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 2 

SUMMARY 43 

Bulk transcriptomic studies have defined classical and basal-like gene expression subtypes in pancreatic 44 

ductal adenocarcinoma (PDAC) that correlate with survival and response to chemotherapy; however, the 45 

underlying mechanisms that govern these subtypes and their heterogeneity remain elusive. Here, we 46 

performed single-cell RNA-sequencing of 23 metastatic PDAC needle biopsies and matched organoid 47 

models to understand how tumor cell-intrinsic features and extrinsic factors in the tumor 48 

microenvironment (TME) shape PDAC cancer cell phenotypes. We identify a novel cancer cell state that 49 

co-expresses basal-like and classical signatures, demonstrates upregulation of developmental and 50 

KRAS-driven gene expression programs, and represents a transitional intermediate between the basal-51 

like and classical poles. Further, we observe structure to the metastatic TME supporting a model whereby 52 

reciprocal intercellular signaling shapes the local microenvironment and influences cancer cell 53 

transcriptional subtypes. In organoid culture, we find that transcriptional phenotypes are plastic and 54 

strongly skew toward the classical expression state, irrespective of genotype. Moreover, we show that 55 

patient-relevant transcriptional heterogeneity can be rescued by supplementing organoid media with 56 

factors found in the TME in a subtype-specific manner. Collectively, our study demonstrates that distinct 57 

microenvironmental signals are critical regulators of clinically relevant PDAC transcriptional states and 58 

their plasticity, identifies the necessity for considering the TME in cancer modeling efforts, and provides 59 

a generalizable approach for delineating the cell-intrinsic versus -extrinsic factors that govern tumor cell 60 

phenotypes.  61 

 62 
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INTRODUCTION 67 

Classification of human malignancies by genotype has provided important insights into tumor biology as 68 

well as a framework to guide therapeutic selection in many cancers (Hyman et al., 2017). However, 69 

tumors also exhibit clinically relevant transcriptional variation that can influence malignant progression 70 

and therapeutic response. The application of single-cell RNA-sequencing (scRNA-seq) to tumor 71 

specimens has afforded a means to characterize the malignant and non-malignant cellular components 72 

of the tumor microenvironment (TME) and their heterogeneity at unprecedented resolution (Kim et al., 73 

2018; Patel et al., 2014; Puram et al., 2017; Sade-Feldman et al., 2019; Suva and Tirosh, 2019; Tirosh 74 

et al., 2016a; van Galen et al., 2019; Venteicher et al., 2017). These analytical approaches have further 75 

enabled the re-examination of existing transcriptional taxonomies, revealing structured heterogeneity 76 

within malignant populations and reframing our understanding of bulk measurements in multiple cancers 77 

(Filbin et al., 2018; Hovestadt et al., 2019; Neftel et al., 2019; Patel et al., 2014; Tirosh et al., 2016b; 78 

Venteicher et al., 2017).  79 

The phenotypic variability observed in human tumors often reflects the underlying cancer cell 80 

genetics. Specific mutations can program cancer cell states and, in some cases, serve as biomarkers for 81 

treatment (Filbin et al., 2018; Hovestadt et al., 2019; van Galen et al., 2019; Venteicher et al., 2017). Yet, 82 

in other instances, transcriptional phenotypes are not strongly associated with specific mutational 83 

patterns (Nam et al., 2021). In these tumors, cell-extrinsic TME interactions may influence malignant 84 

cellular attributes, but our understanding of reciprocal signaling between malignant cells and the TME is 85 

rudimentary. Mapping the cell-intrinsic and -extrinsic factors that impact tumor cell states and determining 86 

which ones drive phenotypic transitions would yield important insights into the biologic basis for clinical 87 

disease phenotypes and drug resistance.  88 

For pancreatic ductal adenocarcinoma (PDAC), bulk RNA-seq profiling has defined two major 89 

transcriptional programs, basal-like/squamous (hereafter referred to as basal) and classical. The basal 90 

subtype is strongly associated with a poorer prognosis and greater treatment resistance (Aguirre et al., 91 

2018; Aung et al., 2018; Bailey et al., 2016; Cancer Genome Atlas Research Network, 2017; Chan-Seng-92 

Yue et al., 2020; Collisson et al., 2011; Connor et al., 2019; Moffitt et al., 2015; O'Kane et al., 2020; Porter 93 

et al., 2019; Tiriac et al., 2018), but the roles of cell-intrinsic and -extrinsic factors in determining these 94 

cell states and their sensitivity to different therapies are not well understood. A limited number of genomic 95 

alterations, including TP53 mutational status and c-MYC or KRAS amplifications, have been associated 96 

with the more therapy-resistant basal state (Bailey et al., 2016; Cancer Genome Atlas Research Network, 97 

2017; Chan-Seng-Yue et al., 2020; Hayashi et al., 2020; Schleger et al., 2002). Recent studies have also 98 

suggested that high levels of KRAS expression and signaling can induce the basal state, but others have 99 

demonstrated that basal PDAC cells exhibit RAS-independence (Chan-Seng-Yue et al., 2020; Collisson 100 
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et al., 2011; Miyabayashi et al., 2020; Muzumdar et al., 2017). These findings suggest that while genomic 101 

activation of KRAS plays an important role in oncogenesis, other non-genetic and microenvironmental 102 

factors may also be critical in regulating downstream cellular states.  103 

Although the majority of patients with PDAC present with and succumb to metastatic disease 104 

(Siegel et al., 2020), our current understanding of PDAC is largely derived from resected primary tumors 105 

(Aguirre et al., 2018; Cancer Genome Atlas Research Network, 2017; Siegel et al., 2020). While several 106 

recent studies have described the desmoplastic stromal microenvironment and immune infiltration in 107 

primary PDAC (Balachandran et al., 2019; Bernard et al., 2019; Biffi et al., 2019; Elyada et al., 2019; 108 

Ligorio et al., 2019; Ohlund et al., 2017), we lack a detailed characterization of the immune and stromal 109 

cells that constitute metastatic PDAC lesions. The local TME in the pancreas is likely different from 110 

metastatic sites in other organs (Ho et al., 2020), and given the strong association of transcriptional 111 

subtype with survival and drug resistance (Aguirre et al., 2018; Aung et al., 2018; Bailey et al., 2016; 112 

Cancer Genome Atlas Research Network, 2017; Chan-Seng-Yue et al., 2020; Collisson et al., 2011; 113 

Connor et al., 2019; Moffitt et al., 2015; O'Kane et al., 2020; Porter et al., 2019; Tiriac et al., 2018), 114 

understanding whether specific inputs from the metastatic niche can specify transcriptional phenotype is 115 

of great importance to targeting therapeutic resistance in PDAC. 116 

 To better understand the interplay between genetics, transcriptional state, and the metastatic 117 

TME, we developed and employed an optimized translational workflow to perform both high-resolution 118 

profiling of PDAC patient tissue using scRNA-seq (Gierahn et al., 2017; Hughes et al., 2020) and 119 

derivation of matched organoid models (Boj et al., 2015; Tiriac et al., 2018) from the same metastatic 120 

core needle biopsy. Using matched in vivo observations and ex vivo experimental studies, we describe 121 

a tumor cell atlas of metastatic PDAC, identify a new intermediate transitional PDAC cancer cell state, 122 

uncover distinct site- and subtype-specific TMEs, and demonstrate that microenvironmental signals are 123 

critical regulators of transcriptional subtypes and their plasticity. 124 

 125 

RESULTS 126 

A clinical pipeline for matched single-cell profiling and organoid model generation 127 

We established a pipeline for collecting core needle biopsies from patients with metastatic PDAC (n=23) 128 

to generate matched scRNA-seq profiles and organoid models (Figure 1A; Supplemental Figure S1A; 129 

Supplemental Table S1). Most samples were obtained from metastatic lesions residing in the liver 130 

(19/23), and the majority (21/23) were analyzed by targeted DNA-sequencing, yielding the expected 131 

mutational pattern for this disease (Figure 1B) (Aguirre et al., 2018; Bailey et al., 2016; Cancer Genome 132 

Atlas Research Network, 2017). Our pipeline generated approximately 1,000 high-quality single cells per 133 

biopsy (n=23,042 total cells) and successful early-passage organoid cultures from 70% of patient tumor 134 
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samples (16/23 samples reaching at least passage 2; Figure 1B; Supplemental Figure S1A,B). 135 

Dimensionality reduction and shared nearest neighbor (SNN) clustering of the biopsy cells revealed 136 

substantial heterogeneity at the single-cell level (Supplemental Figure S1C,D; Methods). Consistent 137 

with other studies of human cancer, we observed patient-specific and admixed clusters of single cells 138 

suggesting the presence of both malignant and non-malignant cells in each biopsy (Kim et al., 2018; 139 

Puram et al., 2017; Sade-Feldman et al., 2019; Tirosh et al., 2016a; van Galen et al., 2019). To confirm 140 

which clusters were comprised of malignant cells, we inferred transcriptome-wide CNVs from our single-141 

cell data as previously described (Patel et al., 2014; Tirosh et al., 2016b). CNV alteration scores 142 

separated putative cancerous and non-cancerous cells in each biopsy and demonstrated high 143 

concordance with reference targeted DNA-seq (Figure 1C; Supplemental Figure S1E,F). CNV analysis 144 

paired with manual inspection of expression patterns for known markers across single cells supported 145 

the identification of cancerous cells as well as 11 unique non-cancerous cell types (Figure 1D,E; 146 

Supplemental Figure S1D-I; Supplemental Table S2). Thus, we established a robust workflow capable 147 

of recovering high quality malignant (n=7,740) and non-malignant (n=15,302) populations from metastatic 148 

PDAC needle biopsies while also enabling simultaneous generation of matched organoid models.     149 

 150 

Tumor cell transcriptional subtypes in metastatic PDAC include an intermediate transitional state 151 

We applied principal component analysis (PCA) to examine transcriptional variation across cancer cells 152 

from all biopsy samples. CNV-altered cells from one biopsy, PANFR0580, separated from the rest of the 153 

samples (Figure 1B; Supplemental Figure S2A). Based on expression of known neuroendocrine 154 

markers (TTR, CHGA) and subsequent pathology review we reclassified this sample as a pancreatic 155 

neuroendocrine tumor (PanNET) and used it as a non-PDAC reference cell population. Among the 156 

remaining 7,078 PDAC cells, we found that genes driving the first 3 PCs were enriched for signatures of 157 

epithelial/mesenchymal transition [EMT, PC1, (Groger et al., 2012)], basal/classical state [PC2, (Moffitt 158 

et al., 2015)], and cell cycle [PC3, (Tirosh et al., 2016a)] (Supplemental Figure S2B). When we scored 159 

all malignant cells within our cohort for basal and classical gene expression, we observed that they 160 

inhabited a graded continuum of expression states from strongly basal to strongly classical (Figure 2A). 161 

Correlation analysis across malignant cells revealed 1,909 genes significantly associated with either 162 

basal or classical expression scores (Supplemental Figure S2C; Supplemental Table S3; Methods). 163 

Inspection of these genes revealed that basal cells are defined by squamous and mesenchymal features 164 

and co-express programs associated with transforming growth factor beta (TGF-β) signaling, WNT 165 

signaling, and cell cycle progression (Groger et al., 2012; Kim et al., 2017; Tirosh et al., 2016a). 166 

Conversely, epithelial and pancreatic lineage programs are enriched in classical subtype PDAC cells 167 

(Supplemental Figure S2D,E).  168 
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 Strikingly, we observed that the basal and classical programs were not mutually exclusive; rather, 169 

we identified a large population of cells that co-expressed features of both programs to varying degrees 170 

(Figure 2A; Supplemental Figure S3A,B). In developmental contexts, cell state commitment is often a 171 

continuous process where mixing/co-expression of state markers indicates state transitions (Nam et al., 172 

2021). Similarly, the large fraction of intermediate co-expressing cells identified in our single-cell 173 

snapshots suggests state transitions may be an ongoing and frequent process in human PDAC tumors. 174 

We identified 115 genes whose expression was correlated with this co-expressor intermediate state and 175 

enriched for developmental, Ras signaling, and inflammation/stress response gene sets (Figure 2B; 176 

Supplemental Figure S3C,D; Supplemental Table S3; Methods). Signatures of RAS signaling were 177 

enriched in the intermediate state even compared with basal and classical programs, and, by contrast, 178 

classical phenotypes were enriched for Akt-associated gene sets and showed little evidence of EMT or 179 

RAS enrichments (Figure 2A-B; Supplemental Figure S2E).  180 

 Since this intermediate signature showed enrichment for developmental gene programs, we next 181 

assessed whether this signature overlapped with any phenotypes recently reported in the normal 182 

pancreas progenitor niche (Qadir et al., 2020). We found that both basal and classical gene expression 183 

signatures were expressed by pro-ductal progenitor cells, while the intermediate gene expression 184 

program was enriched in an undifferentiated, stress-responsive progenitor population (Supplemental 185 

Figure S3E,F) (Qadir et al., 2020). Thus, based on its enrichment for developmental and stress-186 

responsive gene sets, overlap with populations in the normal progenitor niche, and co-expression of basal 187 

and classical programs suggestive of a transitional state, we termed this phenotype “Intermediate 188 

transitional” (IT) (Figure 2C).  189 

To further contextualize this cell state, we compared signatures proposed by prior bulk RNA-190 

sequencing studies to clarify potential inter-relationships (Aguirre et al., 2018; Bailey et al., 2016; Chan-191 

Seng-Yue et al., 2020; Collisson et al., 2011; Moffitt et al., 2015). Pairwise correlation of all established 192 

signatures in malignant cells revealed that many contribute overlapping information and reflect similar 193 

underlying biology within either basal or classical clades, but that the IT signature is unique and not well 194 

described by established bulk RNA-seq signatures (Figure 2D). Taken together, these findings suggest 195 

that malignant PDAC cells organize in a tripartite cell state framework that spans committed basal and 196 

classical phenotypes, with considerable signature co-expression in single cells (Figure 2E). Similar to 197 

the variation in EMT scores observed in basal tumor cells (Supplemental Figure S3A) (Chan-Seng-Yue 198 

et al., 2020; Connor et al., 2019), we noted heterogeneity among co-expressing cells for the IT program. 199 

 200 

Multiplex immunofluorescence confirms co-expressing IT cells in metastatic and primary PDAC 201 
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To compare to bulk RNA-seq studies, we clustered pseudo-bulk averages of the malignant cells from 202 

each biopsy and observed separation of tumors into those that expressed predominantly basal, classical, 203 

or IT signatures (Supplemental Figure S3G-I). However, individual tumors exhibited significant 204 

heterogeneity at the cellular level, with mixing of malignant cell populations expressing at least two and 205 

frequently all three cell states within the same patient specimen (Supplemental Figure S3J). To validate 206 

the extensive heterogeneity and the presence of co-expressing IT cells in our metastatic cohort, we used 207 

a subtype-specific multiplex immunofluorescence (mIF) panel to categorize single tumor cells by their 208 

patterns of marker detection in 10 matched cases from our single cell study (Supplemental Figure S4A; 209 

Supplemental Table S4; Methods). We observed extensive overlap of basal and classical markers 210 

within single cells at the protein level, corroborating the existence of co-expressing IT cells using an 211 

orthogonal method (Figure 2F; Supplemental Figure S4B). Encouragingly, we observed significant 212 

correlation within subtype (average r = 0.52) as compared to between subtypes (average r = 0.06, P < 213 

