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Abstract

DNA methylation is one of the most commonly studied epigenetic marks, due to its role in

disease and development. Illumina methylation arrays have been extensively used to measure

methylation across the human genome. Methylation array analysis has primarily focused on

preprocessing, normalisation and identification of differentially methylated CpGs and

regions. GOmeth and GOregion are new methods for performing unbiased gene set testing

following differential methylation analysis. Benchmarking analyses demonstrate GOmeth

outperforms other approaches and GOregion is the first method for gene set testing of

differentially methylated regions. Both methods are publicly available in the missMethyl

Bioconductor R package.
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Background

DNA methylation is essential to human development, with roughly 3-6% of all cytosines

methylated in normal human DNA (Esteller 2007). Epigenetic marks can be modified by

environmental exposures, and methylation changes are known to accumulate with age.

Aberrant methylation patterning is associated with many diseases, which has led to several

large studies profiling DNA methylation, such as The Cancer Genome Atlas, Encyclopedia of

DNA Elements and numerous epigenome-wide association studies.

Both array and sequencing based technologies are available for profiling DNA methylation at

a genome-wide scale. However, even though the cost of sequencing has dramatically

decreased, the ease and cost effectiveness of the Illumina human methylation arrays have

ensured that the array platforms remain a popular choice. To date, a major focus when

analysing DNA methylation data has been the identification of significantly differentially

methylated CpG sites between groups of samples in a designed experiment. There are many

well-established analysis methods that perform normalisation and statistical testing for this

purpose, including publicly available software packages, such as limma (Ritchie et al. 2015),

minfi (Aryee et al. 2014), missMethyl (Phipson, Maksimovic, and Oshlack 2016), methylumi

(Davis et al. 2019), wateRmelon (Pidsley et al. 2013), ChAMP (Morris et al. 2014), RnBeads

(Assenov et al. 2014; Müller et al. 2019), Harman (Oytam et al. 2016), and ENmix (Z. Xu et

al. 2016). It is well established that methylation of CpG sites is spatially correlated along the

genome (Eckhardt et al. 2006) and that long tracks of differential methylation are often more

biologically meaningful than differences at individual CpG sites (Hansen et al. 2011). This

has led to region-based analyses, with Bioconductor R packages such as Probe lasso (Butcher

and Beck 2015), bumphunter (Jaffe et al. 2012), DMRcate (Peters et al. 2015), mCSEA

(Martorell-Marugán, González-Rumayor, and Carmona-Sáez 2019) and DMRforPairs

(Rijlaarsdam et al. 2014) developed specifically for this purpose.
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Once differential methylation analysis between groups of samples has been performed, there

may be a long list of significant CpG sites or regions for the researcher to interpret. A popular

approach to gain a more systems-level understanding of the changes in methylation is to

examine which gene pathways may be enriched for differential methylation in the

experiment. This approach was popularised in the analysis of gene expression microarrays

and RNA-sequencing (RNA-Seq) data, with one of the first methods, GSEA, published in

2005 (Subramanian et al. 2005). Since then, a number of gene set testing methods have been

developed (e.g. Yaari et al. (2013), Wu et al. (2010), and Wu and Smyth et al. (2012)), all of

which are specific to gene expression data, with the GOSeq method (Young et al. 2010)

developed specifically to account for gene length bias in RNA-seq data.

Methylation, however, is a DNA mark that can occur anywhere on the genome and is not as

directly related to genes as expression data. Therefore, a methylation specific issue in

performing gene set testing is how to assign differentially methylated features to genes. Thus

far, there are very few gene set testing methods designed specifically for DNA methylation

data, and often ad hoc approaches are taken. Only two other methods, ebGSEA (Dong et al.

2019), and methylGSA (Ren and Kuan 2019), have been proposed for gene set enrichment

analysis (GSEA) of methylation array data. MethylGSA is an R Bioconductor package that

contains several different gene set testing approaches: mRRA, which adjusts multiple

p-values for each gene by Robust Rank Aggregation followed by either over-representation

analysis (ORA) or functional class scoring in combination with GSEA, and mGLM, which is

an extension of GOglm, implementing a logistic regression to adjust for the number of probes

in the enrichment analysis (Mi et al. 2012). The ebGSEA method uses a global test to rank

genes, instead of CpGs, based on their total level of differential methylation; enrichment of

gene sets is then calculated from the ranked gene list using either a Wilcoxon Test (WT) or

Known Population Median Test (KPMT) (Dong et al. 2019). Both ebGSEA and the

methylGSA methods use individual CpG probe-based differential methylation features, and

we are presently not aware of any methods for performing gene set testing for differentially

methylated regions.

Here we present GOmeth and GOregion to perform gene set analysis in the context of DNA

methylation array data for differential methylation of CpG sites and regions, respectively.

The key aspect of our methods is the ability to take into account biases inherent in the data,
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which relate to how differentially methylated probes are annotated to differentially

methylated genes, that can then be assigned to a gene set. Specifically, measured CpG sites

are not distributed evenly across the genome, and we and others show that genes that have

more CpG sites measured across them are more likely to be detected as differentially

methylated compared to genes that have fewer measured CpG sites. Our original

implementation of GOmeth addressed this bias (Phipson, Maksimovic, and Oshlack 2016). In

addition, approximately 10% of gene-annotated CpGs are assigned to more than one gene,

violating assumptions of independently measured genes. Our new and improved

implementation of GOmeth considers both of these biases in our approach for detecting

enriched pathways. Further to this probe-wise analysis, we developed the GOregion method,

which takes these biases into account when performing gene set testing following a

region-based analysis. Finally, we have implemented new functionality allowing users to

restrict gene set testing to only the probes annotated to specific genomic features, such as

probes in promoters of genes.

In this paper we have evaluated the performance of our methods on real and simulated data,

as well as comparing to other available methods across a variety of datasets. We found that

our methods were the best statistical and computational performers across a variety of

comparisons and gene set testing collections. Our methods are publicly available in the

Bioconductor R package, missMethyl. All of the analysis performed in this paper can be

found at the following website: http://oshlacklab.com/methyl-geneset-testing/. The GitHub

repository associated with the analysis website is at:

https://github.com/Oshlack/methyl-geneset-testing.

Results

Composition biases of 450K and EPIC arrays

Consider the scenario where we have performed differential methylation analysis on

individual CpG sites. In order to perform gene set enrichment analysis based on the results

from a probe-wise differential methylation analysis, we need to annotate each probe on the

array to a gene. One approach for gene set testing is to simply call a gene differentially
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methylated if at least one CpG site associated with that gene is significantly differentially

methylated, and this has been used in many previous analyses (e.g. Zhang et al. (2013),

Phipson and Oshlack (2014)). The problem with this approach is that the numbers of CpG

sites measured across each gene varies significantly across the genome (Figure 1A,

Supplementary Figure 1A). For the 450K array, the minimum number of CpGs measured per

gene is 1 and the maximum is 1299 with a median of 15, based on the

IlluminaHumanMethylation450kanno.ilmn12.hg19 annotation package. For the EPIC array,

the numbers of CpGs measured across genes ranges from 1 to 1485 (median = 20,

IlluminaHumanMethylationEPICanno.ilm10b4.hg19 annotation package). Genes that have

larger numbers of CpGs measured are more likely to be called differentially methylated when

comparing B-cells vs natural killer cells (Figure 1B), and this holds true for the majority of

data sets. This bias towards genes with more measured CpG sites can in turn influence the

probability of a gene set being called significantly enriched, as some gene sets contain genes

with more than the average number of CpGs, and some have genes with fewer measured

CpGs (Figure 1C). In this paper, we refer to this particular source of bias as “probe-number

bias”.

Approximately 70% of the probes on the EPIC array are annotated to at least one gene (74%

for 450K array). However, another annotation issue, which is more subtle, is that a single

CpG may be annotated to more than one gene as the gene regions overlap on the genome.

While the majority of CpGs with gene annotations are associated with only one gene

(329,365/359,832 = 92% for 450K, 554,221/607,820 = 91% for EPIC arrays), there are still a

large number of CpGs annotated to 2 or more genes (Figure 1D, Supplementary Figure 1B).

