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ABSTRACT 37 

38 

In pancreatic ductal adenocarcinoma (PDAC), the basal-like and classical transcriptional subtypes are 39 

associated with differential chemotherapy sensitivity and patient survival. These phenotypes have been defined 40 

using bulk transcriptional profiling, which can mask underlying cellular heterogeneity and the biologic 41 

mechanisms that distinguish these subtypes. Furthermore, few studies have interrogated metastases, which are 42 

the cause of mortality in most patients with this highly lethal disease. Using single-cell RNA-sequencing of 43 

metastatic needle biopsies and matched organoid models, we demonstrate intra-tumoral subtype heterogeneity 44 

at the single-cell level and define a continuum for the basal-like and classical phenotypes that includes hybrid 45 

cells that co-express features of both states. Basal-like tumors show enrichment of mesenchymal and stem-like 46 

programs, and demonstrate immune exclusion and tumor cell crosstalk with specific macrophage subsets. 47 

Conversely, classical tumors harbor greater immune infiltration and a relatively pro-angiogenic 48 

microenvironment. Matched organoid models exhibit a strong bias against the growth of basal-like cells in 49 

standard organoid media, but modification of culture conditions can rescue the basal-like phenotype. This study 50 

reframes the transcriptional taxonomy of PDAC, demonstrates how divergent transcriptional subtypes associate 51 

with unique tumor microenvironments, and highlights the importance of evaluating both genotype and 52 

transcriptional phenotype to establish high-fidelity patient-derived cancer models. 53 

54 

55 

MAIN 56 

57 

While classification of human malignancies by genotype has provided critical structure for understanding tumor 58 

biology, tumors can also harbor clinically relevant variation in transcriptional phenotypes.1 Indeed, for several 59 

malignancies such as pancreatic ductal adenocarcinoma (PDAC), classification based on RNA expression has 60 

emerged as a genotype-independent predictor of chemotherapy sensitivity and patient survival.2-6 In PDAC, bulk 61 

transcriptional profiling has defined two major transcriptional subtypes, basal-like/squamous  (hereafter referred 62 

to as “basal”) and classical, where the former is associated with worse prognosis and greater treatment 63 

resistance.3-5,7-14 However, classification based on bulk expression profiling can obscure clinically relevant 64 

cellular attributes because it reduces signals from multiple cell types to a single, whole sample average. In reality, 65 

PDAC tumors, like many other cancers, are complex multicellular ecosystems shaped by both malignant and 66 

microenvironmental features. Unlike in DNA sequencing where mutant and normal reads can be precisely 67 

separated, malignant and non-malignant signals in bulk RNA profiles are not easily disentangled, making 68 

conclusions about their relationships challenging. 69 

The recent application of single-cell RNA-sequencing (scRNA-seq) to human cancers has revealed that 70 

the tumor ecosystem is highly heterogeneous and often consists of continuous phenotypes within both malignant 71 

and non-malignant populations.15-21 The precise cellular characterization this method affords has enabled the re-72 

examination of transcriptional taxonomies and reframed our understanding of the summaries provided by bulk 73 
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measurements in multiple cancers.15,21-26 Such enhanced resolution may be particularly useful in PDAC, where 74 

neoplastic cellularity is generally low and stromal content is high. Understanding the distribution and plasticity of 75 

malignant and non-malignant states within individual PDAC tumors has important implications for the 76 

interpretation of transcriptional subtypes, directing therapy, and monitoring tumor evolution. However, few single-77 

cell studies have been conducted in human PDAC, and these have largely focused on stromal cell types or 78 

provided a limited analysis of malignant cells.11,27-29 We therefore lack a harmonized view of the interplay between 79 

malignant transcriptional subtypes and their associated tumor microenvironment (TME). 80 

Our current understanding of PDAC is largely derived from resected primary tumors.12,13,30 However, the 81 

majority of patients with PDAC present with, and succumb to, metastatic disease, which occurs most commonly 82 

in the liver.30 At present, we have little information about the cellular phenotypes and microenvironmental 83 

interactions in metastatic lesions. Tissue availability has been a key barrier to enhanced understanding of 84 

metastatic disease, as needle biopsies provide an important but cell-limited window into the biology of the 85 

metastatic niche. 86 

In conjunction with detailed molecular analysis of patient samples, reliable ex vivo models are needed to 87 

functionally test clinical and molecular observations. For this purpose, human cancer cell line models are 88 

frequently utilized, as is the case in PDAC. However, the methods to generate new cell lines from human tissue 89 

are generally inefficient, which limits their utility in personalized medicine.31 Moreover, once established, cell 90 

lines can display significant drift in culture.32 To address these limitations, several groups have established 91 

efficient methods for generating patient-derived organoid cultures from PDAC tissue with the goal of modeling 92 

an individual patient’s disease.10,33-35 However, few studies have examined the fidelity and evolution of organoid 93 

phenotype and genotype relative to the parental patient tissue. 94 

Here, we developed and employed an optimized translational workflow to perform both high-resolution 95 

profiling of patient tissue using scRNA-seq via Seq-Well36 and derivation of matched organoid models from the 96 

same metastatic core needle biopsy. Through this approach we reframe bulk classifications by clarifying the 97 

underlying distribution of malignant phenotypes, reveal how microenvironmental heterogeneity is distributed in 98 

a transcriptional subtype-dependent manner, and systematically evaluate the ex vivo evolution and plasticity of 99 

malignant phenotypes. 100 

101 

RESULTS 102 

103 

A clinical pipeline for matched single-cell profiling and organoid model generation 104 

105 

We established a pipeline for collecting needle biopsies from patients with metastatic PDAC (n=23) to generate 106 

matched scRNA-seq profiles and organoid models (Figure 1a, Extended Data Figure 1a, Supplementary 107 

Table 1). Most samples were obtained from metastatic lesions residing in the liver (19/23), and the majority 108 