10-7, Student’s T test) using this orthogonal method. We also observed high concordance between the 214 

two methods, giving confidence that we are accurately sampling the distribution of states present in each 215 

sample (average r = 0.45; Supplemental Figure S4C, white dots).  As with scRNA-seq, we observed 216 

mixing of basal, classical, and IT cells within individual patient specimens by mIF subtyping. The 217 

frequency of co-expressing cells was correlated with balanced representation of pure basal and classical 218 

phenotypes within individual samples, consistent with the co-expressing IT phenotype as a transitional 219 

state (Figure 2G). Indeed, none of the tumors evaluated with mIF contained a mix of pure basal and 220 

classical phenotypes in the absence of co-expressing IT cells. We also identified co-expressing cells in 221 

primary tumor samples which suggests that IT phenotypes may be a general feature of PDAC tumors in 222 

both the localized and metastatic settings (Figure 2H; Supplemental Figure S4D).  223 

 224 

Microenvironment is dominant to KRAS amplifications in determining transcriptional subtype  225 

We next searched for potential molecular regulators of the observed tumor cell transcriptional 226 

heterogeneity. In PDAC, the vast majority of tumors harbor clonal KRAS point mutations, including all of 227 

the PDAC samples in our cohort (Figure 1B). While point mutations in KRAS do not appear to determine 228 

transcriptional subtype, several studies have suggested that amplifications in KRAS associate with more 229 

basal features (Chan-Seng-Yue et al., 2020; Miyabayashi et al., 2020), while amplifications of lineage 230 

transcription factors like GATA6 associate with classical phenotypes (Chan-Seng-Yue et al., 2020). To 231 

assess for such genotype-phenotype relationships in our single-cell cohort, we inferred copy number 232 

variation for common PDAC alterations (KRAS, TP53, SMAD4, and CDKN2A) and lineage-associated 233 

transcription factors (HNF4G and GATA6) from scRNA-seq expression data using a previously 234 

established Hidden Markov model workflow (Methods) (Fan et al., 2018; Patel et al., 2014; Tirosh et al., 235 
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2016b). Encouragingly, we observed a significant association between single-cell inferred KRAS copy 236 

number gain and basal phenotypes (P<0.03 Fisher’s exact test), and also between inferred CDKN2A 237 

copy loss and IT phenotypes (P<0.003 Fisher’s exact test; Figure 3A). While we found that cells derived 238 

from samples with inferred KRAS amplifications had a strong preference for the basal subtype, these 239 

cells could still span all three phenotypic categories or be predominantly classical within an individual 240 

tumor (Figure 3B-D).  241 

 To further examine this genotype-to-phenotype association, we tested if KRAS amplification was 242 

sufficient to specify the basal phenotype in an ex vivo environment. We initiated patient-derived organoid 243 

cultures from matched PDAC biopsies and serially sampled them over time with scRNA-seq (Figure 1A). 244 

CNV-confirmed “early” organoid cells (first passage measured, n=2,117 cells) derived from KRAS-245 

amplified biopsies maintained this genetic alteration in culture (Figure 3E, dark red). Despite their genetic 246 

stability, cells with inferred KRAS amplifications exhibited a profound phenotypic shift from basal in vivo 247 

to classical ex vivo (Figure 3F). Although selection of specific clones could play a role in this process, 248 

most of these models maintained high CNV similarity to their parent tumor at the early time point. For 249 

example, we observed that a CNV-defined clone from PANFR0575 with both KRAS and GATA6 250 

amplifications was plastic and shifted from strongly basal in vivo to classical in early organoid culture 251 

(Figure 3G). These observations provide strong evidence that phenotypic plasticity is an inherent feature 252 

of malignant PDAC cells and demonstrate that KRAS amplification alone is not sufficient to lock the basal 253 

state. Furthermore, they suggest that the tumor microenvironment can influence phenotype independent 254 

of genotype in this context.  255 

 256 

Transcriptional heterogeneity is shaped by the microenvironment 257 

Given this strong phenotypic shift even for genetically similar samples, we next examined how ex vivo 258 

transcriptional phenotypes differed across our larger organoid cohort relative to their cognate patient 259 

samples. Globally, unbiased comparison of all malignant biopsy (7,078 cells) and organoid cells (n=14 260 

models, 24,789 cells) revealed unique clusters for each sample and only two clusters that were admixed 261 

by donor. These admixed cells exhibited expression programs consistent with non-malignant stromal 262 

cells, had low overall CNV scores, and dissipated by later passages (Supplemental Figure S5A-D; 263 

Methods). Overall, samples with high tumor-averaged basal or IT phenotypes exhibited lower rates of 264 

long-term organoid propagation beyond passage 2 than models derived from classical tumors, where the 265 

majority established long-term cultures (Figure 4A). When comparing early passage CNV-confirmed 266 

organoids to their cognate patient tissue, culture in an ex vivo microenvironment caused greater deviation 267 

in transcriptional phenotype than CNV-defined genotype (Figure 4A, P < 10-6 Student’s T test; Methods).  268 
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 9 

We next assessed which specific tumor cell attributes contributed to phenotypic divergence in the 269 

ex vivo microenvironment. As with the KRAS-amplified samples, we observed a striking decrease in basal 270 

gene expression (P < 0.000001) and, to a lesser but still significant extent (P < 0.001), the IT program 271 

(Figure 4B, top). By contrast, aggregate classical gene expression remained largely unchanged in 272 

organoid conditions (Figure 4B, top). This loss of basal expression was surprising, given the more 273 

clinically aggressive and proliferative nature of basal tumors in vivo (Supplemental Figure S3A) (Connor 274 

et al., 2019; Moffitt et al., 2015). Organoid-specific gene expression features that were not present in vivo 275 

also emerged, including markers of epithelial identity, oxidative stress response pathways (e.g., NRF2 276 

target genes), and amino acid metabolism (hereafter collectively referred to as “organoid-specific” gene 277 

expression; Figure 4B, bottom; Supplemental Table S5). In general, models assumed a more classical 278 

or organoid-specific phenotype over time in culture regardless of their parent tumor’s transcriptional 279 

identity (Figure 4C). Most models derived from basal or IT tumors exhibited early phenotypic deviation 280 

and cessation of growth within 100 days of initiation (e.g., PANFR0552; Supplemental Figure S5E) or 281 

outgrowth of only a sub-clone in culture (e.g., PANFR0489R; Supplemental Figure S5F). Classical 282 

tumors, meanwhile, tended to maintain their genotype and phenotype both early in culture and at later 283 

passages (e.g., PANFR0631; Figure 4C; Supplemental Figure S5G, clone A).   284 

To better understand the contribution of clonal selection to this process, we performed linked 285 

genotype and phenotype assessment from iterative passages. We identified CNV-defined subclones in 286 

the parental biopsy and its associated serial organoid samples, and then assessed how the distribution 287 

of transcriptional states within each subclonal population evolved over time in culture (Methods). In both 288 

PANFR0489R and PANFR0575, KRAS amplification status remained invariant over time, but we 289 

observed significant phenotypic plasticity and clonal selection in both cases. In PANFR0489R, the 290 

predominantly basal clones in vivo rapidly decreased in abundance while other rarer clones with classical 291 

or organoid-specific phenotypes emerged as the dominant ones (Supplemental Figure S5H). In 292 

contrast, in vivo dominant clones from PANFR0575 were largely maintained at early passages but 293 

diverged significantly in their phenotype, transiently expressing more classical and organoid-specific 294 

phenotypes at passages 2 and 3 before eventually regaining basal transcriptional expression after >100 295 

days in culture (Supplemental Figure S5I). Notably, the clones that came to dominate in PANFR0575 296 

organoid culture (clones D and E, Supplemental Figure S5I) carried inferred TP63 amplifications, a 297 

squamous-specifying transcription factor (Somerville et al., 2018), suggesting that certain genotypes, 298 

though rare, may still exert a strong effect despite opposing signals from the microenvironment. Taken 299 

together, these findings emphasize the importance of optimizing culture conditions and performing deep 300 

molecular characterization of patient-derived model systems to ensure faithful representation of the 301 

tumor.  302 
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Divergence from in vivo phenotype, despite relative similarity in genotype, suggested that the 303 

TME has a strong influence in determining PDAC cellular state. For each biopsy-organoid pair, we used 304 

differential expression to nominate transcriptional programs that were present in vivo but missing from 305 

ex vivo culture (Figure 4D; Methods). Broadly, genes preferentially expressed by malignant cells in vivo 306 

were related to soluble cytokine signaling, cell-cell communication, and tumor-microenvironment 307 

interactions, highlighting the absence of this crosstalk in organoid culture (Figure 4E). Hierarchical 308 

clustering revealed subtype-dependent expression patterns for these in vivo-specific genes (Figure 4F; 309 

Supplemental Table S5). For example, interferon response and EMT genes were significantly 310 

upregulated in basal and IT malignant cells in vivo (clusters 1 and 2, Figure 4F), while genes associated 311 

with cell-cell interactions and surface glycoproteins were more strongly expressed in IT and classical 312 

cells (cluster 3, Figure 4F). Genes related to biological adhesion were more uniform in their expression 313 

across the subtypes (cluster 4, Figure 4F). The relative absence of these TME-crosstalk genes in 314 

organoid culture and their differences in expression across transcriptional subtypes in vivo suggest that 315 

TME signals may play a role in specifying tumor cell phenotypes. 316 

 317 

Non-malignant composition of the metastatic microenvironment  318 

The presence of TME-associated expression patterns in cancer cells in vivo suggested there may be 319 

subtype-dependent structure to, and instructive signaling from, the metastatic TME; however, relatively 320 

little is known about the structure and composition of the metastatic microenvironment in PDAC. We first 321 

analyzed the non-malignant cells (n=14,811) in the metastatic niche to further subclassify cell types and 322 

provide a more complete picture of the immune/stromal composition of metastatic disease (Figure 5A). 323 

Sub-clustering of T/NK cells revealed 4 cell types—CD4+ T, CD8+ T, NK, and CD16+ (FCGR3A+) NK 324 

cells—each expressing the corresponding established markers (Supplemental Figure S6A,B; 325 

Methods). Similarly, an unsupervised examination within the monocyte/macrophage compartment 326 

revealed a tripartite continuum for tumor associated macrophages (TAMs), similar to one recently 327 

described in colorectal cancer, comprised of inflammatory FCN1+ “monocyte-like” TAMs, C1QC+ 328 

phagocytic TAMs, and SPP1+ angiogenesis-associated TAMs (Supplemental Figure S6C,D; 329 

Supplemental Table S2) (Zhang et al., 2020; Zilionis et al., 2019). Representative marker expression 330 

across all previously described non-malignant cells is summarized in Supplemental Figure S6E.  331 

 Although most samples in our cohort were taken from liver metastases (19/23), several originated 332 

from other sites including the omentum, adrenal gland, and peritoneum (Figure 1B, “other”). 333 

Interestingly, while we found equal distribution of immune cells among the anatomical sites, 334 

mesenchymal cell populations clustered predominantly by the location of the metastatic lesion (Figure 335 

5B,C). Excluding adrenal-specific endocrine cells (Figure 4C; subset 4, 40 cells), we identified 3 336 
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mesenchymal subclusters with relatively uniform expression for canonical cancer-associated fibroblast 337 

(CAF) markers (Figure 5C; Supplemental Figure S6F). PCA of these cells revealed a continuum of 338 

states along PC2, with uniform expression of the previously described myofibroblast (myCAF) signature 339 

(Elyada et al., 2019; Ohlund et al., 2017) but further separating into cells favoring high expression of 340 

dermal fibroblast-like genes (PC2 low, FAP, PRXX1, SFRP2) or pericyte-like genes (PC2 high, RGS5, 341 

MCAM, TBX2; Supplemental Figure S6G-I; Supplemental Table S2) (Ascension et al., 2020; 342 

Bartoschek et al., 2018; Di Carlo and Peduto, 2018; Hosaka et al., 2016; Pelon et al., 2020; Philippeos 343 

et al., 2018). PC3 described a small subset of cells, derived largely from a single tumor (PANFR0489R), 344 

that were highly consistent with the previously established inflammatory fibroblast (iCAF) program 345 

(Elyada et al., 2019; Ohlund et al., 2017) (Supplemental Figure S6H-J).  346 

 While tumors from each location contained both mesenchymal subsets, we noted a strong organ-347 

specific skewing along PC2 with pericyte-like phenotypes being preferentially associated with liver 348 

biopsies (Figure 5D,E; Supplemental Figure S6K). To validate these observations in larger cohorts, we 349 

assessed bulk RNA-seq datasets using these dermal fibroblast- and pericyte-like CAF signature scores 350 

and observed a similar predilection for the pericyte-like expression program in liver metastases (Figure 351 

5F; Methods). Interestingly, tumors in the pancreas (n = 153 samples) favored expression of the dermal 352 

fibroblast-like program, suggesting a substantially different mesenchymal microenvironment in primary 353 

versus liver metastatic PDAC (Figure 5F). Thus, we observed diverse immune and stromal cell types in 354 

the metastatic TME and identified site specific mesenchymal features unique to the liver metastatic niche 355 

compared with primary disease.  356 

 357 

Transcriptional subtypes associate with distinct immune microenvironments 358 

After cataloging the cell types in the metastatic TME, we searched for associations between malignant 359 

subtype and the immune microenvironment. For each tumor sample, we first computed the fractional 360 

representation of each non-malignant cell type per biopsy. Five tumors were excluded from this analysis 361 

on the basis of low cell counts (<200 cells) or indeterminant transcriptional subtype (PanNET or no tumor 362 

cells captured; Supplemental Figure S6L). To describe the overall microenvironmental composition for 363 

each tumor, we applied Simpson’s diversity index, a measure of biodiversity commonly used in ecology 364 

to describe the number of species (cell types) present in an ecosystem (tumor) and their relative 365 

abundance. We observed that tumors with more classical or IT phenotypes exhibited greater 366 

microenvironmental diversity, while strongly basal tumors had a more homogeneous TME (Figure 6A). 367 

Hierarchical clustering over the relative abundance of each non-malignant subset across the biopsy 368 

cohort revealed the specific cell types driving these overall diversity differences (Figure 6B,C). 369 

Specifically, C1QC+ TAMs dominated the microenvironments of strongly basal tumors, and both CD8+ 370 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2020.08.25.256214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.256214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

and CD4+ T cells were significantly depleted in basal contexts compared to the rest of the samples in the 371 

cohort (Figure 6C,D). T cells most often originated from biopsies with higher IT malignant fractions 372 

(Figure 6B,C) and their abundance was positively correlated with this malignant phenotype in our cohort 373 

(Figure 6E). We also broadly observed these patterns within TCGA bulk RNA-sequencing data of other 374 

epithelial malignancies (Cancer Genome Atlas Research et al., 2013), where we observed evidence for 375 

reduced levels of immune-related gene expression in tumors with high basal/squamous gene expression 376 

