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Associations between high-dimensional datasets, each comprising
many features, can be discovered through multivariate statistical
methods, like Canonical Correlation Analysis (CCA) or Partial Least
Squares (PLS). CCA and PLS are widely used methods which reveal
which features carry the association. Despite the longevity and popu-
larity of CCA/PLS approaches, their application to high-dimensional
datasets raises critical questions about the reliability of CCA/PLS so-
lutions. In particular, overfitting can produce solutions that are not
stable across datasets, which severely hinders their interpretability
and generalizability. To study these issues, we developed a genera-
tive model to simulate synthetic datasets with multivariate associa-
tions, parameterized by feature dimensionality, data variance struc-
ture, and assumed latent association strength. We found that re-
sulting CCA/PLS associations could be highly inaccurate when the
number of samples per feature is relatively small. For PLS, the pro-
files of feature weights exhibit detrimental bias toward leading prin-
cipal component axes. We confirmed these model trends in state-of-
the-art datasets containing neuroimaging and behavioral measure-
ments in large numbers of subjects, namely the Human Connectome
Project (n ≈ 1000) and UK Biobank (n = 20000), where we found
that only the latter comprised enough samples to obtain stable es-
timates. Analysis of the neuroimaging literature using CCA to map
brain-behavior relationships revealed that the commonly employed
sample sizes yield unstable CCA solutions. Our generative model-
ing framework provides a calculator of dataset properties required
for stable estimates. Collectively, our study characterizes dataset
properties needed to limit the potentially detrimental effects of over-
fitting on stability of CCA/PLS solutions, and provides practical rec-
ommendations for future studies.
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D iscovery of associations between datasets is a topic of1

growing importance across scientific disciplines in analy-2

sis of data comprising a large number of samples across high-3

dimensional sets of features. For instance, large initiatives in4

human neuroimaging collect, across thousands of subjects, rich5

multivariate neural measures as one dataset and psychometric6

and demographic measures as another linked dataset (1–3). A7

major goal is to determine, in a data-driven way, the dominant8

latent patterns of association linking individual variation in9

behavioral features to variation in neural features (4–6).10

A widely employed approach to map such multivariate as-11

sociations is to define linearly weighted composites of features12

in both datasets (e.g., neural and psychometric) and to choose13

the sets of weights—which correspond to axes of variation—to 14

maximize the association strength (Fig. 1A). The resulting 15

profiles of weights for each dataset can be examined for how 16

the features form the association. If the association strength 17

is measured by the correlation coefficient, the method is called 18

canonical correlation analysis (CCA) (7), whereas if covariance 19

is used the method is called partial least squares (PLS) (5, 8, 9). 20

CCA and PLS are commonly employed across scientific fields, 21

including behavioral sciences (10), biology (11, 12), biomedical 22

engineering (13), chemistry (14), environmental sciences (15), 23

genomics (16), and neuroimaging (4, 17–19). 24

Although the utility of CCA and PLS is well established, 25

a number of open challenges exist regarding their stability 26

in characteristic regimes of dataset properties. Stability im- 27

plies that elements of CCA/PLS solutions, such as association 28

strength and weight profiles, are reliably estimated across 29

different independent sample sets from the same population, 30

despite inherent variability in the data. Instability or overfit- 31

ting can occur if an insufficient amount of data is available 32

to properly constrain the model. Manifestations of instabil- 33
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Fig. 1. Overview of CCA, PLS and the generative model used to investigate
their properties. A) Two multivariate datasets, X and Y , are projected separately
onto respective weight vectors, resulting in univariate scores for each dataset. The
weight vectors are chosen such that the correlation (for CCA) or covariance (for PLS)
between X and Y scores is maximized. B) In the principal component coordinate
system, the variance structure within each dataset can be summarized by its principal
component spectrum. For simplicity, we assume that these spectra can be modeled
as power-laws. CCA, uncovering correlations, disregards the variance structure and
can be seen as effectively using whitened data (cf. Methods). C) The association
between sets is encoded in the association strength of X and Y scores. D) Datasets
X and Y are jointly modeled as a multivariate normal distribution. The within-set
variance structure (B) corresponds to the blocks on the diagonal, and the associations
between datasets (C) are encoded in the off-diagonal blocks.

ity and overfitting in CCA/PLS include inflated association34

strengths (20–22), cross-validated association strengths that35

are markably lower than in-sample estimates (23), or feature36

profiles that vary from study to study (20, 23–26). Stability37

of models is essential for their replicability, generalizability,38

and interpretability. Therefore, it is important to assess how39

stability of CCA/PLS solutions depends on dataset properties.40

Instability of CCA/PLS solutions is in principle a known41

issue (6, 24). Prior studies using a small number of specific42

datasets or Monte-Carlo simulations have suggested to use43

between 10 and 70 samples per feature in order to obtain stable44

models (21, 25, 27). However, it remains unclear how the45

various elements of CCA/PLS solutions (including association46

strengths, weights, and statistical power) differentially depend47

on dataset properties and sampling error, nor how CCA and48

PLS as distinct methods may exhibit differential robustness49

across data regimes. To our knowledge, no framework exists to50

systematically quantify errors in CCA/PLS results, depending51

on the numbers of samples and features, the assumed latent52

correlation and the variance structure in the data, for both 53

CCA and PLS. 54

To investigate these issues, we developed a generative sta- 55

tistical model to simulate synthetic datasets with known latent 56

axes of association. Sampling from the generative model al- 57

lowed quantification of deviations between estimated and true 58

CCA or PLS solutions. We found that stability of CCA/PLS 59

solutions requires more samples than are commonly used in 60

published neuroimaging studies. With too few samples, es- 61

timated association strengths were too high, and estimated 62

weights could be unreliable for interpretation. CCA and PLS 63

differed in their dependences and robustness, in part due to 64

PLS exhibiting a detrimental bias of weights toward principal 65

axes. We analyzed two large state-of-the-art neuroimaging- 66

psychometric datasets, the Human Connectome Project (2) 67

and the UK Biobank (3), which followed similar trends as 68

our model. These model and empirical findings, in con- 69

junction with a meta-analysis of estimated stability in the 70

brain-behavior CCA literature, suggest that typical CCA/PLS 71

studies in neuroimaging are prone to instability. Finally, we 72

applied the generative model to develop algorithms and a 73

software package for calculation of estimation errors and re- 74

quired sample sizes for CCA/PLS. We end with 10 practical 75

recommendations for application and interpretation of CCA 76

and PLS in future studies (see also Tab. S1). 77

Results 78

A generative model for cross-dataset multivariate associations. 79

To analyze sampling properties of CCA and PLS, we need to 80

generate synthetic datasets of stochastic samples with known 81

properties and with known correlation structure across two 82

multivariate datasets. We therefore developed a generative 83

statistical modeling framework that satisfying these require- 84

ments, which we refer to as GEMMR (Generative Modeling of 85

Multivariate Relationships). GEMMR is central to all that fol- 86

lows as it allows us to design and generate synthetic datasets, 87

investigate the dependence of of CCA/PLS sampling errors on 88

dataset size and assumed covariances, estimate weight errors 89

in CCAs reported in the literature, and calculate sample sizes 90

required to bound estimation errors. 91

To describe GEMMR, first note that data for CCA and 92

PLS consist of two datasets, given as data matrices X and Y , 93

with respectively px and py features (columns) and an equal 94

number n of samples (rows). We assume a principal component 95

analysis (PCA) has been applied separately to each dataset so 96

that, without loss of information, the columns of X and Y are 97

principal component (PC) scores. The PC scores’ variances, 98

which are also the eigenvalues of the within-set covariance 99

matrices, SXX and SY Y , are modeled to decay with a power- 100

law dependence (Fig. 1B) for PLS, as empirical variance 101

spectra often follow approximate power-laws (for examples, 102

see Fig. S1). For CCA, which optimizes correlations instead of 103

covariances, the two datasets are effectively whitened during 104

the analysis (see Methods) and we can therefore assume that 105

all scores’ variances are 1. 106

Between-set associations between X and Y (Fig. 1C) are 107

summarized in the cross-covariance matrix SXY . By perform- 108

ing a singular value decomposition of SXY a solution for CCA 109

and PLS can be obtained (after whitening for CCA, see Meth- 110

ods) with the singular values giving the association strengths 111

and the singular vectors encoding the weight vectors for the 112
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latent between-set association modes. Conversely, given associ-113

ation strengths and weight vectors for between-set association114

modes (i.e., the solution to CCA or PLS), the corresponding115

cross-covariance matrix can be assembled making use of the116

same singular value decomposition (see Methods and Fig. S2).117

The joint covariance matrix for X and Y is then composed118

from the within- and between-set covariances (Fig. 1D) and119

the normal distribution associated with this joint covariance120

matrix constitutes our generative model for CCA and PLS.121

In the following we systematically vary the parameters122

on which the generative model depends and investigate their123

downstream effects on the stability of CCA and PLS solutions.124

Specifically, we vary the number of features (keeping the same125

number of features for both datasets for simplicity), the as-126

sumed between-set correlation, the power-laws describing the127

within-set variances (for PLS), and the number of samples128

drawn. Weight vectors are chosen randomly and constrained129

such that the ensuing X and Y scores explain at least half130

as much variance as an average principal component in their131

respective sets. For simplicity, we restrict our present analyses132

to a single between-set association mode. Of note, in all of the133

manuscript, “number of features” denotes the total number134

across both X and Y , i.e., px + py.135

Sample size dependence of estimation error. Using randomly136

sampled surrogate datasets from our generative model, we137

characterized the estimation error in multiple elements of138

CCA/PLS solutions. First, we asked whether a significant139

association can robustly be detected, quantified by statisti-140

cal power. To that end we calculate the association strength141

in each synthetic dataset as well as in 1000 permutations of142

sample labels, and calculate the probability that association143

strengths are stronger in permuted datasets, giving a p-value.144

We repeat this process, and estimate statistical power as the145

probability that the p-value is below α = 0.05 across 100 syn-146

thetic datasets drawn from the same normal distribution with147

given covariance matrix. For a sufficient number of samples148

that depends on the other parameter values statistical power149

eventually becomes 1 (Fig. 2A-B). Note that here we use150

“samples per feature” as an effective sample size measurement151

to account for the fact that datasets in practice can have152

widely varying dimensionalities (Figs. S3-S4). A typical value153

in the brain-behavior CCA/PLS literature is about 5 samples154

per feature (Fig. S5A), which is also marked in Fig. 2.155

Second, we evaluated the association strength (Fig. 2C-156

D). While the observed association strength converges to its157

true value for sufficiently large sample sizes, it consistently158

overestimates the true value and decreases monotonically with159

sample size. Moreover, for very small sample sizes, observed160

association strengths are very similarly high, independent of161

the true correlation (Fig. S6). Thus as above, a sufficient162

sample size, depending on other parameters of the covariance163

matrix, is needed to bound the error in the association strength.164

We also compared in-sample estimates for the association165

strength to cross-validated estimates. We found that cross-166

validated estimates underestimate the true value (Fig. S7A-B)167

to a similar degree as in-sample estimates overestimate it168

(Fig. S7C-D). Interestingly, the average of in-sample and169

cross-validated association strength was a better estimator170

than either of the two alone in our simulations (Fig. S7E-F).171

Finally, bootstrapped association strengths overestimated, on172

average, slightly more than in-sample estimates (Fig. S8A-B).173
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Fig. 2. Sample size dependence of CCA and PLS. For sufficiently large sample
sizes, statistical power to detect a non-zero correlation converges to 1 (A, B), between-
set covariances approach their assumed true value (C, D), and weight (E, F), score
(G, H), and loading (I, J) errors become close to 0. Left and right columns show
results for CCA and PLS, respectively. For all metrics, convergence depends on the
true between-set correlation rtrue and is slower if rtrue is low. Note in C, D) that
estimated between-set association strengths overestimate the true values. The true
value in C) is the indicated correlation, whereas in D) it is given by the indicated
correlation multiplied by the standard deviations of X and Y scores which depend
on the specific weight vectors. The dashed vertical line at 5 samples per feature
represents a typically used value (Fig. S5A).
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Third, CCA and PLS solutions provide weights that encode174

the nature of the association in each dataset. We quantify175

the corresponding estimation error as the cosine distance be-176

tween the true and estimated weights, separately for X and177

Y and taking the greater of the two. As the sign of weights is178

ambiguous in CCA and PLS it is chosen to obtain a positive179

correlation between observed and true weight. We found that180

weight error decreases monotonically with sample size (Fig.181

2E-F). Bootstrapped weight errors were again, on average,182

slightly larger than in-sample estimates (Fig. S8C-F), while183

the variability of individual weight elements across repeated184

datasets can be well approximated through bootstrapping (Fig.185

S8G-H).186

Fourth, CCA or PLS solutions provide scores which rep-187

resent a latent value assigned to each sample (e.g., subject).188

Applying true and estimated weights to common test data189

to obtain test scores, score error is quantified as 1 − Spear-190

man correlation between true and estimated scores. It also191

decreased with sample size (Fig. 2G-H).192

Finally, some studies report loadings, i. e. the correlations193

between original data features and CCA/PLS scores (Fig. S9).194

In practice, original data features are generally different from195

principal component scores, but as the relation between these196

two data representations cannot be constrained, we calculate197

all loadings here with respect to principal component scores.198

Moreover, to compare loadings across repeated datasets we199

calculate loadings for a common test set, as for CCA/PLS200

scores. The loading error is then obtained as 1 − Pearson201

correlation between test loadings and true loadings. Like202

other error metrics, it decayed with sample size (Fig. 2I-J).203

Interestingly, convergence for PLS is somewhat worse than for204

CCA across all metrics assessed in Fig. 2.205

Weight error and stability. Fig. 2 quantifies the effect of sam-206

pling error on various aspects of the model in terms of sum-207

mary statistics. We next focus on the error and stability of208

the weights, due to their centrality in CCA/PLS analysis in209

describing how features carry between-set association. First210

we illustrate how weight vectors are affected when typically211

used sample-to-feature ratios are used. For this illustration we212

set up a joint covariance matrix with a true between-set corre-213

lation of 0.3 and assuming 100 features per dataset, and then214

generated synthetic datasets with either 5 or 50 samples per215

feature. Using 5 samples per feature, estimated CCA weights216

varied so strongly that the true weight were not discernable217

in the confidence intervals (Fig. 3A). In contrast, with 50218

samples per feature the true weights became more resolved.219

For PLS, the confidence interval for weights estimated with220

5 or 50 samples per feature did not even align with the true221

weights (Fig. 3B) indicating that even more samples than for222

CCA should be used.223

We next assessed weight stability, i.e., the consistency of224

estimated weights across independent sample datasets. We225

quantified weight stability as the cosine similarity between226

weights obtained from two independently drawn datasets and227

averaged across pairs of datasets. When the datasets consisted228

of only few samples, the average weight stability was close to 0229

for CCA and eventually converged to 1 (i. e. perfect similarity)230

with more samples (Fig. 3C). PLS exhibited striking differ-231

ences from CCA: mean weight stability had a relatively high232

value even at low sample sample sizes where weight error is233

very high (Figs. 3D, 2F), with high variability across datasets.234
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Fig. 3. A large number of samples is required to obtain good weight estimates.
A) With rtrue = 0.3 and 100 features per dataset, CCA leads to large uncertainty
in weights when 5 samples per feature are used. With 50 samples per feature, on
the other hand, a much better estimate is possible. The 100 dimensions of the
weight vectors are shown along the x-axis, ordered according to the elements of
the true weight vector. B) For PLS even more samples are necessary. Note that
the confidence intervals for 5 and 50 samples per feature overlap almost entirely. C)
Weight stability, i. e. the average cosine similarity between weights across pairs of
repetitions, increases from very low values to 1 (identical weights) with more samples.
10 different covariance matrices were simulated and their individual similarity curves
overlap with the mean curve (solid). D) For PLS, 100 different covariance matrices
(faint dashed curves) have more variable similarity-curves than for CCA, but all
eventually converge to 1, as does their mean (solid). E-F) Sample sizes required to
obtain less than 10% weight errors are shown for CCA and PLS, depending on the
assumed true correlation rtrue and the total number of features in the data. Unless
rtrue is high, 100s to 1000s of samples are required, and more for PLS than for CCA.