(21/23) were analyzed by targeted DNA-sequencing which yielded the expected mutational pattern for this 109 

disease (Extended Data Figure 1a).4,12,13 After tissue dissociation, we used 10,000-20,000 viable cells for 110 
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scRNA-seq via Seq-Well, and the remainder were seeded for organoid culture (Figure 1a). This pipeline yielded 111 

approximately 1,000 high-quality single cells per biopsy (n=23,042 total cells) and successful early-passage 112 

organoid cultures from 70% (16/23) of patient tumor samples (Extended Data Figure 1a, b). Dimensionality 113 

reduction and shared nearest neighbor (SNN) clustering of the biopsy cells revealed substantial heterogeneity 114 

at the single-cell level (Extended Data Figure 1c; Methods). The fractional representation from each biopsy 115 

readily split the data into two groups, clusters of admixed cells from multiple patients and distinct patient-specific 116 

clusters (Extended Data Figure 1d). This pattern suggested both malignant and non-malignant cells within each 117 

biopsy, with patient-specific clusters driven by specific copy number variations (CNVs). To confirm malignant cell 118 

identity, we inferred transcriptome-wide CNVs from our single-cell data as previously described.21,26 CNV 119 

alteration scores separated putative malignant and non-malignant cells in each biopsy and demonstrated high 120 

concordance with reference targeted DNA-seq (Figure 1b, c; Extended Data Figure 2a, b). CNV analysis 121 

paired with manual inspection of expression patterns for known markers across single cells supported the 122 

identification of malignant cells as well as 11 unique non-malignant cell types (Extended Figure 1d-f; Figure 123 

1d, e; Supplementary Table 2). Thus, we established a robust workflow capable of recovering high quality 124 

malignant (n=7,740) and non-malignant (n=15,302) populations from metastatic PDAC needle biopsies with low 125 

neoplastic cellularity while also enabling simultaneous generation of matched organoid models.  126 

127 

PDAC transcriptional subtypes exist on a continuum and include hybrid expression states 128 

129 

We first applied principal component analysis (PCA) to examine major axes of transcriptional variation across 130 

malignant cells from all biopsy samples. Notably, we failed to identify canonical driver mutations typically 131 

observed in PDAC in one patient sample obtained prior to a pathologically confirmed clinical diagnosis, 132 

PANFR0580 (Extended Data Figure 1a); however, we detected a significant fraction of putative malignant cells 133 

(n=662) in this biopsy (Extended Data Figure 2b). Principal component 1 (PC1) separated PANFR0580 from 134 

all other tumors in our cohort (Extended Data Figure 3a, top). Genes with the strongest negative loading on 135 

PC1 were indicative of a neuroendocrine phenotype (TTR, CHGA, CHGB; Extended Data Figure 3a, bottom) 136 

and subsequent pathological evaluation confirmed that this sample was a pancreatic neuroendocrine tumor 137 

(PanNET). To focus on transcriptional heterogeneity among PDAC samples, we removed the PanNET cells and 138 

performed a new PCA on the remaining 7,078 malignant cells. Inspection of the genes driving the first 3 PCs 139 

within PDAC cells revealed separation along previously characterized transcriptional phenotypes 140 

(epithelial/mesenchymal transition (EMT)37, PC1; basal/classical5, PC2; cell cycle16, PC3; Extended Data Figure 141 

3b,c), confirming that the main axes of variation in our data align with established transcriptional subtypes. 142 

Previous studies using bulk RNA-seq data have converged on two main tumor subtypes, basal and 143 

classical.3-5,11-13 Collapsing the malignant cells from each sample into a pseudo-bulk averaged transcriptome split 144 

our cohort into 3 groups: those that exhibit predominately basal character (n=7), those with more classical 145 

features (n=4), and those that are intermediate (n=10; Extended Data Figure 3d). Examination of basal and 146 

classical phenotypes within each biopsy at single-cell resolution suggested that tumors are comprised of a 147 
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heterogenous mixture of states, likely driving the ambiguous classification of weakly polarized tumors when using 148 

hierarchical clustering (Extended Data Figure 3d,e). We also observed a significant fraction of malignant cells 149 

co-expressing both basal and classical phenotypes, hereafter referred to as “hybrid” cells (~13% of malignant 150 

cells, Figure 2a, see Methods), suggesting that these phenotypes exist on a continuum rather than as discrete 151 

states. Classification of each single cell as basal, classical, or hybrid revealed substantial heterogeneity across 152 

individual tumors for these phenotypes (Figure 2b). These observations underscore the difficulty in assigning 153 

intermediate tumors exclusively to basal or classical groups.11 Thus, where discrete binning was necessary, we 154 

employed a basal-classical “score difference” to stratify samples and preserve the polarization for each tumor 155 

along this continuum (Extended Data Figure 3f). 156 

We also used our single-cell data to examine signatures proposed by other bulk RNA sequencing studies 157 

to clarify their inter-relationships. Pairwise correlation of all established signatures in malignant cells revealed 158 

that many contribute overlapping information and reflect similar underlying biology (Extended Data Figure 3g). 159 

We observed that cells with higher basal expression were also classified as squamous and quasimesenchymal, 160 

while cells with classical signatures were correlated with the pancreatic progenitor subtype (Extended Data 161 