This can cause issues as the measurements of differentially methylated genes are not

independent. If we use every gene associated with a single CpG, we risk counting a single

significant CpG site multiple times when including the genes as enriched in a gene set of

interest. If these genes were evenly distributed across the GO categories, this may not be an

issue. However, genes that are close in genomic proximity can be functionally related and be

present in a single GO category. An extreme example of this is cg17108383 which is

annotated to 22 genes, all belonging to the protocadherin gamma gene cluster

(Supplementary Figure 2). All 22 of these genes are present in the GO category

“GO:0007156: homophilic cell adhesion via plasma membrane adhesion molecules”, which
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Figure 1. Array design bias for the Illumina HumanMethylation EPIC BeadChip. (A)
Frequency plot of the numbers of CpGs measuring methylation across each gene for the EPIC
array (probe number bias). The most extreme value is 1485 CpGs measuring methylation across
a single gene. The median is 20 and the first mode is 4. (B) Plot demonstrating probe-number
bias for B-cells vs. NK cells from sorted blood cell type EPIC array data. Genes with more
measured CpGs are more likely to be differentially methylated. (C) Histogram of the median
numbers of CpGs per gene for each GO category for the 450K and EPIC arrays. The
distributions differ between the arrays, however, both show a varying number of CpGs per gene
per GO category. GO categories with more CpGs per gene, on average, have greater power to be
significantly enriched. (D) Split bar chart showing the numbers of genes annotated to each CpG
(multi-gene bias). While the majority of CpGs are annotated to only one gene, there is still a
large number annotated to 2 or more genes.
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contains a total of 129 genes. If each of these significant genes are included when performing

a hypergeometric test for enrichment of the GO category, then for this single significant CpG

site, the overlap between the differentially methylated genes and the genes in the gene set is

increased by 22, and this GO category will appear significantly enriched. Unfortunately, this

is not an isolated occurrence. For the EPIC array, gene ontology (GO) enrichment analysis on

the 53,599 CpGs that are annotated to at least 2 genes results in 114 significantly enriched

GO categories (Holm’s adjusted p-value cut-off < 0.05). Restricting to CpGs that are

annotated to at least 3 genes results in significant enrichment of 56 GO categories (Holm’s

adjusted p-value cut-off < 0.05), which are mostly related to processes involved in

transcriptional regulation (Supplementary Table 1).

We refer to this newly identified source of bias as “multi-gene bias”. In order to reduce false

positives, it is important to take this multi-gene bias into account when calculating the

intersection between differentially methylated genes and the genes in each gene set. One

approach for dealing with multi-gene bias is to simply randomly select one gene to be

represented by the CpG, but this approach risks losing valuable information by ignoring the

remaining associated genes. We include this multi-gene bias in our statistical framework for

gene set testing using a weighting strategy (Figure 2) and ensure significant CpGs are only

counted once, at most.

GOmeth performs gene set testing on differentially methylated CpG sites

Our method for gene set testing performs enrichment analysis of gene sets while correcting

for both probe-number and multi-gene bias in methylation array data. The detailed statistical

approach is outlined in the ‘Methods’ section. This method was inspired by GOSeq (Young et

al. 2010). The GOSeq method was designed to account for the fact that longer genes have

more sequencing read counts compared to shorter genes, and hence have more power to be

statistically significantly differentially expressed. Similarly, we see that genes with a larger

number of measured CpGs have a higher probability of differential methylation (Figure 1B).

To account for this bias, GOmeth empirically estimates the probability of differential

methylation of a gene as a function of the number of CpGs. In generating the trend, we adjust

the number of CpGs in a gene to account for those that are assigned to multiple genes by
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Figure 2. Overview of how probe number and multi-gene bias is taken into account in
GOmeth. CpGs are not evenly spaced throughout the genome. Gene 1 has methylation measured
at three CpGs and gene 2 has methylation measured at eight CpGs. The CpG shaded in blue is an
example of a shared genomic location between gene 1 and 2, with one CpG measuring the
methylation status for two genes and is thus not independently measured. By calculating a
weight for each CpG inversely proportional to how many genes that CpG is annotated to, we can
calculate the equivalent numbers of CpGs measured across each gene and ensure the enrichment
statistic for Wallenius’ noncentral hypergeometric test is not artificially inflated due to
multi-gene annotated CpGs.
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using a fractional count. As the probability of differential methylation is calculated

empirically from the data, this trend may look different between datasets, but generally we

always observe a strong positive trend. From the empirical trend, the odds of differential

methylation for each gene set or gene ontology category is calculated based on the average

probabilities of genes in the set. The intersection of the number of differentially methylated

genes in the gene set of size g also needs to be defined. Rather than just assigning all genes

with a differentially methylated CpG equally, we also take into account the CpGs annotated

to multiple genes in this step. Specifically, we assign a weight, wij , to each CpG that is the

reciprocal of the number of genes annotated to the CpG (Figure 2). We then sum all the CpG

weights assigned to a gene and add one to the overlap if the weights are greater than one and

sum(wij) otherwise. If all CpGs were annotated to exactly one gene, then the weight, wij ,

would be one for every CpG, and the overlap would be the number of genes with a significant

CpG. However, if a significantly differentially methylated CpG is annotated to 2 genes, the

CpG is assigned a weight of 0.5 to each gene. If no other significant CpGs are annotated to

that particular gene, then the gene will contribute a “count” of 0.5 to the intersection statistic

for the Wallenius’ noncentral hypergeometric test . Thus, if both genes are present in the same

gene ontology category, they will contribute a total count of at most one to the intersection

statistic. For genes with multiple significant CpGs that may include several multi-gene

associated CpGs, the maximum total count a gene can contribute to the intersection statistic is

1.

Next, a test based on Wallenius’ noncentral hypergeometric distribution is performed for each

gene set or gene ontology category, incorporating the odds that a gene set is more or less

likely to be enriched based on the probe-number bias of the experiment with the intersection

statistic defined above (Phipson, Maksimovic, and Oshlack 2016).

We have implemented our approach to gene set testing with two different functions in the

missMethyl Bioconductor R package, ‘gometh’ and ‘gsameth’. The difference between the

two functions is minimal, with ‘gometh’ specifically testing for enrichment of gene ontology

(GO) categories from the GO.db annotation package, or KEGG pathways from the KEGG.db

annotation package. The ‘gsameth’ function is a more general version of ‘gometh’, where the

user can supply any list of gene sets to be tested. In addition, the ‘gometh’ and ‘gsameth’

functions allow the set of significantly differentially methylated CpGs to be restricted to
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genomic regions of interest such as promoters or gene bodies, as these may interrogate

different biological pathways.

Improved Type I error rate control with GOmeth

We first tested the performance of GOmeth by randomly sampling sets of CpG probes from

the EPIC and 450K array annotation that we designated as differentially methylated and

running gene ontology analyses. Under these null scenarios we would not expect to see

significant enrichment of any GO categories. We randomly selected 100 sets each of 50, 100,

500, 1000, 5000 and 10,000 CpGs as “significantly” differentially methylated based on the

450K and EPIC annotation. We tested for enrichment of gene ontology sets for each

simulation and calculated the number of GO categories that were significant at a p-value

threshold of 0.05. For a test to correctly control the type I error rate, we expect 5% or fewer

GO categories to have significant p-values for random data. We compared the three testing

options available in GOmeth: the hypergeometric test with no bias corrections (“HGT”),

Wallenius’ noncentral hypergeometric test taking into account probe-number bias only

(“HGT-mod”) and GOmeth, which takes into account both probe-number and multi-gene bias

(Figure 3A & B, Supplementary Figure 3A & B). Under these simulation conditions we were

unable to compare to the methylGSA methods and ebGSEA since these tests require M-values

or values as input rather than just the list of significant probes.β

Figure 3A summarises the type I error rates for our methods across the varying sets of

randomly selected CpGs sampled from the EPIC array. As the numbers of differentially

methylated CpGs increased we noted that the hypergeometric test reported too many

significant GO categories, particularly for more than 500 CpGs. Clearly, taking into account

the probe-number bias makes the biggest correction to false discoveries, with HGT-mod and