Finally, to show the dependence of weight error on the 235

assumed true between-set correlation and the number of fea- 236

tures we estimated the number of samples required to obtain 237

less than 10% weight error (Fig. 3E-F). The required sample 238

size is higher for increasing number of features, and lower for 239

increasing true between-set correlation. More samples were 240

required for PLS than for CCA. We also observe that, by this 241

metric, required sample sizes can be much larger than typically 242

used sample sizes in CCA/PLS studies. 243

Weight PC1 bias in PLS. Figs. 3 and 2E-F show that at low 244

sample sizes, PLS weights exhibit, on average, high error but 245

also reasonably high stability. This combination suggests a 246

systemic bias in PLS weights toward a different axis than the 247

true latent axis of association. To gain further intuition of this 248

phenomenon, we first consider the case of both datasets com- 249
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prising 2 features each, so that weight vectors are 2-dimensional250

unit vectors lying on a circle. Setting rtrue = 0.3, we drew251

synthetic datasets from the normal distribution and performed252

CCA or PLS on these. When 50 samples per feature were253

used, all resulting weight vectors scattered tightly around the254

true weight vectors (Fig. 4A-B). With only 5 samples per255

feature, which is typical in CCA/PLS studies (Fig. S5A), the256

distribution was much wider. For CCA the circular histogram257

peaked around the true value. In contrast, for PLS the peak258

was shifted towards the first principal component axis when 5259

samples per feature were used.260

Next, we investigated how this weight bias toward the first261

principal component in PLS manifests more generally. We first262

considered an illustrative data regime (64 features/dataset,263

rtrue = 0.3). We quantified the PC bias as the cosine similarity264

between estimated weight vectors and a principal component265

axis. Compared to CCA, for PLS there was a strong bias266

toward the dominant PCs, even with a large number of samples267

(Fig. 4C,D). Note also, that the average PC bias in permuted268

datasets was similar to that in unpermuted datasets, for both269

CCA and PLS. Finally, these observations also held for datasets270

with differing number of features and true correlations. For271

PLS the weight vectors are biased toward the first principal272

component axis, compared to CCA, and more strongly than273

random weight vectors, particularly when few samples per274

feature were used to estimate them (Fig. 4F).275

Empirical brain-behavior data. Do these phenomena observed276

in synthetic data from our generative modeling framework also277

hold in empirical data? We focused on two state-of-the-art pop-278

ulation neuroimaging datasets: Human Connectome Project279

(HCP) (2) and UK Biobank (UKBB) (3). Both datasets pro-280

vide multi-modal neuroimaging data along with a wide range281

of behavioral and demographic measures, and both have been282

used in prior studies using CCA to map brain-behavior rela-283

tionships (3, 4, 28–32). HCP, comprising around 1200 subjects,284

is one of the lager neuroimaging datasets available and is of285

exceptional quality. We analyzed two neuroimaging modalities286

in the HCP dataset, resting-state functional MRI (fMRI) (in287

948 subjects) and diffusion MRI (dMRI) (in 1020 subjects).288

UKBB is a population-level study and, to our knowledge, the289

largest available neuroimaging dataset. We analyzed fMRI290

features from 20000 UKBB subjects. HCP and UKBB thereby291

provide two independent testbeds, across neuroimaging modal-292

ities and with large numbers of subjects, to investigate error293

and stability of CCA/PLS in brain-behavior data.294

After modality-specific preprocessing (see Methods), both295

datasets in each of the three analyses were deconfounded296

and reduced to 100 principal components (see Methods and297

Fig. S10), in agreement with prior CCA studies of HCP data298

(4, 28–32) (see Fig. S11 for a re-analysis of HCP functional299

connectivity vs. behavior in which a smaller number of prin-300

cipal components was selected according to an optimization301

procedure (33)). Functional connectivity features were ex-302

tracted from fMRI data and structural connectivity features303

were extracted from dMRI. Note that, as only a limited num-304

ber of samples were available in these empirical datasets, we305

cannot use increasingly more samples to determine how CCA306

or PLS converge with sample size (as we did with synthetic307

data above). Instead, we repeatedly subsampled the available308

data to varying sizes from 202 up to 80% of the available309

number of samples.310

tru
e

PC2

PC1
rtrue = 0.3, 2 ftrs/set

samples
per feature

50
5

CCA

A

tru
e

PC2

PC1
rtrue = 0.3, 2 ftrs/set

PLS

B

100 101

Principal component

0.1

0.5

W
eig

ht
 P

C 
bia

s

rtrue = 0.3, 64 ftrs/setC
random
5 samples/ftr
200 samples/ftr

synth
perm

100 101

Principal component

0.1

0.5
rtrue = 0.3, 64 ftrs/setD

101 102

Samples per feature

0.0

0.2

0.4
Av

g.
 w

eig
ht

 P
C1

 b
ias

(d
at

a 
 ra

nd
om

) rtrue =
0.1
0.3
0.5

E
synth
perm

101 102

Samples per feature

0.0

0.2

0.4

F

Fig. 4. PLS weights are biased toward first principal component axis, even in
the absence of an association. A-B) For illustration, we used a joint covariance
matrix assuming a true correlation of 0.3 between datasets and 2 features each for
both X and Y datasets. In this 2-dimensional setting weight vectors, scaled to unit
length, lie on a circle. Samples of indicated sizes were generated repeatedly from
the model. The histogram of estimated weights (for X) as a function of the angle on
the circle is shown. 50 samples per feature resulted in good estimates of the weight
vectors. 5 samples per feature gave good estimates in many cases but notably all
possible weight vectors occurred frequently. The estimation error was worse in PLS
where also the mode of the distribution deviated from the true value and was shifted
towards the first principal component axis when 5 samples per feature were used.
Dots near the border of the semi-circles indicate directional means of the distributions.
C-D) Another example with 64 features per dataset. Here, we define PC bias (on the
y-axis) as the cosine similarity between a weight vector and a principal component
axis. Compared to CCA (C), for PLS (D) there was a strong bias towards the dominant
PC axes. E-F) The bias towards the first principal component (y-axis) was stronger for
PLS (F) than for CCA (E) also for datasets with varying number of features and true
correlations. Shown is the relative PC1 bias across synthetic datasets with varying
number of features, relative to the expected PC1 bias of a randomly chosen vector
with dimension matched to each synthetic dataset.

We found that the first mode of association was statistically 311

significant for all three sets of data and for both CCA and 312

PLS. Association strengths decreased with increasing size of 313

the subsamples, but clearly converged only for the UKBB data. 314

Cross-validated association strengths estimates increased with 315

subsample size and, for UKBB, converged to the same value as 316

the in-sample size. Fig. 5A overlays reported CCA results from 317

other publications that used 100 features per set in HCP data, 318

which further confirms the decreasing trend of association 319

strength as a function of sample size. Weight stabilities (i. e., 320

the cosine similarities between weights estimated for different 321

subsamples of the same size) increased with sample size but 322
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Fig. 5. CCA and PLS analysis of empirical population neuroimaging datasets. We employed CCA (left 2 columns) and PLS (right 2 columns) to investigate multivariate
associations between A-D) Functional connectivity derived from resting-state functional MRI (fMRI) and behavior from the Human Connectome Project (HCP), E-H) Structural
connectivity derived from diffusion MRI (dMRI)and behavior in HCP data, and I-L) fMRI-derived resting-state functional connectivity and behavior in data from UK Biobank
(UKBB). All datasets were reduced to 100 principal components before CCA or PLS (see Methods for preprocessing details). Note the overall agreement of results between
different types of data (first and second row) and between data of similar nature from different sources and with different sample size (first and third row): i) For all datasets and
for both CCA and PLS a significant mode of association was detected. p-values were 0.001 for all 3 CCAs and 0.006, 0.001, 0.001 for PLS (top to bottom). ii) We subsampled
the available data to varying degree and estimated the association strength. Association strengths monotonically decreased with sample size (orange in column 1, green in
column 3). Association strengths for permuted data are shown in grey (with orange and green outlines in columns 1 and 3, respectively). Deviations of the orange and green
curves from the grey curves occur for sufficient sample sizes and correspond to significant p-values. Note how the curves clearly flatten for UKBB but not for HCP data where
the number of available subjects is much lower. The circle indicates the estimated value using all available data and the vertical bar in the same color below it denotes the
corresponding 95 % confidence interval obtained from permuted data. In A) we also overlaid reported canonical correlations from other studies that used HCP data reduced to
100 principal components. iii) Cross-validated association strengths are shown in red (column 1) and blue (column 3). They start deviating from values obtained in permuted
datasets (grey with red and blue outlines in columns 1 and 3, respectively) at around the same sample size as in-sample estimates do from their permuted datasets. The
triangle indicates the cross-validated association strength using all data and the vertical bar in the same color below it denotes the corresponding 95 % confidence interval
obtained from permuted data. Cross-validated association strengths were always lower than in-sample estimates and increased with sample size. For UKBB (but not yet for
HCP) cross-validated association strengths converged to the same value as the in-sample estimate. iv) Weight stability (column 2 and 4) reached values of around 0.8 - 0.9 in
subsamples using 80 % of the HCP data, whereas with 80 % of UKBB data weight stability was essentially 1 (i. e. identical weights for different subsamples of the same size).
Weight stability was defined as pairwise cosine similarity between weight estimates from repeated subsamples of same size. v). Weight PC1 bias was close to 0 (i. e. no overlap
with the first principal component axis) for CCA weights and CCA weights estimated from permuted data (column 2). In contrast, weight PC1 bias for PLS was substantially
higher. PC1 bias was defined as the maximum across the 2 datasets of the absolute value of the cosine similarity between weights and the first principal component axis.

reached values close to 1 (perfect similarity) only for UKBB323

data. Moreover, PC1 bias was close to 0 for CCA but markably324

larger for PLS weights. All these results were in agreement325

with analyses of synthetic data discussed above (Figs. 2-326

4). Altogether, we emphasize the overall similarity between327

CCA analyses of different data modalities and features (first328

and second row in Fig. 5) and data of similar nature from329

different sources (first and third row in Fig. 5). This suggests330

that sampling error is a major determinant in CCA and PLS331

outcomes and this is valid across imaging modalities and for332

independent data sources. Note also that stable CCA and333

PLS results with a large number of considered features can334

be obtained with sample sizes that become available with335

UKBB-level datasets.336

Samples per feature alone predicts published CCA strengths. We 337

next examined stability and association strengths in CCA 338

analyses of empirical datasets more generally. To that end we 339

performed an analysis of the published literature using CCA 340

with neuroimaging data to map brain-behavior relationships. 341

From 100 CCAs that were reported in 31 publications (see 342

Methods), we extracting the number of samples, number of 343

features, and association strengths. As the within-set variance 344

spectrum is not typically reported, but would be required to 345

assess PLS results (as described above), we did not perform 346

such an analysis for PLS. 347

Most studies used less than 10 samples per feature (Fig. 348

6A and S5A). Overlaying reported canonical correlations as 349

a function of samples per feature on top of predictions from 350

our generative model shows that most published CCAs we 351

compiled are compatible with a range of true correlations, 352
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Fig. 6. CCAs reported in the literature might often be unstable. A) Canonical
correlations and the number of samples per features are extracted from the literature
and overlaid on predictions from the generative model. Many studies employed
a small number of samples per feature (cf. also Fig. S5A) and reported a large
canonical correlation. These studies fall in the top-left corner of the plot, where
predictions from the generative model for rtrue < 0.5 and also the null-data (having
no between-set correlation, resulting from permuted datasets) are indistinguishable
(see also Fig. S6A). In fact, the reported canonical correlation can be predicted from
the used number of samples per feature alone using linear regression (R2 = 0.83).
We also estimated the weight error (encoded in the colorbar) for each reported CCA
(details are illustrated in Fig. S12). The farther away a CCA lies from the predictions
for permuted data the lower the mean-estimated weight error (cf. Fig. S5B). B)
The distribution of estimated weight errors for each reported CCA is shown along
the y-axis. For many studies weight errors could be quite large, suggesting that
conclusions drawn from interpreting weights might not be robust.

from about 0.5 down to 0 (Fig. 6A). Interestingly, despite353

the fact that these studies investigated different questions354

using different datasets and modalities, the reported canonical355

correlation could be well predicted simply by the number of356

samples per feature alone (R2 = 0.83).357

We next asked whether weight errors can be estimated358

from published CCAs. As these are unknown in principle, we359

estimated them using our generative modeling framework. We360

did this by (i) generating synthetic datasets of the same size361

as a given empirical dataset, and sweeping through assumed362

true correlations between 0 and 1 (ii) selecting those synthetic363

datasets for which the estimated canonical correlation matches364

the empirically observed one, and (iii) using the weight errors365

in these matched synthetic datasets as a proxy for the weight366

error in the empirical dataset (Fig. S12). This resulted in367

a distribution of weight errors across the matching synthetic368

datasets for each published CCA study that we considered.369

The mean of these distributions are overlaid in color in Fig.370

6A and the range of the distributions is shown in Fig. 6B. The371

mean weight error falls off roughly with the distance to the372

correlation-vs-samples/feature curve for permuted data (see373

also Fig. S5B). Altogether, these analyses suggest that many374

published CCA studies might have unstable feature weights375

due to an insufficient sample size.376

Benefit of cross-loadings in PLS. Given the instability associ-377

ated with estimated weight vectors, we investigated whether378

other measures provide better feature profiles. Specifically, we379

compared loadings and cross-loadings. Cross-loadings are the380

correlations across samples between CCA/PLS scores of one381

dataset with the original data features of the other dataset382

(unlike loadings, which are the correlations between CCA/PLS383

scores and original features of the same dataset). In CCA,384

they are collinear (see Methods and Fig. S13A) and to obtain385

estimates that have at most 10% loading or cross-loading386
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Fig. 7. For PLS cross-loadings provide more stable estimates of feature pro-
files than loadings. Samples-per-feature required to obtain less than 10% error in
either loadings or cross-loadings are compared. Shown here is their relative differ-
ence, i. e. the required sample-per-features for cross-loadings minus for loadings,
divided by the required samples-per-feature for loadings. A) Relative differences were
small for CCA. B) However, for PLS less samples were required with cross-loadings
than with loadings to obtain the same error level.