Figure 3g,h).3,4 By contrast, we did not observe evidence for expression of the immunogenic, ADEX, or exocrine-162 

like transcriptional signatures in malignant cells.3,4 While the absence of these signatures might represent 163 

differences between primary and metastatic disease, these bulk RNA profiles also likely incorporate signals from 164 

non-malignant cells in the TME. In support of the latter hypothesis, we find evidence of immunogenic signature 165 

expression originating from plasma cells as well as EMT signature expression from both malignant cells and 166 

fibroblasts (Extended Data Figure 3h). These patterns underscore the need for single-cell resolution to dissect 167 

malignant and non-malignant contributions to transcriptional signatures. 168 

We next confirmed the presence of basal, classical, and hybrid cells using a novel subtype-specific single-169 

cell multiplexed immunofluorescence (mIF) panel in a cohort of primary resected PDAC (n=15 cases, 46,234 170 

cells, Methods; Figure 2c; Extended Data Figure 4a-c, Supplementary Tables 3, 4). This orthogonal 171 

approach confirmed the intratumoral heterogeneity observed in our scRNA-seq cohort and revealed that PDAC 172 

transcriptional subtype diversity occurs on two levels: (i) “mixed” tumors comprised of discrete cells with differing 173 

subtype identity, and (ii) hybrid cells which co-express basal and classical programs. These observations indicate 174 

that PDAC transcriptional subtypes exist on a continuum, with mixed and hybrid phenotypes occurring even 175 

within a single tumor gland (Figure 2d). 176 

177 

Basal and classical cells exhibit subtype-specific expression programs 178 

179 

We next leveraged our single-cell resolution to examine whether specific tumor cell gene expression programs 180 

were correlated with either the basal or classical phenotypes. This correlation analysis across malignant cells 181 

revealed 1,909 genes significantly associated with either basal or classical expression scores (Figure 2e; 182 

Supplementary Tables 5,6; Methods). Inspection of these genes revealed basal cells are defined by more 183 

mesenchymal features and co-express programs associated with transforming growth factor beta (TGFB2, 184 
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SERPINE1; TGF-E) signaling��interferon response (IFI44L, ISG15; IFNResp), WNT signaling (WNT7B, FZD6, 185 

EPHB2; WNT), and cell cycle progression (NASP, TOP2A).37-40 Notably, these patterns are concordant with 186 

larger bulk RNA-seq cohorts from primary and metastatic patient samples (Figure 2e,f; Extended Data Figure 187 

5a,b).12,13 While WNT ligands are included in organoid culture media and thought to be necessary to support 188 

tumor cell growth ex vivo, we consistently detected only the WNT ligands WNT7B and WNT10A, which are 189 

enriched in malignant basal cells in vivo (Extended Data Figure 5c).33,41 Conversely, epithelial and pancreatic 190 

progenitor transcriptional programs are enriched in classical PDAC cells (Figure 2e,f; Extended Data Figure 191 

5a). Together, these expression patterns suggest a developmental continuum within PDAC tumors from higher 192 

cycling (Figure 2a), de-differentiated basal cells to more committed classical epithelial pancreatic progenitors 193 

that mirror phenotypes seen in the early developing pancreas. 194 

195 

Transcriptional subtypes associate with distinct immune microenvironments 196 

197 

Relatively little is known about the structure and composition of the metastatic microenvironment in PDAC, and, 198 

more specifically, about how non-malignant heterogeneity associates with the basal to classical continuum. To 199 

characterize the cell types in the metastatic niche, we analyzed the non-malignant cells (n=12,830) and refined 200 

our broad cell-typing scheme from Figure 1d by further subdividing the T/NK cells, monocytes/macrophages, 201 

and fibroblasts (Figure 3a,b). First, a closer analysis of the T/NK cell cluster revealed 5 cell types—CD4+ T, 202 

CD8+ T, NKT, NK, and CD16+ (FCGR3A+) NK cells—each expressing the corresponding established markers 203 

(Extended Data Figure 6a-d). Similarly, an unsupervised examination within the monocyte/macrophage 204 

compartment revealed a tumor associated macrophage (TAM) continuum similar to one recently described in 205 

colorectal cancer.42,43 The first two PCs readily identified 3 TAM subsets: “monocyte-like” FCN1+, C1QC+, and 206 

SPP1+ macrophages (Extended Data Figure 6h). FCN1+ “monocyte-like” cells expressed high levels of IL1B 207 

and CCR2 and shared some features with CD14+ blood monocytes (CD300E, S100A8).42 C1QC+ TAMs 208 

resembled a phagocytic phenotype (CD163, MERTK), but also demonstrated preferentially high expression of 209 

antigen presentation genes (HLA-DRB1, CD74) and genes described in anti-inflammatory macrophage subsets 210 

(FOLR2, CD209, AXL, CSF1R). Conversely, SPP1+ TAMs expressed gene programs associated with 211 

angiogenesis (SPP1, FLT1) and inflammatory response (CCL2, CCL7, CSF1, CLEC5A). A fourth subset was 212 

positioned as intermediate between these three phenotypes and likely represents a population of actively 213 

transitioning/differentiating TAMs (Trans TAM; Extended Data Figure 6h-j).42 Finally, although several scRNA-214 

seq studies in primary resected PDAC have focused on fibroblast phenotypes, we observed few fibroblasts per 215 

tumor (Methods), with the outliers coming from sampling sites other than the liver (PANFR0637 and 216 

PANFR0635) or from a different disease etiology (PANFR0580, PanNET; Extended Data Figure 6k).27-29 Still, 217 

in the fibroblasts we recovered we noted evidence of previously identified subtypes including myofibroblastic and 218 

inflammatory cancer-associated fibroblasts (myCAFs and iCAFs, respectively) in this metastatic setting 219 

(Extended Data Figure 6l,m).  Taken together, we identified 18 unique cell types/states in the PDAC metastatic 220 

microenvironment (Figure 3a). 221 
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We next determined whether the 18 non-malignant cell types/states were represented evenly across the 222 

malignant basal-to-classical transcriptional continuum described in Figure 2. For this analysis, we computed two 223 

quantities: 1) the fractional representation of each non-malignant cell type per biopsy and 2) the correlation of 224 

each non-malignant cell type’s capture frequency to the average “score difference” (basal/classical polarization; 225 

Extended Data Figure 3f) derived from the malignant cells in the same biopsy. Cross-correlation of each cell 226 

type’s fractional representation revealed two distinct patterns that largely diverged by malignant transcriptional 227 

subtype association (Figure 3c). Overall, cell types traditionally believed to facilitate a more immune-responsive 228 

microenvironment were frequently captured together. For example, DC subsets, NK, B, CD4+ T and 229 

inflammatory FCN1+ TAMs derive from shared microenvironments (hereafter “immune-infiltrated”) and tend to 230 

associate with more classical tumors (Figure 3c). Activated, mature NK cells (FCGR3A+ NK) were captured 231 

most often from these immune-infiltrated biopsies and showed a strong correlation with classical tumors (Figure 232 