(Supplemental Figure S6M, cluster 4). Taken together, these findings suggest coordinated interactions 377 

between malignant phenotypes and the local TME with decreased immune cell diversity and a greater 378 

degree of immune exclusion associated with basal contexts (Figure 6F). 379 

 380 

The soluble microenvironment shapes PDAC cellular phenotypes 381 

Based on our observations that: 1) the microenvironment influences malignant phenotype independent 382 

of genotype; 2) gene expression programs associated with cytokine signaling, EMT, and cell-cell 383 

interaction are enriched in vivo but missing from cells cultured as organoids; and, 3) malignant states and 384 

immune cell infiltration are coordinated in a subtype-specific manner, we hypothesized that incorporation 385 

of soluble factors specific to the TME of each transcriptional subtype may drive tumor cell state shifts 386 

(Figure 7A). Complete PDAC organoid media (Supplemental Table S6) (Boj et al., 2015; Tiriac et al., 387 

2018) contains various growth factors that could skew malignant transcriptional state, so we first tested 388 

the effects of withdrawing various soluble factors. We cultured four organoid models in media without any 389 

additives (“Minimal” media, containing only Glutamax, anti-microbials, HEPES buffer, and Advanced 390 

DMEM/F12 media; Figure 7B; Supplemental Table S6; Methods). We observed a robust increase in 391 

basal gene expression and a decrease in organoid-specific gene expression in specimens cultured for 6 392 

days in minimal media relative to those in complete organoid media (“Complete”, Figure 7B). Although 393 

we found that the fraction of cycling cells in minimal media decreased, the organoids continued to grow 394 

under these conditions and exhibited stable CNV profiles, indicating that these responses were unlikely 395 

to be driven by acute selection (Supplemental Figure S7A,B). We cultured one model, PANFR0562, in 396 

minimal media for a longer duration and observed that the phenotypic distribution shifted even further 397 

toward IT and basal phenotypes (Figure 7C), demonstrating that recovery of all three states is possible 398 

ex vivo. Since minimal medium lacks both serum and mitogens to support prolonged cell growth, we also 399 

tested whether culturing organoids in a reduced organoid media formulation (“OWRNA”, complete 400 

organoid media with removal of WNT3A, RSPONDIN-1, NOGGIN, and A83-01; Supplemental Table 401 

S6; Methods) supported proliferation while allowing expression of basal and IT phenotypes. We found 402 

that organoids maintained under OWRNA conditions began to express basal and IT features while also 403 

strengthening classical gene expression and continuing to proliferate (Supplemental Figure S7C). 404 
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To assess whether these microenvironment-driven effects on transcriptional states were specific 405 

to organoid models or also observed in other cell culture models, we examined PDAC cell lines, as these 406 

are also commonly used to study PDAC biology but are grown in different culture conditions. We 407 

compared bulk RNA expression data from patient tumors (n=219) (Aguirre et al., 2018; Cancer Genome 408 

Atlas Research Network, 2017), our own organoid cohort (n=44), and established cell lines (n=49, CCLE) 409 

(Barretina et al., 2012; Ghandi et al., 2019) and observed strong culture method-dependent phenotypic 410 

skews wherein most organoid models expressed classical phenotypes while cell lines exhibited basal 411 

phenotypes (Supplemental Figure S7D,E). This observation suggests neither platform accurately 412 

represents the full repertoire of transcriptional states seen in patients and provides additional evidence 413 

that environmental conditions can profoundly influence transcriptional state. We ruled out the effects of 414 

extracellular matrix dimensionality from media formulation by culturing established 3-dimensional (3D) 415 

organoid models as 2-dimensional (2D) cell lines on tissue culture plastic in the same organoid media—416 

this had little effect on transcriptional subtype across the models tested (Supplemental Figure S7F). 417 

Next, we took each model type (cell lines and organoids) and cultured it in the reciprocal media condition 418 

to ask whether media alone could influence transcriptional subtype. Organoid cells grown in standard 419 

cancer cell line medium (“RP10”, RPMI-1640 with 10% fetal bovine serum) gained expression of basal 420 

programs (Supplemental Figure S7C), while CFPAC1 (an established PDAC cell line) lost basal and 421 

classical features and gained organoid-specific gene expression when grown in complete organoid media 422 

(“Complete media”, Supplemental Figure S7G). Taken together, these findings demonstrate that the 423 

microenvironment is an instrumental contributor to shaping malignant phenotypes in PDAC. Moreover, 424 

the cell state plasticity suggests the possibility of testing subtype-specific conditions to support the full 425 

repertoire of in vivo phenotypes. 426 

 427 

Applying subtype-specific TME signals drives patient-relevant subtype heterogeneity  428 

Finally, we hypothesized that specific factors from subtype-specific TMEs could recover clinically relevant 429 

transcriptional heterogeneity ex vivo (Figure 7A). In vivo, the secreted factor milieu surrounding tumor 430 

cells originates from at least two sources that may influence malignant phenotype: tumor cells themselves 431 

(“autocrine” factors) and non-tumor cells (“paracrine” factors, Figure 7A). First, to nominate possible 432 

autocrine signals, we identified tumor cell secreted factors specific to the three subtypes and noted 433 

distinct cytokines expressed by each (Figure 7D; Supplemental Table S7; Methods). Since malignant 434 

cells derived from predominantly basal and IT tumors lose their phenotype in organoid culture, we first 435 

tested factors specific to IT and basal states in vivo. TGFB2 was the top differentially expressed secreted 436 

factor shared by tumor cells in both basal and IT TMEs (Figure 7D). Organoids cultured with TGF-β 437 

ligands exhibited a loss of classical expression programs and a near complete shift toward IT and basal 438 
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phenotypes, matching what we observed in vivo (Figure 7E). Reemergence of basal phenotypes in both 439 

minimal media (Figure 7C), and TGF-β conditions (Figure 7E) suggest that different types of 440 

microenvironmental pressure can lead to the basal phenotype. Moreover, they suggest that culture 441 

conditions can be tuned to achieve compositional differences spanning pure classical, heterogenous, 442 

and pure basal phenotypes, akin to those seen in vivo.  443 

 Using a similar approach, we next searched for differentially expressed paracrine factors supplied 444 

by the non-tumor cells in the TME from each subtype. Here, we noted an increasing number of 445 

differentially expressed factors in IT and basal contexts, likely reflecting the specific immune cell type 446 

enrichments: TAM and T cell dominant in basal and IT TMEs, respectively (Figure 6A-C; Figure 7F; 447 

Supplemental Table S7). We then mapped each subtype-specific paracrine factor to its cognate cell 448 

type to summarize the overall cell type and secreted factor combinations that shape the subtype-specific 449 

TMEs in metastatic PDAC (Figure 7G). Interestingly, we found that IFNG originating from CD8+ T cells 450 

was most highly expressed in the IT TME (Figure 7F,G). This was consistent with a relatively higher T 451 

cell fraction in IT tumors (Figure 6B,F) and the relative increase in IFN responsive gene expression in IT 452 

and basal tumor cells (Figure 4E,F). Given these corroborating correlative data, we directly tested 453 

whether exogenous IFNγ could induce transcriptional plasticity towards an IT state. Cells exposed to IFNγ 454 

showed a dramatic shift toward the IT state with concomitant decrease in expression of classical 455 

signatures (Figure 7H). In contrast with exogenous TGF-β (Figure 7E), microenvironmental IFNγ 456 

seemed to more specifically induce an IT state, as these cells did not fully transition to basal phenotypes 457 

at later timepoints (Figure 7H). These findings demonstrate that the microenvironment plays a critical 458 

role in specifying tumor transcriptional phenotypes and provide evidence for significant PDAC tumor cell 459 

plasticity in response to microenvironmental cues.   460 

 461 

DISCUSSION   462 

Here, by linking single-cell profiling of in vivo patient specimens to matched organoid models, we have 463 

built an essential comparative dataset to disentangle the contributions of cell-intrinsic versus -extrinsic 464 

factors to cancer cell transcriptional states in metastatic PDAC. We leveraged the precision afforded by 465 

scRNA-seq to identify a new PDAC cell state that co-expresses the basal and classical programs and 466 

behaves as a transitional intermediate between the basal and classical subtypes. Importantly, the 467 

identification of large fractions of co-expressing IT cells in human tumor biopsies using both mIF and 468 

scRNA-seq suggests interconversion between the classical and basal subtypes occurs frequently in 469 

response to various cues in vivo and implies that this intermediate state may be a hallmark of intratumoral 470 

plasticity and tumor cell transcriptional evolution. In fact, in contrast to prior reports (Chan-Seng-Yue et 471 

al., 2020), all tumors that had mixed but discrete populations of basal and classical cells also exhibited 472 
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proportional fractions of co-expressing IT cells. Our matched organoid studies provide strong evidence 473 

that this extensive transcriptional heterogeneity is heavily influenced by the microenvironment, a finding 474 

that is further reinforced by the identification of subtype-dependent TME structure. As such, this work 475 

provides a detailed description of the PDAC metastatic niche, critical insight into the role of the 476 

microenvironment in determining cancer cell phenotype in PDAC, and a general framework for 477 

discovering and manipulating these relationships across cancer contexts. 478 

 Although mutations in KRAS play a critical role in pancreatic oncogenesis, PDAC cells have also 479 

been shown to adopt more RAS-independent phenotypes as a mechanism of resistance to KRAS 480 

suppression (Muzumdar et al., 2017). Our findings help to reconcile these opposing observations by 481 

suggesting that KRAS target gene expression is more strongly associated with the IT cell state than either 482 

basal or classical extremes. This finding suggests that while upregulation of KRAS signaling by 483 

amplification or other mechanisms may play an important role in the transition toward the basal state 484 

(Chan-Seng-Yue et al., 2020; Miyabayashi et al., 2020), it may become less functionally important once 485 

this state transition is complete. Furthermore, the presence of IT cells enriched for KRAS and 486 

inflammatory response gene expression is reminiscent of phenotypes seen in mouse models that suggest 487 

inflamed progenitor-like cells as those that tolerate KRAS mutations and initiate tumorigenesis (Alonso-488 

Curbelo et al., 2021; Li et al., 2021).  489 

Our single-cell data support the association between KRAS amplifications and the basal state in 490 

vivo; however, when we compared our matched KRAS amplified biopsy and organoid cells, we saw that 491 

this genotype did not lock cells into the basal state, and that microenvironmental conditions were a 492 

dominant factor in determining tumor cell transcriptional subtype. Serial sampling of organoid models 493 

across successive passages demonstrated both phenotypic drift and sub-clonal outgrowth, mirroring the 494 

genetic evolution of PDXs and cell lines in culture (Ben-David et al., 2017; Ben-David et al., 2018), and 495 

highlighting the complex interplay between genetics and microenvironmental influences on transcriptional 496 

plasticity and clonal selection. This facile transition between subtypes has important implications for drug 497 

treatment, and future studies using lineage tracing approaches are needed to better understand the 498 

evolutionary dynamics in this system and how to track and exploit these processes therapeutically. 499 

Additional studies into the epigenetic regulatory mechanisms underlying PDAC state transitions will also 500 

be a critical next step in further delineating the relationships between genotype, microenvironment, and 501 

phenotype.  502 

Although we have identified co-expressing IT cells in both primary and metastatic tumors, the 503 

transcriptional programs associated with co-expression may differ between these contexts. We 504 

hypothesize that the basal state may be a common phenotypic endpoint for PDAC tumor cells in response 505 

to microenvironmental stress, with superimposed transcriptional variation depending upon the specific 506 
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stressors a given tumor cell must overcome to reach this state. Supporting this concept is the observation 507 

that cells exhibiting basal phenotypes show concomitant expression of EMT, IFN response, or hypoxia 508 

response signatures, and these expression patterns may be driven by the specific microenvironment 509 

(Benci et al., 2016; Connor et al., 2019). In addition, our finding that diverse microenvironmental signals, 510 

including nutrient deprivation (“Minimal media”), autocrine and stromal signals (TGF-β), and immune 511 

signals (IFNγ), induce the transition away from the classical subtype further supports this conclusion. We 512 

postulate that IT intermediates likely house similar context-dependent complexity depending on the tissue 513 

of residence. 514 

Similar to malignant cells, the non-malignant cell types in the metastatic TME were varied in 515 

phenotype and overall composition. Although we mainly sampled liver metastases, we identified strong 516 

differences between mesenchymal populations from different biopsy sites. We observed that the liver 517 

metastatic niche was enriched for pericyte-like myofibroblasts (Bartoschek et al., 2018; Di Carlo and 518 

Peduto, 2018; Hosaka et al., 2016; Pelon et al., 2020), while other sites of metastasis and primary disease 519 

were enriched for dermal fibroblast-like phenotypes. Given the pivotal role that has been suggested for 520 

the fibrotic TME in primary disease (Ho et al., 2020; Sahai et al., 2020), these findings carry important 521 

implications for targeting the stromal compartment in primary versus metastatic PDAC. For example, 522 

inhibitors targeting FAP have recently shown preclinical efficacy (Fabre et al., 2020), but we observe FAP 523 

expression favors dermal fibroblast-like cells but not pericyte-like myofibroblasts which are more 524 

prevalent in liver metastases. As such, examination of these fibroblast phenotypes across larger sample 525 

sets may help to identify additional clinically relevant variation in tumor-fibroblast crosstalk, and site-526 

specific combinatorial strategies may be needed to effectively target the PDAC tumor stroma.  527 

We show how scRNA-seq can be employed to define the structure of the metastatic niche and 528 

uncover formerly unappreciated relationships between tumor transcriptional phenotype and the local 529 

TME. Although traditionally thought of as a uniformly “immune-cold” tumor, our findings highlight that the 530 

immune microenvironment in metastatic PDAC harbors a layer of complexity closely linked to tumor cell 531 

transcriptional subtype that may provide new avenues for therapeutic targeting. Notably, we observed 532 

high levels of IFNG expression by CD8+ T cells and coordinated elevation in IFN response gene 533 

expression in IT and basal malignant cells. We recapitulated this shift from a classical to a more IT state 534 

in organoid models exposed to IFNγ, suggesting that malignant adaptation to signals from the TME may 535 

contribute to driving IT and basal phenotypes. Similar to the relationship between inflammation and 536 

tumorigenesis (Alonso-Curbelo et al., 2021; Li et al., 2021), we speculate that as tumors become inflamed 537 

and immune-activated, malignant cells display enhanced plasticity, transition to an IT state in response, 538 

and then progress to a fully basal phenotype with concomitant immune evasion and exclusion. These 539 

relationships may have implications for PDAC response to immunotherapy given that a productive 540 
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immune response may promote more aggressive basal phenotypes (Benci et al., 2016; Li et al., 2018). 541 

Notably, we observed evidence for basal expression signatures with a corresponding paucity of immune 542 

cell type signatures in multiple other epithelial cancers, suggesting that coordination of malignant and 543 

immune responses in basal contexts may be a broadly relevant phenomenon across many cancer types. 544 

Additional studies with co-culture, mouse models, or serial samples from patients on active 545 

immunotherapy may further clarify these coordinated and reciprocal tumor-immune interactions.  546 

More generally, our approach using matched in vivo malignant populations as a reference for ex 547 

vivo perturbations and model generation provides a critical framework for understanding the signals that 548 

drive clinically relevant phenotypes but are missing from organoid and cell line cultures. The genetic 549 

evolution of ex vivo models is a well-established phenomenon which carries functional consequences 550 