GOmeth maintaining the correct Type I error rate. Correcting for multi-gene bias (GOmeth)

further reduced the numbers of significantly enriched GO categories. We did notice that not

accounting for the multi-gene bias led to an increase in false discoveries as the numbers of

significant CpGs increased. A similar trend was observed for simulations based on the 450K

array (Supplementary Figure 3A).
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Figure 3. Evaluation of false discovery rate control for EPIC array data. (A) Type I error
rates across 100 simulations for varying numbers of randomly sampled CpGs. (B) Median
average numbers of CpGs per gene for GO categories with an unadjusted p-value < 0.05. The
hypergeometric test is biased towards GO categories with more CpGs per gene on average.
GOmeth = adjust for probe-number and multi-gene bias; HGT = hypergeometric test; HGT-mod
= adjust for probe-number bias only. (C) Multidimensional scaling plot of normal samples from
TCGA KIRC data, coloured by sex. (D) False discovery rate control of seven gene set testing
methods using normal samples from TCGA KIRC data. Two groups were generated by randomly
sampling n samples per group, followed by differential methylation analysis and subsequent
gene set testing. This was repeated 100 times at each sample size. The proportion of gene sets
with unadjusted p-value < 0.05 across the 100 null simulations is shown for each method, at each
sample size. Methods with good false discovery rate control should have relatively tight
distributions around the red dashed line at 0.05. ebGSEA (KPMT) = ebGSEA using Known
Population Median Test; ebGSEA (WT) = ebGSEA using Wilcoxon Test; GOmeth (1000) =
GOmeth using top 1000 ranked probes; GOmeth (5000) = GOmeth using top 5000 ranked
probes; mGLM = methylglm; mRRA (GSEA) = methylRRA using gene set enrichment analysis;
mRRA (ORA) = methylRRA using over-representation analysis.
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Of the significant GO categories reported by each method, we found that the hypergeometric

test was more biased towards GO categories with more CpGs measured per gene on average

(Figure 3B, Supplementary Figure 3B). HGT-mod and GOmeth reported significant

categories that had a wide range of CpGs per gene on average. Based on the results of these

simulations, we selected GOmeth taking into account both probe-number and multi-gene bias

as the best option to use for further analysis, even though it is quite a conservative test in this

particular simulation scenario.

The prior simulations are limited in that they only generate a random set of CpGs to test for

over-representation of gene sets. However, previously published methods, ebGSEA and the

methylGSA methods, require differential methylation measurements (M-values or values) asβ

input. In order to compare the Type I error rate control of GOmeth with ebGSEA and

methylGSA we analysed the normal samples from the TCGA 450K array kidney renal cell

carcinoma (KIRC) dataset (Figure 3C), as well as the normal samples from the TCGA 450K

breast invasive carcinoma (BRCA) dataset (Supplementary Figure 3C). For both datasets, we

took a resampling approach whereby we randomly assigned samples to one of two “groups”

and varied the sample size per group (n = 5, 10, 20, 40, 80). We then performed differential

methylation analysis between the two artificial groups, followed by gene set testing using the

available methods: mGLM, mRRA (ORA), mRRA (GSEA), ebGSEA (WT),  ebGSEA

(KPMT), GOmeth with top 1000 CpGs and GOmeth with top 5000 CpGs. While the

ebGSEA methods are available in the ChAMP R Bioconductor package, we used a more

flexible implementation available in the ebGSEA R package on GitHub. We defined the input

for GOmeth as either the top 1000 or top 5000 most highly ranked differentially methylated

CpGs even though the probes did not reach statistical significance. This allowed us to

calculate the proportions of gene sets that were significantly enriched for each of the

methods, where “significant” is defined as a p-value less than 0.05. We repeated these steps

100 times at each sample size. In this scenario, where there are no true biological pathways

differentially methylated, we expect 5% or fewer gene sets to be significantly enriched.  We

used the 8567 gene sets from the Broad’s Molecular Signatures Database (MSigDB) available

in the ChAMP package to evaluate the false discovery rate. In addition, to ensure that the

methods in the methylGSA package produced reasonable output, we limited the size of the

gene sets to those with at least 5 and at most 5000 genes in the set. If these additional
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constraints are not included, the methylGSA methods mGLM and mRRA (ORA) produced

results that were heavily biased towards reporting very small gene sets as highly significant.

Furthermore, mRRA (ORA) was also biased towards ranking large gene sets very highly, if

they were not filtered out (Supplementary Figure 3E).

In total, we compared seven different variants of the gene set tests: GOmeth with top 1000

CpGs, GOmeth with top 5000 CpGs, the three testing frameworks in methylGSA and the two

tests in ebGSEA. In general, varying the sample size did not make a difference to the results,

with consistent patterns observed for all sample sizes, across the two datasets (Figure 3D,

Supplementary Figure 3D). The worst performing test was mRRA (ORA), which had a

median proportion of significantly enriched gene sets of at least 0.6 (or a median of 5388

enriched gene sets, across the 5 sample sizes). mRRA (GSEA) also performed poorly, with a

median proportion of significantly enriched gene sets of at least 0.25 (or a median of 2117

enriched gene sets, across the 5 sample sizes). However, mGLM correctly controlled the false

discovery rate at 0.05. The two variants of ebGSEA had slightly greater than 0.05 median

proportion of false discoveries although their  results were more variable across the 100

simulations at each sample size, with some simulations showing large numbers of false

positives. GOmeth, using both top 1000 and 5000 CpGs, showed highly consistent

performance, with median proportions of false discoveries < 0.05 (with a median of 180 and

278.5 enriched gene sets, respectively, across the 5 sample sizes), suggesting that GOmeth

correctly controls for false discoveries. The performance of the seven methods were highly

consistent across both the KIRC and BRCA datasets.

Application to blood cell type EPIC data

Following our simulation studies, we wanted to test the performance of GOmeth, ebGSEA

and the methylGSA methods on real data that contained differential methylation. We used a

publicly available dataset of flow sorted blood cell types profiled on Illumina Infinium

HumanMethylationEPIC arrays (GSE110554) (Salas et al. 2018). Cell types are easily

distinguished based on methylation patterns (Figure 4A). We chose to perform our

differential analysis and gene set testing on three independent pair-wise comparisons of cell

types with varying numbers of differentially methylated probes: (1) CD4 vs CD8 T-cells, (2)
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monocytes vs neutrophils and (3) B-cells vs natural killer (NK) cells (Figure 4B). Differential

methylation was performed using TREAT (McCarthy and Smyth 2009) and CpGs were

defined as significantly differentially methylated if they had false discovery rates < 0.05 and

cut-off of ~ 10% (corresponding to ΔM ~ 0.5). Following the differential methylation∆β

analysis, we tested enrichment of GO sets and KEGG pathways using hypergeometric tests,

GOmeth, the three methylGSA methods and the two ebGSEA tests. Again, we limited the

gene sets to those with a minimum of 5 and a maximum of 5000 genes for methylGSA. For

input to GOmeth, we used either the statistically significant CpGs at FDR < 0.05 (CD4 vs

CD8 T-cells) or the top 5000 most highly ranked CpGs for comparisons with more than 5000

significant CpGs (B-cells vs NK cells and monocytes vs neutrophils) .

To evaluate the significant gene sets in a systematic way we took two approaches. First, we

identified all immune categories in the GO database, as these are expected to be highly

enriched when comparing different blood cell types. We therefore defined “true positive” GO

categories as all the child terms under the parent GO category “immune system response”

(GO:002376) from AMIGO 2 (http://amigo.geneontology.org/amigo/term/GO:0002376). We

then counted how many of these immune sets were present in the top ranked gene sets for

each method. We similarly defined true positives for the KEGG pathways by identifying all

pathways belonging to the following categories: Immune system, Immune disease, Signal

transduction, Signaling molecules and interaction

(https://www.genome.jp/kegg/pathway.html). The second approach we took to evaluate the

different methods was by analysing a publicly available RNA-Seq dataset comparing the

same sorted blood cell types (GSE107011; SRP125125) (Monaco et al. 2019; W. Xu et al.