3d). Interestingly, FCGR3A+ NK cells showed the highest expression of cytotoxic markers in our metastatic 233 

dataset, even compared to CD8+ T cells (Extended Data Figure 6e,f). Examination of the T cell compartment 234 

revealed that CD4+ T cells were captured more frequently in classical tumors (Figure 3c,e), whereas CD8+ T 235 

cells were captured less frequently in immune-infiltrated biopsies and associated more often with an increased 236 

basal score. PCA within the CD8+ compartment revealed a progenitor (TCF7, IL7R) to differentiated/exhausted 237 

(HAVCR2, ENTPD1) continuum previously associated with differential outcomes to immune checkpoint blockade 238 

(Extended Data Figure 6g).20,44 Scoring each CD8+ T cell over this axis, we observed a progenitor-restricted 239 

distribution in most tumors, with only two outlier basal tumors skewing toward more differentiated/exhausted 240 

phenotypes (Figure 3e). In sum, these findings indicate that much of the cytotoxic activity in the metastatic niche 241 

may originate from the innate immune system by way of activated NK cells in the microenvironment of classical 242 

tumors. 243 

 Along with differences in lymphocyte content, the myeloid compartment, specifically TAM phenotypes, 244 

showed strong subtype-specific associations. First, we noted selective skewing for the types of TAMs originating 245 

from basal versus classical tumors (Extended data figure 6i, P < 2.2x10-16, Chi-squared test; Figure 3c, C1QC+ 246 

TAM, r = - 0.59, basal association and SPP1+ TAM, r = 0.52, classical association). Indeed, when examining the 247 

monocyte-like to macrophage distribution for TAMs from individual liver biopsies, the most basal-polarized 248 

tumors were associated with more macrophage-committed phenotypes (Figure 3f). Moreover, by scoring each 249 

macrophage using TAM subtype-specific signatures and visualizing them with respect to the likely differentiation 250 

trajectory inferred from recent studies (Supplementary Tables 7-9; Methods)42, we confirm a preferential 251 

association between C1QC+ TAMs and basal tumors and, conversely, an enrichment for the inflammatory 252 

FCN1+ monocyte-like and SPP1+ TAM subsets in tumors with intermediate and classical phenotypes (Figure 253 

3g). In addition to demonstrating that classical tumors are relatively more immune infiltrated, this analysis also 254 

identifies distinct microenvironmental phenotypes that co-vary with each PDAC transcriptional subtype and 255 

suggests opportunities to direct microenvironmental therapies in a subtype-specific manner. 256 

257 

Differential microenvironmental signaling shapes subtype-specific metastatic niches 258 
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 259 

Given the striking compositional differences we observed in the immune microenvironment across the basal to 260 

classical axis, we next searched for tumor-secreted factors that might influence the structure of the local 261 

metastatic niche. Specifically, we analyzed subtype-specific expression patterns for genes detected in malignant 262 

cells that were annotated as secreted factors (cytokines, chemokines, growth factors by Gene Ontology; n=218 263 

genes). This analysis nominated 57 basal (orange) and 23 classical-associated (blue) secreted factors (Figure 264 

4a). Gene set enrichment analysis (GSEA) demonstrated that basal tumors were enriched for genes associated 265 

with growth factor secretion, while classical tumors were enriched for cytokine/chemokine signaling (Figure 4b). 266 

We observed expression of multiple TGF ligands secreted by basal tumors, consistent with the association of 267 

increased TGF-E signaling in basal tumors (Figure 2f) and local immune suppression/exclusion. Conversely, 268 

several chemokines (CXCL5, CXCL3) were enriched in classical tumors in agreement with their overall higher 269 

degree of immune infiltration and higher fraction of endothelial cells (Figure 3c). As such, classical tumors 270 

expressed higher levels of CXCL5 which plays a documented role in enhancing tumor-supportive 271 

angiogenesis.45,46 Consistent with this finding, we observed a strong positive correlation between high average 272 

malignant cell expression of CXCL5 and the fraction of endothelial cells recovered (Figure 4c). In basal tumors, 273 

we noted increased expression of the ligands CSF1 and IL34 (Figure 4a) and concomitant expression of their 274 

receptor, CSF1R, in the basal-associated C1QC+ TAMs (Figure 3c,g; 4d). Per-tumor analysis revealed a 275 

continuum of C1QC+ TAM distribution within basal tumors that correlated with high CSF1R expression (Figure 276 

4e,f top). Malignant cells with strong EMT features (PANFR0545, PANFR0593) expressed the highest levels of 277 

CSF1 and IL34, consistent with a role for tumor cells in shaping their local macrophage phenotypes (Figure 4f 278 

bottom). To extend this finding in larger cohorts, we analyzed bulk RNA-sequencing of primary and metastatic 279 

PDAC tumors for markers of transcriptional subtype, TAM, and tumor secretion phenotypes.12,13 Consistent with 280 

our single-cell observations, macrophage markers and the ligands CSF1 and IL34 were associated with basal 281 

but not classical markers in these samples (n=198, Figure 4g). Together, these data provide evidence that 282 

subtype-specific intercellular crosstalk shapes distinct niches in the metastatic microenvironment.   283 

 284 

Genotype and phenotype evolution of matched patient-derived organoid models  285 

 286 

Our observations indicate that basal and classical phenotypes exist along a continuum and exhibit distinct 287 

patterns of reciprocal interaction with their local microenvironments. To examine how tumor cell phenotypes 288 

adapt and evolve in ex vivo microenvironments, we utilized the matched organoid models generated from our 289 

metastatic biopsy cohort (Methods). For most models, we obtained scRNA-seq samples at the earliest passage 290 

possible, typically passage 2 (P2), and again at a later passage (Extended Data Figure 7a,b). Notably, only 291 