error required about the same number of samples (Fig. 7A). 387

For PLS, on the other hand, true loadings and cross-loadings 388

were, albeit not collinear still very similar (Fig. S13B), but 389

cross-loadings could be estimated to within 10% error with 390

about 20% to 50% less samples as loadings in our simulations 391

(Fig. 7B). 392

Calculator for required sample size. In both synthetic and em- 393

pirical datasets we have seen that sample size plays a critical 394

role to guarantee stability and interpretability of CCA and 395

PLS, and that many existing applications may suffer from 396

a lack of samples. How many samples are required, given 397

particular dataset properties? We answer this question with 398

the help of GEMMR, our generative modeling framework de- 399

scribed above. Specifically, we suggest to base the decision 400

on a combination of criteria, by bounding statistical power 401

as well as relative error in association strength, weight error, 402

score error and loading error at the same time. Requiring at 403

least 90% power and admitting at most 10% error for the 404

other metrics, we determined the corresponding sample sizes 405

in synthetic datasets by interpolating the curves in Fig. 2 (see 406

Fig. S14 and Methods). The results are shown in Fig. 8 (see 407

also Figs. S15-S16). Assuming, for example, that the decay 408

constants of the variance spectra satisfy ax + ay = −2 for 409

PLS, several hundreds to thousands of samples are necessary 410

to achieve the indicated power and error bounds when the 411

true correlation is 0.3 (Fig. 8A). More generally, the required 412

sample size per feature as a function of the true correlation 413

roughy follows a power-law dependence, with a strong increase 414

in required sample size when the true correlation is low (Fig. 415

8B). Interestingly, PLS generally needs more samples than 416

CCA. As mentioned above, accurate estimates of the associa- 417

tion strength alone (as opposed to power, association strength, 418

weight, score and loading error at the same time) could be 419

obtained in our simulations with fewer samples: by averaging 420

the in-sample with a cross-validated estimate (Fig. S7E-F). 421

Moreover, accurate estimates of a PLS feature profile required 422

fewer samples when assessed as cross-loadings (Fig. 7B). 423

Given the complexity and computational expense to gener- 424

ate and analyze enough synthetic datasets to obtain sample 425

size estimates in the way described above, we finally asked 426

whether we could formulate a concise, easy-to-use description 427
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Fig. 8. Required sample sizes. Sample sizes to obtain at least 90 % power as
well as at most 10 % error for the association strength, weight, scores and loadings.
Shown PLS estimates are constrained by the within-set variance spectrum (here
ax + ay = −2, cf. Fig. S16 for other values). A) Assuming a true between-set
correlation of rtrue = 0.3 100s to several 1000s of samples are required to reach
target power and error levels. See Fig. S15A-B for other values of rtrue. B) The
required number of samples divided by the total number of features in X and Y

scales with rtrue. For rtrue = 0.3 about 50 samples per feature are necessary
to reach target power and error levels in CCA, which is much more than typically
used (cf. Fig. S5A). More features are necessary for PLS than CCA, and if the true
correlation is smaller. Every point for a given rtrue represents a different number of
features and is slightly jittered for visibility.

of the relationship between model parameters and required428

sample size. To that end, we fitted a linear model to the429

logarithm of the required sample size, using logarithms of430

total number of features and true correlation as predictors431

(Figs. S17). For PLS, we additionally included a predictor432

for the decay constant of the within-set variance spectrum,433

|ax +ay|. Using split-half predictions to validate the model, we434

find very good predictive power for CCA (Fig. S17B), while it435

is somewhat worse for PLS (Fig. S17C). When we added an436

additional predictor to the PLS model, measuring the fraction437

of explained variance along the weight vectors in both datasets,438

predictions improved notably (Fig. S17D), showing that the439

linear model approach is also suitable for PLS in principle.440

As the explained variance along the true weight vectors is441

unobservable in practice, though, we propose to use the linear442

model without the explained-variance-predictor.443

Discussion444

We characterized CCA and PLS through a parameterized445

generative modeling framework. CCA and PLS require a446

sufficient number of samples to work as intended and the447

required sample size depends on the number of features in448

the data, the assumed true correlation, and (for PLS) the449

principal component variance spectrum for each dataset.450

Generative model for CCA and PLS. At least for CCA, the dis-451

tribution of sample canonical correlations has been reported to452

be intractable, even for normally distributed data (34). Thus,453

a generative model is an attractive alternative to investigate454

sampling properties. Our generative model for CCA and PLS455

made it possible to investigate all aspects of a solution, beyond456

just the canonical correlations, at the cost of higher compu-457

tational expenses. For example, the generative model can458

be used to systematically explore parameter dependencies, to459

assess stability, to calculate required sample sizes in new stud-460

ies, and to estimate weight stability in previously published461

studies. While this generative model was developed for CCA462

and PLS, it can also be used to investigate related methods463

like sparse variants (35, 36). 464

Pitfalls in CCA and PLS. Association strengths can be overesti- 465

mated and, at least for CCA when the number of samples per 466

feature as well as the true correlation are low, observed canon- 467

ical correlations can be compatible with a wide range of true 468

correlations, down to zero (Fig. S6). Estimated weight vectors 469

do not need to resemble the true weights when the number 470

of samples is low and can overfit, i. e. vary strongly between 471

sampled datasets (Fig. 3), affecting significantly their inter- 472

pretability and generalizability. Furthermore, PLS weights are 473

also biased away from the true value toward the first principal 474

component axis (Fig. 4). As a consequence, similarity of 475

weights from two different samples of the population is nec- 476

essary but not sufficient to infer replicability. The PC1 bias 477

also existed for null data. Therefore, estimated weights that 478

strongly resemble the first principal component axis need not 479

indicate an association, but could instead indicate the absence 480

of an association, or insufficient sample size. Importantly, we 481

have shown that the same pitfalls also appear in empirical 482

data. 483

Differences between CCA and PLS. First and foremost, CCA 484

and PLS have different objectives: while CCA finds weighted 485

composites with the strongest possible correlation between 486

datasets, PLS maximizes their covariance. When features do 487

not have a natural commensurate scale, CCA can be attractive 488

due to its scale invariance (see Fig. 1 and Methods). In 489

situations where both analyses make sense, PLS comes with 490

the additional complication that estimated weights are biased 491

towards the first principal component axis. Moreover, our 492

analyses suggest that the required number of samples for 493

PLS depends on the within-set principal component variance 494

spectrum and is generally higher than for CCA. Based on 495

these arguments, CCA might often be preferable to PLS. 496

Sample size calculator for CCA and PLS. Previous literature, 497

based on small numbers of specific datasets or Monte-Carlo 498

simulations, has suggested using between 10 and 70 samples 499

per feature for CCA (21, 25, 27). Beyond that, our calculator 500

is able to suggest sample sizes for the given characteristics 501

of a dataset, and can do so for both CCA and PLS. As an 502

example, consider the UKBB data in Fig. 5. Both in-sample 503

and cross-validated CCA association strengths converge to 504

about 0.5. Fig. 8B then suggests to use about 20 samples per 505

feature, i. e. 4000 samples, to obtain at least 90% power and 506

at most 10% error in other metrics. This is compatible with 507

Fig. 5J: at 4000 subjects weight stability is about 0.8 (note 508

that weight stability measures similarity of weights between 509

different repetitions of the dataset; we expect the similarity 510

of a weight vector to the true weight vector—which is the 511

measure going into the sample size calculation—to be slightly 512

higher on average). Our calculator is made available as an 513

open-source Python package named GEMMR (Generative 514

Modeling of Multivariate Relationships). 515

Brain-behavior associations. CCA and PLS have become pop- 516

ular methods to reveal associations between neuroimaging and 517

behavioral measures (3, 4, 17, 18, 23, 29–32, 37). The main 518

interest in these applications lies in interpreting weights or 519

loadings to understand the profiles of neural and behavioral 520

features carrying the brain-behavior realtionship. We have 521

shown, however, that stability and interpretability of weights 522
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or loadings are contingent on a sufficient sample size which,523

in turn, depends on the true between-set correlation.524

How strong are true between-set correlations? While this525

depends on the data at hand, and is in principle unknown526

a priori, our analyses provide estimates in the case of brain-527

behavior associations. First, we saw in UKBB data that both528

in-sample and cross-validated canonical correlations converged529

to a value of around 0.5. As the included behavioral measures530

comprised a wide range of categories (cognitive, physical, life-531

style measures and early life factors) this canonical correlation532

is probably more on the upper end, such that brain-behavior533

associations probing more specialized modes are likely lower.534

Second, we saw in a literature analysis of brain-behavior CCAs535

that reported canonical correlations as a function of sample-536

to-feature ratios largely follow the trends predicted by our537

generative model, despite different datasets investigated in538

each study. We also saw that few studies which had 10-20539

samples per feature reported canonical correlations around540

0.5-0.7, while most studies with substantially more than 10541

samples per feature appeared to be compatible only with542

values ≤ 0.3. In this way, we conclude that true canonical543

correlations in brain-behavior applications are probably not544

greater than 0.3 in many cases.545

Assuming a true between-set correlation of 0.3, our gen-546

erative model implies that about 50 samples per feature are547

required at minimum to obtain stability in CCA results. We548

have shown that many published brain-behavior CCAs do549

not meet this criterion. Moreover, in HCP data we saw clear550

signs that the available sample size was too small to obtain551

stable solutions—despite that the HCP data comprised around552

1000 subjects which is one of the largest and highest-quality553

neuroimaging datasets available to date. On the other hand,554

with UKBB data, where we used 20000 subjects, CCA and555

PLS results appeared to have converged. As the resources556

required to collect samples of this size go well beyond what is557

available to typical research groups, this observation supports558

the accruement of datasets that are shared widely (38, 39).559

Generalizability Small sample and effect sizes have been iden-560

tified as challenges for neuroimaging that impact replicability561

and generalizability (40, 41). Here, we have considered stabil-562

ity of CCA/PLS analyses and found that observed association563

strengths decrease with used sample-per-feature ratio. Simi-564

larly, a decrease in reported effect size with increasing sample565

size has been reported in meta-analyses of various classifica-566

tion tasks of neuroimaging measures (42). These sample-size567

dependences of the observed effect sizes are an indication of568

instability.569

A judicious choice of sample size, together with an esti-570

mate of the effect size, are thus advisable at the planning571

stage of an experiment or CCA/PLS analysis. Our generative572

modeling framework provide estimates for both. Beyond that,573

non-biological factors—such as batch or site effects (43–46),574

scan duration (47), flexibility in the data processing pipeline575

(48, 49)—certainly contribute to unstable outcomes and could576

be addressed in extensions of the generative model. External577

validation with separate datasets is also necessary to establish578

generalizability of findings beyond the dataset under investi-579

gation.580

Limitations and future directions. For tractability it was neces-581

sary to make a number of assumptions in our study. Except for582

Fig. 6 it was assumed that both datasets had an equal number583

of features (but see Fig. S4 where we used different number 584

of features for the two datasets). We also assumed that data 585

were normally distributed, which is often not true in practice. 586

For example, cognitive scores are commonly recorded on an 587

ordinal scale. To address that, we used empirical datasets and 588

found similar sample size dependencies as in synthetic datasets. 589

In an investigation of the stability of CCA for non-normal data 590

varying kurtosis had minimal effects (27). We then assumed 591

the existence of a single cross-modality axis of association, 592

but in practice several ones might be present. In that latter 593

case, theoretical considerations suggest that even larger sample 594

sizes are needed (50, 51). Moreover, we assumed that data are 595

described in a principal component (PC) basis. In practice, 596

however, PCs and the number of PCs need to be estimated, 597

too. This introduces an additional uncertainty, although, pre- 598

sumably, of lesser influence than the inherent sampling error 599

in CCA and PLS. Furthermore, we used “samples per feature” 600

as an effective sample size parameter to account for the fact 601

that datasets in practice have very different dimensionalities. 602

Figs. S3-S4 show that power and error metrics for CCA are 603

parameterized well in terms of “samples per feature”, whereas 604

for PLS it is only approximate. Nonetheless, as “samples 605

per feature” is arguably most straightforward to interpret, we 606

presented results in terms of “samples per feature” for both 607

CCA and PLS. 608

Several related methods have been proposed to potentially 609

circumvent shortcomings of standard CCA and PLS (see (19) 610

for a recent review). Regularized or sparse CCA or PLS (35, 36) 611

have been designed to mitigate the problem of small sample 612

sizes. They modify the modeling objective by introducing a 613

penalty for the elements of the weight vectors, encouraging 614

them to “shrink” to smaller values. This modification has the 615

goal to obtain more accurate predictions, but will also bias the 616

solutions away from their true values. (We assume that, in 617

general, the true weight vectors are non-sparse.) Conceptually, 618

thus, these variants follow more a “predictive” rather than 619

“inferential” modeling goal (52, 53). Our analysis pipeline 620

evaluated with a commonly used sparse CCA method (35) sug- 621

gested that in some situations–namely, high dimensionalities 622

and low true correlations—fewer samples were required than 623

for CCA to obtain the same bounds on evaluation metrics (Fig. 624

S18). Nonetheless, although sparse CCA can in principle be 625

used with fewer samples than features, these required sample 626

sizes for sparse CCA were still many times the number of 627

features: when rtrue = 0.3, for example, 35–50 (depending on 628

the number of features) samples per feature were required. We 629

note, however, that a complete characterization of sparse CCA 630

or PLS methods was beyond the scope of this manuscript. 631

PLS has ben compared to sparse CCA in a setting with more 632

features than samples and it has been concluded that the for- 633

mer (latter) performs better when having fewer (more) than 634

about 500 features per sample (54). We note that sparse 635

methods are also often used in classification tasks, where they 636

have been observed to provide better prediction but less stable 637

weights (55, 56), which indicates a trade-off between prediction 638

and inference (55). Correspondingly, it has been suggested to 639

consider weight stability as a criterion in sparsity parameter 640

selection (55, 57, 58). 641

Moreover, whereas CCA and PLS are restricted to discov- 642

ering linear relationships between two datasets, there exist 643

non-linear extensions, such as kernel (59, 60), deep (61) or non- 644
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parametric (62) CCA, as well as extensions to multiple datasets645