2019). We performed differential expression analysis and gene set testing on the expression

data and defined the top 100 significantly enriched gene sets from the RNA-Seq analysis as

the “truth” (Supplementary Figure 4A-D).

For GO categories, GOmeth consistently performed the best with the highest numbers of top

ranked categories overlapping with “truth” sets across the three comparisons (Figure 4C-D,

Supplementary figures 5-6). For KEGG pathways, the differences between the methods was

not as clear, with mGLM, ebGSEA and GOmeth generally performing well. The mRRA

(GSEA) and mRRA (ORA) methods had highly variable performance (Supplementary Figure
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Figure 4. Comparison of gene set testing performance on Gene Ontology (GO) categories.
(A) Multidimensional scaling plot of EPIC array sorted blood cell data. (B) Numbers of
differentially methylated CpGs with an adjusted p-value < 0.05, for each cell type comparison:
CD4 T-cells vs. CD8 T-cells, monocytes vs. neutrophils and B-cells vs. NK cells. The blue bar is
the number of significant CpGs that are less methylated in the first cell type relative to the
second, and the red bar is the number that are more methylated; e.g. ~5000 CpGs are less
methylated and ~3000 are more methylated in CD4 T-cells, compared to CD8 T-cells. (C)
Cumulative number of GO terms, as ranked by various methods, that are present in each truth set
for the B-cells vs. NK comparison. ISP Terms = immune-system process child terms truth set;
RNAseq Terms =  top 100 terms from RNAseq analysis of the same cell types. (D) Bubble plots
of the top 10 GO terms as ranked by various gene set testing methods. The size of the bubble
indicates the relative number of genes in the set. The colour of the bubble indicates whether the
term is present in either RNAseq (purple) or ISP (green) truth sets, both (red) or neither (blue).
ebGSEA (KPMT) = ebGSEA using Known Population Median Test; ebGSEA (WT) = ebGSEA
using Wilcoxon Test; GOmeth = GOmeth using either FDR < 0.05 (for contrasts with <5000
significant CpGs) or top 5000 most significant probes; HGT = hypergeometric test; mGLM =
methylglm; mRRA (GSEA) = methylRRA using gene set enrichment analysis; mRRA (ORA) =
methylRRA using over-representation analysis.
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7). For the monocyte vs neutrophil comparison, the ebGSEA methods had more power to

detect significant gene sets (Supplementary figure 7E).

Next we examined the top 10 ranked terms for each of the seven gene set testing methods

(Figure 4D, Supplementary figures 5-7). For the B-cells vs NK cells, we noted that the

hypergeometric test, and to a lesser extent, the two ebGSEA methods, tended to have very

large, non-specific GO categories most highly ranked, with “protein binding”, “cytoplasm”

and “molecular function” in the top 10 (Figure 4D). The top 10 enriched GO categories for

GOmeth were more biologically relevant, with immune specific gene set tests highly

enriched (for example “leukocyte activation” and “lymphocyte activation”). All of the top 10

terms for GOmeth were included in at least one “truth” set. For the methylGSA methods,

mGLM appeared to have more immune specific categories in the top 10 (e.g. “adaptive

immune response” and “ regulation of leukocyte cell-cell adhesion”) compared to mRRA

(GSEA) and mRRA (ORA). The results for mRRA (ORA) and mRRA (GSEA) were more

difficult to interpret with none of the top 10 mRRA (ORA) results included in either “truth”

set. A similar pattern was observed for the CD4 vs CD8 T-cells and monocyte vs neutrophil

comparisons, with GOmeth consistently ranking more immune specific terms in the top 10

(Supplementary figures 5B and 6B).

Application to B-cell development 450K data

We applied the seven different gene set testing methods to a developing pre B-cell dataset

which measured methylation using the 450K array, with matched gene expression captured

using Affymetrix arrays. Four populations of B-cell developmental stages were isolated from

human fetal bone marrow, from 8 individuals. We focused on the comparison between Stage

1 (multipotent progenitor cells) and Stage 2 (pre B-cells I) and analysed the methylation data

taking a similar approach as described above (Supplementary Figure 8A, B). For the gene

expression dataset, background correction and normalisation was performed using the RMA

algorithm (Bolstad et al. 2003; Irizarry et al. 2003), low intensity probes were filtered out and

differential expression analysis was performed with limma (Supplementary Figure 4E-G). We

created the gene expression “truth” sets by selecting the top 100 gene sets for GO and KEGG
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pathways identified using the ‘goanna’ and ‘kegga’ functions in limma. We also used the

immune related sets from GO and KEGG as previously described, as alternative “truth” sets.

For GO categories, GOmeth was the top performer, with ebGSEA (KPMT) performing

consistently well across both “truth” sets (Supplementary Figure 8C, D). The methylGSA

methods did not perform as well on this dataset, with mGLM the best of the three. For KEGG

pathways, all methods performed similarly (Supplementary Figure 9A), however the gene

sets were not very highly statistically significant (Supplementary Figure 9B). For the top 10

ranked GO categories, GOmeth was the only method that had all 10 present in either “truth”

set (Supplementary Figure 8D). For KEGG pathways, 8/10 pathways for GOmeth were

present in either “truth” set and the top ranked pathway for GOmeth was “Hematopoietic cell

lineage” (Supplementary Figure 9B).

We generally found, across all dataset comparisons and gene set ensembles, that the

hypergeometric test, mRRA (ORA) and mRRA (GSEA) tended to rank large, non-specific

categories very highly, with GOmeth ranking more biologically relevant gene sets in the top

10. For the two ebGSEA methods, ebGSEA (KPMT) appeared to perform better than

ebGSEA (WT), however for dataset comparisons with a large number of significant probes,

the ebGSEA methods tended to rank large, non-specific categories more highly. For

comparisons with fewer significant probes, ebGSEA (KPMT) showed good performance

with more power to detect significant enrichment of gene sets. The mGLM method was the

best performer of the three methods available from methylGSA.

Comparing compute time between gene set testing methods

While mGLM generally performs well, computationally, it was one of the slowest methods to

run on a single core (~48 minutes), with ebGSEA also taking approximately 50 minutes to

complete an analysis (Table 1). The run time of ebGSEA and mGLM can be significantly

reduced by parallelising the computations. Using 9 cores, ebGSEA took approximately 25

minutes, and mGLM took just under 20 minutes, to complete the analysis of 8567 MSigDB

sets. By comparison, GOmeth is ~90 times faster than mGLM and ebGSEA. mRRA (ORA)

is the fastest to run but generally does not perform as well as other methods.
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Table 1: Average run-time across all contrasts. Gene sets used are Broad MSigDB gene

sets from the ChAMP package. All methods were run on a single core.

Method Minutes

mRRA (ORA) 0.13

GOmeth 0.54

mRRA (GSEA) 3.04

mGLM 47.95

ebGSEA 50.12

Gene set testing following a region based analysis

CpGs are not evenly spaced across the genome and often appear in clusters e.g. CpG islands

(Gardiner-Garden and Frommer 1987); and several studies have demonstrated that CpGs in

close proximity have correlated methylation levels (Eckhardt et al. 2006). Thus, rather than

testing individual CpGs, identifying correlated methylation patterns between several spatially

adjacent CpGs has been shown to yield more functionally relevant results (Hansen et al.

2011).

Several tools have been published for identifying differentially methylated regions (DMRs)

from methylation array data: Probe lasso (Butcher and Beck 2015), bumphunter (Jaffe et al.

2012), DMRcate (Peters et al. 2015), mCSEA (Martorell-Marugán, González-Rumayor, and

Carmona-Sáez 2019) and DMRforPairs (Rijlaarsdam et al. 2014). Depending on the input

data, region finding tools can identify several hundred or even thousands of DMRs. They all

generally output the location of the region including the chromosome, region start and region

end positions, along with some additional metrics and statistical significance. Some tools

attempt to annotate the regions with genes but others do not. Thus, when faced with a long
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list of DMRs it is unclear how to interpret the biological significance of the results, and there

are no gene set testing tools available for DMRs.