33% of models derived from basal tumors propagated beyond passage 2, whereas 60% of models derived from 292 

classical tumors established long-term cultures (Extended Data Figure 7b). Globally, unbiased analysis of 293 

malignant biopsy (7,078 cells) and organoid cells (n=14 models, 24,789 cells) revealed that biopsy cells clustered 294 

separately from their matched organoid counterparts (Extended Data Figure 7c,d). Only two clusters were 295 
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admixed by donor and originated from early passage organoids (clusters 4 and 32; Extended Data Figure 7c). 296 

These clusters were defined by expression patterns consistent with fibroblasts (cluster 32) and poorly 297 

differentiated epithelial cells (cluster 4), and were not seen in samples from later passages (Extended Data 298 

Figure 7e,f). 299 

Comparison of transcriptional phenotypes revealed a striking selection against the basal subtype in 300 

organoid culture despite it being the higher cycling subset in vivo (Figure 2a & Figure 5a). To understand the 301 

relative contribution of genotype versus phenotype to this bottleneck, we computed the average single-cell 302 

genotype (CNV) and phenotype (basal versus classical) correlation distance (d) between each biopsy and its 303 

matched early passage organoid (Figure 5b; Methods). Six models, all classical, did not significantly deviate 304 

along either the CNV or transcriptional axes outside the expected distance for highly similar samples (intra-305 

biopsy d across the cohort; dotted line, P < 0.05 for both metrics). Another group, largely basal (right of x-axis 306 

dotted line), deviated significantly from their original biopsies along the transcriptional but not the CNV axis. 307 

Finally, two basal models (PANFR0545 and PANFR0552) exhibited the strongest deviation from their parent 308 

biopsies along both axes (Figure 5b, upper right). This analysis demonstrated that early passage organoid 309 

models largely maintain genomic features observed in parental tumor tissue, but over half of these models, and 310 

in particular models derived from basal tumors, were significantly divergent in phenotype compared to their 311 

matched tissue-of-origin. 312 

We next examined the subclonal hierarchies within each biopsy-organoid pair. This single-cell 313 

comparative analysis identified 4 broad patterns of drift/selection. Pattern 1 consisted of tumors (n=4) where the 314 

organoids failed to grow beyond P2; the majority of these were derived from basal tumors (3/4 models), and 315 

included the two models (PANFR0545 and PANFR0552) that deviated the most genotypically and phenotypically 316 

from their parent biopsies (Extended Data Figure 8a). Of the models that propagated beyond P2, Pattern 2 317 

models (n=3) showed evidence of selective outgrowth wherein models derived from basal tumors enriched rare 318 

subclones tied to more classical or less basal phenotypes (Extended Data Figure 8b). In contrast, models within 319 

Pattern 3 (n=5) were typified by neutral outgrowth (no overt selection) where the dominant clone(s) in the biopsy 320 

grew out in the organoid (Extended Data Figure 8c). These models expressed predominantly classical 321 

phenotypes and had the least overall deviation from their parent biopsies (Figure 5b); none of the models derived 322 

from basal tumors displayed this pattern. Finally, Pattern 4 comprised one basal biopsy-organoid pair 323 

(PANFR0575) that demonstrated phenotypic plasticity with nearly identical CNVs but a divergent transcriptional 324 

phenotype in organoid culture (Extended Data Figure 8d). These data illustrate the dramatic adaptation that 325 

organoid models undergo ex vivo via transcriptional and clonal selection at early passages, especially when 326 

derived from basal tumors. 327 

When we serially sampled and assessed organoid phenotypes over time, we observed that each model 328 

assumed a more classical phenotype regardless of its parent tumor’s transcriptional identity, and only the Pattern 329 

4 plastic model, PANFR0575, re-acquired its basal phenotype at a later passage (Figure 5c, d). Linked genotype 330 

and phenotype assessment from iterative passages provided evidence for significant evolution along both CNV 331 

and transcriptional axes over time in culture (Figure 5e; Extended Data Figure 8e). After identifying CNV-332 
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defined subclones in the parental biopsy and its associated serial organoid samples (Figure 5e; clones A-F; 333 

Methods), we related cells that were similar in genotype (e.g., all cells within clone A) to their corresponding 334 

transcriptional phenotype. In sample PANFR0575 (Figure 5e), we observed examples of transcriptional plasticity 335 

at early passages within clone A. Cells derived from the parental biopsy were basal, but all other cells in this 336 

subclone derived from organoids had classical phenotypes. Interestingly, with successive passaging, several 337 

subclones emerged with hybrid and basal phenotypes (clones D and E). While model PANFR0575 is a unique 338 

case, it highlights the various ways organoids can evolve in culture, including via transcriptional plasticity (clone 339 

A) and the late emergence of rare subclones (clones D and E). In contrast, PANFR0489R was initially basal, but 340 

we observed clonal selection and phenotypic drift toward classical states, as seen in most other models (Figure 341 

5c; Extended Data Figure 8e). Together, these findings demonstrate that multiple mechanisms underlie 342 

organoid evolution and divergence from the parental tumor, highlight that transcriptional variation is a key 343 

contributor to these differences, and emphasize the importance of deep molecular characterization of patient-344 

derived models prior to functional application.  345 

 346 

Alterations to the ex vivo culture environment revive the basal state in organoids 347 

 348 

Having demonstrated that distinct expression states as well as the local microenvironment co-vary across the 349 

basal to classical axis, we reasoned that different conditions may be needed to preserve basal versus classical 350 

transcriptional heterogeneity. Comparing bulk RNA expression data from patient tumors (n=219), organoids 351 

(n=44) and cell lines (n=49, CCLE) provided evidence that culture conditions can profoundly influence 352 

transcriptional state.12,13,47 Indeed, most organoid models recapitulate the classical phenotype while cell lines 353 

mirror basal expression patterns (Figure 6a). To isolate the effects of extracellular matrix dimensionality from 354 

media formulation, we cultured established 3-dimensional (3D) PDAC organoid models (n=4) as 2-dimensional 355 

