) detection of genes significantly different between strains in their expression or ribosome 

occupancy. 
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Figure 3: Genetic variation drives substantial changes in RNA abundance and translation. 

A) Multidimensional scaling plot of pseudo-samples shows clear separation between TRAP and Pre-TRAP, 

as well as FVB and B6 allele expression. B) Volcano plot for AEI transcripts shows substantial RNA 

abundance imbalances between strains (pink: genes where FVB allele is expressed higher, purple: genes 

where FVB allele is expressed significantly higher) C) Volcano plot for ATI identified transcripts showing a 

similar scale of allelic imbalances on astrocyte ribosomes by TRAP. D) Comparing ATI and AEI fold changes 

between B6 and FVB alleles shows that for most genes RNA abundance predicts TRAP, though individual 

genes (orange) show significant ATEI.. E) Heatmap of individual transcripts showing strain specific 

differences in AEI, ATI, and ATEI translation efficiency (genes) (add a box around ATEI genes). F) Inset 

highlighting transcripts showing significant ATEI. 
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Figure 4: UTR variant annotator identifies significant enrichment of uORF and PAs altering-variants 

in AEI, ATI, and ATEI transcripts. 

A) Schematic of pipeline for UTR variant annotation (UTR pipeline 1.0). B) Forest plot showing odds ratios 

and confidence intervals testing whether variant classes are enriched in the ATEI transcripts. ATEI transcripts 

are enriched for variants that disrupt uORFs and PAs (red lines, p< .05). C,D) Examples of ATEI in the Lyrm5 

and Itgad transcripts, which show\ a strong bias in TRAPseq, but no or opposite changes in RNASeq (* p< 

0.03). E,F) Forest plot for variant class enrichment in the AEI and ATI transcripts reveals 4 classes of variants 

(red lines, p< 6e-04) showing significant enrichment). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.265389doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.265389


 
Figure 5:ATEI transcripts are associated with more variation and larger changes in predicted miRNA 

binding. 

 A) Illustration of miRNA analysis pipeline. SNPs and surrounding sequence had their binding predicted for 

by all known miRNAs using miRanda. SNPs changing alignment scores for miRNAs were retained for 

downstream analysis. B). ATEI genes had a larger number of SNPs on average than matched length controls 

(Wilcoxon, p=8e-11). C) SNPs in ATEI genes were in more conserved positions, as assessed by phyloP, 

than in control genes (Wilcoxon, p=0.0097). D) ATEI transcripts had larger magnitude changes in predicted 

binding, illustrated as the maximal change in predicted minimum free energy for binding of miRNA to miRNA 
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(Wilcoxon, p=4.3e-06). E) Findings were similar when restricting to only those miRNAs measurably 

expressed in astrocytes (Wilcoxon, p=1.3e-07). F,G) Example of SNPs altering predicted miRNA binding 

sites and corresponding free energy for Arid3b transcript. 
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Figure 6: ATEI effects are more likely to be compensatory than reinforcing 

A) Venn diagram demonstrating the number of genes that overlap from those that had significant AEI, ATI, 

and ATEI. B) Direction of effect analysis. For genes that had significant differences in ATEI, the direction of 

effect (stabilizing or destabilizing) was established for ATEI and AEI. Genes which had opposite directions of 

effect for these two measures were classed “compensatory”, while those that had similar directions of effect 

were classed “reinforcing”. More changes were compensatory. 
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Figure S1: Top Genes with ATEI 

Fifteen example genes displaying significant ATEI and having the lowest FDR corrected p-values.  The 

RNASeq panels illustrate RNA expression imbalances, while the TRAPSeq panels depict translational 

(ribosomal occupancy) imbalances. 

 

Figure S2: Library Complexity Analysis 

VGAM package analysis of library complexity to assess bias.  Dispersion values are indicated. 

 

Tables 

 

Table S1: Raw Gene Counts 

Raw gene counts for BL6 vs FVB variants. 

 

Table S2: Genes with AEI 

Genes with AEI having fdr corrected p-values <0.1. Gene ID from Ensembl, external gene names, gene 

biotypes, Log2 fold change of CPM, Log2 CPM, likelihood ratio test scores, p-values and FDR corrected 

(Benjamini-Hochberg method) p-values. For Log2 FC, a positive number indicates read count was higher for 

the FVB variant, negative that read count was higher for the BL6 variant. 

 

Table S3: Genes with ATI 

Genes with ATI having fdr corrected p-values <0.1. Column headers and interpretation of FC are as in Table 

S2. 

 

Table S4: Genes with ATEI 

Genes with ATEI having fdr corrected p-values <0.1. Column headers and interpretation of FC are as in Table 

S2. 

 

Table S5: DE Analysis 

DE analysis results on AEI, ATI, and ATEI  of all detectable genes. Gene ID from Ensembl, external gene 

names, gene biotypes, log2 FC, log2 CPM, likelihood ratio test scores, p-values and FDR corrected p-values 

of each analysis distincted by suffix, number of SNPs in the transcript region.  

 

Table S6: ATEI Genes with Gained or Lost AUG Sequences  

ATEI genes which gained or lost AUG sequences, along with PhastCons and PhyloP scores, and log2 FC of 

CPM of ATEI, AEI, and ATI of the gene. 

 

Table S7: ATEI Genes with Gained or Lost PolyA Signals 

ATEI genes which gained or lost poly-adenylation signals, along with PhastCons and PhyloP scores, and 

logFC of CPM of ATEI, AEI, and ATI of the gene. 

 

Table S8: Top miRNA change by MFE for each ATEI transcript 

The top miRNA with maximum MFE changes between FVB and BL6 for each ATEI gene which only has 1 

SNP in 3’ UTR. MFE_change is defined as the MFE of FVB - the MFE of BL6. MFE_change < 0 means the 

corresponding miRNA binds more stable in FVB than in BL6, and vice versa. Score_change is defined as the 

score of FVB - the score of BL6. Score_change < 0 indicates the corresponding miRNA aligns better in FVB 

than in BL6.  Score, energy, and number of binding sites in FVB and BL6 are distincted by the suffix (_FVB 

and _BL6). PhastCons and phyloP are mean conservation scores of the mRNA binding regions. 
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