To address this, we have developed GOregion; an extension of GOmeth, that enables gene set

testing of DMRs. The  “goregion” function tests GO terms and KEGG pathways, whilst

“gsaregion” is a generalised function that accepts any list of gene sets as input. We reasoned

that because region detection is inherently dependent on CpG probe density, DMRs are more

likely to be identified in genes with more CpG probes. This trend is observed in the blood cell

type and B-cell development data (Figure 5A, Supplementary figure 10A, 11A, 14A). To take

this bias into account, GOregion utilises the GOmeth testing framework. GOregion accepts a

ranged object of DMRs that have been identified by the user’s choice of region-finding

software. These regions are then overlapped with the locations of the CpGs on the Illumina

array to identify a set of CpGs underlying the DMRs. These CpG probes are then passed to

GOmeth and GOmeth’s existing algorithm is used to test for enrichment of gene sets.

GOregion applied to sorted blood cell type EPIC data

Using the sorted blood cell EPIC data we identified DMRs for the same three cell type

comparisons using the DMRcate package: 1) CD4 vs CD8 T-cells, 2) monocytes vs

neutrophils and 3) B-cells vs NK cells. Using default parameters, DMRcate identified 6404,

7176 and 23,210 differentially methylated regions, respectively. We further filtered the DMRs

by only including regions containing 3 or more CpGs with an absolute mean valueβ

difference greater than 0.1. This left 789, 1633 and 4723 DMRs, respectively, for downstream

analysis (Figure 5B). We then performed gene set testing of GO categories using GOregion,

and compared it to a simple approach of overlapping DMRs with known genes, and then

testing using a HGT.

As previously described, we evaluated the results by counting the numbers of highly ranked

immune-related GO terms, and the numbers of highly ranked GO categories identified in the

RNA-Seq data analysis of the same cell types. GOregion consistently ranked immune-related

and RNA-Seq “truth” terms more highly than the simple HGT-based strategy (Figure 5C,

Supplementary figures 10B, 11B). Examining the top 10 most highly ranked GO categories
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showed that GOregion categories are more specific to immune processes than those identified

using the HGT approach (Figure 5D, Supplementary figure 10C, 11C). Across all

comparisons, GOregion always ranked more “truth” sets in the top 10 than HGT. For

example, the top 10 gene sets ranked by GOregion for the B-cells vs NK comparison were

highly specific to immune system processes, e.g. “T cell activation”, whereas for HGT the

sets were very broad and contained thousands of genes e.g. “protein binding” (Figure 5D).

We wanted to explore the differences between a region analysis and a probe-wise analysis

and how this would affect gene set testing results. GOmeth is highly dependent on the set of

significant CpGs provided as input, so we postulated that selecting CpGs using a region-level

analysis could be more biologically relevant, in certain circumstances. We compared the

numbers of differentially methylated probes and genes that are selected based on a region

analysis with DMRCate, a probe-wise analysis using an FDR cut-off < 0.05, and a probe-wise

analysis selecting the top 5000 differentially methylated CpGs. For the B-cell vs NK cells

comparison, a probe-wise analysis with FDR < 0.05 selects over 60,000 differentially

methylated CpGs. More than 50,000 of these CpGs are unique to this approach and not

identified with the region approach, whereas DMRCate identifies ~24,000 CpGs in DMRs

(Figure 5E). We noted that although DMRCate always captured fewer significant CpGs

(Figure 5E, Supplementary figure 10D, 11D),  a higher proportion of the total significant

CpGs were annotated to genes compared with either of the probe-wise approaches (Figure 5F,

Supplementary Figures 10E, 11E). This results in sets of genes uniquely captured using a

region-based analysis (Figure 5G, Supplementary Figures 10F, 11F).

Comparing GOregion to the two probe-wise approaches using our previously defined “truth”

sets showed that all of the approaches performed similarly well across all the contrasts,

except for B-cells vs NK cells (Supplementary figure 12A, B). For that comparison,

GOregion and the GOmeth probe-wise analysis using the top 5000 CpGs both performed

markedly better than GOmeth with significant CpGs selected using FDR < 0.05

(Supplementary figure 12A). This is likely due to these significant CpGs being annotated to >

12,000 genes, resulting in a highly non-specific set of genes as input to GOmeth, whereas

DMRCate regions are annotated to just under 3000 genes (Figure 5G). Examining the terms

that were highly ranked by the various approaches, across the different contrasts, revealed
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Figure 5. Evaluation of the performance of GOregion on sorted blood cell data. (A) Bias
plot showing that genes with more measured CpGs are more likely to have a differentially
methylated region (DMR). This plot is produced from EPIC array sorted blood cell type data,
comparing B-cells to NK cells. (B) Numbers of DMRs identified by DMRcate, for each cell type
comparison: CD4 T-cells vs. CD8 T-cells, monocytes vs. neutrophils and B-cells vs. NK cells.
The blue bar is the number of DMRs before filtering, the pink bar is the number of DMRs after
filtering out DMRs with < 3 underlying CpGs and an absolute mean | | < 0.1. (C) Cumulative∆β
number of GO terms, as ranked by GOregion and a simple hypergeometric test (HGT), that are
present in each truth set for the B-cells vs. NK comparison. ISP Terms = immune-system process
child terms truth set; RNAseq Terms =  top 100 terms from RNAseq analysis of the same cell
types. (D) Bubble plots of the top 10 GO terms as ranked by GOregion and a simple HGT for the
B-cells vs. NK comparison. The size of the bubble indicates the relative number of genes in the
set. The colour of the bubble indicates whether the term is present in either RNAseq (purple) or
ISP (green) truth sets, both (red) or neither (blue). (E) Upset plot showing the characteristics of
the CpGs selected as “significant” for the B-cell vs. NK comparison by a probe-wise differential
methylation analysis using a significance cut off (FDR < 0.05), the top 5000 CpGs as ranked by
the probe-wise analysis (Top 5000) or the CpGs underlying the filtered DMRcate regions
(DMRcate). The probe-wise analysis with FDR < 0.05 identified over 60,000 CpGs as
“significant” and had the most unique CpGs. However, despite identifying fewer “significant”
CpGs (~25,000), almost half of the CpGs identified by DMRcate are unique (~12,000). (F)
Proportion of “significant” CpGs that are annotated to genes as identified by the three different
strategies. (G) Upset plot showing the characteristics of the genes that “significant” CpGs are
annotated to, as identified by the three different strategies, for the B-cell vs. NK comparison.
CpGs identified by the probe-wise analysis with FDR < 0.05 map to over 12,000 genes.
Although the CpGs identified by DMRcate map to far fewer genes (~2900), a number of them
are unique to this approach.
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that they all tended to be immune specific (Supplementary figure 12C-E). The exception is

the B-cells vs NK comparison produced by GOmeth based on CpGs selected at FDR < 0.05,

where the most highly ranked terms were very broad categories such as “cell

communication”, “signalling” and “plasma membrane part” (Supplementary figure 12C).

Hence, for comparisons which result in very large numbers of significantly differentially

methylated CpGs, limiting the set of CpGs used as input for gene set testing, such as

performing a region analysis, is important for producing meaningful results.

Region-finding software is itself dependent on numerous parameters and appropriate

downstream filtering of results can also be important in identifying the most biologically

informative set of DMRs. Using the blood cell type dataset, we demonstrate that different

DMR filters affect the downstream GOregion gene set testing results in different ways,

depending on the comparison (Supplementary Figure 13). For our dataset, the most important

filter to include is a mean difference cut-off, i.e. the size of the methylation difference. For∆β

this particular dataset, we find that a difference cut-off of 0.1 performs best across all∆β

comparisons. For the B-cells vs NK cells comparison, we noticed that not filtering with a ∆β

cut-off produced very poor results. In contrast, for the monocyte vs neutrophils comparison, a

cut-off of 0.2 was too stringent and resulted in fewer gene sets overlapping with the∆β

“truth” sets (Supplementary figure 13A, B).