(2D) cell lines on tissue culture plastic in the same organoid media and noted that this had little effect on 356 

transcriptional subtype across the models tested (Extended Data Figure 9a). We then hypothesized that 357 

multiple components within standard organoid media10,33, including WNT3A, R-SPONDIN-1, FGF10, and TGF 358 

and BMP pathway inhibitors such as NOGGIN and A-8301, may drive tumor cells toward more classical 359 

phenotypes in organoid culture. When established organoid models (n = 4) were grown for 1 week in reduced 360 

medium without any additives (“stripped” media, containing only Glutamax, anti-microbials, HEPES buffer, and 361 

Advanced DMEM/F12 media; Figure 6b; see Methods), we observed a significant increase in basal gene 362 

expression across single cells (Figure 6c; P < 0.0001), as well as coordinated sample-level shifts to a more 363 

basal phenotype in each model, in some cases returning to levels observed in the parental biopsy (Figure 6d). 364 

This shift was less pronounced in the model derived from the most classical tumor (PANFR0489, pink outline; 365 

Figure 6d; Extended Data Figure 9b). Although there was an appreciable effect on the fraction of cycling cells 366 

in the stripped media (Figure 6e, far right), the organoids continued to grow under these conditions (Extended 367 

Data Figure 9c). These responses were unlikely to be driven by acute selection since the CNV profiles between 368 

the conditions remained stable within this timeframe (Figure 6e). Collectively, these observations provide 369 
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evidence for significant ex vivo tumor cell plasticity in response to microenvironmental cues and suggest that 370 

organoid and cell line culture conditions can be further optimized to recapitulate clinically relevant in vivo tumor 371 

cell states. 372 

373 

DISCUSSION  374 

375 

This study demonstrates the precision afforded by scRNA-seq for categorizing and phenotyping relevant 376 

malignant and non-malignant cell populations in metastatic PDAC. In the malignant compartment, we confirmed 377 

the basal-like and classical transcriptional subtyping framework; however, we found that these subtypes exist on 378 

a continuum and include a newly identified “hybrid” phenotype. We show at both the RNA and protein level that 379 

most tumors are comprised of all three phenotypes and exhibit notable intratumoral heterogeneity in two ways: 380 

(i) basal or classical phenotypes in discrete cells but co-occurring in the same tumor, consistent with a recent381 

report11, and (ii) co-expression of both states in the same single cell (hybrid cells). Importantly, the identification 382 

of these hybrid cells in human tumor biopsies suggests that interconversion may be possible between the 383 

classical and basal subtypes. Basal tumor cells exhibit mesenchymal and stem-like features, including TGF-E 384 

pathway activation and evidence for WNT signaling. In this tissue context, WNT signaling is likely mediated 385 

through the expression of WNT7B and/or WNT10A as these were the only ligands consistently expressed in the 386 

cells we captured. WNT7B is a key developmental signal for pancreatic progenitor proliferation, normal 387 

morphogenesis, and mesenchymal expansion, and its expression evokes the possibility that basal tumor cells 388 

may share similarities with a discrete subset of early pancreatic progenitors.48 Several studies have suggested 389 

a role for WNT signaling in supporting proliferation and cell state specification in PDAC models, but more 390 

experimentation is needed to clarify its impact.41,49,50 Given that PDAC transcriptional subtypes have been 391 

associated with differential response to chemotherapy3,7-10, these new insights into PDAC subtype heterogeneity 392 

and their associated biologies have important implications for understanding therapy response in clinical trials. 393 

In coordination with malignant cell phenotypes, non-malignant cells establish subtype-specific local 394 

immune microenvironments within the PDAC metastatic niche. Our observations support a model wherein 395 

classical tumors exhibit greater chemokine signaling and concomitant immune infiltration. Although this has been 396 

hypothesized previously2,4,6, the specific cell types and their phenotypes have remained elusive.  Our single-cell 397 

dataset clarifies this relationship and identifies a classical TME enriched for endothelial cells and specific myeloid 398 

and lymphoid cell types. In the lymphoid compartment, surprisingly, we observed cytotoxic signaling that 399 

originates primarily from activated NK cells, suggesting a dominant role for innate immune function in the 400 

classical metastatic niche. Conversely, the basal microenvironment is optimally tuned for immune 401 

suppression/evasion, which may contribute to the overall lower survival seen in this subtype. The relative paucity 402 

of CD4+ T cells found in basal tumors suggests exclusion, possibly driven by the higher levels of TGF gene 403 

expression in basal contexts. Somewhat unexpectedly, we found evidence of terminally exhausted CD8+ T cells 404 

in only two basal tumors, and, in most cases, both basal and classical tumors exist in a CD8+ T-cell progenitor-405 

restricted state. Basal tumor cells exhibited higher levels of IFN response gene expression compared with 406 
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classical tumors, suggesting exposure to, and potential tolerance of, the presence of activated T cells.39,40 Basal 407 

tumor cells also shape the myeloid compartment by secreting CSF1 and IL34, with concomitant 408 

microenvironmental increase in C1QC+ TAM populations that skew towards a tumor supportive, anti-409 

inflammatory phenotype. Notably, even within basal tumors, those with the most mesenchymal characteristics 410 

possessed the most potent immune-evasive phenotypes, suggestive of additional layers of variation even within 411 

the basal subtype.   412 

Comparison of matched biopsies and organoids revealed relative preservation of genomic features in 413 

most organoid models, as has previously been demonstrated10,35, but significant deviation in basal/classical 414 

transcriptional state. While classical phenotypes were relatively better preserved, we note strong selection 415 

against the basal state under standard organoid media conditions. Serial sampling of organoid models across 416 

successive passages demonstrated both phenotypic drift and subclonal outgrowth, such that the dominant 417 

clones in some later passage models were only present at low frequencies in the parent tumors. Despite the 418 

bias toward classical phenotypes in organoid culture, the rare emergence of basal clones at late passages 419 

