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Abstract

Background: The increasing statistical power of genome-wide association studies is
fostering the development of precision medicine through genomic predictions of complex
traits. Nevertheless, it has been shown that the results remain relatively modest. A
reason might be the nature of the methods typically used to construct genomic
predictions. Recent machine learning techniques have properties that could help to
capture the architecture of complex traits better and improve genomic prediction
accuracy.
Methods: We relied on crowd-sourcing to efficiently compare multiple genomic
prediction methods. This represents an innovative approach in the genomic field
because of the privacy concerns linked to human genetic data. There are two
crowd-sourcing elements building our study. First, we constructed a dataset from
openSNP (opensnp.org), an open repository where people voluntarily share their
genotyping data and phenotypic information in an effort to participate in open science.
To leverage this resource we release the ’openSNP Cohort Maker’, a tool that builds a
homogeneous and up-to-date cohort based on the data available on opensnp.org.
Second, we organized an open online challenge on the CrowdAI platform (crowdai.org)
aiming at predicting height from genome-wide genotyping data.
Results: The ’openSNP Height Prediction’ challenge lasted for three months. A total
of 138 challengers contributed to 1275 submissions. The winner computed a polygenic
risk score using the publicly available summary statistics of the GIANT study to
achieve the best result (r2 = 0.53 versus r2 = 0.49 for the second-best).
Conclusion: We report here the first crowd-sourced challenge on publicly available
genome-wide genotyping data. We also deliver the ’openSNP Cohort Maker’ that will
allow people to make use of the data available on opensnp.org.

keywords: crowdsourcing, genomic prediction, open science, openSNP, polygenic
risk score, machine learning.
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Background 1

As costs for genetic analyses keep dropping, genetic testing is becoming more available 2

and affordable for increasing numbers of people - a trend that can be seen in the rising 3

number of customers that use Direct-To-Consumer (DTC) genetic testing services like 4

23andMe and AncestryDNA [1]. Decreasing costs and increased availability have lead to 5

the creation of a number of genomic data resources, such as the Personal Genome 6

Project [2], DNA.land [3] and openSNP [4]. Amongst these data resources, openSNP is 7

unique, in that it offers open participation and open access to the data: Participants of 8

openSNP can use the platform to openly share their existing DTC genetic test data, 9

putting their data in the public domain. In addition, participants can share phenotypic 10

traits, such as eye color, hair color or height. Since its start in 2011, over 5,000 people 11

have used the platform to make their genetic data available. 12

Crowd-sourced competitions of data analysis have become more and more popular in 13

the past few years allowing data science experts and enthusiasts to collaboratively solve 14

real-world problems, through online challenges. This approach allows the broad 15

exploration of the model space on a specific dataset by people with data analysis skills 16

coming from very different backgrounds. In the context of genomic prediction of 17

complex diseases, it is unprecedented. While the most widely used platform, kaggle.com, 18

offers monetary rewards, crowdai.org is more academic-centered and offered the winner 19

the opportunity to present her work at a scientific conference. 20

We hereby present a crowd-sourcing experiment where participants could compete 21

on crowdai.org to produce the best possible prediction of the height phenotype using 22

data from opensnp.org. 23

Materials and methods 24

openSNP Cohort Maker 25

Because on opensnp.org, no restrictions are enforced on what users can upload, after 26

downloading the data dump of the whole community, there is a need for in-depth data 27

curation to produce a clean cohort of genome-wide genotyped individuals. To make 28

these data accessible to anyone, we developed the openSNP Cohort Maker tool that 29

through a systematic approach produced a clean and up-to-date openSNP cohort of 30

genome-wide genotyped individuals. 31

When running the openSNP Cohort Maker, the data processing starts by 32

downloading the archive containing all data that were uploaded on opensnp.org by the 33

community. Then, files are removed if: they are not text or compressed text; they 34

correspond to exome sequencing; they are genotyping data from decodeme; they are set 35

on the GRCh38 reference; they are corrupted. For individuals who submitted multiple 36

genome-wide genotyping data, either as duplicates or from different DTC companies, 37

only the largest file is kept. A set of tools are integrated into the pipeline: genotyping 38

data with coordinates based on NCBI36 are upgraded to match the GRCh37 39

reference [5] with liftOver [6]; PLINK [7–9] is used to convert file formats. 40

VCFtools [10] is used to sort variants; BCFtools [11] is used to normalize reference and 41

alternate alleles on the GRCh37 reference genome, rename samples, index files, and 42

finally merge all individuals into one file. The output file can be directly imputed on 43

the Sanger Imputation Service [12]. The openSNP Cohort Maker is available on GitHub 44