(Ben-David et al., 2019; Ben-David et al., 2018). Our study highlights similar ex vivo evolution for 551 

transcriptional variation, but also provides a strategy to rescue malignant phenotypes by re-introduction 552 

of soluble signals needed for their support in vivo. This approach may offer a more tractable system for 553 

state-specific high throughput screening compared with more complex heterotypic co-cultures or PDX 554 

systems. With a catalogue of matched in vivo phenotypes as a reference, this workflow empowers not 555 

only model fidelity, but enhances our ability to learn the phenotypic boundary conditions for individual 556 

tumors. For example, we can begin to define whether certain pressures induce cell state transitions in 557 

specific subsets of ex vivo models and identify which combinations of factors impede or synergistically 558 

enhance these transitions. Furthermore, these studies highlight how model generation in different growth 559 

contexts—organoids, cell lines, spheroids—may lead to the identification of emergent tumor cell 560 

properties. Learning these rules across different tumor contexts and understanding which non-malignant 561 

cell types participate in vivo would allow for the full appreciation of the symbiotic relationships within tumor 562 

ecosystems and provide a valuable foundation for leveraging microenvironmental manipulation to control 563 

tumor cell phenotype and behavior.  564 

In sum, our data demonstrate coordinated phenotypic evolution driven by reciprocal interactions 565 

between malignant cells and the TME in PDAC. Just as we consider therapeutic combinations to target 566 

tumor cell intrinsic properties, paracrine interactions with the TME may equally drive tumor cell phenotype 567 

and thus require consideration in designing combination strategies. We provide a framework for relating 568 

malignant cells, the TME, and patient-derived model systems that may be applicable in other tumor types 569 

with clinically relevant transcriptional variation across the malignant and microenvironmental 570 

compartments.   571 

  572 
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Figure 1. A clinical pipeline for matched single-cell RNA-seq and organoid generation from 619 

metastatic PDAC biopsies.  620 

(A) Pipeline for collecting patient samples, and dissociation and allocation for scRNA-seq and parallel 621 

organoid development.  622 

(B) Clinical and molecular features for all patients included in the dataset (Rx = Therapy; Other = Adrenal 623 

(PANFR0637), Omentum (PANFR0635, PANFR0598), Peritoneum (PANFR0588); Org. at P2 = 624 

Organoid measured at passage 2). Mutations were determined by bulk targeted DNA-seq (Red, Altered; 625 

White, wildtype; Grey, Data not available). Number of single cells captured per biopsy and their malignant 626 

and non-malignant fraction is visualized at the right.  627 

(C) Example bulk targeted DNA-seq (top) and single-cell inferred CNV profiles (rows, bottom) arranged 628 

by chromosome (columns) from PANFR0575.  629 

(D-E) t-distributed stochastic neighbor embedding (t-SNE) visualization for non-malignant (D) and 630 

malignant (E) single cells in the biopsy cohort. Cells are colored by patient as in B. Endo, Endothelial; 631 

Mes, Mesenchymal; B, B-cell; Hep, Hepatocyte; DC, Dendritic cell; pDC, Plasmacytoid dendritic cell; 632 

Mac, Macrophage; T, T-cell; NK, Natural killer cell.  633 

 634 

See also Supplemental Figures S1 & S2; Supplemental Tables S1 & S2.  635 
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Figure 2. An intermediate transitional state bridges basal and classical phenotypes.  636 

(A) Heatmaps depict the expression of basal and classical expression programs and highlight the co-637 

expressing intermediates (n=30 genes each).   638 

(B) Gene set enrichment analysis for the 115 genes specific to the co-expressing intermediate state.  639 

(C) The intermediate transitional (“IT”) expression program (n = 30 genes) is enriched by co-expressing 640 

cells. Enrichment adjusted P-values (hypergeometric test) for EMT, KRAS, and AKT gene sets are 641 

indicated at right for each gene expression program in A and C.  642 

(D) Cross-correlation between new and previously proposed expression signatures (rows and columns; 643 

text color = source, below) in our PDAC single-cells. Average expression for each signature (rows) is 644 

shown at the right for cells in the malignant subtypes from our cohort and the normal pancreatic progenitor 645 

cells from Qadir et al., 2020. White dot indicates the subset with the highest average significant 646 

expression for each signature (Kruskal-Wallis test); no white dot indicates no significant expression.  647 

(E) Malignant cell state diagram for PDAC. Basal-classical commitment score (x axis) and IT score (y 648 

axis) for all 7,078 malignant cells (Methods).  649 

(F) Multiplex immunofluorescence analysis (mIF) identifies co-expressing IT cells in matched metastatic 650 

samples. Top are representative images from two cases (white box indicates region for co-expression 651 

insets at right), and bottom indicates marker detection patterns for mIF and matched scRNA-seq data 652 

(Methods). Scale bar represents 10 µm.  653 

(G) Frequency of co-expressing IT cells is correlated with balanced representation of pure basal and 654 

classical phenotypes by mIF within individual samples. Log ratio of % basal and classical cells in each 655 

sample (x axis) versus their % co-expressing / IT cells (y axis).   656 

(H) Co-expressing IT cells are also identified in primary PDAC samples by mIF. Scale bar represents 10 657 

µm. 658 

 659 

See also Supplemental Figures S2, S3 & S4; Supplemental Tables S3 & S4.  660 
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Figure 3. Microenvironment dictates phenotype in KRAS-amplified tumor cells.  661 

(A) Single-cell inferred copy number alterations for each sample in the biopsy cohort (Methods). Tumors 662 

are grouped by expression of their dominant subtype based on the clustering in Supp. Fig. S3G, P-663 

values comparing presence of each alteration among the groups (Basal, Classical, IT) are determined 664 

by Fisher’s exact test.  665 

(B) Malignant cell state diagram as in Figure 2E but highlighting all in vivo KRAS-amplified tumor cells 666 

(black border) across the states.  667 

(C) Similar to B, but highlighting PANFR0552 KRAS-amplified malignant cell heterogeneity. White and 668 

black borders correspond to separate CNV sub-clones (both KRAS amplified) and color fill denotes 669 

transcriptional subtype.  670 

(D) Similar to B, but highlighting PANFR0557 KRAS-amplified malignant cell heterogeneity. Color fill 671 

denotes transcriptional subtype.  672 

(E) t-SNE visualization of all biopsy (grey and black) and matched organoid cells (red and dark red) from 673 

iterative passages. KRAS-amplified tumor cells from in vivo specimens (black) and organoid models (dark 674 

red) are highlighted with distinct colors.  675 

(F) Cell state diagram for all cells with inferred KRAS amplifications in biopsy (grey) and organoid (red) 676 

microenvironments. P-value compares biopsy versus early passage organoid score distributions (top 677 

density) and was determined by student’s T test.  678 

(G) Clonal fractions (pie charts) from the KRAS-amplified PANFR0575 sample in biopsy and organoid 679 

conditions. Heatmap shows the relative expression in single cells from plastic clone A (bright green) in 680 

both conditions.  681 
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Figure 4.  Organoid culture microenvironment selects against the basal state with phenotypic 682 

evolution over time.   683 

(A) Sampling from each model initiated as an organoid. Red fill represents measurements at an Early 684 

time point and if that biopsy established a long-term culture (Estab.). Right grey scale heat indicates the 685 

distance (Methods) between each biopsy-early organoid pair for CNVs (Geno.) or transcriptional subtype 686 

(Pheno.). P-value for Geno. vs Pheno. differences determined by student’s T test.  687 

(B) Relative expression for the malignant programs (top) and organoid-specific genes (bottom) in biopsy 688 

cells (left) and their matched, early passage organoid cells (n=13 models; right). Parenthetical P-values 689 

(left) indicate hypergeometric test for enrichment of pathways in the indicated gene clusters. Far right 690 

heat is average expression for all genes in each group, P-values determined by student’s T test.  691 

(C) Swimmer’s plot shows the evolution of organoid phenotype in the culture microenvironment. Each 692 

point indicates a passage when organoids were sampled with scRNA-seq, and pie chart fill indicates the 693 

fraction of single cells binned as each transcriptional subtype. 694 

(D) Schematic for matched tumor-organoid differential expression analysis.  695 

(E) Top differentially expressed genes in vivo (143 genes) are TME-associated and enrich for TME-696 

associated pathways. All top enrichments shown are highly significant (P-value < 10-12).  697 

(F) Hierarchical clustering in biopsy cells (columns) of the relative expression for the 143 TME-associated 698 

genes preferentially expressed in vivo (rows). Cells are binned in the single-cell heatmap and the 699 

averages at right by their originating tumor’s average transcriptional subtype. Gene-level averages are 700 

split by biopsy (left) and organoid cells (right). Parenthetical P-values (left) indicate hypergeometric test 701 

for enrichment of pathways in the indicated gene clusters. For within-group differences in expression for 702 

biopsy averages, P-values are computed by one-way ANOVA followed by Tukey’s HSD and compare 703 

averaged expression of each gene cluster between cells from different biopsy subsets (middle heatmap; 704 

*P-value < 10-8; **P-value < 10-16). Overall biopsy versus organoid average expression difference for all 705 

143 genes is determined by Student’s T test. 706 

 707 

See also Supplemental Figure S5; Supplemental Table S5. 708 

 709 

  710 
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Figure 5. Immune heterogeneity and distinct fibroblast phenotypes exist in the liver metastatic 711 

microenvironment.  712 

(A) t-SNE visualization of non-malignant cells identified in the metastatic microenvironment, 713 

abbreviations are the same as in Figure 1D (TAM, tumor associated macrophage; NK, natural killer).  714 

(B) Same visualization as in A, but cells are colored by sampling site (Liver, grey; Other, red). Only the 715 

mesenchymal cells (dotted circle, Mes.) have appreciable separation by anatomical site.  716 

(C) t-SNE visualization of sub-clustering (SNN) performed on mesenchymal cells colored by their 717 

anatomical site. Cell subsets (1-4) determined by SNN clustering.  718 

(D) Frequency of CAFs (y axis, cell count) across PC2 scores, colored by site of biopsy tissue. P-value 719 

determined by student’s T test.  720 

(E) Heatmap for relative expression of the Dermal Fibroblast-like (PC2 low) and Pericyte-like (PC2 high) 721 

programs. Anatomical site is shown for each cell (top).  722 

(F) Density plots for CAF phenotype score in single cells from our metastatic cohort (top) or previously 723 

published PDAC bulk RNA-seq profiles (bottom) (Aguirre et al., 2018; Cancer Genome Atlas Research 724 

Network, 2017), fill indicates anatomical site. P-value determined by student’s T test (top) or by ANOVA 725 

followed by Tukey’s HSD (bottom).  726 

 727 

See also Supplemental Figure S6; Supplemental Table S2.  728 
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Figure 6. Transcriptional subtypes associate with distinct metastatic microenvironments.  729 

(A) Correlation between microenvironment diversity (Simpson’s Index, x axis) and the average malignant 730 

basal-classical commitment score for each biopsy (y axis).  731 

(B) Dot plot indicates the Simpson’s Index calculated for each biopsy and heat bars indicate each tumor’s 732 

average malignant cell expression for each of the malignant transcriptional programs.  733 

(C) Fraction of each non-malignant cell type (heat, rows) in each biopsy sample (columns). Dots indicate 734 

top statistically significant cell type frequency differences calculated using Kruskal-Wallis test with 735 

multiple hypothesis correction. Samples are ordered as in B.  736 

(D) Box plots compare cell type fraction between the basal polarized tumors with low diversity 737 

(PANFR0593, 575, 545) and all others. P-value determined by student’s T test.  738 

(E) Correlation between T cell fraction and IT malignant score.  739 

(F) Schematic summarizing associations between microenvironmental diversity, non-malignant 740 

infiltrates, and tumor subtype. 741 

 742 

See also Supplemental Figure S6; Supplemental Table S2.  743 
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Figure 7. Tumor subtype-specific secreted microenvironmental factors rescue malignant 744 

transcriptional heterogeneity.  745 

(A) Schematic describing microenvironmental inputs in vivo (“Metastatic environment”) versus ex vivo 746 

(“Organoid environment”) to tumor phenotype. Right panel (“Subtype-supportive environment”) describes 747 

an overall strategy to recover malignant transcriptional heterogeneity by removing organoid factors (B, 748 

C) and adding state-specific autocrine (D, E) or paracrine (F-H) factors.  749 

(B) Tied dot plot represents the sample average basal score (left) and organoid-specific score (right) in 750 

the indicated conditions. Lines tie samples and color outlines indicate sample identity as in Figure 1B. 751 

P-value compares respective single cell distributions within models and was calculated by student’s T 752 

test.  753 

(C) Cell state diagrams for organoid cells cultured in complete medium or at 3 time points in minimal 754 

media. P-values for group differences between B/C commitment (top) and IT scores (right) were 755 

calculated by ANOVA followed by Tukey’s HSD. P-values displayed are for that timepoint vs. the 756 

complete media condition. 757 

(D) Differential expression (Wilcoxon rank sum test) for known secreted factors by in vivo tumor cells 758 

(autocrine) between basal and classical (x axis) and IT malignant cells and the rest (y axis). Subtype-759 

specific genes that pass significance after multiple hypothesis correction (P < 0.05) are colored by their 760 

group association.  761 

(E) Cell state diagrams with marginal density plots for organoid cells cultured in control medium (OWRNA, 762 

reduced organoid medium) or at 2 time points in control media with TGF-β. P-values for group differences 763 

between B/C commitment (top) and IT scores (right) were calculated by ANOVA followed by Tukey’s 764 

HSD. P-values displayed are for that timepoint vs. the control media condition. 765 

(F) Differential expression (Wilcoxon rank sum test) for known secreted factors by all non-malignant cells 766 

(paracrine) found in basal and classical (x axis) and IT biopsies and the rest (y axis). Subtype-specific 767 

genes expressed by non-malignant cells that pass significance after multiple hypothesis correction (P < 768 

0.05) are colored by their group association.  769 

(G) Dot plot for the subtype-specific significant differentially expressed paracrine factors. Subtype-specific 770 

non-malignant cell types (columns) and significant genes (rows) are binned by subtype association as in 771 

Figure 6C and Figure 7F. Dot size represents that cell type’s fraction within tumors of each subtype, and 772 

fill color indicates average expression. Only cell types with a fractional representation >5% from each 773 

subtype are visualized.  774 

(H) Cell state diagrams with marginal density plots for organoid cells cultured in control medium (OWRNA, 775 

reduced organoid medium, as in E) or at 2 time points in control media with IFNγ. P-values for group 776 
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differences between B/C commitment (top) and IT scores (right) were calculated by ANOVA followed by 777 

Tukey’s HSD. P-values displayed are for that timepoint vs. the control media condition. 778 

 779 

See also Supplemental Figure S7; Supplemental Table S6 & S7.  780 
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METHODS 781 

 782 

RESOURCE AVAILABILITY 783 

 784 

Lead Contact 785 

Further information and requests for resources and reagents should be sent to and will be fulfilled by 786 
Dr. Alex Shalek (shalek@mit.edu). 787 

 788 

Data Availability 789 

The single-cell RNA sequencing data reported in this paper will be deposited in a central data sharing 790 

repository (Genomic Data Commons) under the NCBI Database of Genotypes and Phenotypes (dbGaP). 791 

Code will be available upon request. 792 

 793 

Tissue collection and dissociation. Investigators obtained written, informed consent from patients with 794 

pancreatic cancer for Dana-Farber/Harvard Cancer Center Institutional Review Board (IRB)-approved 795 

protocols 11-104, 17-000, 03-189, and/or 14-408 for tissue collection, molecular analysis, and organoid 796 

generation. Core needle biopsy specimens were collected and the first core was sent for pathologic 797 

analysis. One or more additional cores were then allocated for scRNA-seq and organoid generation. 798 