(63). Due to their increased expressivity, and therefore capac-646

ity to overfit, we expect them to require even larger sample647

sizes. For classification, kernel and deep-learning methods648

have been compared to linear methods, using neuroimaging-649

derived features as input (64). Accuracy was found similar for650

kernel, deep-learning and linear methods and also had a similar651

dependence on sample size, using up to 8000 subjects. Finally,652

we note that a relative of PLS, PLS regression, treats the two653

datasets asymetrically, deriving scores from one dataset to654

predict the other (5, 8, 9).655

The number of features in the datasets was an important656

determinant for stability. Thus, methods for dimensionality657

reduction hold great promise. On the one hand, there are658

data-driven methods that, for example, select the number659

of principal components in a way that takes the between-set660

correlation into account (33). Applying this method to HCP661

data we saw that the reduced number of features the method662

suggests leads to slightly better convergence (Fig. S11). On663

the other hand, previous knowledge could be used to preselect664

the features hypothesized to be most relevant for the question665

at hand (65–67).666

Recommendations. We end with 10 recommendations for us-667

ing CCA or PLS in practice (summarized in Tab. S1).668

1. Sample size and the number of features in the datasets669

are crucial determinants for stability. Therefore, any form670

of dimensionality reduction as a preprocessing step can671

be useful, as long as it preserves the features that carry672

the between-set association. PCA is a popular choice and673

can be combined with a consideration for the between-set674

correlation (33).675

2. Significance tests used with CCA and PLS usually test the676

null hypothesis that the between-set association strength677

is 0. This is a different problem than estimating the678

strength or the nature of the association (68, 69). For679

CCA we find that the number of samples required to680

obtain 90% power at significance level α = 0.05 is lower681

than to obtain stable association strengths or weights,682

whereas for PLS the numbers are about commensurate683

with required sample sizes for other metrics (Fig. S15C-684

D). As significant results can also be obtained even when685

power is low, detecting a significant mode of association686

with either CCA or PLS does not in general indicate that687

association strengths or weights are stable.688

3. CCA and PLS overestimate the association strength for689

small sample sizes, and we found that cross-validated690

estimators underestimate it. Interestingly, the average of691

the in-sample and the cross-validated association strength692

was a much better estimator in our simulations.693

4. The main interest of CCA/PLS studies is often the nature694

of the between-set association, which is encoded in the695

weight vectors, loadings and cross-loadings. Every CCA696

and PLS will provide weights, loadings and cross-loadings,697

but they may be inaccurate or unstable if an insufficient698

number of samples was used for estimation. In our PLS699

simulations, cross-loadings required less samples than700

weights and loadings to obtain an error of at most 10%.701

5. PLS weights that strongly resemble the first principal702

component axis can indicate that either no association703

exist or that an insufficient number of samples was used.704

6. As a side effect of this bias of PLS weights towards the first 705

principal component axis, PLS weights can appear stable 706

across different sample sets, although they are inaccurate. 707

7. Performing CCA or PLS on subsamples of the data can 708

indicate stability, if very similar results are obtained for 709

varying number of samples used, and compared to using 710

all data. 711

8. Bootstrapped estimates were useful in our simulations for 712

assessing the variability or precision of elements of the 713

weight vectors. Estimates were, however, not accurate: 714

they were as biased as in-sample estimates, i. e. they 715

overestimated association strengths, and both associa- 716

tion strength and weight error had a similar sample size 717

dependence as in-sample estimates. 718

9. For CCA and PLS analyses in the literature it can be 719

difficult to deduce what datasets precisely were used. We 720

recommend to always explicitly state the used sample size, 721

number of features in both datasets, and obtained asso- 722

ciation strength. Moreover, as we have argued above, to 723

assess a PLS analysis the within-set principal component 724

variances are required and are thus useful to report. 725

10. CCA or PLS requires a sufficient number of samples for 726

reliability. Sample sizes can be calculated using GEMMR, 727

the accompanying software package. An assumed but 728

unknown value for the true between-set correlation is 729

needed for the calculation. Our literature survey suggests 730

that between-set correlations are probably not greater 731

than 0.3 in many cases. Assuming a true correlation of 732

0.3 results in a rule of thumb that CCA requires about 50 733

samples per feature. The number for PLS is higher and 734

also depends on the within-set variance spectrum. 735

Conclusion. We have presented a parameterized generative 736

modeling framework for CCA and PLS. It allows analysis of 737

the stability of CCA and PLS estimates, prospectively and 738

retrospectively. Exploiting this generative model, we have 739

seen that a number of pitfalls exist for using CCA and PLS. 740

In particular, we caution against interpreting CCA and PLS 741

models when the available sample size is low. We have also 742

shown that CCA and PLS in empirical data behave similar to 743

the predictions of the generative model. Sufficient sample sizes 744

depending on characteristics of the data are suggested and 745

can be calculated with the accompanying software package. 746

Altogether, our analyses provide guidelines for using CCA and 747

PLS in practice. 748

Materials and Methods 749

Materials and methods are summarized in the SI appendix. 750

ACKNOWLEDGMENTS. This research was supported by 751

NIH grants R01MH112746 (J.D.M.), R01MH108590 (A.A.), 752

R01MH112189 (A.A.), U01MH121766 (A.A.), and P50AA012870 753

(A.A.); Wellcome Trust grant 217266/Z/19/Z (S.S.); a SFARI Pilot 754

Award (J.D.M., A.A.); DFG research fellowship HE 8166/1-1 (M.H.), 755

Medical Research Council PhD Studentship UK MR/N013913/1 756

(S.W.), NIHR Nottingham Biomedical Research Centre (A.M.). 757

Data were provided by the Human Connectome Project, WU-Minn 758

Consortium (Principal Investigators: David Van Essen and Kamil 759

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Cen- 760

ters that support the NIH Blueprint for Neuroscience Research; and 761

by the McDonnell Center for Systems Neuroscience at Washington 762

University. Data were also provided by the UK Biobank under 763

10 | Helmer et al.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


Project 43822. In part, computations were performed using the764

University of Nottingham’s Augusta HPC service and the Precision765

Imaging Beacon Cluster.766

1. Biswal BB, et al. (2010) Toward discovery science of human brain function. Proceedings767

of the National Academy of Sciences 107(10):4734–4739. Publisher: National Academy of768

Sciences Section: Biological Sciences.769

2. Van Essen DC, et al. (2013) The WU-Minn Human Connectome Project: An overview. Neu-770

roImage 80:62–79.771

3. Miller KL, et al. (2016) Multimodal population brain imaging in the UK Biobank prospective772

epidemiological study. Nature Neuroscience 19(11):1523–1536.773

4. Smith SM, et al. (2015) A positive-negative mode of population covariation links brain con-774

nectivity, demographics and behavior. Nature Neuroscience 18(11):1565–1567.775

5. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011) Partial Least Squares (PLS) methods776

for neuroimaging: A tutorial and review. NeuroImage 56(2):455–475.777

6. Wang HT, et al. (2020) Finding the needle in a high-dimensional haystack: Canonical corre-778

lation analysis for neuroscientists. NeuroImage 216:116745.779

7. Hotelling H (1936) Relations Between Two Sets of Variates. Biometrika 28(3/4):321–377.780

8. Rosipal R, Krämer N (2006) Overview and Recent Advances in Partial Least Squares in781

Subspace, Latent Structure and Feature Selection, Lecture Notes in Computer Science, eds.782

Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J. (Springer Berlin Heidelberg), pp. 34–51.783

9. Abdi H, Williams LJ (2013) Partial Least Squares Methods: Partial Least Squares Correlation784

and Partial Least Square Regression in Computational Toxicology, eds. Reisfeld B, Mayeno785

AN. (Humana Press, Totowa, NJ) Vol. 930, pp. 549–579.786

10. Sherry A, Henson RK (2005) Conducting and Interpreting Canonical Correlation Analysis in787

Personality Research: A User-Friendly Primer. Journal of Personality Assessment 84(1):37–788

48.789

11. Reyment RA, Bookstein FL, Mckenzie KG, Majoran S (1988) Ecophenotypic variation in Mu-790

tilus pumilus (Ostracoda) from Australia, studied by canonical variate analysis and tensor791

biometrics. Journal of Micropalaeontology 7(1):11–20. Publisher: Copernicus GmbH.792

12. Tabachnick RE, Bookstein FL (1990) The Structure of Individual Variation in Miocene Globoro-793

talia. Evolution 44(2):416–434. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-794

5646.1990.tb05209.x.795

13. Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-based796

brain–computer interface using a canonical correlation analysis method. Journal of Neural797

Engineering 6(4):046002.798

14. Mazerolles G, Devaux MF, Dufour E, Qannari EM, Courcoux P (2002) Chemometric methods799

for the coupling of spectroscopic techniques and for the extraction of the relevant information800

contained in the spectral data tables. Chemometrics and Intelligent Laboratory Systems801

63(1):57–68.802

15. Statheropoulos M, Vassiliadis N, Pappa A (1998) Principal component and canonical correla-803

tion analysis for examining air pollution and meteorological data. Atmospheric Environment804

32(6):1087–1095.805

16. Le Floch E, et al. (2012) Significant correlation between a set of genetic polymorphisms and806

a functional brain network revealed by feature selection and sparse Partial Least Squares.807

NeuroImage 63(1):11–24.808

17. Ziegler G, Dahnke R, Winkler AD, Gaser C (2013) Partial least squares correlation of multi-809

variate cognitive abilities and local brain structure in children and adolescents. NeuroImage810

82:284–294.811

18. Kebets V, et al. (2019) Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic812

Dimensions of Psychopathology. Biological Psychiatry.813

19. Zhuang X, Yang Z, Cordes D (2020) A technical review of canonical correlation analysis for814

neuroscience applications. Human Brain Mapping p. hbm.25090.815

20. Weinberg SL, Darlington RB (1976) Canonical Analysis when Number of Variables is Large816

Relative to Sample Size. Journal of Educational Statistics 1(4):313–332.817

21. Thompson B (1990) Finding a Correction for the Sampling Error in Multivariate Measures of818

Relationship: A Monte Carlo Study. Educational and Psychological Measurement 50(1):15–819

31.820

22. Lee HS (2007) Canonical Correlation Analysis Using Small Number of Samples. Communi-821

cations in Statistics - Simulation and Computation 36(5):973–985.822

23. Dinga R, et al. (2019) Evaluating the evidence for biotypes of depression: Methodological823

replication and extension of Drysdale et al. (2017). NeuroImage: Clinical p. 101796.824

24. Thorndike RM, Weiss DJ (1973) A study of the stability of canonical correlations and canoni-825

cal components. Educational and Psychological Measurement 33(1):123–134.826

25. Barcikowski RS, Stevens JP (1975) A Monte Carlo Study of the Stability of Canonical Corre-827

lations, Canonical Weights and Canonical Variate-Variable Correlations. Multivariate Behav-828

ioral Research 10(3):353–364.829

26. Strand KH, Kossman S (2000) Further Inquiry into the Stabilities of Standardized and Struc-830

ture Coefficients in Canonical and Discriminant Analyses.831

27. Leach L, Henson R (2014) Bias and Precision of the Squared Canonical Correlation Coeffi-832

cient Under Nonnormal Data Condition. Journal of Modern Applied Statistical Methods 13(1).833

28. Rahim M, Thirion B, Bzdok D, Buvat I, Varoquaux G (2017) Joint prediction of multiple scores834

captures better individual traits from brain images. NeuroImage 158:145–154.835

29. Bijsterbosch JD, et al. (2018) The relationship between spatial configuration and functional836

connectivity of brain regions. eLife 7:e32992.837

30. Bijsterbosch JD, Beckmann CF, Woolrich MW, Smith SM, Harrison SJ (2019) The relationship838

between spatial configuration and functional connectivity of brain regions revisited. eLife839

8:e44890.840

31. Li J, et al. (2019) Topography and behavioral relevance of the global signal in the human841

brain. Scientific Reports 9(1):1–10.842

32. Han F, Gu Y, Brown GL, Zhang X, Liu X (2020) Neuroimaging contrast across the corti-843

cal hierarchy is the feature maximally linked to behavior and demographics. NeuroImage844

215:116853.845

33. Song Y, Schreier PJ, Ramírez D, Hasija T (2016) Canonical correlation analysis of high-846

dimensional data with very small sample support. Signal Processing 128:449–458. 847

34. Winkler AM, Renaud O, Smith SM, Nichols TE (2020) Permutation Inference for Canonical 848

Correlation Analysis. NeuroImage p. 117065. 849

35. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications 850

to sparse principal components and canonical correlation analysis. Biostatistics 10(3):515– 851

534. 852

36. Tenenhaus A, Tenenhaus M (2011) Regularized Generalized Canonical Correlation Analysis. 853

Psychometrika 76(2):257. 854

37. Drysdale AT, et al. (2017) Resting-state connectivity biomarkers define neurophysiological 855

subtypes of depression. Nature Medicine 23(1):28–38. 856

38. Eickhoff S, Nichols TE, Van Horn JD, Turner JA (2016) Sharing the wealth: Neuroimaging 857

data repositories. NeuroImage 124:1065–1068. 858

39. Nichols TE, et al. (2017) Best practices in data analysis and sharing in neuroimaging using 859

MRI. Nature Neuroscience 20:299–303. 860

40. Button KS, et al. (2013) Power failure: why small sample size undermines the reliability of 861

neuroscience. Nature Reviews Neuroscience 14(5):365–376. 862

41. Poldrack RA, et al. (2017) Scanning the horizon: towards transparent and reproducible neu- 863

roimaging research. Nature Reviews Neuroscience 18(2):115–126. 864

42. Varoquaux G (2018) Cross-validation failure: Small sample sizes lead to large error bars. 865

NeuroImage 180:68–77. 866

43. Leek JT, et al. (2010) Tackling the widespread and critical impact of batch effects in high- 867

throughput data. Nature Reviews Genetics 11(10):733–739. Number: 10 Publisher: Nature 868

Publishing Group. 869

44. Chen J, et al. (2014) Exploration of scanning effects in multi-site structural MRI studies. Jour- 870

nal of Neuroscience Methods 230:37–50. 871

45. Shinohara RT, et al. (2017) Volumetric Analysis from a Harmonized Multisite Brain MRI Study 872

of a Single Subject with Multiple Sclerosis. American Journal of Neuroradiology 38(8):1501– 873

1509. Publisher: American Journal of Neuroradiology Section: ADULT BRAIN. 874

46. Garcia-Dias R, et al. (2020) Neuroharmony: A new tool for harmonizing volumetric MRI data 875

from unseen scanners. NeuroImage p. 117127. 876

47. Noble S, et al. (2017) Multisite reliability of MR-based functional connectivity. NeuroImage 877

146:959–970. 878

48. Carp J (2012) On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility 879

of fMRI Experiments. Frontiers in Neuroscience 6. Publisher: Frontiers. 880

49. Botvinik-Nezer R, et al. (2020) Variability in the analysis of a single neuroimaging dataset by 881

many teams. Nature pp. 1–7. Publisher: Nature Publishing Group. 882

50. Lawley DN (1959) Tests of Significance in Canonical Analysis. Biometrika 46(1/2):59–66. 883

51. Loukas A (2017) How close are the eigenvectors of the sample and actual covariance matri- 884

ces? in Proceedings of the 34th International Conference on Machine Learning - Volume 70. 885

(JMLR.org), Vol. 70, pp. 2228–2237. 886

52. Shmueli G (2010) To Explain or to Predict? Statistical Science 25(3):289–310. 887

53. Bzdok D, Ioannidis JPA (2019) Exploration, Inference, and Prediction in Neuroscience and 888

Biomedicine. Trends in Neurosciences 42(4):251–262. 889

54. Grellmann C, et al. (2015) Comparison of variants of canonical correlation analysis and partial 890

least squares for combined analysis of MRI and genetic data. NeuroImage 107:289–310. 891

55. Rasmussen PM, Hansen LK, Madsen KH, Churchill NW, Strother SC (2012) Model sparsity 892

and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition 893

45(6):2085–2100. 894

56. Varoquaux G, et al. (2017) Assessing and tuning brain decoders: Cross-validation, caveats, 895

and guidelines. NeuroImage 145:166–179. 896

57. Baldassarre L, Pontil M, Mourão-Miranda J (2017) Sparsity Is Better with Stability: Combining 897

Accuracy and Stability for Model Selection in Brain Decoding. Frontiers in Neuroscience 11. 898

Publisher: Frontiers. 899

58. Mihalik A, et al. (2020) Multiple Holdouts With Stability: Improving the Generalizability of Ma- 900

chine Learning Analyses of Brain–Behavior Relationships. Biological Psychiatry 87(4):368– 901

376. 902

59. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical Correlation Analysis: An 903

Overview with Application to Learning Methods. Neural Computation 16(12):2639–2664. 904