(PANFR0575; Figure 5e) suggests that genotype, in addition to microenvironment, may influence transcriptional 420 

plasticity. However, resolution is an important limitation of our clonal tracing, as we cannot comment directly on 421 

variation/selection for single mutations. While our findings may explain some of the limitations observed when 422 

using PDAC organoid models to predict clinical responses10,35, they also highlight the significant phenotypic 423 

plasticity and adaptability of PDAC cells and, moreover, the utility of primary tissue and matched model 424 

comparisons for understanding these features of tumor biology. Interestingly, established PDAC cell lines exhibit 425 

predominantly basal phenotypes, but changing matrix dimensionality (2D versus 3D culture) alone did not alter 426 

malignant organoid transcriptional phenotypes along the basal-classical axis, implying that variation in adhesive 427 

context may affect some but not all biologic behaviors. Encouragingly, the basal phenotype could be recovered 428 

by removing exogenous factors from the standard culture media, setting the stage for further optimization of 429 

these conditions to adequately support intratumoral heterogeneity and growth.51 These results highlight that ex 430 

vivo model growth may not necessarily equate to model fidelity and suggest that experimental conditions, 431 

heterogeneity, and plasticity all influence the phenotype of patient-derived organoids.32,52  432 

In sum, we show how scRNA-seq can be employed to clarify the structure of the PDAC metastatic niche 433 

and uncover formerly unappreciated relationships between tumor transcriptional phenotype and the local 434 

immune microenvironment. Although traditionally thought of as a uniformly “immune-cold” tumor, our findings 435 

highlight that the immune microenvironment in PDAC harbors a layer of unappreciated complexity closely linked 436 

to tumor cell transcriptional subtype that may provide new avenues for therapeutic targeting. Specifically, TAM-437 

directed therapies, such as anti-CSF1R antibodies, could be employed to selectively target transcriptional-438 

subtype-associated populations.42,53-55 However, while basal tumors associate with a potentially sensitive 439 

CSF1R-expressing population (C1QC+ TAM), classical tumors harbor TAMs that are resistant to such therapies 440 

(SPP1+ TAM).42 Thus, just as we consider combinations to target malignant states, the TME will also likely 441 

require tailored combination therapies. These findings provide rationale for future clinical trials to employ high-442 

resolution phenotyping of malignant and non-malignant cells to stratify patients and track tumor evolution in 443 
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response to therapy. While organoid platforms represent a transformative technology to develop patient-specific 444 

tumor models, we demonstrate that some organoid models show a high degree of plasticity and that both their 445 

genotype and transcriptional phenotype must be understood to enable their optimal use in personalized 446 

medicine. Finally, we provide a framework for relating malignant cells, the TME, and patient-derived model 447 

systems that may be applicable in other tumor types with clinically relevant transcriptional variation across the 448 

malignant and microenvironmental landscape.   449 
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Figure 1.  A clinical pipeline for matched single-cell RNA-seq and organoid generation from metastatic 578 

biopsies. a, Pipeline for collecting patient samples, dissociation and allocation for scRNA-seq, and parallel 579 

organoid development. b, CNV correlation (to averaged top 5% of altered cells) versus CNV score (mean square) 580 

for each single cell in PANFR0575. Cells are colored by their putative class: malignant (light blue) or non-581 

malignant (empty black circles). c, Bulk targeted DNA-seq (top) and single-cell (rows, bottom) CNV profiles 582 

arranged by chromosome (columns). d, e, t-distributed stochastic neighbor embedding (t-SNE) visualization for 583 

non-malignant (d) and malignant (e) single cells in the biopsy cohort. Cells are colored by patient. Endo, 584 

Endothelial; Fib, Fibroblast; B, B-cell; Hep, Hepatocyte; DC, Dendritic cell; pDC, Plasmacytoid dendritic cell; 585 

Mac, Macrophage; T, T-cell; NK, Natural killer cell.  586 

 587 
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Figure 2. Basal, classical, and hybrid transcriptional states in metastatic PDAC. a, Heatmap depicts the 589 

expression of basal and classical genes (n=30 each, Methods) across all malignant cells. EMT, basal, classical, 590 

and cell cycle programs are indicated. b, PDAC tumors are arranged by their average classical (x-axis) and 591 

basal (y-axis) scores. Points are pie charts summarizing the malignant subtype composition within each biopsy. 592 

c, Composition of each tumor (% cells) across the three expression subtypes in the primary resection cohort 593 

(n=15 cases) determined by multiplexed immunofluorescence (b, basal; m, mixed; c, classical). Representative 594 

images for strongly polarized tumors are shown (bottom). d, Representative mixed tumor images (top) and 595 

corresponding pheno-plots (bottom). Pheno-plot points correspond to cells in the image above and are colored 596 

by their subtype, marker negative cells are not visualized. Zoom panel on far right (dotted white box, image; solid 597 

black box, pheno-plot) shows juxtaposed hybrid and basal cells. e, Pairwise correlation of genes significantly 598 

associated with basal or classical expression states. Left bar indicates the subtype association of each gene 599 

(orange, basal; blue, classical). f, Heatmap shows the relative expression of the indicated basal and classical-600 

associated programs, cells are ordered as in a. Left heat bar indicates each gene’s correlation to either basal or 601 

classical subtypes, and the range for these values is the same as in e. Bottom plot indicates each single-cell’s 602 

biopsy of origin.   603 
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Figure 3. Asymmetric distribution of immune phenotypes across the basal to classical continuum. a, t-604 

SNE visualization of non-malignant cells identified in the metastatic microenvironment, abbreviations are the 605 

same as in Figure 1d (TAM, tumor associated macrophage; Trans, Transition; NKT, natural killer T cell). b, 606 