GOregion applied to B-cell development 450K data

Using DMRcate, we identified 2151 DMRs when comparing Stage 1 vs Stage 2 B-cells, and

observed a strong probe-number bias trend (Supplementary Figure 14A). Once again, we

compared the top ranked GO terms for GOregion and HGT with our two “truth” sets: 1) the

top 100 ranked gene sets from comparing Stage 1 vs Stage 2 B-cells in the Affymetrix gene

expression data, and 2) the immune related terms. GOregion outperformed HGT, with a

greater overlap of the top ranked gene sets with both “truth” sets (Supplementary Figure

14B). Examining the top 10 GO terms showed that GOregion had 7/10 terms present in either

“truth” set, with only 3/10 gene sets overlapping either “truth” set for HGT. Two of the top 10

GO terms identified by GOregion, but not identified in either “truth” sets, were related to

cytokine production, which is known to be important in B-cell development (Vazquez,
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Catalan-Dibene, and Zlotnik 2015). HGT ranked very broad, non-specific GO terms very

highly (e.g. “molecular function”, “protein binding”), whereas GOregion ranked more

immune related gene sets in the top 10 (e.g. “leukocyte activation”).

We compared the numbers of differentially methylated probes and genes selected using either

a region-based analysis, a probe-wise analysis with FDR < 0.05 or a probe-wise approach

selecting the top 5000 differentially methylated CpGs (Supplementary Figure 14D-F). For

Stage 1 vs Stage 2 developing B-cells, 11,597 probes were selected using DMRCate

compared to only 3148 with a probe-wise analysis with FDR < 0.05, suggesting that

thousands of probes that are not individually significant were underlying regions

(Supplementary Figure 14D). A higher proportion of probes captured using DMRcate were

annotated to genes compared to the probe-wise analyses (Supplementary Figure 14E), and

although DMRcate selected 11,597 probes, these were annotated to only 1,664 genes

(Supplementary Figure 14F). As we observed in the sorted blood cell type data, the

DMRcate-selected CpGs overlapped genes that were unique to the region-based analysis

(Supplementary Figure 14F).

For this particular dataset, GOmeth and GOregion performed very similarly with all methods

(GOmeth (top 5000), GOmeth (FDR<0.05) and GOregion) showing a similar degree of

overlap with the two “truth” sets (Supplementary Figure 15A). While there were some

differences in the top 10 ranked GO terms, they were all involved in immune system

processes (Supplementary Figure 15B).

Although we did not filter the DMRs prior to gene set testing with GOregion for this

particular dataset, we investigated the effect of filtering on the overlap with the “truth” sets

(Supplementary Figure 15C). Modifying Δβ or the number of CpGs underlying the regions

did not have a drastic effect on the overlap with the “truth” sets, although for the gene

expression array terms, the additional filter of |Δβ| = 0.2 and number of CpGs = 4 reduced the

number of “truth” gene sets identified by GOregion.

Discussion
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Gene set testing is a useful tool to gain additional biological insight into the underlying

mechanisms in an experiment. Here we present GOmeth for performing gene set testing after

a probe-level analysis, and GOregion, a gene set testing method following a region-based

analysis. To the best of our knowledge, GOregion is the only method that specifically tests

enrichment of gene sets for differentially methylated regions.

Through our investigation of the composition of the 450K and EPIC arrays, we have

observed that annotating statistically significant differentially methylated CpGs to genes is

not a trivial exercise. For our gene set testing methods we choose to rely on the annotation

provided by Illumina, however other studies have used alternative approaches, such as

defining promoter regions as regions of + / - 2kb of the transcription start sites of genes

(Pidsley et al. 2016).

We have shown that two sources of bias affect gene set testing: probe-number and multi-gene

bias, and our methods account for both of these. Through the use of simulations and

resampling normal samples we have shown that GOmeth correctly controls the false

discovery rate with minimal bias. We applied GOmeth to sorted blood cell types and

developing B-cell datasets and showed that the top ranked categories are consistently

biologically relevant across multiple comparisons. We defined two different types of “truth”

sets based on the information available in the GO and KEGG databases, as well as

independently analysed gene expression datasets. We acknowledge that our “truth” sets will

have shortcomings in that they are unlikely to encompass all the truly enriched pathways,

and, particularly in the case of the gene expression data analysis, the choice of gene set

testing method is likely to play a role in how gene sets are ranked. Nevertheless, we showed

that GOmeth generally outperforms other available methods. Further, we have shown that the

probe-number bias affects the probability that a region is called differentially methylated. We

therefore developed GOregion to perform unbiased gene set testing following a region-based

analysis. For the blood cell types and developing B-cell dataset, GOregion outperformed a

simple hypergeometric testing approach that has been previously used in analyses.

An important consideration when using GOmeth is how many differentially methylated

probes to use as input to the method. For comparisons that have tens of thousands of

significantly differentially methylated CpGs, in the first instance, we would recommend
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performing a region-based analysis and using GOregion to perform gene set testing. Another

option would be to use GOmeth, but restrict the input CpGs to the top ranked CpGs, with a

rule of thumb that the number of input CpGs is less than 10,000. Simply taking a false

discovery rate cut-off for the B-cells vs NK cells comparison, for example, resulted in too

many genes being identified as differentially methylated (>12,000) and we found that the

gene set testing results were not very specific or biologically meaningful. In our comparisons,

we have used the top 5000 differentially methylated probes and this produced good results for

the blood cell type dataset. There is additional functionality in GOmeth to restrict the list of

significant CpGs by genomic features, such as “TSS1500”, “TSS200” and “Body”, for

example. This has the effect of decreasing the overall numbers of CpGs to use as input, but

potentially retains more biologically meaningful loci.

For users who are not comfortable with setting thresholds to select appropriate CpGs as input

to GOmeth following a probe-level analysis, mGLM and ebGSEA are alternative statistical

methods that do not require setting cut-offs to select significant CpGs. Generally, when the

numbers of significant probes was large, ebGSEA ranked large, broad GO terms more highly

compared to mGLM. However, when the numbers of statistically significant CpGs was fewer

than 5000, ebGSEA performed well in our evaluations.

Even though a region-based approach can potentially select fewer CpGs, in our analysis of

the sorted blood cell types and developing B-cell data, it always identified additional unique

CpGs not detected using the probe-wise methods. This is likely because these CpGs were not

statistically significant on their own but are identified as part of a region. Thus, given the

potential for capturing biologically important CpGs, which may be missed by probe-wise

approaches due to their reliance on rankings and significance cut-offs, we suggest that a good

quality, region-based analysis can potentially distil more focused gene sets than a probe-level

gene set analysis of the same data.

An important feature of GOmeth and GOregion is their flexibility. Unlike the methylGSA

methods, GOmeth and GOregion do not require any filtering of gene sets to produce robust

results. GOregion is compatible with the results of any software for finding differentially

methylated regions which can be expressed as a ranged data object. Both GOmeth and
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GOregion are computationally efficient and can test a variety of gene sets such as GO

categories, KEGG pathways or any list of custom gene sets.

Conclusions

GOmeth and GOregion are novel statistical methods that account for biases in gene set

testing for methylation arrays. We have shown that our methods produce the most

biologically meaningful results while controlling the false discovery rate. All of our gene set

testing functions are available in the missMethyl Bioconductor R package.

Methods

All analysis code presented in this manuscript can be found at

http://oshlacklab.com/methyl-geneset-testing/. The analysis website was created using the

workflowr (1.6.2) R package (Blischak, Carbonetto, and Stephens 2019). The GitHub

repository associated with the analysis website is at:

https://github.com/Oshlack/methyl-geneset-testing.

Statistical model for GOmeth

The statistical test for GOmeth and GOregion is based on Wallenius’ noncentral

hypergeometric distribution, which is a generalised version of the hypergeometric distribution

where items are sampled with bias. For GOmeth, we take the following stepwise procedure:

1. For each CpG i annotated to gene j, calculate a weight

.𝑤
𝑖𝑗

= 1
#𝑔𝑒𝑛𝑒𝑠 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑡𝑜 𝐶𝑝𝐺

𝑖𝑗

If each CpG is annotated to exactly one gene, then wij = 1.