Samples were minced into small portions using a scalpel and then digested at 37°C for 15 minutes 799 

using digest medium that consisted of human complete organoid medium (see below), 1 mg/mL 800 

collagenase XI (Sigma Aldrich), 10 µg/mL DNase (Stem Cell Technologies), and 10 µM Y27632 (Selleck) 801 

(Tiriac et al., 2018). In our initial process optimization, we found that dissociation times below 30 minutes, 802 

while not always completely digesting all biopsy material and potentially affecting the representation of 803 

difficult to dissociate cell types (e.g., fibroblasts), resulted in greater cell viability and improved RNA 804 

quality downstream. After digestion, cells were washed, treated with ACK lysing buffer (Gibco) to lyse 805 

red blood cells, washed again, and counted using a hemocytometer with 0.4% Trypan blue (Gibco) added 806 

at 1:1 dilution for viability assessment. We allowed residual tissue chunks to settle before selecting a 807 

predominance of single cells for counting and Seq-Well processing. We allocated between 10,000 and 808 

15,000 viable cells per Seq-Well array based upon total cell counts, and where possible we prepared two 809 

arrays per sample. Most samples were processed and loaded onto Seq-Well arrays within 2-3 hours of 810 

biopsy acquisition.  811 

 812 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2020.08.25.256214doi: bioRxiv preprint 

mailto:shalek@mit.edu
https://doi.org/10.1101/2020.08.25.256214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Organoid generation and sampling. Cells remaining after scRNA-seq allocation were initiated and 813 

maintained as patient-derived organoid cultures as previously described (Boj et al., 2015; Tiriac et al., 814 

2018). In brief, digested cells were seeded in 3-dimensional (3D) Growth-factor Reduced Matrigel 815 

(Corning) and fed with human complete organoid medium containing advanced DMEM/F12 (Gibco), 10 816 

mM HEPES (Gibco), 1x GlutaMAX (Gibco), 500 nM A83-01 (Tocris), 50 ng/mL mEGF (Peprotech), 100 817 

ng/mL mNoggin (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM N-818 

acetylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Gibco), R-spondin1 819 

conditioned media 10% final, Wnt3A conditioned media 50% final, 100 U/mL penicillin/streptomycin 820 

(Gibco), and 1x Primocin (Invivogen) (Supplemental Table S6). 10 µM Y27632 (Selleck) was included 821 

in the culture medium of newly initiated samples until the first media exchange. For propagation, 822 

organoids were dissociated with TrypLE (Gibco) before re-seeding into fresh Matrigel and culture 823 

medium. 824 

After initial processing of fresh tissue specimens, we monitored samples closely for organoid 825 

growth. We did not passage organoids at set time intervals, as there was significant variability in the time 826 

needed to establish relatively robust growth of organoids (Figure 4C). Instead, we maintained early 827 

passage organoids until they reached relative confluence, and then passaged them at low split ratios 828 

(1:1, 1:1.5, or 1:2 dilutions) in complete organoid medium to promote continued growth. In one case, 829 

PANFR0489R, cells persisted as individuals and small organoids after initiation in complete organoid 830 

medium, but did not grow and expand cell numbers significantly. Approximately 15 weeks after initiation, 831 

we switched a portion of the surviving cells to organoid medium without A83-01 or mNoggin, and 832 

observed renewed growth of organoids under these media conditions but not of those that remained in 833 

complete organoid medium. Consequently, we expanded this sample in media without A83-01 or 834 

mNoggin, including performing early passage scRNA-seq. After several additional passages, once the 835 

organoids were robustly growing, we were able to transition back to complete organoid medium with no 836 

apparent change in growth rate, morphology, or transcriptional phenotype. All other serially sampled 837 

organoids were maintained and assessed by scRNA-seq in complete medium.  838 

For scRNA-seq of organoid samples, we passaged organoids and allowed them to grow for 6 839 

days before then dissociating, counting, and allocating 15,000 viable cells for Seq-Well. By standardizing 840 

the collection of organoid scRNA-seq samples at 6 days after passaging, we tried to minimize bias arising 841 

from cell cycle differences in samples at different degrees of confluence.  842 

 843 

Testing organoid phenotypes under different matrix and media conditions. For adaptation of 844 

patient-derived organoids onto 2-dimensional (2D) culture surfaces as patient-derived cell lines, tissue 845 

culture plates were pre-coated with 100 µg/mL Matrigel dissolved in basal media for 2 hours at 37°C 846 
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before washing with PBS. Established organoid models were dissociated and seeded onto these 847 

Matrigel-coated culture wells in complete organoid media. In parallel, a portion of these passage-matched 848 

organoid cells were re-seeded into Matrigel droplets as above. Cells were cultured in both matrix 849 

conditions in complete organoid media until they were confluent, approximately 2-3 weeks. Cells were 850 

collected and lysed using Trizol before snap freezing. RNA was isolated and purified as described below 851 

(“Bulk RNA-sequencing of organoids” section) using chloroform extraction, aqueous phase isolation, and 852 

processing using the Qiagen AllPrep DNA/RNA/miRNA Universal kit before being submitted for 853 

sequencing. 854 

For scRNA-seq assessment of organoid phenotypes when cultured under different media 855 

conditions, established organoid models were passaged as above by dissociating and reseeding into 856 

Matrigel droplets. A portion of the cells were cultured with complete organoid media (“Complete media”), 857 

while a distinct portion of passage-matched cells were cultured in “Minimal” media, which consisted of 858 

advanced DMEM/F12 (Gibco), 10 mM HEPES (Gibco), 1x GlutaMAX (Gibco), 100 U/mL 859 

penicillin/streptomycin (Gibco), and 1x Primocin (Invivogen) (Supplemental Table S6). Cells were 860 

cultured for 6 days before being collected, dissociated, and aliquoted for scRNA-seq. Images were taken 861 

with an Olympus XM10 camera mounted to an Olympus CKX41 microscope 1 day after seeding and 862 

again after 11 days in culture to assess organoid growth in both conditions. The portion of cells cultured 863 

in minimal media were maintained in the same conditions for a longer duration and harvested again for 864 

scRNA-seq at 27 days and 59 days after the initial introduction of minimal media. To mirror the standard 865 

scRNA-seq workflow, the cells harvested at the 27- and 59-day timepoints were collected 6 days after 866 

passaging. 867 

In addition to the minimal media experiment, organoid cells were also cultured in standard cell 868 

line media (“RP10”), which contains RPMI-1640 (Gibco) and 100 U/mL penicillin/streptomycin (Gibco) 869 

with 10% fetal bovine serum (Sigma), or in reduced organoid media “OWRNA”, which consists of 870 

advanced DMEM/F12 (Gibco), 10 mM HEPES (Gibco), 1x GlutaMAX (Gibco), 50 ng/mL mEGF 871 

(Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM N-acetylcysteine 872 

(Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Gibco), 100 U/mL penicillin/streptomycin 873 

(Gibco), and 1x Primocin (Invivogen) (i.e. complete organoid medium with removal of WNT3A, 874 

RSPONDIN-1, NOGGIN, and A-8301; Supplemental Table S6). Furthermore, OWRNA reduced 875 

organoid medium served as the baseline control medium when assessing the effect of specific factors 876 

(IFNGγ and TGF-β1) from the TME on transcriptional phenotypes. Cells were cultured for 6 days before 877 

being collected, dissociated, and aliquoted for scRNA-seq in each of the following conditions: RP10, 878 

OWRNA, OWRNA with 50 ng/mL IFNGγ (Peprotech), and OWRNA with 5 ng/mL TGFB1 (Peprotech) 879 

(Supplemental Table S6). The cells cultured under the IFNGγ and TGF-β1 conditions were maintained 880 
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in culture and harvested again for scRNA-seq 38 days after being introduced to these new media 881 

conditions. For these longer duration timepoints, cells were again passaged 6 days before collecting for 882 

scRNA-seq. 883 

 884 

Testing transcriptional phenotype changes in an established cell line under organoid media 885 

conditions. For scRNA-seq assessment of transcriptional phenotypes of the established pancreatic 886 

cancer cell line CFPAC1 under different media conditions, CFPAC1 cells were cultured in parallel in 887 

either standard cell line medium RP10 or complete organoid medium. Cells were cultured for 6 days 888 

before being collected, dissociated, and aliquoted for scRNA-seq. Additionally, the CFPAC1 cells cultured 889 

under complete organoid medium were maintained in the same conditions and harvested again for 890 

scRNA-seq 33 days after the initial introduction of complete organoid medium. CFPAC1 cells grown in 891 

complete media for the later 33-day timepoint were collected 6 days after passaging, and media was 892 

refreshed 3 days after this final passage. 893 

 894 

Single-cell RNA-seq (scRNA-seq) data library generation, sequencing, and alignment. ScRNA-seq 895 

processing followed the Seq-Well protocol, uniquely compatible with low-input samples (Gierahn et al., 896 

2017; Hughes et al., 2020). Briefly, arrays were preloaded with RNA capture beads (ChemGenes) and 897 

stored in quenching buffer until used. Prior to cell loading, arrays were resuspended in 5 mL RPMI-1640 898 

medium with 10% fetal bovine serum (both from Gibco, hereafter referred to as RP10). After dissociation, 899 

single-cell suspensions were manually counted and diluted to 15,000 cells per 200 µL of RP10 when cell 900 

numbers allowed. Excess RP10 was aspirated from the array and cells were loaded onto arrays. Excess 901 

cells were washed off with PBS (4x5 mL, Gibco), briefly left in RPMI (5 mL) and cell+bead pairs were 902 

sealed for 40 minutes at 37°C using a polycarbonate membrane (Fisher Scientific NC1421644). Arrays 903 

were rocked in lysis buffer for 20 minutes and RNA was hybridized onto the beads for 40 minutes. Beads 904 

were removed and reverse transcription was performed overnight using Maxima H Minus Reverse 905 

Transcriptase (Thermo Fisher EP0753). Prior to sequencing, the beads underwent an exonuclease 906 

treatment (NewEngland Biolabs M0293L) and second strand synthesis en masse followed by whole 907 

transcriptome amplification (WTA, Kapa Biosystems KK2602) in 1,500 bead reactions (50 µL). cDNA was 908 

isolated using Agencourt AMPure XP beads (Beckman Coulter, A63881) at 0.6X SPRI (solid-phase 909 

reversible immobilization) followed by a 1X SPRI and quantified using a Qubit dsDNA High Sensitivity 910 

assay kit (Thermo Fisher Q32854). Library preparation was performed using Nextera XT DNA 911 

tagmentation (Illumina FC-131-1096) and N700 and N500 indices specific to a given sample. Tagmented 912 

and amplified sequences were purified with a 0.6X SPRI. cDNA was loaded onto either an Illumina 913 

Nextseq (75 Cycle NextSeq500/550v2 kit) or Novaseq (100 Cycle NovaSeq6000S kit, Broad Institute 914 
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Genomics Platform) at 2.4 pM. Regardless of platform, the paired end read structure was 21 bases (cell 915 

barcode and UMI) by 50 bases (transcriptomic information) with an 8 base pair (bp) custom read one 916 

primer. The demultiplex and alignment protocol was followed as previously described (Macosko et al., 917 

2015). While Novaseq data were directly output as FASTQs, Nextseq BCL files were converted to 918 

FASTQs using bcl2fastq2. The resultant Nextseq and Novaseq FASTQs were demultiplexed by sample 919 

based on Nextera N700 and N500 indices. Reads were then aligned to the hg19 transcriptome using the 920 

cumulus/dropseq_tools pipeline on Terra maintained by the Broad Institute using standard settings.   921 

 922 

Bulk RNA-sequencing of organoids.  RNA was obtained for bulk RNA-sequencing from established 923 

organoids using one of two approaches. Dissociated organoids were resuspended into cold Matrigel, 924 

added as droplets to tissue culture plates (Greiner BioOne), and allowed to polymerize for 30 minutes 925 

before addition of media. Organoids were grown for 14-21 days (until confluent) under these conditions 926 

with regular media changes. At the time of harvest, cells were washed with cold phosphate buffered 927 

saline (PBS) at 4°C, then lysed with Trizol (Invitrogen) before snap-freezing. To isolate RNA, we 928 

performed chloroform extraction with isolation of the aqueous phase before processing RNA as per 929 

protocols outlined in the Qiagen AllPrep DNA/RNA/miRNA Universal kit. 930 

In the second approach, dissociated organoids were resuspended in a solution of 10% Matrigel 931 

in complete organoid media (volume/volume) and cultured in ultra-low-attachment culture flasks 932 

(Corning). Organoids were grown for 14-21 days (until confluent) before pelleting, washing with cold PBS 933 

at 4°C until most Matrigel was dissipated, and then snap frozen. For RNA isolation, cell pellets were 934 

homogenized using buffer RLT Plus (Qiagen) and a Precellys homogenizer. Samples were then 935 

processed for both DNA extraction and RNA isolation as per the Qiagen AllPrep DNA/RNA/miRNA 936 

Universal kit. Purified RNA was then submitted for sequencing by the Broad Institute Genomics Platform. 937 

In brief, total RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher 938 

R11490) and normalized to 5 ng/µL. Following plating, 2 µL of a 1:1000 dilution of ERCC RNA controls 939 

(Thermo Fisher 4456740) were spiked into each sample.  An aliquot of 200 ng for each sample was 940 

transferred into library preparation which uses an automated variant of the Illumina TruSeq Stranded 941 

mRNA Sample Preparation Kit.  This method preserves strand orientation of the RNA transcript, and 942 

uses oligo dT beads to select mRNA from the total RNA sample followed by heat fragmentation and 943 

cDNA synthesis from the RNA template. The resultant 400 bp cDNA then goes through dual-indexed 944 

library preparation: ‘A’ base addition, adapter ligation using P7 adapters, and PCR enrichment using P5 945 

adapters. After enrichment, the libraries were quantified using Quant-iT PicoGreen (1:200 dilution; 946 

Thermo Fisher P11496). After normalizing samples to 5 ng/µL, the set was pooled and quantified using 947 
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the KAPA Library Quantification Kit for Illumina Sequencing Platforms. The entire process was performed 948 

in 96-well format and all pipetting was done by either Agilent Bravo or Hamilton Starlet.  949 

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to sequencing. 950 

Flowcell cluster amplification and sequencing were performed according to the manufacturer’s protocols 951 

using the NovaSeq 6000. Each run was a 101 bp paired-end with an eight-base index barcode read. 952 

Data were analyzed using the Broad Picard Pipeline which includes de-multiplexing and data aggregation 953 

(https://broadinstitute.github.io/picard/). FASTQ files were then processed as described below (see Bulk 954 

RNA-sequencing analysis). 955 

 956 

Multiplex immunofluorescence imaging. A multi-marker panel was developed to characterize tumor 957 

cell subtype in formalin-fixed paraffin-embedded (FFPE) 4µm tissue sections using multiplex 958 

immunofluorescence. The panel comprises markers associated with either a basal (Keratin-17: Thermo 959 

Fisher MA513539 and s100a2: Abcam 109494 ) or classical (cldn18.2: Abcam 241330, GATA6: CST 960 