60. Akaho S (2006) A kernel method for canonical correlation analysis. arXiv preprint. 905

61. Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep Canonical Correlation Analysis in Pro- 906

ceedings of the 30th International Conference on Ma- chine Learning. (Atlanta, Georgia, 907

USA), Vol. 28, p. 9. 908

62. Michaeli T, Wang W, Livescu K (2016) Nonparametric Canonical Correlation Analysis. 909

arXiv:1511.04839 [cs, stat]. arXiv: 1511.04839. 910

63. Kettenring JR (1971) Canonical analysis of several sets of variables. Biometrika 58(3):433– 911

451. Publisher: Oxford Academic. 912

64. Schulz MA, et al. (2019) Deep learning for brains?: Different linear and nonlinear scaling in 913

UK Biobank brain images vs. machine-learning datasets. bioRxiv p. 757054. Publisher: Cold 914

Spring Harbor Laboratory Section: New Results. 915

65. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated 916

synthesis of human functional neuroimaging data. Nature Methods 8(8):665–670. 917

66. Chu C, Hsu AL, Chou KH, Bandettini P, Lin C (2012) Does feature selection improve classifica- 918

tion accuracy? Impact of sample size and feature selection on classification using anatomical 919

magnetic resonance images. NeuroImage 60(1):59–70. 920

67. Hong SJ, et al. (2020) Toward Neurosubtypes in Autism. Biological Psychiatry 88(1):111– 921

128. 922

68. Maxwell SE, Kelley K, Rausch JR (2008) Sample Size Planning for Statistical Power and 923

Accuracy in Parameter Estimation. Annual Review of Psychology 59(1):537–563. 924

69. Wasserstein RL, Schirm AL, Lazar NA (2019) Moving to a World Beyond “p < 925

0.05”. The American Statistician 73(sup1):1–19. Publisher: Taylor & Francis _eprint: 926

https://doi.org/10.1080/00031305.2019.1583913. 927

Helmer et al.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


Supporting Information Text13

1. CCA and PLS14

We assume that we have two datasets in the form of data matrices X and Y , both of which have n rows representing samples,15

and, respectively, pX and pY columns representing measured features (or variables). Throughout we also assume that all16

columns of X and Y have mean 0. If both datasets consisted of only a single variable, we could measure their association17

by calculating their covariance or correlation. On the other hand, if one or both consist of more than one variable, pairwise18

between-set associations can be obtained but the possibly huge number of pairs results in a loss of statistical sensitivity and19

a difficulty to concisely interpret a potentially large number of significant associations (1). To circumvent these problems,20

canonical correlation analysis (CCA) and partial least squares (PLS) estimate associations between weighted composites of the21

original data variables and find those weights that maximize the association strength.22

A. Terminology. Given a data matrix, e. g. X, composite variables or scores ~tX (a vector of the same size as the number of23

samples, n) are formed by projection of X onto a weight vector ~wX (of same size as the number of variables in X, pX), see Fig.24

1A:25

~tX = X ~wX . [1]26

Loadings ~̀XX (of same size as the number of variables in X, pX) characterize these composite variables by measuring their27

similarities with each of the original data variables in X (Fig. S9)28

(`XX)j = corr
i

(Xij , tX,i) = (~xj)z ·
(
~tX
)
z

[2]29

where corr means Pearson correlation, ~xj is the j-th column of X, and the subscript z represents z-scoring across samples (i. e.
subtraction of the mean and subsequent division by the standard deviation across samples). The complete loading vector is
then

~̀
XX = XT

z

(
~tX
)
z
/(n− 1)

= diag(SXX)−1/2SXX ~wX/
√
~wT
XSXX ~wX [3]

where SXX is the sample covariance matrix for X. Similarly, cross-loadings can be defined as

~̀
XY = XT

z

(
~tY
)
z
/(n− 1)

= diag(SXX)−1/2SXY ~wY /
√
~wT
Y SY Y ~wY [4]

where SY Y and SXY are, respectively, the sample covariance matrix for Y and the sample cross-covariance matrix between X30

and Y .31

B. Partial Least Squares. Partial Least Squares (PLS) finds the maximal covariance achievable between weighted linear32

combinations of features from two data matrices X and Y (2):33

wX , wY = arg max
‖w̃X‖=1,‖w̃Y ‖=1

cov (Xw̃X , Y w̃Y ) [5]34

The solution is based on the between-set covariance matrix ΣXY which can be estimated from data via its sampled version35

SXY = 1
n−1X

TY . Performing a singular value decomposition yields36

ΣXY = Udiag(~σXY )V T [6]37

such that the optimal weights are given by the first columns of U and V , and the maximal covariance38

max
‖w̃X‖=1,‖w̃Y ‖=1

cov (Xw̃X , Y w̃Y ) [7]39

by the first singular value σXY,1 (3, 4).40

Multiple modes of association can be estimated in this way: beyond only the first column, every pair of corresponding41

columns in U and V provides another mode such that cov(X~ui, Y ~vi) (for 1 ≤ i ≤ min(px, py)) is maximal given that the42

covariance of lower modes (those with indices < i) has already been accounted for. There are a number of different algorithms43

for PLS that differ conceptually in how these higher modes are estimated (2, 3). The one presented above (sometimes called44

"partial least squares correlation" or PLS-SVD) was chosen for its similarity to canonical correlation analysis (see below).45

Another notable PLS algorithm is "PLS regression" which, in contrast to the above flavor, is asymmetrical in its handling of X46

and Y in that it estimates weighted composites (scores) for X and re-uses these as predictors for Y (2).47

2 of 33 M Helmer, S Warrington, A Mohammadi-Nejad, JL Ji, A Howell, B Rosand, A Anticevic, SN Sotiropoulos & JD Murray

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


C. Canonical Correlation Analysis. Canonical Correlation Analysis (CCA) (5), as a multivariate extension of Pearson’s48

correlation, finds maximal correlations between weighted linear combinations of variables from X and Y :49

~wX , ~wY = arg max
~̃wX , ~̃wY

corr
(
X ~̃wX , Y ~̃wY

)
[8]50

Note that corr
(
X ~̃wX , Y ~̃wY

)
is independent of the scaling of ~̃wX and ~̃wY . I. e. if ~wX and ~wY are solutions of Eq. (8), then51

cX ~wX and cY ~wY , where cX ∈ R and cY ∈ R, are also solutions.52

Also note that, as for PLS, several modes of association can be obtained with this framework by successively discounting53

the variance that has been explained by lower-order modes.54

The maximal correlation in Eq. (8) is often called "canonical".55

The further analysis is then based on the "whitened" between-set covariance matrix56

Σ(CCA)
XY = Σ−1/2

XX ΣXY Σ−1/2
Y Y [9]57

(6, 7). A singular value decomposition of Σ(CCA)
XY is performed, yielding58

Σ(CCA)
XY = Udiag(~σXY )V T [10]59

and the singular values ~σXY turn out to be the canonical correlations from Eq. (8), i. e. the maximal achievable correlations60

between a weighted linear combination of variables in X on the one hand, and a weighted linear combination of variables in Y61

on the other hand. The corresponding weights are given by62

WX = Σ−1/2
XX U [11]63

WY = Σ−1/2
Y Y V . [12]64

The use of the "whitened" between-set covariance matrix in CCA leads to an invariance property between datasets that65

we will exploit later. To see this, let Xw, Yw be whitened data matrices, i. e. Xw = XΣ−1/2
XX and Yw = Y Σ−1/2

Y Y such that66

ΣXwXw = 1, ΣYwYw = 1 . Then,67

Σ(CCA)
XwYw

= Σ−1/2
XwXw

ΣXwYw Σ−1/2
YwYw

[13]68

= ΣXwYw [14]69

= Σ−1/2
XX ΣXY Σ−1/2

Y Y [15]70

= Σ(CCA)
XY [16]71

which is the same as for the original (non-whitened data). Consequently, canonical correlations for the original and whitened72

data are the same, given by the singular values of Σ(CCA)
XY , canonical weights for the whitened data are directly its singular73

vectors and canonical weights for the original (non-whitened) data differ only by a matrix Σ−1/2
XX and Σ−1/2

Y Y for X and Y ,74

respectively (Eq. (11)-Eq. (12)).75

It can be shown that the invariance property is even more general (6). Let O(X) ∈ Rpx×px and O(Y ) ∈ Rpy×py be
non-singular and ~d(X) ∈ Rpx and ~d(Y ) ∈ Rpy be arbitrary vectors. Then X̃ = O(X)X + d(X) and Ỹ = O(Y )Y + d(Y ) have the
same canonical correlations as X and Y , and the canonical vectors are related by

~̃wX =
(
O(X))−1

~wX [17]

~̃wY =
(
O(Y ))−1

~wY [18]

Thus, in particular, z-scored data Xz = diag(SXX)−1/2X and Yz = diag(SY Y )−1/2Y as well as whitened data Xw and Yw have76

the same canonical correlations as the original data X and Y .77

In CCA, X- and Y -weights are related by (8)

wX = Σ−1
XXΣXY ~wY /σXY [19]

wY = Σ−1
Y Y ΣYX ~wX/σXY [20]

[21]

Replacing sample with population covariance matrices in Eq. (3) and Eq. (4), we thus also see that loadings and cross-loadings
are collinear

~̀
XY = diag(ΣXX)−1/2ΣXY ~wY /

√
~wT
Y ΣY Y ~wY

= diag(ΣXX)−1/2ΣXXΣ−1
XXΣXY ~wY /

√
~wT
Y ΣY Y ~wY

∝ diag(ΣXX)−1/2ΣXX ~wX
∝ ~̀XX [22]
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D. Overestimation of association strength. Let ΣXY be a population cross-covariance matrix with singular value decomposition78

ΣXY = Udiag(~σXY )V T [23]79

and let ~u1, ~v1 and σ1 be, respectively, the first columns of U , V and the first entry in ~σXY . In PLS, ~u1, and ~v1 are the weight80

vectors of the first mode and σ1 is the corresponding association strength. For CCA, as noted above, whitening the data leaves81

canonical correlations unchanged, so that we assume now data are white when performing CCA. Then, Σ(CCA)
XY = ΣXY and the82

weights and association strength of the first mode are also given by ~u1, ~v1 and σ1. In both cases, we have σ1 = ~uT
1ΣXY ~v1.83

The sample covariance matrix SXY = 1
n−1X

TY is an unbiased estimator for ΣXY , i. e. E[SXY ] = ΣXY . Therefore,84

E[~uT
1SXY ~v1] = ~uT

1 E[SXY ]~v1 = ~uT
1ΣXY ~v1 = σ1 [24]85

i. e. if the true (but unknown) weights were applied to a given dataset (between-set covariance matrix) the association strength86

of the resulting scores would, on average, match the true association strength. However, by definition, CCA and PLS select87

those weight vectors that maximize the association strength between resulting scores. If ~̂u1 and ~̂v1 are those optimal weights88

for a given dataset, then89

~̂uT
1SXY ~̂v1 ≥ ~uT

1SXY ~v1 [25]90

and consequently also91

E[~̂uT
1SXY ~̂v1] ≥ E[~uT

1SXY ~v1] = σ1 [26]92

i. e. the association strength is overestimated.93

E. Sparse CCA. Multiple sparse CCA and PLS methods exist (9–12). Here, we use penalized matrix decomposition (PMD)94

(11), which has found widespread application, see e.g. (13–18). Briefly, the PMD algorithm repeats the following steps until95

convergence (11)96

• ~u← arg max~u ~uTXTY ~v subject to ‖~u‖1 ≤ c1 and ‖~u‖2 ≤ 197

• ~v ← arg max~v ~uTXTY ~v subject to ‖~v‖1 ≤ c2 and ‖~v‖2 ≤ 198

to maximize ~uTXTY ~v. If XTX ≈ 1 and ‖~u‖2 = 1, then 1 = ‖~u‖2 ≈ ‖X~u‖2 and analogously for Y . Consequently,99

~uTXTY ~v ≈ ~uTXTY ~v/
√
‖X~u‖2‖Y ~v‖2 = corr(X~u, Y ~v). Note that the approximation XTX ≈ 1 (together with Y TY ≈ 1) makes100

this sparse "CCA" variant identical to sparse PLS (18, 19).101

E.1. Implementation and sparsity parameter selection. We implemented a Python wrapper for the R-package PMA (20) which we102

used with default parameters. Sparsity parameters were estimated separately for each dataset subjected to sparse CCA via103

5-fold cross-validation (11, 21): for X and Y we used 5 different candidate sparsity parameters (0.2, 0.4, 0.6, 0.8 and 1 where104

smaller values mean more sparsity and 1 corresponds to no sparsity) for a total of 25 parameter pairs. For each candidate105

parameter pair sparse CCA was estimated with 80% of the data, the resulting weights applied to the remaining 20% of the106

data to obtain test scores, the Pearson correlation calculated between the test scores and averaged across the 5 folds. The pair107

of sparsity parameters for which the test-correlation averaged across folds was maximal, was then selected and sparse CCA108

re-estimated on the whole data with these parameters.109

2. Generating synthetic data for CCA and PLS110

We will analyze properties of CCA and PLS with the help of simulated datasets. These datasets will be drawn from a normal111

distribution with mean 0 and a covariance matrix Σ that will encode assumed relationships in the data. To specify Σ we need112

to specify relationships of features within X, i. e. the covariance matrix ΣXX ∈ Rpx×px , relationships of features within Y , i. e.113

the covariance matrix ΣY Y ∈ Rpy×py , and relationships between features in X on the one side and Y on the other side, i.e.114

the matrix ΣXY ∈ Rpx×py . Together, these three covariance matrices form the joint covariance matrix (Fig. 1D)115

Σ =
(

ΣXX ΣXY
ΣT
XY ΣY Y

)
∈ Rpx+py×px+py [27]116

for X and Y and this allows us to generate synthetic datasets by sampling from the associated normal distribution N (0,Σ).117

A. The covariance matrices ΣXX and ΣY Y . Given a data matrix X, the features can be re-expressed in a different coordinate118

system through multiplication by an orthogonal matrix O: X̃ = XO. No information is lost in this process, as it can be119

reversed: X = X̃OT. Therefore, we are free to make a convenient choice. We select the principal component coordinate system120

as in this case the covariance matrix becomes diagonal, i. e. ΣXX = diag(~σXX). Analogously, for Y we choose the principal121

component coordinate system such that ΣY Y = diag(~σY Y ).122

For modeling, to obtain a concise description of ~σXX and ~σY Y we assume a power-law such that σXX,i = cXX i
−aXX and123

σY Y,i = cY Y i
−aY Y with decay constants aXX and aY Y (Fig. 1B). Unless a match to a specific dataset is sought, the scaling124

factors cXX and cY Y can be set to 1 as they would only rescale all results without affecting conclusions.125
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B. The cross-covariance matrix ΣXY . The between-set covariance matrix ΣXY encodes relationships between the datasets X126

and Y . One such relationship is completely specified if we are given the weights of the variables in each dataset, ~wX and ~wY ,127

and the association strength of the resulting weighted composite scores.128

For PLS, the relation between the between-set covariance matrix, the weight vectors and association strengths is given by129