2. Let i = 1, …, denote the CpGs annotated to gene j. Calculate the equivalent number𝐼
𝑗

of CpGs measured across gene j as:
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.𝑁
𝑗

=
𝑖=1

𝐼
𝑗

∑ 𝑤
𝑖𝑗

If there are no multi-gene associated CpGs, then Nj is simply the number of probes

measured across gene j.

3. Let A define the set of significant differentially methylated Cpgs. For each gene j,

define an indicator vector 1j(x) of length such that if , and𝐼
𝑗

𝑥
𝑖

=  1 𝐶𝑝𝐺
𝑖𝑗

∈ 𝐴 𝑥
𝑖

= 0

if , where i = 1, …, .𝐶𝑝𝐺
𝑖𝑗

∉ 𝐴 𝐼
𝑗

4. Let wj define the vector of weights wij for each gene j. Calculate the differential

methylation score for each gene j

Sj = min(1j(x) · wj , 1).

Note the maximum value of Sj is 1, and Sj < 1 only in cases where the significant

CpGs are all multi-gene associated, and the summed weights are less than one. Sj = 0

when there are no significant differentially methylated CpGs across gene j.

5. Let denote the genes that are present in gene set g. Calculate the𝑗 = 1,  ...,  𝐽
𝑔

enrichment statistic for Wallenius’ noncentral hypergeometric test for each gene set g

.𝐸𝑆
𝑔
 =  

𝑗=1

𝐽
𝑔

∑ 𝑆
𝑗

For the standard Wallenius’ noncentral hypergeometric test the enrichment statistic is

the intersection between the significant differentially methylated genes and genes in

gene set g, which ignores multi-gene associated CpGs. Our modified enrichment

statistic ESg accounts for multi-gene associated CpGs for gene set g.

6. Calculate the probability weighting function (PWF) by applying a moving average

smoother to an ordered binary vector (based on the number of associated CpGs)

where 1 indicates a gene is differentially methylated and 0 indicates the gene is not

differentially methylated. We use the ‘tricubeMovingAverage’ function in the limma

package which is similar to a least squares loess curve of degree zero. The binary
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vector is ordered by the number of equivalent CpGs measuring methylation across

each gene, Nj , from smallest to largest. The output is a vector of the same length as

the input such that each gene is assigned a probability of differential methylation

based on the smoothed value. We then calculate the expected odds of enrichment for

each gene set g by calculating the mean PWF of the genes in the set and comparing it

to the mean PWF of the rest of the genes represented on the array.

𝑂𝐷𝐷𝑆
𝑔
 =  𝑚𝑒𝑎𝑛(𝑃𝑊𝐹(𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑔))

𝑚𝑒𝑎𝑛(𝑃𝑊𝐹(𝑔𝑒𝑛𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑔))

7. For testing enrichment of each gene set g, we obtain a one-sided p-value from

Wallenius’ noncentral hypergeometric distribution with the following parameters: x =

⌊ESg⌋, m1 = the size of the gene set Jg , m2 = the number of genes on the rest of the

array, n = the total number of significant genes, and odds = ODDSg . We use the

BiasedUrn R package to obtain p-values.

Null simulations: random sampling of CpGs

We randomly selected sets of 50, 100, 500, 1000, 5000 and 10,000 CpGs from the Illumina

array annotation for both 450k and EPIC arrays. The sampling was repeated 100 times for

each CpG set size. We tested for significant enrichment of GO categories using a standard

hypergeometric test (HGT), a Wallenius’ hypergeometric test accounting for probe number

bias (HGT-mod) and GOmeth, which is based on Wallenius’ hypergeometric test and

accounts for probe number and multi-gene bias.

Methylation Datasets

The normal samples from the KIRC TCGA dataset (Cancer Genome Atlas Research Network

2013) were used for estimating the false discovery rate of the different gene set testing

methods. The data was downloaded using the curatedTCGAData Bioconductor package

(Ramos 2020) and the 160 normal samples extracted. The data was provided as already

processed values, however we performed additional filtering and removed poor qualityβ

probes, probes containing SNPs as well as sex chromosome probes. The resulting
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multidimenational scaling plots showed no apparent evidence of sex or other technical effects

(Figure 3C).

In addition, 85 normal samples from the BRCA TCGA dataset were used to estimate the false

discovery rates of the seven gene set testing methods. The data was downloaded using the

curatedTCGAData Bioconductor package and the 97 normal samples extracted. Following

quality control 12 samples were removed (8 with unusual beta value distributions and 4

African/African American samples). Poor quality probes and probes containing SNPs were

filtered out. Probes located on the sex chromosomes were retained as all the samples were

female (Supplementary Figure 3C).

To compare the performance between different gene set testing methods when there is

significant differential methylation, we used Illumina Infinium HumanMethylationEPIC

(GSE110554) data generated from flow-sorted neutrophils (Neu, n = 6), monocytes (Mono, n

= 6), B-lymphocytes (Bcells, n = 6), CD4+ T-cells (CD4T, n=7, six samples and one technical

replicate), CD8+ T-cells (CD8T, n = 6), Natural Killer cells (NK, n = 6) and 12 DNA

artificial mixtures (labeled as MIX) (Salas et al. 2018). Only the sorted cells were used in our

analysis. The data was downloaded using the ExperimentHub Bioconductor package.

We also analysed a developing B-cell dataset that had matched DNA methylation and gene

expression measurements (Lee et al. 2012). Four populations of early B-cell developmental

stages were obtained from human fetal bone marrow, from 8 individuals. Methylation was

measured using the Illumina HumanMethylation450 Beadchip and gene expression was

measured using the GeneChip Human Gene 1.0 ST Array (Affymetrix). The four populations

were identified using flow cytometry antibodies and consist of Stage 1 (predominantly

multipotent progenitors and common lymphoid progenitors), Stage 2 (pre-B-I cells), Stage 3

(pre-B-II cells) and Stage 4 (immature B-cells). The data was downloaded from the Gene

Expression Omnibus (GSE45461).

Analysis and processing

The majority of the analysis was performed using R (4.0.3) and some using R (3.6.1) (R Core

Team 2014). The specific R and package versions used for different aspects of the analysis

24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2020.08.24.265702doi: bioRxiv preprint 

https://paperpile.com/c/ININZR/UgjX
https://paperpile.com/c/ININZR/dmtW
https://paperpile.com/c/ININZR/z283
https://paperpile.com/c/ININZR/z283
https://doi.org/10.1101/2020.08.24.265702
http://creativecommons.org/licenses/by-nc-nd/4.0/


can be viewed under the “Session Information” sections of the analysis website associated

with this study: http://oshlacklab.com/methyl-geneset-testing/.

Quality control and normalization

All methylation data was processed using the minfi (Aryee et al. 2014; Fortin, Triche, and

Hansen 2017) R Bioconductor (R. C. Gentleman et al. 2004; Huber et al. 2015) package.

Between array and probe-type normalization was performed using the stratified quantile

normalisation (SQN) method (Touleimat and Tost 2012). Probes with a detection P-value >

0.01 in one or more samples were discarded. Probes potentially affected by common SNPs

(minor allele frequency > 0) proximal to the CpG of interest (up to 2 bp upstream and 1

downstream) and non-specific probes (Pidsley et al. 2016; Y.-A. Chen et al. 2013) were also

removed from further analysis.

Statistical analysis

The proportion of methylation at each CpG is represented by the value, defined as theβ

proportion of the methylated signal to the total signal and calculated from the normalized

intensity values. Statistical analyses were performed on M-values as𝑀 = 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑
𝑢𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑  ⎡⎣ ⎤⎦

recommended by Du et al. (2010). 

Comparison of gene set testing methods using sorted blood cell data

CpG probe-wise linear models were fitted to determine differences in methylation between

cell types (B-cells vs NK, CD4 vs CD8 T-cells, monocytes vs neutrophils) using the limma

package (Ritchie et al. 2015). Differentially methylated probes (DMPs) were identified using

empirical Bayes moderated t-tests (Smyth 2005), performing robust empirical Bayes

shrinkage of the gene-wise variances to protect against hypervariable probes (Phipson et al.