5851 and TFF1: Abcam 92377) subtype. Additionally, DAPI (Akoya Biosciences FP1490) was included 961 

for identification of nuclei and pan-cytokeratin (AE1/AE3: DAKO M3515; C11: CST 4545) for identification 962 

of epithelial cells. Secondary Opal Polymer HRP mouse and rabbit (ARH1001EA), Tyramide signal 963 

amplification and Opal fluorophores (Akoya Biosciences) were used to detect primary antibodies (Keratin-964 

17, Opal 520; s100a2, Opal 650; GATA6, Opal 540; cldn18.2, Opal 570; TFF1, Opal 690; panCK, Opal 965 

620). Prior to use in multiplex staining, primary antibodies were first optimized via immunohistochemistry 966 

on control tissue to confirm contextual specificity. Monoplex immunofluorescence and iterative multiplex 967 

fluorescent staining were then used to optimize staining order, antibody-fluorophore assignments and 968 

fluorophore concentrations.  Multiplex staining was performed using a Leica BOND RX Research Stainer 969 

(Leica Biosystems, Buffalo, IL) with sequential cycles of antigen retrieval, protein blocking, primary 970 

antibody incubation, secondary antibody incubation, and fluorescent labeling. Overview images of 971 

stained slides were acquired at 10X magnification using a Vectra 3.0 Automated Quantitative Imaging 972 

System (Perkin Elmer, Waltham, MA) and regions of interest (ROIs) were selected for multispectral image 973 

acquisition at 20X. After unmixing using a spectral library of single-color references, each image was 974 

inspected to ensure uniform staining quality and adequate tumor representation. 975 

 976 

Data analysis 977 

Mutation and CNV identification from bulk DNA-sequencing. For targeted DNA-sequencing of clinical 978 

samples, next-generation sequencing using a custom-designed hybrid capture library preparation was 979 

performed on an Illumina HiSeq 2500 with 2x100 paired-end reads, as previously described (Garcia et 980 

al., 2017; Sholl et al., 2016). Sequence reads were aligned to reference sequence b37 edition from the 981 
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Human Genome Reference Consortium using bwa, and further processed using Picard (version 1.90, 982 

http://broadinstitute.github.io/picard/) to remove duplicates and Genome Analysis Toolkit (GATK, version 983 

1.6-5-g557da77) to perform localized realignment around indel sites. Single nucleotide variants were 984 

called using MuTect v1.1.45, insertions and deletions were called using GATK Indelocator. Copy number 985 

variants and structural variants were called using the internally-developed algorithms RobustCNV and 986 

BreaKmer followed by manual review (Abo et al., 2015). RobustCNV calculates copy ratios by performing 987 

a robust linear regression against a panel of normal samples. The data were segmented using circular 988 

binary segmentation, and event identification was performed based on the observed variance of the data 989 

points (Bi et al., 2017). 990 

 We computed the cytoband-level copy number calls and weighted (by length) average segment 991 

means across the covered regions of each cytoband using ASCETS (Spurr et al., 2020). Briefly, 992 

cytobands were considered amplified/deleted if more than 70% of the covered regions had a log2 copy 993 

ratio of greater than 0.2/less than -0.2, and were considered neutral if more than 70% of the covered 994 

regions had a log2 copy ratio between -0.2 and 0.2. 995 

 996 

Single-cell data quality pre-processing and initial cell type discovery. All single-cell data analysis 997 

was performed using the R language for Statistical Computing (v3.5.1). Each biopsy sample’s digital 998 

gene expression (DGE) matrix (cells x genes) was trimmed to exclude low quality cells (<400 genes 999 

detected; <1,000 UMIs; >50% mitochondrial reads) before being merged together (preserving all unique 1000 

genes) to create the larger biopsy dataset. The merged dataset was further trimmed to remove cells with 1001 

>8,000 genes which represent outliers and likely doublet cells. We also removed genes that were not 1002 

detected in at least 50 cells. The same metrics were applied to the organoid single-cell cohort (see below). 1003 

On a per cell basis, UMI count data was divided by total transcripts captured and multiplied by a scaling 1004 

factor of 10,000. These normalized values were then natural log transformed for downstream analysis 1005 

(i.e. log-normalized cell x gene matrix). Initial exploration of the data was performed using the R package 1006 

Seurat (v2.3.4) and followed two steps: 1) SNN-guided quality assessment and 2) cell type composition 1007 

determination. In step 1, we intentionally left cells in the DGE matrix of dubious quality (e.g. % 1008 

mitochondrial reads >25% but <50%), performed principal component analysis (PCA) over the variable 1009 

genes (n = 1,070 genes), and input the first 50 PCs (determined by Jackstraw analysis implemented 1010 

through Seurat) to build an SNN graph and cluster the cells (res = 1; k.param = 40). The inclusion of 1011 

poor-quality cells essentially acts as a variance “sink” for other poor-quality cells and they cluster together 1012 

based on their shared patterns in quality-associated gene expression. This method helped to nominate 1013 

additional low quality (e.g. defined exclusively by mitochondrial genes) or likely doublet cells (e.g. clusters 1014 

defined by co-expression of divergent lineage markers) which were removed from the dataset (n=1,678 1015 
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cells). This led to an overall high-quality dataset of single-cells with a low overall faction of mitochondrial 1016 

reads (median = 0.09) for downstream analysis (Supplemental Figure S1B)  1017 

 Using the trimmed dataset, we proceeded to step 2 using a very similar workflow as above but 1018 

with slightly altered input conditions for defining clusters. Here we used PCs 1-45 and their associated 1019 

statistically significant genes for building the SNN graph and determining cluster membership (resolution 1020 

= 1.2; k.param = 40). This identified the 36 clusters shown (visualized using t-SNE; perplexity, 40; 1021 

iterations, 2,500) in Supplemental Figure S1C. The expression of known markers was used to collapse 1022 

clusters containing shared lineage information. For example, clusters 1, 2, and 4 all express high levels 1023 

of macrophage markers—CD14, FCGR3A (CD16), CD68—and were accordingly collapsed for this first 1024 

pass analysis (Supplemental Figure S1C,G). To aid our cell type identification, we performed a ROC 1025 

test implemented in Seurat to confirm the specificity (power > 0.6) of the top marker genes used to discern 1026 

the cell types. Combined with inferred CNV information (see below), this analysis confirmed the presence 1027 

of 11 broad non-malignant cell types in our biopsy dataset (Supplemental Table S2). Variation in the 1028 

SNN graph parameters above did not strongly affect cell type identification.  1029 

  1030 

Single-cell CNV identification. To confirm the identity of the putative malignant clusters identified in 1031 

Supplemental Figure S1D, we estimated single-cell CNVs as previously described by computing the 1032 

average expression in a sliding window of 100 genes within each chromosome after sorting the detected 1033 

genes by their chromosomal coordinates (Patel et al., 2014; Tirosh et al., 2016b). We used all T/NK, Fib, 1034 

Hep, and Endo cells identified above as reference normal populations for this analysis. Complete 1035 

information on the inferCNV workflow used for this analysis can be found here 1036 

https://github.com/broadinstitute/inferCNV/wiki. To compare with bulk targeted DNA-sequencing, we 1037 

collapsed individual probes to cytoband-level information (weighted average of log2 ratios across each 1038 

cytoband, see above) within each sample. ScRNA-seq-inferred CNVs showed high concordance across 1039 

samples with the bulk measurements and suggests that, at least by this metric, we are likely sampling 1040 

the same dominant clones within sequential but distinct cores from each needle biopsy procedure 1041 

(Supplemental Figure S1E). For plotting CNV profiles in putative malignant versus normal cells 1042 

(Supplemental Figure S1F), we computed the average CNV signal for the top 5% of altered cells in 1043 

each biopsy and correlated all cells in that biopsy to the averaged profile as has been previously 1044 

described (Tirosh et al., 2016a). Relation of this correlation coefficient to the CNV score (mean square 1045 

deviation from diploidy) in the single cells from each biopsy shows consistent separation of malignant 1046 

from non-malignant cells, and, combined with membership in patient-specific SNN clusters, substantiates 1047 

the identification of malignant cells in our dataset.  1048 

 1049 
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Subclonal analysis with single-cell inferred CNVs. The inferCNV workflow can be used to call 1050 

subclonal genetic variation with high sensitivity and is comprehensively outlined here 1051 

https://github.com/broadinstitute/inferCNV/wiki (Fan et al., 2018; Patel et al., 2014; Tirosh et al., 2016b). 1052 

Briefly, we used a six-state Hidden Markov Model (i6-HMM) to predict relative copy number status 1053 

(complete loss to >3x gain) across putative altered regions in each cell. A Bayesian latent mixture model 1054 

then evaluated the posterior probability that a given copy number alteration is a true positive. We set a 1055 

relatively stringent cutoff for this step (BayesMaxPNormal = 0.2) to only include high probability 1056 

alterations for downstream clustering. The results of this filtered i6-HMM output were then used to cluster 1057 

the single cells using Ward’s method. We used inferCNV’s “random trees” method to test for statistical 1058 

significance (P < 0.05, 100 random permutations for each split) at each tree bifurcation and only retained 1059 

subclusters that had statistical evidence underlying the presumed heterogeneity. To track subclonal 1060 

heterogeneity between biopsy and matched organoid cells in Figure 3G and Supplemental Figure S5E-1061 

I, the above workflow was implemented within each biopsy and the relevant matched organoid samples, 1062 

essentially treating all cells as the same “tumor” and allowing the CNVs to determine cell sorting agnostic 1063 

to sample-of-origin. The results of the HMM output can be used to infer gene-level information based on 1064 

which genes are in the affected window. This (like the rest of the HMM workflow) is computed over groups 1065 

of cells (e.g. samples or sub-clones) and used to map KRAS and other alterations to samples (Figure 1066 

3A-F) or sub-clones (Figure 3G, Supplemental Figure S5E-I).  1067 

 1068 

Subclustering of malignant and non-malignant cells. Detailed phenotyping required splitting the 1069 

dataset into malignant and non-malignant fractions. After subsetting to only the malignant cells, we re-1070 

scaled the data and ran PCA including the first 35 PCs for SNN clustering and t-SNE visualization. This 1071 

PCA was used to determine the PanNET identity for PANFR0580 (Supplemental Figure S2A). After 1072 

removing PANFR0580, we repeated the steps above and used this new PCA for the remainder of PDAC 1073 

malignant cell analysis.  Subsequent phenotyping for malignant cells is discussed below (Generation of 1074 

expression signatures/scores). A similar approach was used for calling the non-malignant subsets in 1075 

Figure 5A. To determine the specific phenotypes within T/NK, macrophage, and mesenchymal 1076 

populations, we separately subclustered these groups using PCs 1-20 and a resolution of 0.6 in each 1077 

case. Of note, subclustering within the macrophages revealed a distinct cluster of cells co-expressing 1078 

markers of both T/NK cells and macrophages (n=491 cells). We discarded these cells as likely doublets, 1079 

as have others, and re-ran the macrophage PCA and clustering (Zhang et al., 2020; Zilionis et al., 2019). 1080 

These cells are included in the full dataset in case they are of interest to others. Each unbiased analysis 1081 

helped to define the non-malignant phenotypes summarized in Figures 5 & 6 and Supplemental Figure 1082 

S6.  1083 
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 1084 

Generation of expression signatures/scores. All expression scores were computed as previously 1085 

described by taking a given input set of genes and comparing their average relative expression to that of 1086 

a control set (n=100 genes) randomly sampled to mirror the expression distribution of the genes used for 1087 

the input (Tirosh et al., 2016b). While all scores were computed in the same way, choosing the genes for 1088 

input varied. We have outlined the relevant approaches below. Where correlations (Pearson’s r) are 1089 

performed over genes, we used the log-transformed UMI count data for each case. Unless otherwise 1090 

noted, we selected the top 30 statistically significant genes for each signature (>3 s.d. above the mean 1091 

for shuffled data) for visualization and scoring. 1092 

 Cell cycle. We utilized previously established signatures for G1/S (n=43 genes) and G2/M (n=55 1093 

genes) to place each cell along this dynamic process (Tirosh et al., 2016a). After inspecting the 1094 

distribution of scores in the complete dataset, we considered any cell >1.5 s.d. above the mean for either 1095 

the G1/S or the G2/M scores to be cycling (van Galen et al., 2019). 1096 

 Basal and classical programs. We started by scoring each malignant single cell for the basal-1097 

like and classical genes identified by Moffitt et al., 2015 as these were well described by unbiased 1098 

analysis in our data (PCA, Supplemental Figure S2B). To determine programs associated with basal 1099 

and classical phenotypes, we correlated the aforementioned basal and classical scores to the entire gene 1100 

expression matrix containing malignant cells and selected the 1,909 genes significantly associated with 1101 

either subtype (r > 0.1; >3 s.d. above the mean for shuffled data, full data in Supplemental Table S3). 1102 

Biological pathway correlates for basal and classical mirrored previous work, and are summarized in 1103 

Supplemental Figure S3D,E. For visualization, we use the “scCorr” basal and classical genes (top 30 1104 

correlated genes for each). We used these basal and classical scores to order the cells by their 1105 

polarization or “score difference”, simply the difference of the two scores, and revealed a significant 1106 

fraction of cells co-expressing intermediate levels of both phenotypes (Supplemental Figure S3A,B). 1107 

 Intermediate transitional program. Intermediate cells showed associations with features across 1108 

several additional PCs, but lacked a single dominant axis. To define a consensus set of genes that are 1109 

preferentially expressed by cells in this intermediate state, we computed the Euclidean distance to the 1110 

line representing equal basal and classical co-expression for each cell. To limit the influence of cell quality 1111 

on this analysis and to specifically identify genes related to co-expression, we used cells from each group 1112 

(basal, intermediate, and classical) with fractionally low mitochondrial genes (<0.2) and non-zero basal 1113 

or classical expression (basal or classical score > 0) and correlated their Euclidean distance 1114 

(Supplemental Figure S3C) to the entire gene expression matrix of malignant cells. Next, for each gene 1115 

positively associated with this intermediate state (Pearson’s r >0), we subtracted the second highest 1116 

correlation coefficient for each subtype-associated gene (basal and classical), and then re-ranked the 1117 
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matrix by this corrected value. This enriched for genes more specific to the intermediate state by 1118 

excluding those that were also associated with basal or classical programs. We then selected the 115 1119 

genes with a corrected correlation value >0.1 (P< 0.00001, shuffled data) as our intermediate transitional 1120 

(IT) signature (Supplemental Figure S3D, Supplemental Table S3). Single cells were classified based 1121 

on Euclidian distance where <0.2 are defined as intermediate transitional and the remainder (Euclidian 1122 

distance >0.2) by their maximal of either basal or classical scores. We binned each organoid cell (e.g. 1123 

Figure 4B,C) by its maximal expression for one of the 3 in vivo scores (basal, classical, or IT). Here a 1124 

cell must be within 1 s.d. of the mean expression for a given subtype in vivo, else it was considered 1125 

“organoid-specific” as this program was superimposed on all organoid cells, regardless of their subtype 1126 

identity (Figure 4B). We used these classifications to summarize overall tumor composition and visualize 1127 

the groups. Tumor heterogeneity measures were not significantly affected by changing these cutoffs.    1128 

 Non-Malignant programs. TAM signatures were determined similar to above and previous work 1129 

(van Galen et al., 2019; Zhang et al., 2020; Zilionis et al., 2019). Using PCA as an anchor (Supplemental 1130 