ΣXY = WXdiag(~σXY )WT
Y (for PLS) [28]130

where WT
XWX = 1px , WT

YWY = 1py and ~σXY are the covariances of the composite scores. Arguably, correlations are more131

accessible to intuition though and we therefore re-express ~σXY in terms of the assumed true (canonical) correlations. For each132

mode with weights ~wX and ~wY and covariance σXY we have133

σXY = rtrue
√

var (X ~wX) var (Y ~wY ) [29]134

where var (X ~wX) = ~wT
XΣXX ~wY and var (Y ~wY ) = ~wT

Y ΣY Y ~wXY are, respectively, the variances along the X and Y composite135

scores.136

For CCA, on the other hand, we have to consider the singular value decomposition of ΣCCA
XY = Σ−1/2

XX ΣXY Σ−1/2
Y Y :

ΣXY = Σ1/2
XXΣCCA

XY Σ1/2
Y Y

= Σ1/2
XX

(
Udiag(~σXY )V T)Σ1/2

Y Y

= Σ1/2
XX

(
Σ1/2
XXWX

)
diag(~σXY )

(
Σ1/2
Y YWY

)T
Σ1/2
Y Y

[30]

where we have used Eq. (11) and Eq. (12). Here, ~σXY are directly the assumed true correlations and, by construction, the137

weights WX and WY are constrained to satisfy 1 = UTU = (Σ1/2
XXWX)TΣ1/2

XXWX and analogously for WY . As mentioned above,138

we can exploit the property that pre-whitened data result in the same matrix ΣCCA
XY . In the following, thus, assume that we139

have data X and Y with ΣXX = 1px and ΣY Y = 1py . But then,140

ΣXY = WXdiag(~σXY )WT
Y (for CCA) [31]141

and 1 = UTU = WT
XWX , as well as 1 = WT

YWY . This is identical to the result for PLS, except that for CCA the assumption142

that the data are white is implicit.143

Thus, in summary, to specify ΣXY we select the number m of between-set association modes, for each of them the association144

strength in form of the assumed true correlation, and a set of weight vectors ~wX,i and ~wY,i (for 1 ≤ i ≤ m). The weight145

vectors for each set need to be orthonormal (WT
XWX = WT

YWY = 1m), and, for CCA, both X and Y need to be white, i. e.146

ΣXX = 1pX and ΣY Y = 1pY .147

C. Choice of weight vectors. We impose two constraints on possible weight vectors:148

1. We aim to obtain association modes that explain a "large" amount of variance in the data, otherwise the resulting scores149

could be strongly affected by noise. The decision is based on the explained variance of only the first mode and we require150

that it is greater than 1/2 of the average explained variance of a principal component in the dataset, i.e. we require that151

~wT
XΣXX ~wX >

1
2

tr ΣXX
pX

[32]152

and analogously for Y .153

2. The weight vectors impact the joint covariance matrix Σ (via Eq. (27), Eq. (28) and Eq. (31)). Therefore, we require that154

the chosen weights result in a proper, i. e. positive definite, covariance matrix Σ.155

To increase chances of finding weights that satisfy the first constraint, we compose them as a linear combination of a156

high-variance subspace element, and another component from the low-variance subspace. The high-variance subspace is defined157

as the vector space spanned by the first qX and qY (for datasets X and Y , respectively) components where qX and qY are158

chosen to explain 90% of their respective within-set variances. Having chosen (see below) any unit vectors of the low- and159

high-variance subspaces, ~wlo and ~whi, they are combined as160

~w = c~whi +
√

1− c2 ~wlo [33]161

so that ‖~w‖ = 1. Here, c is a uniform random number between 0 and 1 (but see also below). If the resulting weight vectors do162

not satisfy the imposed constraints, new values for ~wlo, ~whi and c are drawn. Note that, in case the number of between-set163

association modes m is greater than 1, only the first one is used to test the constraint Eq. (32), but weight vectors for the164

remaining modes are composed in the same way as just described.165
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Weight vector components of the low-variance subspace are found by multiplication of its basis vectors Ulo ∈ Rp×p−q with a166

rotation matrix Rlo167

Wlo = UloRlo [34]168

where the first m columns of Wlo are used as the low-variance subspace components of the m between-set association modes.169

If qX ≥ m > pX − qX (and analogously for Y ) the dimensionality of the low-variance subspace is not large enough to get a170

component for all m modes in this way, so that only for the first m modes a low-variance subspace component will be used.171

The rotation matrix Rlo is found as the Q-factor of a QR-decomposition of a pX − qX × pX − qX (analogously for Y ) matrix172

with elements drawn from a standard normal distribution.173

Weight vector components of the high-variance subspace are selected in the following way (see Fig. S2). First, 10000174

attempts are made to find them in the same way as the low-variance component, i.e. as the first m columns of175

Whi = UhiRhi [35]176

where the columns of Uhi are the basis vectors for the high-variance subspace, and Rhi is found as the Q-factor of a QR-177

decomposition of a qX × qX (analogously for Y ) matrix with elements drawn from a standard normal distribution. In case this178

fails (i. e. if one of the two constraints is not satisfied for all 10000 attempts), another 10000 attempts are made in which the179

coefficient c is not chosen randomly between 0 and 1, but the lower bound is increased stepwise from 0.5 to 1 to make it more180

likely that the first constraint is satisfied.181

If this also fails (which tends to happen for large ground truth correlations rtrue and large dimensionalities pX and pY ), and182

if m = 1, a differential evolution algorithm (22) is used to maximize the minimum eigenvalue of Σ, in order to encourage the183

second constraint to be satisfied. Specifically, qX coefficients ~cX and qY coefficients ~cY are optimized such that the weights184

~wX = UX,hi~cX and ~wY = UY,hi~cY satisfy the constraints. As soon as the minimum eigenvalue of a resulting Σ matrix is above185

10−5 the optimization is stopped. 10000 attempts are made to add a low-variance component to the optimized high-variance186

component in this way, and if unsuccessful, another 10000 attempts are made in which the coefficient c is not chosen randomly187

between 0 and 1, but the lower bound is increased stepwise from 0.5 to 1.188

If this also fails, and if m = 1, the high-variance components of the weight vectors are chosen as the first principal component189

axes as a fallback approach. To see why this works, recall that we have assumed to work in the principal component coordinate190

system so that ~wX,hi,1 = (1, 0, . . . , 0)T, ~wY,hi,1 = (1, 0, . . . , 0)T and ΣXX as well as ΣY Y are diagonal. In addition, we assume191

that the principal component variances are normalized such that the highest (i. e. the top-left entry in ΣXX and ΣY Y ) is 1.192

We are seeking weight vectors that result in a positive definite covariance matrix Σ and Σ is positive definite if and only if both193

ΣY Y and the Schur complement of Σ, i. e. ΣXX −ΣXY ΣY Y ΣT
XY , are positive definite. ΣY Y is positive definite by construction.194

The between-set covariance matrix here is ΣXY = σXY,1 ~wX,hi,1 ~w
T
Y,hi,1. For CCA, σXY,1 is the canonical correlation rtrue < 1.195

For PLS, σXY,1 = rtrue
√

varX ~wX varY ~wY , which, with the specific choices of ΣXX ,ΣY Y , ~wX and ~wY just described, also196

simplifies to σXY,1 = rtrue. Thus, ΣXY ΣY Y ΣT
XY = r2

true(1, 0, . . . , 0)T(1, 0, . . . , 0) and consequently the diagonal entries of197

ΣXX − ΣXY ΣY Y ΣT
XY are all greater than 0. That shows that Σ is positive definite if the weights are chosen as the first198

principal component axes. To not end up with the pure principal component axes in all cases, we add a low-variance subspace199

component as before, i. e. we make 10000 attempts to add a low-variance component with weight c chosen uniformly at random200

between 0 and 1, and, if unsuccessful, another 10000 attempts in which the lower bound for c is increased stepwise from 0.5 to201

1.202

D. Summary. Thus, to generate simulated data for CCA and PLS, we vary the assumed between-set correlation strengths ~ρXY ,203

setting them to select levels, while choosing random weights WX and WY . For CCA, as outlined in the previous section, we can204

use pre-whitened data for which ΣXX = 1 and ΣY Y = 1, and as a result, the cross-covariance matrix ΣXY has the same form205

as for PLS. The columns of the weight matrices WX and WY must be mutually orthonormal, and, in addition, we assume that206

they are contained within a subspace of, respectively, qX and qY dominant principal components, that is WX = U
(qX )
XX RXX207

and WY = U
(qY )
Y Y RY Y , where U (qX )

XX ∈ RpX×qX is the matrix of the first qX columns of UXX , RXX ∈ RqX×qX is unitary, and208

analogously for U (qY )
Y Y and RqY .209

E. Performed simulations. For Figs. 2, 3E-F, the colored curves in Fig. 6A, Figs. 7, 8, S15, the CCA results in Fig. S17 and210

Fig. S3, we ran simulations for m = 1 between-set association mode assuming true correlations of 0.1, 0.3, 0.5, 0.7 and 0.9,211

used dimensionalities pX = pY of 2, 4, 8, 16, 32, 64, 128 as well as 25 different covariance matrices. aX + aY was fixed at 0212

for CCA and -2 for PLS. 100 synthetic datasets were drawn from each instantiated normal distribution. Where not specified213

otherwise, null distributions were computed with 1000 permutations. Due to computational expense, some simulations did not214

finish and are reported as blank spaces in heatmaps.215

Similar parameters were used for other figures, except for the following deviations.216

For Fig. 3A-B pX was 100, rtrue = 0.3 and we used 1 covariance matrix for CCA and PLS.217

For Fig. 3C-D pX was 100, rtrue = 0.3 and we used 10 and 100 different covariance matrices for CCA and PLS, respectively.218

For Fig. 4A-B, pX was 2, rtrue = 0.3 and we used 10000 different covariance matrices for CCA and PLS.219

For Fig. 4C-D and 4G-H, we used 2, 4, 8, 16, 32 and 64 for pX , 0.1, 0.3 and 0.5 for rtrue, 10 different covariance matrices for220

CCA and PLS, and 10 permutations. A subset of these, namely pX = 64 and rtrue = 0.3 was used for Fig. 4E-F.221

For Fig. 6, we varied rtrue from 0 to 0.99 in steps of 0.01 for each combination of pX and pY for which we have a study in222

our database of reported CCAs, and 1 covariance matrix for each rtrue.223
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For Fig. S4 pX + pY was fixed at 64 and for pX we used 2, 4, 8, 16, 32.224

In Fig. S6, for pX we used 4, 8, 16, 32, 64 and, only for CCA, also 128, we used 10 different covariance matrices for both225

CCA and PLS and varied rtrue from 0 to 0.99 in steps 0.01.226

For Fig. S7 we used 2, 4, 8, 16 and 32 for pX , and 10 different covariance matrices for both CCA and PLS.227

For Fig. S8 we used 2, 4, 8, 16, 32 and 64 for pX , 5 different covariance matrices for both CCA and PLS, 100 bootstrap228

iterations and did not run simulations for rtrue = 0.1.229

For the PLS results in Fig. S16 and Fig. S17 we used 50 different covariance matrices for rtrue = 0.1, 0.9, as well as for230

rtrue = 0.7 in combination with pX = 128, 25 for rtrue = 0.5 in combination with pX = 64, and 75 for all other combinations of231

pX and rtrue for which the computational expense was not too high. For each instantiated joint covariance matrix, aX + aY232

was chosen uniformly at random between -3 and 0 and aX was set to a random fraction of the sum, drawn uniformly between 0233

and 1.234

In Fig. S18 we used 0.3, 0.5, 0.7 and 0.9 for rtrue, 4, 8, 16, 32 and 64 for pX , 6 different covariance matrices and 100235

permutations.236

3. Evaluation of sampling error237

We use five metrics to evaluate the effects of sampling error on CCA and PLS analyses.238

Statistical power Power measures the capability to detect an existing association. It is calculated when the true correlation is239

greater than 0 as the probability across 100 repeated draws of synthetic datasets from the same normal distribution that the240

observed association strength (i. e. correlation for CCA, covariance for PLS) of a dataset is statistically significant. Significance241

is declared if the p-value is below α = 0.05. The p-value is evaluated as the probability that association strengths are greater in242

the null-distribution of association strengths. The corresponding null-distribution is obtained from performing CCA or PLS on243

1000 datasets where the rows of Y were permuted randomly. Power is bounded between 0 and 1 and, unlike for the other244

metrics (see below), higher values are better.245

Relative error in between-set covariance The relative error of the between-set association strength is calculated as246

∆r = r̂ − r
r

[36]247

where r is the true between-set association strength and r̂ is its estimate in a given sample.248

Weight error Weight error ∆w is calculated as 1 - absolute value of cosine similarity between observed ( ~̂w) and true (~w)249

weights, separately for data sets X and Y , and the greater of the two errors is taken:250

∆w = max
s∈{X,Y }

(
1− | cossim( ~̂ws, ~ws)|

)
[37]251

where252

cossim( ~̂ws, ~ws) = ~̂ws · ~ws
‖ ~̂ws‖‖~ws‖

. [38]253

The absolute value of the cosine similarity is used due to the sign ambiguity of CCA and PLS.254

This error metric is bounded between 0 and 1 and measures the cosine of the angle between the two unit vectors ~̂ws and ~ws.255

Score error Score error ∆t is calculated as 1 – absolute value of Spearman correlation between observed and true scores. The256

absolute value of the correlation is used due to the sign ambiguity of CCA and PLS. As for weights, the maximum over datasets257

X and Y is selected:258

∆t = max
s∈X,Y

(
1− | rankcorr

i

(
t̂
(test)
s,i , t

(test)
si

)
|
)

[39]259

Each element of the score vector represents a sample (subject). Thus, to be able to compute the correlation between260

estimated (~̂t) and true (~t) score vectors, corresponding elements must represent the same sample, despite the fact that in each261

repetition new data matrices are drawn in which the samples have completely different identities. To overcome this problem262

and to obtain scores, which are comparable across repetitions (denoted ~̂t(test) and ~t(test)), each time a set of data matrices is263

drawn from a given distribution N (0,Σ) and a CCA or PLS model is estimated, the resulting model (i. e. the resulting weight264

vectors) is also applied to a "test" set of data matrices, X(test) and Y (test) (of the same size as X and Y ) obtained from N (0,Σ)265

and common across repeated dataset draws.266

The score error metric ∆t is bounded between 0 and 1 and reflects the idea that samples (subjects) might be selected on the267

basis of how extreme they score and that the ordering of samples (subjects) is more important than the somewhat abstract268

value of their scores.269
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Loading error Loading error ∆` is calculated as 1 – absolute value of Pearson correlation between observed and true loadings.270

The absolute value of the correlation is used due to the sign ambiguity of CCA and PLS. As for weights, the maximum over271

datasets X and Y is selected:272

∆` = max
s∈X,Y

(
1− | corr

i

(
ˆ̀(test)
s,i , `

(test)
s,i

)
|
)

[40]273

True loadings are calculated with Eq. (3) (replacing the sample covariance matrix in the formula with its population value).274

Estimated loadings are obtained by correlating data matrices with score vectors (Eq. (2)). Thus, the same problem as for275

scores occurs: the elements of estimated and true loadings must represent the same sample. Therefore, we calculate loading276

errors with loadings obtained from test data (X(test) and Y (test)) and test scores (~̂t(test) and ~t(test)) that were also used to277

calculate score errors.278

The loading error metric ∆` is bounded between 0 and 1 and reflects the idea that loadings measure the contribution of279

original data variables to the between-set association mode uncovered by CCA and PLS.280