2016). Empirical Bayes moderated-t p-values were then calculated relative to a minimum

meaningful log-fold-change (lfc) threshold on the M-value scale (lfc = 0.5, corresponding to |
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| ~ 0.1) (McCarthy and Smyth 2009). P-values were adjusted for multiple testing using the∆β

Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).

For each comparison, we tested for significant enrichment of GO categories and KEGG

pathways. We only tested sets with at least 5 genes and at most 5000 genes for the methylGSA

methods. The top ranked 5000 CpGs were tested using the HGT and GOmeth, from the

missMethyl package, for enrichment of GO terms and KEGG pathways. The raw p-values

were passed as input to the methylGSA methods. The ebGSEA methods were run using the

ebGSEA R package (https://github.com/aet21/ebGSEA).

Comparison of gene set testing methods using kidney clear cell carcinoma (KIRC) data

The KIRC data from the curatedTCGAData package was provided as β values with masked

data points; data points were masked as “NA” if their detection p-value was greater than 0.05

or the probe was annotated as having a SNP within 10 base pairs or repeat within 15 base

pairs of the interrogated CpG (Cancer Genome Atlas Research Network et al. 2016). We

extracted only the 160 normal samples and removed probes with any “NA” values, as well as

SNP-affected probes and multi-mapping and sex-chromosome probes, as previously

described. This left 364,602 probes for downstream analysis.

We ran 100 null simulations by randomly subsampling the normal samples and splitting them

into two artificial “groups” with 5, 10, 20, 40 and 80 samples per “group”. For each of the

100 simulations, at each sample size, DMPs between “groups” were identified using

empirical Bayes moderated t-tests (Smyth 2005), performing robust empirical Bayes

shrinkage of the gene-wise variances to protect against hypervariable probes (Phipson et al.

2016).

We then performed gene set testing of the differential methylation analysis results using

several methods with the Broad MSigDB gene sets available in the ChAMP Bioconductor

package. GOmeth was run using both the top 1000 and top 5000 significant CpGs as input.

The methylGSA methods; mGLM, mRRA (ORA) and mRRA (GSEA) were run with gene set
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sizes restricted to a minimum of 5 and maximum of 5000 genes. The ebGSEA method was

run using default parameters and both its KPMT and WT output were compared.

Comparison of gene set testing methods using breast invasive carcinoma (BRCA) data

As with the KIRC data, the BRCA data was downloaded using the curatedTCGAData

package. We then extracted the 97 normal samples and removed probes with any “NA”

values, as well as SNP-affected probes and multi-mapping probes, as previously described.

Sex chromosome probes were retained since all sample donors were female. This left

371,389 probes for further analysis. Twelve outlying samples were removed (8 with unusual

beta value distributions and 4 African/African American samples), leaving 85 samples for

downstream analysis.

We ran 100 null simulations by randomly subsampling the normal samples and splitting them

into two artificial “groups” with 5, 10, 20, and 40 samples per “group”. DMPs between the

two “groups” were identified as described for the KIRC data, followed by the same gene set

testing approach using the seven different methods previously outlined.

RNA-Seq data and analysis

The RNA-Seq data for the sorted blood cell types was downloaded from SRA (GSE107011;

SRP125125) (Monaco et al. 2019; W. Xu et al. 2019). The reads were mapped to hg19

reference transcriptome

(http://refgenomes.databio.org/v2/asset/hg19_cdna/fasta/archive?tag=default) and quantified

using Salmon (1.2.1) (Patro et al. 2017). Salmon transcript-level estimates were imported and

summarised at the gene-level as length-scaled TPM using the tximport Bioconductor package

(Soneson, Love, and Robinson 2015). Lowly expressed genes were filtered out using the

edgeR (Robinson, McCarthy, and Smyth 2010) ‘filterByExpr’ function as described by Chen

at al. (2016). The data was then TMM normalised (Robinson and Oshlack 2010) and

transformed using ‘voomWithQualityWeights’ (Liu et al. 2015), to increase power by
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combining ‘voom’ (Law et al. 2014) observational-level weights with sample-specific

weights.

Probe-wise linear models were then fitted for each gene to determine gene expression

differences between cell types (B-cells vs NK cells, CD4 vs CD8 T-cells, monocytes vs

neutrophils) using limma (Ritchie et al. 2015). Differentially expressed genes were identified

using empirical Bayes moderated t-tests (Smyth 2005), performing robust empirical Bayes

shrinkage of the gene-wise variances to protect against hypervariable probes (Phipson et al.

2016). P-values were adjusted for multiple testing using the Benjamini-Hochberg procedure

(Benjamini and Hochberg 1995).

We used the ‘goana’ function from the limma package to test enrichment of GO categories,

‘kegga’ to test for enrichment of KEGG pathways and a generalised version of ‘goana’ and

‘kegga’; to test for enrichment of the Broad MSigDB gene sets. All the methods took gene

length bias into account (Young et al. 2010). GO, KEGG and MSigDB  “truth” sets were then

defined for each cell type comparison from the RNA-Seq analysis as the top 100 enriched

sets.

Affymetrix array gene expression data and analysis

The Affymetrix Human Gene 1.0 ST Array gene expression data for pre B-cell development

was downloaded from GEO (GSE45460) (Lee et al. 2012).

The raw CEL files were loaded and processed using the oligo Bioconductor package. The

data was background corrected, normalised and summarised using Robust Multichip Average

(RMA) pre-processing (Bolstad et al. 2003; Irizarry et al. 2003). Only probes with a median

intensity greater than 4.5, in at least 7 samples, were retained. Transcript-cluster identifiers

that mapped to multiple Entrez identifiers were filtered out, along with any probes that did

not map to Entrez identifiers, leaving 19,494 genes for downstream analysis.

Probe-wise linear models were then fitted for each gene to determine gene expression

differences between Stage 1 and Stage 2 of pre B-cell development (Stage 1 vs Stage 2) using

limma (Ritchie et al. 2015). Differentially expressed genes were identified using empirical
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Bayes moderated t-tests (Smyth 2005), performing robust empirical Bayes shrinkage of the

gene-wise variances to protect against hypervariable probes (Phipson et al. 2016). P-values

were adjusted for multiple testing using the Benjamini-Hochberg procedure (Benjamini and

Hochberg 1995). Genes with a log2 fold change greater than 0.5 using TREAT (McCarthy and

Smyth 2009) and FDR less than 0.05 were deemed to be differentially expressed.

The ‘goana’ function from the limma package was used to test enrichment of GO categories

and ‘kegga’ to test for enrichment of KEGG pathways. GO and KEGG “truth” sets were then

defined for the Stage 1 versus Stage 2 comparison from the gene expression analysis as the

top 100 enriched sets.

Evaluation of GOregion using flow sorted blood cell data

The lllumina Infinium HumanMethylationEPIC (GSE110554) data generated from

flow-sorted blood cells was used for identification of DMRs. The data was processed as

previously described. DMRs between cell types (B-cells vs NK cells, CD4 vs CD8 T-cells,

monocytes vs neutrophils) were identified using the DMRcate Bioconductor package (Peters

et al. 2015). The analysis was performed on M-values using default parameters. Downstream

gene set testing was performed on a filtered list of DMRs with a mean | | ≥ 0.1 and at least∆β

3 underlying CpGs.

GO terms were tested for enrichment of DMR-associated genes using ‘goregion’ and a

standard HGT, as implemented in the ‘goana’ function from the limma Bioconductor

package. A gene, as defined in the TxDb.Hsapiens.UCSC.hg19.knownGene Bioconductor

package, was included in the list of genes to be tested using ‘goana’ if it overlapped a DMR

by at least 1bp.

Evaluation of GOregion using pre B-cell development data

The lllumina Infinium HumanMethylation450 (GSE45459) data generated from 4 stages of

pre B-cell development was used for identification of DMRs. The data was processed as

previously described. DMRs between Stage 1 and Stage 2 were identified using the DMRcate
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Bioconductor package (Peters et al. 2015). The analysis was performed on M-values using

default parameters. DMRs were not filtered prior to gene set testing.

GO terms were tested for enrichment of DMR-associated genes using ‘goregion’ and a

standard HGT, as previously described for the sorted blood cell data.
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