Heatmap shows the relative expression for select cell type markers. Top bar indicates the binarized cell cycle 607 

program (black, cycling) and the bottom color bar corresponds to the cell type colors noted in a. c, Cross-608 

correlational heatmap and hierarchical clustering for similarity in the capture frequency of non-malignant cell 609 

types from each biopsy. Rainbow coloration in the main heatmap indicates convergence (yellow to red) or 610 

divergence (white to blue) across cell types. Right heat bar indicates preferential association for each cell type 611 

with either the basal (orange, negative values) or classical (blue, positive values) malignant transcriptional 612 

subtypes. Color ranges for both quantities are Pearson’s r, white dots indicate P < 0.05 for the subtype 613 

associations. Top bar chart indicates the total number of cells for each type. d, Scatter plot compares each liver 614 

biopsy’s position on the basal to classical continuum (y-axis, score difference) to the relative abundance of 615 

activated NK cells captured from its microenvironment. Points represent individual biopsies and are colored by 616 

their discretized transcriptional subtype (n = 15). e, Distribution (blue heat) of CD8+ T cell phenotype across the 617 

progenitor to exhausted/differentiated continuum in each liver-resident biopsy. Biopsies are sorted by the score 618 

difference (far left heat bar). The corresponding fractional capture of CD4+ T cells is indicated left of the main 619 

heat map for each sample. f, Distribution (green heat) of TAM phenotype for the macrophages captured in each 620 

liver biopsy. Biopsies with <100 macrophages were excluded. Heatmap is ranked by average monocyte-like to 621 

macrophage skew and both average basal and classical scores are indicated (right). g, Phenotypic hierarchy for 622 

TAM subsets  using the expression scores for each phenotype across all TAMs captured in the dataset. The 623 

distribution (density; high = more TAMs) across the phenotypic hierarchy is visualized (right) according to 624 

malignant transcriptional phenotype as in Extended Data Figure 3d.   625 
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Figure 4. Differential microenvironmental crosstalk shapes subtype-specific metastatic niches.  a, 626 

Scatterplot comparing differential expression (x-axis) and subtype correlation coefficient (y-axis) for the 219 627 

genes annotated as secreted growth factors, cytokines, or chemokines detected in malignant cells. Genes 628 

passing significance are assigned as “subtype specific” for either basal or classical (P < 0.05, DE; P < 0.003, 629 

correlation). b, Pathway enrichments for the top genes associated with each subtype. Shared enrichments are 630 

in black, orange and blue denote basal and classical-unique terms, respectively. c, Scatterplot comparing the 631 

fraction of endothelial cells captured and the average expression in malignant cells for CXCL5. Each point 632 

represents one biopsy (n=14). d, Differential expression between the committed TAM subsets SPP1+ and 633 

C1QC+. Genes are colored by their subtype selectivity (P < 0.05; Log(Fold Change) > 0.5). e, TAM phenotypic 634 

hierarchy plots for basal subtype tumors (Figure 3g, bottom), split by biopsy and sorted by decreasing basal 635 

score. Heat indicates distribution of total TAMs (bottom right for each plot) per biopsy as in Figure 3g. f, Dot 636 

plots for TAM (top, green fill) and malignant (bottom, red fill) expression of the indicated genes sorted by basal-637 

classical polarization. Size of the dot indicates fraction of cells expressing a given gene. Left of the dotted line 638 

are tumors visualized in e; basal tumors high for EMT program expression (PANFR0545 and PANFR0593) are 639 

indicated. g, Cross-correlation for markers of TAM subsets (green), basal (orange) and classical (blue) markers 640 

used in mIF studies, and putative malignant secreted factors (black).    641 
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Figure 5. Organoid culture microenvironment selects against the basal state. a, Relative expression for 642 

basal and classical genes in biopsy cells (left) and their matched, early passage organoid cells (n=13 models; 643 

right). b, Scatterplot compares the relative contribution of genotypic drift (CNVs, y-axis) versus phenotypic drift 644 

(basal/classical gene expression, x-axis). Both quantities represent distance (d = (1-r)/2); higher value = greater 645 

distance) derived from Pearson correlation (r). Each point is one organoid/biopsy pair and summarizes the 646 

average d between organoid cells and their matched initial biopsy. Dotted lines are P < 0.05 comparing average 647 

intra-biopsy (biopsy cells to themselves) d across the cohort for both metrics. Fill colors denote classification of 648 

original tumor, point outline color is the biopsy identifier. c, Line plot for each biopsy and its successive organoid 649 

samples (*see Methods). Points represent the sample averaged score at the indicated timepoints, lines tie 650 

samples derived from the same initial biopsy. Color indicates if the original biopsy was initially measured as 651 

basal (orange) or classical (blue). Colored point outlines denote all samples from the indicated original biopsy. 652 

Crossed empty circles indicate when a sample failed to grow. d, Representative scatterplots for single-cell basal 653 

and classical scores in biopsy (grey) and the indicated organoid passage (red) sample.  e, Genotype and 654 

phenotype evolution in PANFR0575. Cells are sorted first by their subclone (A-F, color bar far left; Methods) 655 

and then sample of origin (Biopsy or organoid, right of subclone color bar; Pn, Organoid passage number). Each 656 

single cell’s corresponding phenotype is shown in the center heatmap and far right expression score bars (Cell 657 

cycle, black). The fraction of each subclone in each sample is indicated with pie charts at the bottom, cell 658 

numbers per sample are below.    659 
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Figure 6. Recovery of the basal state in altered media conditions. a, Relative expression for 90 genes 660 

representing basal, classical, and WNT7B expression programs across bulk RNA-seq samples from primary 661 

resections (TCGA) and metastatic biopsies (Panc-Seq), as well as organoid and cell line (CCLE) models. 662 

Phenotype scores are indicated and samples are ranked by their score difference. b, Schematic for depleted 663 

media experiment. c, Single-cell violin plots for basal score in passage matched organoids grown in the indicated 664 

media conditions (***P = 2.2x10-16). d, Dot plot represents the sample average basal score in the indicated 665 

conditions. Lines tie samples and color outlines indicate sample identity. Each sample’s biopsy basal score is 666 

included for reference. e, Inferred CNVs, expression scores, and cell cycle status for each cell from either 667 

Stripped (grey) or Full (red) organoid media conditions in the PANFR489R experiment. 668 
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