Loadings are calculated by correlating scores with data matrices. Of note, all synthetic data matrices in this study are281

based in the principal component coordinate system. In practice, however, this is not generally the case. Nonetheless, as the282

transformation between principal component and original coordinate system cannot be constrained, we here do not consider283

this effect.284

4. Weight similarity to principal component axes285

The directional means µ in Figs. 4A-B are obtained via286

R = 1
nα

nα∑
j

e2iαj [41]287

as µ = arg(R)/2.288

To interpret the distribution of cosine similarities between weights and the first principal component axis we compare this289

distribution to a reference, namely to the distribution of cosine similarities between a random n-dimensional unit vector and an290

arbitrary other unit vector ~e. This distribution f is given by (23)291

fn(x) = dP (X ≤ x)
dx [42]292

where P denotes the cumulative distribution function for the probability that a random unit-vector has cosine similarity with293

~e (or projection onto ~e) ≤ x. For −1 ≤ x ≤ 0, P can be expressed in terms of the surface area An(h) of the n-dimensional294

hyperspherical cap of radius 1 and height h (i. e. x− h = −1)295

P (X ≤ x) = An(h)
An(2) [43]296

where An(2) is the complete surface area of the hypersphere and297

An(h) = 1
2An(2)I

(
h(2− h); n− 1

2 ,
1
2

)
[44]298

and I is the regularized incomplete beta function. Thus,

fn(x) = 1
2

d I
dx

(
(x+ 1)(1− x); n− 1

2 ,
1
2

)
[45]

= 1
2

1
B(n−1

2 , 1
2 )

(1− x2)
n−3

2
(
x2)−1/2 (−2x) [46]

= 1
B(n−1

2 , 1
2 )

(1− x2)
n−3

2 [47]

where B is a beta function and

fn(2x̃− 1) ∝ (2− 2x̃)
n−1

2 −1(2x̃)
n−1

2 −1 [48]

∝ fβ
(
x̃; n− 1

2 ,
n− 1

2

)
[49]

where fβ is the probability density function for the beta distribution. Hence, 2X̃ − 1 with X̃ ∼ Beta(n−1
2 , n−1

2 ) is a random299

variable representing the cosine similarity between 2 random vectors (or the projection of a random unit-vector onto another).300

5. Analysis of empirical data301

We demonstrate CCA and PLS analysis in empirical data using data from the Human Connectome Project (HCP) (24) and302

UK Biobank (25).303
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A. Human Connectome Project data.304

A.1. fMRI data. We used resting-state fMRI (rs-fMRI) from 951 subjects from the Human Connectome Project (HCP) 1200-subject305

data release (03/01/2017) (24). The rs-fMRI data were preprocessed in accordance with the HCP Minimal Preprocessing306

Pipeline (MPP). The details of the HCP preprocessing can be found elsewhere (26, 27). Following the HCP MPP, BOLD307

time-series were denoised using ICA-FIX (28, 29) and registered across subjects using surface-based multimodal inter-subject308

registration (MSMAll) (30). Additionally, global signal, ventricle signal, white matter signal, and subject motion and their309

first-order temporal derivatives were regressed out (31).310

The rs-fMRI time-series of each subject comprised of 2 (69 subjects), 3 (12 subjects), or 4 (870 subjects) sessions. Each rest311

session was recorded for 15 minutes with a repetition time (TR) of 0.72 s. We removed the first 100 time points from each of312

the BOLD sessions to mitigate any baseline offsets or signal intensity variation. We subtracted the mean from each session and313

then concatenated all rest sessions for each subject into a single time-series.314

Voxel-wise time series were parcellated to obtain region-wise time series using the "RelatedValidation210" atlas from the315

S1200 release of the Human Connectome Project (32). Functional connectivity was then computed as the Fisher-z-transformed316

Pearson correlation between all pairs of parcels.317

3 subjects were excluded (see section D below), resulting in a total of 948 subjects with 100 connectivity features each.318

A.2. dMRI data. Diffusion MRI (dMRI) data and structural connectivity patterns were obtained as described in (33, 34). In brief,319

41 major white matter (WM) bundles were reconstructed from preprocessed HCP diffusion MRI data (35) using FSL’s XTRACT320

toolbox (34). The resultant tracts were vectorised and concatenated, giving a WM voxels by tracts matrix. Further, a structural321

connectivity matrix was computed using FSL’s probtrackx (36, 37), by seeding cortex/white-grey matter boundary (WGB)322

vertices and counting visitations to the whole white matter, resulting in a WGB × WM matrix. Connectivity "blueprints" were323

then obtained by multiplying the latter with the former matrix. This matrix was parcellated (along rows) into 68 regions with324

the Desikan-Killany atlas (38) giving a final set of 68 × 41 = 2788 connectivity features for each of the 1020 HCP subjects.325

A.3. Behavioral measures. The same list of 158 behavioral and demographic data items as in (39) was used.326

A.4. Confounders. We used the following items as confounds: Weight, Height, BPSystolic, BPDiastolic, HbA1C, the third cube327

of FS_BrainSeg_Vol, the third cube of FS_IntraCanial_Vol, the average of the absolute as well as the relative value of the328

root mean square of the head motion, squares of all of the above, and an indicator variable for whether an earlier of later329

software version was used for MRI preprocessing. Head motion and software version were only included in the analysis of fMRI330

vs behavioral data, not in the analysis of dMRI vs behavioral data. Missing values were set to 0. All resulting confounds were331

z-scores across subjects.332

B. UK Biobank data.333

B.1. fMRI data. We utilised pre-processed resting-state fMRI data (40) from 20,000 subjects, available from the UK Biobank334

Imaging study (25).335

In brief, EPI unwarping, distortion and motion correction, intensity normalisation and highpass temporal filtering were336

applied to each subject’s functional data using FSL’s Melodic (41), data were registered to standard space (MNI), and structured337

artefacts are removed using ICA and FSL’s FIX (28, 29, 41).338

A set of resting-state networks were identified common across the cohort using a subset of subjects (≈ 4000 subjects) (40).339

This was achieved by extracting the top 1200 components from a group-PCA (42) and a subsequent spatial ICA with 100340

resting-state networks (41, 43). Visual inspection revealed 55 non-artefactual ICA components. Next, these 55 group-ICA341

networks were dual regressed onto each subjects’ data to define grey matter nodes. The average timeseries of each of the nodes342

were used to compute partial correlation parcellated connectomes with a dimensionality of 55 x 55. The connectomes were343

z-score transformed and the upper triangle vectorised to give 1485 functional connectivity features per subject, for each of the344

20,000 subjects.345

B.2. Behavioural measures. The UK Biobank contains a wide range of subject measures (44), including physical measures (e.g.346

weight, height), food and drink, cognitive phenotypes, lifestyle, early life factors and sociodemographics.347

We hand-picked a subset of 3895 cognitive, lifestyle and physical measures, as well as early life factors. For categorical items,348

we replaced negative values with 0, as in (25). Such negative values encode mostly “Do not know”/“Prefer not to answer”. We349

then removed measures that had missing values in more than 50% of subjects (for instance measures that reflected subsequent350

visits, which were not available for many subjects that only had one visit). We also removed measures that had identical values351

in at least 90% of subjects, leaving 633 non-imaging measures. We then performed a redundancy check. Specifically, if the352

correlation between any two measures was > 0.98, one of the two items was randomly chosen and dropped. This procedure353

further removed 62 measures (mostly physical measures, also some less informative sections of tests), resulting in a final set of354

571 behavioural measures, available for each of the 20,000 subjects.355

B.3. Confounds. We used the following items as confounds: acquisition protocol phase (due to slight changes in acquisition356

protocols over time), scaling of T1 image to MNI atlas, brain volume normalized for head size (sum of grey matter and357

white matter), fMRI head motion, fMRI signal-to-noise ratio, age, sex. In addition, similar to (25) we used the squares of all358

M Helmer, S Warrington, A Mohammadi-Nejad, JL Ji, A Howell, B Rosand, A Anticevic, SN Sotiropoulos & JD Murray 9 of 33

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


non-categorical items (i. e. T1 to MNI scaling, brain volume, fMRI head motion, fMRI signal-to-noise ratio and age), as well as359

age × sex and age2× sex. Altogether these were 14 confounds.360

Finally, we imputed 0 for missing values and z-scored all items.361

C. Preprocessing for CCA and PLS. We prepared data for CCA following, for the most part, the pipeline in (39).362

Deconfounding Deconfounding of a matrix X with a matrix of confounds C was performed by subtracting linear predictions,363

i.e.364

Xdeconfounded = X − Cβ [50]365

where366

β = C+X =
(
CTC

)−1
CTX [51]367

The confounds used were specific to each dataset and mentioned in the previous section.368

Neuroimaging data Neuroimaging measures, were, on the one hand, z-scored. On the other hand, normalized values were used369

as additional features: normalization was performed by calculating features’ absolute value of the mean across subjects and, in370

case this mean was above 0.1 (otherwise this feature was not used in normalized form), the original values of the feature were371

divided by this mean, and the resulting values were z-scored across subjects.372

The resulting data matrix was de-confounded (as described in the previous above), decomposed into principle components373

via a singular value decomposition, and the left singular vectors, multiplied by their respective singular values were used as374

data matrix X in the subsequent CCA or PLS analysis.375

Behavioral and demographic data The list of used behavioral items were specific to each dataset and mentioned in the previous376

sections. Given this list, separately for each item, a rank-based inverse normal transformation (45) was applied and the result377

z-scored. For both of these steps subjects with missing values were disregarded. Next, a subjects × subjects covariance matrix378

across variables was computed, considering for each pair of subjects only those variables that were present for both subjects.379

The nearest positive definite matrix of this covariance matrix was computed using the function cov_nearest from the Python380

statsmodels package (46). This procedure has the advantage that subjects can be used without the need to impute missing381

values. An eigenvalue decomposition of the resulting covariance matrix was performed where the eigenvectors, scaled to have382

standard deviation 1, are principal component scores. They are then scaled by the square-roots of their respective eigenvalues383

(so that their variances correspond to the eigenvalues) and used as matrix Y in the subsequent CCA or PLS analysis.384

D. CCA/PLS analysis. Permutation-based p-values in Fig. 5 and S11 were calculated as the probability that the CCA or PLS385

association strength of permuted datasets was at least as high as in the original, unpermuted data. Specifically, to obtain386

the p-value, rows of the behavioral data matrix were permuted and each resulting permuted data matrix together with the387

unpermuted neuroimaging data matrix were subjected to the same analysis as the original, unpermuted data, in order to obtain388

a null-distribution of between-set associations. 1000 permutations were used.389

Due to familial relationships between HCP subjects they are not exchangeable so that not all possible permutations of390

subjects are appropriate (47). To account for that, in the analysis of HCP fMRI vs behavioral data, we have calculated the391

permutation-based p-value as well as the confidence interval for the whole-data (but not the subsampled data) analysis using392

only permutations that respect familial relationships. Allowed permutations were calculated using the functions hpc2blocks and393

palm_quickperms with default options as described in https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ExchangeabilityBlocks (accessed May394

18, 2020). No permutation indices were returned for 3 subjects that were therefore excluded from the functional connectivity395

vs behavior analysis.396

Subsampled analyses (Fig. 5A-D) were performed for 5 logarithmically spaced subsample-sizes between 202 and 80% of the397

total subject number. For each subsample size 100 subsampled data matrices were used.398

Cross-validated analyses were performed with 5-fold cross-validation.399

E. Principal component spectrum decay constants. The decay constant of a principal component spectrum (Fig. S1) was400

estimated as the slope of a linear regression (including an intercept term)å of log(explained variance of a principal component)401

on log(principal component number). For each dataset in Fig. S1 we included as many principal components into the linear402

regression as necessary to explain either 30% or 90% of the variance.403

6. Meta-analysis of prior literature404

A PubMed search was conducted on December 23, 2019 using the query ("Journal Article"[Publication Type]) AND405

(fmri[MeSH Terms] AND brain[MeSH Terms]) AND ("canonical correlation analysis") with filters requiring full text406

availability and studies in humans. In addition, studies known to the authors were considered. CCA results were in-407

cluded in the meta-analysis if they related a neuroimaging derived measures (e. g. structural or functional MRI, . . . ) to408

behavioral or demographic measures (e. g. questionnaires, clinical assessments . . . ) across subjects, if they reported the number409

of subjects and the number of features of the data entering the CCA analysis, and if they reported the observed canonical410

correlation. This resulted in 100 CCA analyses reported in 31 publications (39, 48–77), which are summarized in SI Dataset 1.411
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7. Determination of required sample size412

As all evaluation metrics change approximately monotonically with sample per feature, we fit splines of degree 3 to interpolate413

and to determine the number of samples per feature that approximately results in a given target level for the evaluation metric.414

For power (higher values are better) we target 0.9, for all the other metrics (lower values are better) we target 0.1. Before415

fitting the splines, all samples-per-feature are log-transformed and metrics are averaged across repeated datasets from the416

same covariance matrix. Sometimes the evaluation metrics show non-monotonic behavior (e. g. due to numerical errors) and in417

case the cubic spline results in multiple roots we filter those for which the spline fluctuates strongly in the vicinity of the root418

(suggesting noise), and select the smallest remaining root ñ for which the interpolated metric remains within the allowed error419

margin for all simulated n > ñ, or discard the synthetic dataset if all roots are filtered out. In case a metric falls within the420

allowed error margin for all simulated n (i. e. even the smallest simulated n0) we pick n0.421

We suggest, in particular, a combined criterion to determine an appropriate sample size. This is obtained by first calculating422

sample-per-feature sizes with the interpolation procedure just described separately for the metrics power, relative error of423

association strength, weight error, score error and loading error. Then, for each parameter set, the maximum is taken across424

these five metrics.425

8. Sample size calculator for CCA and PLS426

Estimating an appropriate sample size via the approach described in the previous section is computationally expensive as multiple427

potentially large datasets have to be generated and analyzed. To abbreviate this process (see also Fig. S14) we do use the428

approach from the previous section to obtain sample size estimates for rtrue ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, px ∈ {2, 4, 8, 16, 32, 64, 128},429

py = px, and (for PLS) ax + ay ∼ U(−3, 0), ax = c(ax + ay), and c ∼ U(0, 1), where U denotes a uniform distribution. We430

then fit a linear model to the logarithms of the sample size, with predictors log(rtrue), log(px + py), (for PLS) |ax + ay|, and431

including an intercept term.432

We tested the predictions of linear model using a split-half approach (Fig. S17), i. e. we refitted the model using either only433

sample size estimates for rtrue ∈ {0.1, 0.3} and half the values for rtrue = 0.5, or the other half of the data, and tested the434

resulting refitted model on the remaining data in each case.435

As for PLS (unlike CCA) the direction of the weight vectors relative to the principal component axes results in varying436

amounts of explained variance, we also tested an alternative linear model for PLS, in which log(vxvy) was included as additional437

predictor, where vx and vy denote, respectively, the explained variance ratio for the X and Y weight vector, i. e. the variance of438

the scores divided by the trace of the corresponding within-set covariance matrix. Note that, as the true weights are unknown439

in practice, this additional predictor is inaccessible in practice, and the alternative linear model only serves to gauge how much440

of the uncertainty in the linear model is due to this unobservable component.441

9. The gemmr software package442

We provide an open-source Python package, called gemmr, that implements the generative modeling framework presented443

in this paper. Among other functionality, it provides estimators for CCA, PLS and sparse CCA; it can generate synthetic444

datasets for use with CCA and PLS using the algorithm laid out above; it provides convenience functions to perform sweeps of445

the parameters on which the generative model depends; it calculates required sample sizes to bound power and other error446

metrics as described above. For a full description, we refer to the package’s documentation.447