Figure S6C), we correlated expression within the TAM compartment to either FCN1, SPP1, or C1QC 1131 

(top loaded genes on each relevant PC) and merged the resultant correlation coefficients for every 1132 

detected gene to the 3 subtypes into one matrix (i.e. a 16,920 x 3 matrix). For each TAM type (i.e.  vector 1133 

of correlation coeffects to each marker), we first ranked the matrix by decreasing correlation coefficient, 1134 

selected only the most significantly associated genes to that type (r > 0.1; >3 s.d. above the mean for 1135 

shuffled data), subtracted the second highest correlation coefficient for each subtype-associated gene, 1136 

and then re-ranked the matrix by this corrected value. We repeated this procedure for each TAM subtype 1137 

independently. This ensures that the genes selected are specific to a given TAM subset and do not 1138 

describe general TAM features. The top 30 genes for each were used for scoring and visualization 1139 

(Supplemental Table S2; Supplemental Figure S6D).  1140 

 CAF phenotypes were determined using a similar workflow. To examine fibroblast heterogeneity, 1141 

we removed a subset of adrenal endocrine cells (cluster 4, 40 cells; Figure 5C) and then performed PCA 1142 

of mesenchymal cells. PC1 was driven by spillover genes (likely contributed from ambient RNA) and 1143 

lacked any coherent biological program and was not considered further. PCs 2 and 3 by contrast where 1144 

consistent with variable mesenchymal (PC2) and inflammatory (PC3) CAF phenotypes. All these cells 1145 

scored highly for previous myCAF gene expression programs so this phenotype did not fully explain the 1146 

heterogeneity in mesenchymal cells, but did suggest their identity as CAFs. Again, using correlation, we 1147 

determined the genes driving low PC2 scores (Dermal-like), and high PC2 scores (Pericyte-like), as well 1148 

as those associated with the high PC3 scores (Inflammatory). As before, we used the top 30 genes for 1149 

each subset scoring and visualization. These same genes (Dermal-like and Pericyte-like) were used to 1150 
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examine bulk RNA-seq profiles and their difference in each sample quantifies which phenotype is favored 1151 

in the bulk averages (Figure 5F).  1152 

 1153 

TME associations. We determined the transcriptional-subtype-dependent composition of the TME 1154 

(Figure 6A-C) following two steps. First, we computed the Simpson’s Index (measure of ecological 1155 

diversity) using the count of each non-malignant cell type captured from each sample as input (Figure 1156 

6A,B) and correlated each biopsy’s diversity score to its basal vs. classical commitment score. 1157 

Importantly, the number of non-malignant cells captured from each biopsy was not associated with basal 1158 

vs. classical commitment score (r = 0.09). Next, to understand which cell types drive these differences, 1159 

we computed the fractional representation for every non-malignant cell type in each core needle biopsy 1160 

and determined their pairwise correlation distance (Pearson’s r) followed by hierarchical clustering using 1161 

Ward’s method (dendrogram in Figure 6B). For both of these analyses we only used samples with >200 1162 

non-malignant cells captured (Supplemental Figure S6L).  1163 

 1164 

Matched organoid clustering and cell-typing. After applying similar quality metrics as above, we 1165 

performed PCA, SNN clustering, and t-SNE embedding for 31,867 cells including organoid cells and all 1166 

malignant cells from primary PDAC biopsies (PCs 1-50; resolution=1.2; k.param=45; perplexity=45; 1167 

max_iter=2,500), and identified 39 total clusters. Organoids clustered separately from their matched 1168 

biopsies, suggesting expression and/or CNV related drift in culture. Only two SNN clusters—clusters 4 1169 

and 32—were admixed by sample. We determined the specific gene expression programs in these two 1170 

clusters via differential expression testing by Wilcoxon rank sum test (P < 0.05, Bonferroni correction; 1171 

log(fold change) > 0.5). These comparisons were done in a “1 versus rest” fashion, testing for genes 1172 

defining each cluster (4 or 32) compared to the entire dataset. Their expression profiles were consistent 1173 

with fibroblasts (cluster 32) and epithelial cells (cluster 4; Supplemental Figure S5B,C).  1174 

 1175 

Correlation distances for genotype and phenotype. To generate correlation distances for genotype 1176 

and phenotype, each single cell in a biopsy-organoid pair was represented by two vectors of information: 1177 

(i) a phenotype vector containing expression values for basal and classical genes (scCorr basal and 1178 

classical genes, n = 60 genes) and (ii) a genotype vector containing the average CNV score for each 1179 

cytoband. The phenotype and genotype distances between every single cell within a biopsy/early 1180 

organoid pair was computed from these vectors using a correlation-based (Pearson’s r) distance metric 1181 

of the form d = (1-r)/2. This resulted in two distance matrices of n x n dimension where n is the total 1182 

number of cells from each biopsy/early organoid sample pair. Values in Figure 4A are computed by 1183 

averaging the values for d between only early organoid and matched biopsy cells.  1184 
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 1185 

Matched biopsy vs. organoid malignant cell comparison. For CNV-confirmed malignant cells from 1186 

each biopsy and its matched organoid (earliest passage), we used differential expression (Wilcoxon rank 1187 

sum test; P < 0.05, Bonferroni correction; log(fold change) > 0.3) to understand the features lost from 1188 

malignant cells in the in vivo setting and gained when transitioning into growth in organoid culture. We 1189 

required any gene to be significantly differentially expressed in at least 3 model-biopsy comparisons to 1190 

summarize the consistent changes. We repeated this same workflow for both organoid- and biopsy-1191 

specific genes (Supplemental Table S5) outlined in Figure 4B and Figure 4D-F, respectively.  1192 

 1193 

Biopsy paracrine and autocrine subtype-specific factor analysis. Factors present in the TME but 1194 

absent from organoid culture could originate from at least two sources, the tumor cells themselves 1195 

(autocrine) or non-tumor cells in the local microenvironment (paracrine). We examined any gene with 1196 

gene ontology annotations related to “cytokines”, “chemokines”, or “growth factors” and took the union of 1197 

these lists, yielding 321 genes, 218 of which were detected in our dataset. For “autocrine” factors we 1198 

performed differential expression between malignant cells binned as basal and classical, and then IT vs 1199 

rest. A gene was considered differentially expressed if it passed a P < 0.05 with Bonferroni correction 1200 

and a log(fold change) > 0.2 in one of these comparisons. Genes were then assigned to subtypes based 1201 

on the log fold change direction (Figure 7D, Supplemental Table S7). Paracrine factors were 1202 

determined in a similar manner with slight modifications. We grouped non-tumor cells into basal, classical 1203 

or IT based on the average expression and clustering for malignant programs from their respective tumor 1204 

samples (Supplemental Figure S3G,H). We then assessed for differential expression between all cells 1205 

from a given group and the rest using the same cutoffs as above and sorted factors into subtypes based 1206 

on their log fold change directionality (Figure 7F, Supplemental Table S7). We then visualized which 1207 

cell type contributed the highest average expression for each factor in the cell types from the respective 1208 

TMEs (Figure 7G). 1209 

 1210 

Bulk RNA-sequencing analysis. FASTQs for bulk RNA expression profiles were downloaded from the 1211 

relevant repository (TCGA, https://toil.xenahubs.net; PDAC Cell lines, 1212 

https://portals.broadinstitute.org/ccle), available in-house (Panc-Seq, metastatic PDAC), or generated for 1213 

this study (organoid cohort) (Aguirre et al., 2018; Cancer Genome Atlas Research et al., 2013; Cancer 1214 

Genome Atlas Research Network, 2017; Ghandi et al., 2019). All were processed using the same 1215 

pipeline. Briefly, each sample's sequences were marked for duplicates and then mapped to hg38 using 1216 

STAR. After running QC checks using RNAseqQC, gene-level count matrices were generated using 1217 

RSEM. Instructions to run the pipeline are given in the Broad CCLE github repository 1218 
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https://github.com/broadinstitute/ccle_processing. Length-normalized values (TPM) were then 1219 

transformed according to log2(TPM+1) for downstream analysis. The entire dataset was scaled and 1220 

centered to allow relative comparisons across sample types (e.g. tumors, organoids, and cell lines). 1221 

Signature scores were computed as above (e.g. basal and classical; see Generation of expression 1222 

signatures/scores above) (Puram et al., 2017).  1223 

 1224 

Tumor phenotyping from mIF data. Supervised machine learning algorithms were applied for tissue 1225 

and cell segmentation (inForm 2.4.1, Akoya Biosciences). Single-cell-level imaging data were exported 1226 

and further processed and analyzed using R (v3.6.2). To assign phenotypes to individual tumor epithelial 1227 

cells, mean expression intensity in the relevant subcellular compartment was first used to classify cells 1228 

as positive or negative for each of the 5 markers. Combinatorial expression patterns for the five markers 1229 

were then used to phenotypically classify cells as basal, classical, co-expressing / IT or marker negative 1230 

(3 combinations of 2 basal markers, 7 combinations of 3 classical markers, 1 pan-marker negative, 21 1231 

combinations of co-expression of basal and classical markers, Supplemental Figure S4A, 1232 

Supplemental Table S4). Tumor subtype composition was assessed by calculating the fraction of total 1233 

tumor cells positive for each cell phenotype (Supplemental Figure S4B, excluding pan-marker negative 1234 

cells).      1235 
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SUPPLEMENTAL INFORMATION 1236 

 1237 

Supplemental Table S1. Cohort patient characteristics. 1238 

Related to Figure 1 1239 

 1240 

Supplemental Table S2. Normal cell type markers. 1241 

Related to Figures 1, 5 & 6 1242 

 1243 

Supplemental Table S3. Malignant phenotype single-cell gene correlates.  1244 

Related to Figure 2 1245 

 1246 

Supplemental Table S4. mIF marker combinations and cell counts. 1247 

Related to Figure 2 1248 

 1249 

Supplemental Table S5. Organoid- and in vivo malignant-specific gene expression features.  1250 

Related to Figure 4 1251 

 1252 

Supplemental Table S6. Organoid and cell line models and media formulations for perturbation 1253 

experiments. 1254 

Related to Figure 7 1255 

 1256 

Supplemental Table S7. Subtype-specific autocrine and paracrine secreted factors.  1257 

Related to Figure 7  1258 
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Supplemental Table S1, related to Figure 1. Cohort patient characteristics

This table details the demographic and clinical characteristics of patients whose biopsy samples were used in this study.

Sample
(scRNA-seq 

ID)

Patient age 
at initial 

diagnosis
Gender Ethnicity

Stage at 
initial 

diagnosis 
Histology

Site of 
biopsy

Number of 
cores 

collected

Number of cores 
for scRNA-

seq/organoids

Treatment of 
primary disease

Metastatic treatments 
prior to biopsy

Patient 
status 
(alive/

deceased)

Survival time 
from initial 
diagnosis 

(days)1

PANFR0383 76 Male Caucasian Metastatic PDAC Liver 7 2 None

Gemcitabine/Nab-
paclitaxel/Anti-

hepatocyte growth 
factor antibody

Deceased 302

PANFR0489 
and 

PANFR0489R2
67 Female Caucasian Localized PDAC Liver 6 2

Whipple; 
FOLFOX/Nab-

paclitaxel; 
Capecitabine + 

radiation 

Gemcitabine/Nab-
paclitaxel; 

Gemcitabine; 
5-FU/Liposomal 

irinotecan; FOLFOX

Deceased 2068

PANFR0526 72 Male Caucasian Metastatic PDAC Liver 5 2 None None Deceased 10

PANFR0543 65 Male Caucasian Metastatic PDAC Liver 7 5 None None Deceased 120

PANFR0545 75 Female Caucasian Metastatic PDAC Liver 5 2 None None Deceased 94

PANFR0552 49 Female Caucasian Localized PDAC Liver 4 2

FOLFIRINOX; 
Whipple; 

Gemcitabine/Nab-
paclitaxel

None Deceased 536

PANFR0557 44 Female Caucasian Localized PDAC Liver 4 3

Distal 
pancreatectomy; 

Gemcitabine/
Capecitabine

FOLFIRINOX; FOLFIRI Deceased 1291

PANFR0562 76 Female Other Metastatic PDAC Liver 5 2 None None Deceased 111

PANFR0575 79 Female Asian Metastatic PDAC Liver 5 2 None None Deceased 32

PANFR0576 63 Male Caucasian Metastatic PDAC Liver 5 2 None None Deceased 159

PANFR0578 62 Female Caucasian Metastatic PDAC Liver 4 1 None

FOLFIRINOX; 
Lung metastatectomy; 
FOLFIRINOX; 5-FU + 

radiation; Olaparib; 
Whipple

Alive 1863

PANFR0580 53 Male Caucasian Metastatic PanNET Liver 6 2 None None Alive 687

PANFR0583 61 Male Caucasian Metastatic PDAC Liver 5 2 None None Deceased 52

PANFR0588 71 Female Caucasian Metastatic PDAC Peritoneum 6 2 None None Deceased 227

PANFR0592 37 Male Caucasian
Locally 

advanced
PDAC Liver 4 2

FOLFIRINOX; 
Whipple

None Deceased 376
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PANFR0593 63 Male Caucasian Localized PDAC Liver 4 2
Distal 

pancreatectomy; 
FOLFIRINOX

Gemcitabine/Nab-
paclitaxel/Trastuzumab

Alive
199

(lost to follow 
up)

PANFR0598 75 Male Caucasian Metastatic PDAC Omentum 7 2 None None Alive 586

PANFR0604 67 Female Caucasian Metastatic PDAC Liver 8 2 None FOLFIRINOX Deceased 952

PANFR0605 75 Male Caucasian Metastatic PDAC Liver 8 3 None None Deceased 322

PANFR0631 66 Male Caucasian Metastatic PDAC Liver 12 2 None None Alive 566

PANFR0635 76 Female Caucasian Metastatic PDAC Omentum 7 3 None None Alive 512

PANFR0637 65 Male Caucasian Metastatic PDAC
Adrenal 
gland

4 2 None None Deceased 149

Footnotes

1. Patient survival was calculated as time from initial diagnosis to death or last documented follow up for patients who are alive.