10. Code and data availability448

Our open-source Python software package, gemmr, is freely available at https://github.com/murraylab/gemmr. It has dependencies449

on scikit-learn (78), statsmodels (46), xarray (79), pandas (80), scipy (81) and numpy (82) among others. Jupyter450

notebooks detailing the analyses and generation of figures presented in the manuscript are made available as part of the package451

documentation. The outcomes of synthetic datasets that were analyzed with CCA or PLS are available from https://osf.io/8expj/.452
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Fig. S1. Decay constants of principal component spectra in empirical data. Decay constants are estimated as the slope in a linear regression for the logarithm of the
explained variance on the logarithm of the associated principal component number. We include enough components into the linear regression as necessary to explain either
30 % (red) or 90 % (yellow) of the variance. Where the two resulting slopes coincide only one is shown. Shown are decay constants for the following data matrices: A) HCP
functional connectivity and B) HCP functional connectivity after preprocessing for CCA / PLS (as described in subsection C), both based on 951 subjects. C) HCP functional
connectivity for 877 subjects where global signal was not regressed out (cf. subsection A.1) and D) HCP functional connectivity of 877 subjects where global signal was not
regressed out after preprocessing for CCA / PLS. E) HCP global brain connectivity (GBC), i. e. the sum across rows of the parcel × parcel functional connectivity matrix
(951 subjects) and F) HCP GBC where global signal was not regressed out (877 subjects). G) HCP behavioral data of 951 subjects after preprocessing for CCA / PLS H)
HCP diffusion MRI of 1020 subjects after preprocessing for CCA / PLS. I) UK Biobank fMRI of 20000 subjects after preprocessing for CCA / PLS, J) UK Biobank behavioral
measures of 20000 subjects after preprocessing for CCA / PLS.
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Fig. S2. Algorithm for choosing weight vectors. The flowchart illustrates the main logic of the algorithm. We require weight vectors (i) to be orthonormal within each set, (ii)
to result in scores that explain at least a given fraction of variance, and (iii) to result in a proper, i. e. positive definite, joint covariance matrix Σ. Orthonormality is imposed
directly when candidate weight vectors are proposed, and if the other two conditions are satisfied we say the weights are emphadmissible. In the first stage of the algorithm
random weight vectors are generated as the Q factor of a QR-factorization of a matrix whose elements are drawn independently from a standard normal distribution. If this fails,
an optimization algorithm is used to find weight vectors resulting in a positive definite matrix Σ. If this also fails the, the first principal component is used as first part of the weight
vectors. In all three cases, after having found weight vectors in one of these ways, a component from the low-variance subspace is added, referred to in the flowchart as "noise".
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Fig. S3. Samples per feature is a key effective parameter (I). Throughout the manuscript we have presented results in terms of the parameter "samples per feature". Here
we demonstrate that this is a suitable parameterization for CCA, while only approximately so for PLS. Color hue represents true correlation rtrue, saturated colors are used for
pX = pY = 2, and fainter colors for higher pX (and we used pY = pX ). In CCA (left column), for a given rtrue, power and error metric curves for various number of
features are very similar when parameterized as "samples per feature". In PLS (middle column), the same tendency can be observed, albeit the overlap between curves of the
same hue (i. e. with same rtrue but different number of features) is worse. When "samples / (number of features)1.5" is used instead (right column), the curves overlap more.
See also Fig. S4. Of note, the downstream effect of the “samples per feature” parameterization can be seen in Fig. 8B, where each dot represents a particular number of
features: the dots for a given rtrue do not scatter appreciatively for CCA but do for PLS. Likewise, log(px + py) was used as a predictor in the linear model used for prediction
of log(n), and the corresponding coefficient was around 1 (indicating n ∼ p) for CCA, but above 1 for PLS (Fig. S17A).
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Fig. S4. Samples per feature is a key effective parameter (II). Same format as Fig. S3. Unlike there, here we used pX 6= pY and pX + pY was fixed at 64. Also unlike in
Fig. S3, the difference between the middle and right column is smaller, suggesting that "samples per feature" is a good parameterization for PLS when the total number of
features is fixed, but pX and pY are not necessarily identical. Note that for PLS rtrue = 0.1 is not shown due to computational expense.
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Fig. S5. Supplementary results related to meta-analysis. A) Typical number of samples per feature in brain-behavior CCAs. Studies using CCA to analyze brain-behavior
relationships often used less than 5 samples per feature. B) Distance from null in subjects-per-feature vs observed correlation plot predicts weight error. A linear model was fit
to the simulated, permuted data shown in Fig. 6A and for each reported CCA the orthogonal distance to the fit-line was measured and is shown here on the x-axis, with positive
values indicating deviations towards the top-right corner of Fig. 6A. The mean estimated weight error for the reported CCAs is the smaller the farther away from the permuted
data the CCA lies in the top-right part of the plot.
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Fig. S6. A wide range of true association strengths is compatible with a given observed association strength. Synthetic datasets were generated where the true
correlation was varied from 0 to 0.99 in steps of 0.01 and analyzed with A) CCA, B) PLS. We investigated 4, 8, 16, 32, 64 and 128 features per set, set up 10 different
covariance matrices with differing true weight vectors for each number of features and true correlation, and drew 100 repeated datasets from each corresponding normal
distribution. For every CCA and PLS we recorded the observed association and binned them in bins with width 0.01. The plots show 95 % confidence intervals of the true
association strength that were associated with a given observed association strength. Notably, apart from the very strongest observed association strengths which indicate an
almost equally strong true correlation, compatible true association strengths can be markedly lower, down to essentially 0, when the number of used samples per feature is low.
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Fig. S7. Cross-validated estimation of association strength. In contrast to in-sample estimates, cross-validated estimates of between-set association strengths
underestimate the true value. We tested two different cross-validation strategies here with very similar results (curves overlap): 5-fold cross-validation (dash-dotted line) and a
strategy where the data were randomly split 20 times into 80 % train and 20 % test ("20×5-fold CV", dotted line). C-D) The absolute value of the relative estimation error is
similar for in-sample and cross-validated estimates. E-F) Using the average of the in-sample and cross-validated estimates results in a better estimate than either of those, so
that less samples are required to reach a target error level (here: 10 %).
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Fig. S8. Bootstrapped estimates are biased but recover variability. Bootstrapping affects CCA (left column) and PLS (right column) in a similar manner. A, B) Bootstrapped
association strengths averaged across 100 bootstrap iterations and repeated draws from a given normal distribution (dashed lines) are somewhat worse than estimates
obtained from the full samples (solid lines) averaged across repetitions. Likewise, C, D) average weight errors and E, F) the number of samples required to obtain less than
10 % weight error are somewhat worse when estimated by bootstrapping. G, H) On the other hand, the variability of the bootstrap estimates, assessed as the interquartile
range (IQR) across bootstrap iterations (and averaged across repetitions) of elements of the estimated weight vectors, match the IQR across repetitions. For each combination
of rtrue ∈ {0.3, 0.5, 0.7, 0.9}, px ∈ {2, 4, 8, 16, 32, 64} (py = px) and 5 different covariance matrices (with different true weight vectors), the scatter-plots show one dot
for each element of the weight vector.
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Fig. S9. Illustration of loadings. Loadings are defined as Pearson correlations across subjects of a feature with the CCA/PLS scores. The loadings vector contains these
correlations for all variables. Apart from the illustrated loadings, cross-loadings in which scores of one set are correlated with the original features of the other set can also be
computed.
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Fig. S10. HCP data analysis workflow. Resting-state functional connectivity data and behavioral and demographic data from corresponding subjects were separately
deconfounded, reduced to 100 principal components and then analyzed with CCA and PLS.
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Fig. S11. Re-analysis of HCP fMRI vs behavior data with optimized number of principal components. Format is identical to Fig. 5. The only difference is the number
of principal components retained for analysis: whereas in Fig. 5 100 principal components were used for both datasets, in agreement with previous studies of HCP data
(39, 55, 60, 65, 72, 83), here we chose the number of principal component with the "max-min detector" from (84). As the algorithm provided multiple values for the optimal
number of components pX (neuroimaging data) and pY (behavioral and demographic data), we selected here the pair that minimized pX + pY . The optimized values were
pX = 55 and pY = 33, along with 12 between-set modes (we only consider the first one here). p-values for CCA and PLS were, respectively, 0.001 and 0.007. While the
results are very similar to Fig. 5, (i) the observed correlations in A) appear to have stabilized more and are lower than in Fig. 5A, (ii) in-sample and cross-validated association
strengths are more similar here in panels A) and C) than in Fig. 5, and (iii) weight similarities in B) and D) are higher than in Fig. 5. Altogether results seem to have converged
more with the same sample size. This demonstrates the potential benefit of dimensionality reduction for CCA and PLS.

22 of 33M Helmer, S Warrington, A Mohammadi-Nejad, JL Ji, A Howell, B Rosand, A Anticevic, SN Sotiropoulos & JD Murray

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


𝚺

rtrue 0.00 0.01 0.99...

covariance
matrix

sample

observed
correlation

simulated
sample

correlation

match

weight
errors of
matched

simulations

𝚺 𝚺

Fig. S12. Schematic for estimating weight errors for published CCA results. For each CCA from the literature in our database, synthetic data for CCA is generated with
matching number of samples and features. Separate datasets are generated for assumed ground-truth correlations varying between 0 and 0.99. In each generated dataset the
canonical correlation is estimated and if it is close to the value in the reported CCA, the weight error for the synthetic dataset is recorded. The distribution of recorded weight
errors across assumed ground-truth correlations and repetitions of the whole process is shown in Fig. 6B and its mean in Fig. 6A.
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Fig. S13. True loadings and true cross-loadings are similar. True loadings and cross-loadings were calculated with Eq. (3) and Eq. (4), respectively. A) In CCA, true
loadings and true cross-loadings were collinear (as predicted by Eq. (22)). B) For PLS, they were strongly correlated. The shown correlations were averaged across 25
covariance matrices with different true weight vectors. Moreover, for PLS, ax + ay was constrained to -2.
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Fig. S14. Algorithm for sample size calculation. Sample sizes can, in principle, be calculated directly with GEMMR, as shown in Fig. 8. However, this is computationally
expensive. To quickly obtain sample size estimates, we developed the algorithm illustrated here.
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Fig. S15. Sample size dependence on ground truth correlation rtrue, number of features and metric. A-B) Required sample sizes based on the combined criterion
increase with number of features and for low true correlations. Due to computational expense values for some parameter sets were not available (white). C-D) Sample size
dependence on number of features, shown here for rtrue = 0.3, scale similarly for all metrics, albeit with slight offsets.
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Fig. S16. Sample size dependence of PLS on within-set variances. Simulated parameter sets were averaged across subsets having indicated values for ax + ay (the
sum of within-set power-law decay constants)±0.5. The closer ax + ay was to 0 (i. e. the "whiter" the data) the fewer samples were required.
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Fig. S17. Sample size calculator. Especially for low assumed ground-truth correlations and a high number of features it is computationally expensive to estimate the required
number of samples by generating synthetic datasets and searching the sample size such that error bounds are satisfied. To abbreviate this process we pre-calculate required
sample sizes using the generative model approach for certain parameter values, fit a linear model to log(nrequired) and then use it to quickly interpolate for parameter values
not in the pre-calculated database. Predictors for the linear model are− log(rtrue), log(px + py) and, for PLS only, |ax + ay|, where px and py are the number of features
in datasets X and Y , respectively, and ax and ay are the power-law decay constants for the within-set principal component spectrum. Shown here are linear model estimates
for the required sample size based on the combined criterion, i. e. the sample sizes required to obtain 90 % power and at most 10 % error for the between-set association
strength, weight, score and loading error. A) Linear model coefficients for CCA and PLS. B-D) The pre-calculated database was split in half where one half corresponded to
rtrue = 0.1 and 0.3, the other to rtrue = 0.7 and 0.9 and entries for rtrue = 0.5 were divided between the two halves. The linear model was re-estimated separately
for each half, and used to predict the other half. Predictions are B) good for CCA and C) somewhat worse for PLS. D) In contrast to CCA which effectively uses whitened
data, PLS weights, even for a given ground-truth correlation, can differ by their direction relative to the principal component axes and thus by how much within-set variance
the corresponding scores explain. In practice this is unobservable as it requires the knowledge of the true weight vectors. Using synthetic data where we know the true
weight vectors we re-estimated the linear model for PLS with log(vxvy) as additional predictor, where v indicates the explained variance ratio for the weight vector, i. e. the
variance of the scores divided by the trace of the corresponding within-set covariance matrix. This results in much better predictions and indicates that much of the unexplained
variance in C) is due to unobservables. E, F) Solving the linear model for rtrue, we aim to predict correlations. We train the model using either simulation outcomes for
rtrue ∈ {0.1, 0.3}}, or rtrue ∈ {0.7, 0.9}} and testing the predictions on the remaining rtrues. E) Good predictions can be obtained in that way for CCA, F) but not for
PLS.
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Fig. S18. Sparse CCA. We determined required sample sizes with our analysis pipeline, for the sparse CCA variant PMD (11). Due to the computational expense we ran only
6 repetitions per cell, 5 and 4, respectively, for the 2 right-most cells on the bottom. A) Required sample sizes increased with the number of features and with decreasing rtrue.
Layout is analogous to Fig. S15A-B. B) When the number of features was large and the true correlation rtrue low, sparse CCA required somewhat less samples than CCA. For
large rtrue, in particular, we found the opposite.
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Table S1. Considerations and recommendations for using CCA and PLS in practice.

# Keyword Recommendation

1. Importance of sample
size and number of
features

Sample size and the number of features in the dataset are of critical importance for the stability of CCA and PLS. Di-
mensionality reduction (e. g. PCA) is a useful preprocessing step, as long as it does not remove components correlated
between sets. Methods for selecting number of components that take into account the correlation between sets have ben
proposed, e. g. (84).

2. Significance testing A significant non-zero association does not necessarily indicate that estimated weights are reliable.
3. Association strength error In-sample estimates for association strengths are too high, cross-validated estimates too low, their average tended to be

better.
4. Weights & loadings Weights and loadings estimated with too few samples are unreliable. For PLS, estimation of cross-loadings required fewer

samples than loadings.
5. PC1 bias In PLS, weights can be biased towards the first principal component.
6. Deceptive weight stability For PLS, weights can appear stable, scattering around the first principal component axis, and converge to their true values

only for very large sample sizes.
7. Subsampling Subsampling can be used to check stability of estimated association strengths in empirical data: similar results for varying

subsample sizes indicate stability.
8. Bootstrap Bootstrapped estimates were useful to assess the variability of weights, but not for obtaining accurate estimates of asso-

ciation strengths or weights.
9. Reporting Number of samples, number of features (after dimensionality reduction) and obtained association strength should be

reported. For PLS, the within-set variance spectrum is useful as well.
10. Required sample size Generally, we recommend at least 50 samples per feature for CCA, more for PLS (depending on the variance spectrum).

The accompanying Python package can be used to calculate recommended sample sizes for given dataset characteristics.
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