2. This patient had two samples, PANFR0489 and PANFR0489R, collected at different time points along their treatment course.
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Supplemental Figure S1. Quality metrics, unsupervised cell type identification, and malignant cell 1259 

confirmation across the biopsy cohort.  1260 

Related to Figure 1 1261 

A, Distribution of unique molecules and genes captured in quality cells per biopsy, median values are 1262 

indicated for each metric (dotted line) and violin plots are colored by patient (top, Log10(UMIs); bottom, 1263 

number of genes). 1264 

B, Distribution of fraction mitochondrial reads across the entire trimmed biopsy dataset (n = 23,042 cells). 1265 

Red dotted line denotes the median.  1266 

C, t-SNE visualization of the entire single-cell biopsy dataset colored by the SNN clusters identified (inset 1267 

numbers).  1268 

D, Distribution of single cells captured per biopsy across the identified SNN clusters. In general, a 1269 

patient’s malignant cells are expected to form unique clusters driven by CNVs. Owing to this feature, the 1270 

data are split into putative malignant and non-malignant groups of clusters.  1271 

E, Heatmaps represent select scRNA-seq-derived copy number profiles where expression across the 1272 

transcriptome is organized by chromosome (columns) for each single putative malignant cell (rows) from 1273 

a given biopsy. Top bar indicates reference bulk targeted DNA-seq for the same patient and shows strong 1274 

concordance with the single-cell derived profiles.  1275 

F, CNV correlation (averaged top 5% of altered cells per biopsy) versus CNV score (mean square of 1276 

modified expression) for each single putative malignant (colored points) and reference normal cell (empty 1277 

black circles) within a given biopsy. Only a single sample, PANFR0604, did not contain any malignant 1278 

cells.  1279 

G, Overview of cell-typing for all cells in the biopsy dataset. Cells are ordered by SNN cluster and 1280 

separated by cell types. Top heatmap represent expression levels for a subset of select markers (n=73 1281 

genes) used to identify cell types. Color bar indicates cell types and binarized cell cycle phenotypes are 1282 

labeled (black, cycling; white, not). CNV scores (mean square of alterations per cell) used to parse 1283 

malignant from non-malignant are shown using T/NK, endothelial, fibroblasts, and hepatocytes as 1284 

reference; grey boxes denote normal cell types where we did not compute reference CNV scores. Bottom 1285 

panel shows biopsy of origin for each cell. The data are split by non-malignant (n = 15,302) and malignant 1286 

(7,740) identity.   1287 

H, t-SNE visualization as in S1C but colored by cell types identified, abbreviations as in Figure 1D.  1288 

I, Fraction of each cell type contributed by each biopsy sample (color fill, patient ID; as in Figure 1B), cell 1289 

type totals are noted at the top of each bar.  1290 
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Supplemental Figure S2. Identifying and contextualizing basal and classical associated biology.  1291 

Related to Figures 1 & 2 1292 

A, Principal component analysis (PCA) and scatter plot for PC1 and PC2 across all malignant cells 1293 

(n=7,740) separates PANFR0580’s malignant cells (n=662) from the rest of the samples. Cells are 1294 

colored by patient ID (as in Figure 1B). Heatmap for genes with the strongest negative loading on PC1 1295 

(n=30) denote a neuroendocrine identity (TTR, CHGB). This tumor was later classified by histology as a 1296 

pancreatic neuroendocrine tumor (PanNET).  1297 

B, Principal component (PC) elbow plot showing the standard deviation for the first 20 components 1298 

calculated over the verified PDAC malignant cell variable genes (Methods). Line is drawn at the putative 1299 

“elbow” (black versus grey points) as inclusion of additional PCs described overlapping information or 1300 

quality metrics. Cross-correlational analysis for each single-cell’s embeddings across first 9 PCs (black 1301 

points) and scores for literature curated gene sets describing EMT, classical and basal, and cell cycle 1302 

phenotypes. PC1 positively correlates with EMT, basal, and to a degree, cell cycling. Cells with positive 1303 

embeddings on PC2 are correlated with classical phenotypes and anti-correlated with basal and EMT 1304 

phenotypes, suggesting these phenotypes are anti-correlated across a continuum of expression. PC3 1305 

and PC8 describe cells with high cell cycle scores. The other PCs do not associate significantly with 1306 

these phenotypes.  1307 

C, Pairwise correlation of genes significantly associated with basal (PC1/negative PC2) or classical (PC2) 1308 

expression states. Left bar indicates the subtype association of each gene (orange, basal; blue, 1309 

classical).  1310 

D, Tied dot plots depicting the correlation coefficient for each gene (points) to either basal or classical 1311 

phenotypes from select literature-derived gene sets, indicated at the top of each plot, which summarize 1312 

aspects of subtype associated biology. Dotted lines represent significance threshold (3 SD above the 1313 

mean of shuffled data), points and lines are colored if that gene passes the threshold and select genes 1314 

are indicated.  1315 

E, GSEA pathway enrichments for top 100 genes correlated to either basal or classical expression 1316 

scores.   1317 
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Supplemental Figure S3. Cells with intermediate co-expressing phenotypes express a distinct 1318 

gene program.   1319 

Related to Figure 2 1320 

A, Expression of basal and classical gene programs, with cells ordered by their basal-classical score 1321 

difference. Quality metrics, EMT scores and the binarized cell cycle program are shown for each single 1322 

cell below the heatmap.  1323 

B, PC1 and 2 difference (top) and Classical – Basal score difference (bottom) are shown. Cells with equal 1324 

basal and classical expression are associated with intermediate PC scores and cells are ordered as in 1325 

S3A.  1326 

C, Euclidian distance for each cell to co-expression (y = x) of basal (x) and classical (y) expression scores. 1327 

Bottom track indicates the score derived from the genes specific to the intermediate state shown in S3D 1328 

and explained in Methods.  1329 

D, Gene correlation to either basal or classical score (x axis) or the corrected intermediate correlation 1330 

(Euclidean distance in S3C, Methods). Green highlighted genes have corrected intermediate correlation 1331 

>0.1 (P<0.00001 above shuffled). P-value for binarized cycling group differences in S3A was calculated 1332 

using Fisher’s Exact test. P-values for EMT score in S3A and group differences in S3B and S3C were 1333 

calculated by Kruskal-Wallis test with multiple hypothesis correction.  1334 

E, t-SNE visualization after dimensionality reduction and re-clustering for the normal progenitor 1335 

populations identified in Qadir et al., 2020. Cell types are collapsed to those favoring Acinar (Pro Ac.), 1336 

Ductal (Pro Duct.), or Undifferentiated (Undiff.) subsets. Mesenchymal cells (Mes.) are included as a non-1337 

epithelial reference and the small subset of immune cells was excluded from the comparisons.  1338 

F, Averaged expression of all three malignant programs in normal pancreatic progenitor niche subsets 1339 

and mesenchymal cells defined in Qadir et al., 2020. P-values for each set of genes are computed by 1340 

Kruskal-Wallis test with multiple hypothesis correction.  1341 

G, Pairwise correlation for biopsies with malignant cells (n = 22). Data are correlation coefficients for the 1342 

average expression of all signature genes in the malignant cells from a given biopsy. EMT genes are 1343 

from Groger et al., 2012. Clade identities are at left with the one PanNET tumor (PANFR0580) included 1344 

for comparison and PANFR0604 not included due to lack of malignant cells captured.  1345 

H, Average expression for the 184 genes used for clustering in S3G. Clade identity colors match text 1346 

color in S3G and individual samples (columns) are ordered as in S3G and sample ID numbers are 1347 

provided below.  1348 

I, Scores for the expression of genes in S3H (grey scale heat) across the 4 main cell types found in the 1349 

pancreatic progenitor niche (Qadir et al., 2020). White dot indicates the normal subset with the highest 1350 
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average expression for each malignant program (Kruskal-Wallis test), none of the normal subsets 1351 

significantly express the Neuroendocrine gene signature.  1352 

J, t-SNE visualization for malignant single cells in the biopsy cohort demonstrates intratumoral 1353 

transcriptional heterogeneity at the single-cell level. Cells are colored by patient (left) or by transcriptional 1354 

subtype (right).   1355 
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Supplemental Figure S4. Multiplex immunofluorescence is concordant with scRNA-seq and 1356 

demonstrates intratumoral heterogeneity with the presence of IT cells.  1357 

Related to Figure 2 1358 

A, Schematic for comparison of the matched datasets by combinatorial marker phenotypes.  1359 

B, Marker detection in each single cell from the 10 samples in the mIF (top, 130,784 cells) and matched 1360 

scRNA-seq datasets (bottom, 3,062 cells). Cells are sorted by their combinatorial phenotype outlined in 1361 

S4A.  1362 

C, Comparison within and between modalities on matched samples. Samples are sorted by the 1363 

dendrogram in Supplemental Figure S3G and labeled with their pseudo-bulk RNA subtype identity. 1364 

Correlation is performed over the fractional representation of each mIF phenotype (S4A) in each biopsy. 1365 

Despite measuring different molecules (protein vs mRNA), the two approaches were highly concordant 1366 

within RNA subtypes and on a case-by-case basis (white dots). 1367 

D, mIF marker detection in each single cell from two primary PDAC samples shown in Figure 2H. Cells 1368 

are sorted by their combinatorial phenotype outlined in S4A.  1369 
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Supplemental Figure S5. Quality metrics, cell type identification, and serial sampling across the 1370 

patient-matched organoid cohort.  1371 

Related to Figure 4 1372 

A, Distribution of unique molecules and genes captured in quality cells per organoid sample, median 1373 

values are indicated for each metric (dotted line) and violin plots are colored by patient ID (top, 1374 

Log10(UMIs); bottom, number of genes).  1375 

B, t-SNE visualization of all biopsy and matched organoid cells from iterative passages, colored by patient 1376 

ID. Dotted circles indicate the only two SNN clusters (4 and 32) with appreciably admixed clusters and 1377 

low CNV scores, the rest were patient-specific. Bar chart shows number of organoid cells recovered per 1378 

matched sample (right).  1379 

C, Relative expression for genes defining cluster 4 (top) and cluster 32 (bottom; 1 versus rest DE with 1380 

the cells in S5B). Cluster 4 had an ambiguous epithelial identity while cluster 32 cells were defined by 1381 

canonical fibroblast genes and low to absent detection of CNVs.  1382 

D, Fraction of cluster 4 cells at each passage. These cells did not survive iterative passaging suggesting 1383 

that they were either untransformed or unfit in organoid culture. 1384 

E-G, Heatmaps show inferred CNV copy number status for every cell in each of three biopsy/early 1385 

passage organoid pairs. Cells are ordered by hierarchical clustering of their CNV profiles and letters on 1386 

the far left indicate subclones that have significant statistical evidence for tree-splitting (Methods). Each 1387 

cell’s origin (biopsy tissue, grey; early passage organoid, red) is also noted (“Source” column). Right 1388 

metadata bars indicate if that cell came from an admixed SNN cluster (4 or 32 in S5B).  1389 

H, I, Matched phenotype and genotype evolution at each passage in PANFR0489R (S5H) and 1390 

PANFR0575 (S5I). Frequencies of individual CNV clones at each time point (Methods, y axis) are tied 1391 

by colored lines. Fill represents the transcriptional phenotype fraction for each CNV clone. In sample 1392 

PANFR0575 (S5I), clones D and E had inferred TP63 amplifications which expanded over time.   1393 
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Supplemental Figure S6. Identification of T/NK, macrophage, and fibroblast heterogeneity in the 1394 

metastatic microenvironment.  1395 

Related to Figures 5 & 6 1396 

A, t-SNE visualization of sub-clustering (SNN) performed on T/NK cells in the metastatic cohort. Cells 1397 

are colored by their type identity based on shared SNN cluster membership (Methods).  1398 

B, Select cell type marker expression overlaid on the t-SNE visualization from S6A.  1399 

C, PCA identifies 3 major subsets of TAMs in the metastatic niche. PC1 largely separates FCN1+ 1400 

monocyte-like TAMs from more committed macrophage phenotypes. PC2 separates SPP1+ from C1QC+ 1401 

macrophage phenotypes.  1402 

D, Heatmap visualization of the gene expression programs specific to each TAM subset identified by the 1403 

PCA in S6C (Methods). Top metadata indicate SNN cluster as in S6C.  1404 

E, Heatmap shows the relative expression for select cell type markers. Top bar indicates the binarized 1405 

cell cycle program (black, cycling) and the bottom color bar corresponds to the cell type colors noted in 1406 

Figure 6A.   1407 

F, Dot plots for average expression of the indicated CAF and adrenal endocrine marker genes in each of 1408 

the cell subsets (1-4) identified in Figure 5C. Size of the dot indicates fraction of cells expressing a given 1409 

gene.  1410 

G, PCA over fibroblasts in the cohort (excluding Adrenal endocrine cells; subset 4, Figure 5C). Scatter 1411 

plot of PC2 vs PC3 defines 3 states for CAFs in our cohort (Methods). 1412 

H, Same visualization in S6B, but cells are colored by previously identified myCaf or iCaf signature 1413 

scores. myCaf is evenly distributed across PC2 and iCaf associates with higher PC3 scores.  1414 

I, Expression for select markers overlaid on the PCA from S6B.  1415 

J, Cross-correlation of fibroblast signatures in single-cells. New dermal- vs. pericyte-like signatures 1416 

provide non-overlapping information. PC3 inflammatory phenotypes are similar to the previously reported 1417 

iCaf phenotype (Elyada et al., 2019) and our PC3-derived inflammatory fibroblast signature.  1418 

K, Distribution across the CAF continuum comparing site differences as groups (top) or individual tumors 1419 

(bottom). Heat indicates the fraction of CAFs in that score bin. 1420 

L, Bar plot shows the number of non-malignant cells in each biopsy, color fill indicates the number of 1421 

each cell type captured in that sample. Five biopsies were excluded from the analysis in Figure 6A-C 1422 

because they either had low cell capture or were from a tumor with indeterminant malignant 1423 

transcriptional subtype. Relevant samples are organized as in Figure 6A.  1424 

M, Cross TCGA analysis for basal and immune cell type markers in epithelial tumors with known basal 1425 

subtypes (Cancer Genome Atlas Research et al., 2013). Tumors with strong basal gene expression do 1426 
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not associate with strong immune infiltrates. Clusters were determined by dendrogram splitting and 1427 

disease type for each sample is indicated below.   1428 
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Supplemental Figure S7. Alterations to organoid media, but not matrix dimensionality, shift 1429 

transcriptional phenotype. 1430 

Related to Figure 7  1431 

A, Inferred CNVs for each cell from the PANFR489R samples cultured in either Minimal (grey) or 1432 

Complete (red) organoid media conditions in Figure 7B.  1433 

B, Brightfield images were obtained for organoids grown in standard organoid media (“Complete”) or in 1434 

media without any growth factors (“Minimal”) at days 1 and 11 after seeding.  1435 

C, Single organoid cells from model PANFR0562 (columns) cultured for 6 days in Complete medium, 1436 

Minimal medium, OWRNA medium, or in RP10 (“cell line” medium, RPMI-1640 with 10% fetal bovine 1437 

serum) and scored for basal, IT, and classical hierarchy phenotypes (rows). P-values for group 1438 

differences were calculated by ANOVA followed by Tukey’s HSD.  1439 

D, Relative expression for 90 genes representing PDAC state programs across bulk RNA-seq samples 1440 

from primary resections (TCGA) and metastatic biopsies (Panc-Seq), as well as organoid and cell line 1441 

(CCLE) models (Aguirre et al., 2018; Barretina et al., 2012; Cancer Genome Atlas Research Network, 1442 

2017; Ghandi et al., 2019).  1443 

E, PDAC malignant state diagrams for average Basal-classical commitment score (x axis) and IT score 1444 

(y axis) for bulk RNA-seq samples in S7D.  1445 

F, Four established models were adapted to 2-dimensional culture in complete organoid media and 1446 

measured via bulk RNA-seq. Rows indicate expression levels of basal-classical commitment score 1447 

genes.  1448 

G, Single cells from the established PDAC cell line CFPAC1 (columns) sampled in RP10 (standard “cell 1449 

line” medium, RPMI-1640 with 10% fetal bovine serum) or at 2 timepoints in Complete organoid medium 1450 

and scored for basal, IT, and classical phenotypes (rows). Bottom row indicates single cell organoid-1451 

specific gene expression (as described in Figure 4B) across all three conditions. P-values for group 1452 

differences were calculated by ANOVA followed by Tukey’s HSD.  1453 

  1454 
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