S1. Software. Leveraging parallel computing, with 28 CPUs it takes 16 hours to 45

produce a single file containing the curated openSNP cohort. From the initial archive 46

containing 2487 different individuals, 2341 remain after filtering. From those, 2034 are 47

from 23andme, 186 are from ancestry.com, and 121 are from ftdna-illumina. 48
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CrowdAI Challenge 49

The dataset that we used for the challenge was produced by the openSNP Cohort 50

Maker and imputed on Sanger Imputation Service with HRC (r1.1). We sent to the 51

opensnp.org community a survey asking for their height, allowing us to create a dataset 52

regrouping 921 individuals with both height phenotype and genotyping data. 53

Challenge participants could use two versions of the genotyping data. One version 54

was a sub-dataset containing 9,894 genetic variants, including the top 9,207 variants 55

(p < 5x10−3) associated with height in the GIANT study [13], and 687 Y chromosome 56

variants. The second versions was a full dataset containing 7,252,636 variants which 57

passed a quality threshold, defined as an imputation score INFO > 0.8, genotyping 58

missingness frequency Fm < 0.1, and a Hardy-Weinberg equilibrium exact test 59

p− value < 1e−50. Both versions of the data were given in the VCF format, as well as 60

in an additive format where each genetic variant is represented by 0 (homozygous for 61

reference), 1 (heterozygous), 2 (homozygous for the alternate allele) or NA (missing 62

data or variants of allosomes), easier to handle for participants unfamiliar with genetics. 63

The data were separated into two sets, a training set with 784 samples and a test set 64

of 137 samples (an 85/15 split). The challengers were provided the training set with the 65

genotyping data and the height phenotype and the test set with the genotyping data 66

only. The challengers needed to train their model on the training set and produce 67

predictions for the samples of the test set. The test set predictions were then submitted 68

to the CrowdAI platform for evaluation and scoring. The score was produced based on 69

the Pearson’s correlation (r2) between the predicted and true height. The challengers 70

could submit as many prediction models as they wanted in an attempt to improve their 71

method and beat their best score. The scoring method was protected from known 72

exploits [14]. The data are available online on the zenodo platform S1. Dataset, and the 73

webpages presenting the challenge S1. Appendix and the leaderboard S2. Appendix 74

have been saved to PDF from the CrowdAI platform. 75

Results 76

A total of 138 challengers participated, contributing a total of 1275 submissions. The 77

winner computed a polygenic risk score (PRS) using the publicly available summary 78

statistics of the GIANT study to achieve the best result (r2 = 0.53 versus r2 = 0.49 for 79

the second-best). 80

The winning method was based on PRS. The training set and testing set were 81

combined for quality control and data preparation. As self-reported sex was not 82

provided, participant’s chromosomal sex (i.e. XX vs XY) was imputed using PLINK, 83

which uses the X chromosome inbreeding coefficient (F) to impute sex. Standard cutoffs 84

were used, whereby F < 0.2 yielded an XX call, while F > 0.8 yielded an XY call. One 85

participant yielded an F of exactly 0.2, and was removed from subsequent analyses 86

(they were in the training data). Of the remaining 920 individuals, 396 (43%) were XX, 87

and 524 (57%) were XY. 88

The openSNP platform contains genomic data of relatives. The presence of relatives 89

has the potential to bias results, as closely-related individuals will dominate the 90

estimation of principal components and will inflate prediction accuracy statistics [15] . 91

The genetic relationship between participants was calculated using the PLINK 92

computation of identity-by-descent (IBD), which is an estimate of the percent of the 93

genome (excluding sex chromosomes) shared between two individuals. The IBD analysis 94

identified seven pairs of strongly-related individuals (first-cousin or greater), including 95

two pairs of monozygotic twins. The analysis also identified a surprising cluster of 18 96

individuals estimated to be 3rd cousins, or equivalent. All but one member of each 97
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family-group was removed from analyses (N=24), all from the training data. It is 98

well-established that the frequency of genetic variants and correlational structure of the 99

genome differs across ancestral populations [15–17]. These differences are the major 100

barrier to combining genomic data across ancestries in genome-wide association 101

studies [18,19]. Genome-wide principal components were computed using PLINK. A 102

scree plot of eigenvalues indicated an elbow at three components. The large eigenvalue 103

of the first principal component, and the shape of all three components, clearly showed 104

that both the training and testing data contained participants of multiple ancestries (i.e. 105

participants of European, African, and Asian ancestry were present in both data sets), 106

though the majority of participants were of European descent. 107

Genomic data were further processed in PLINK, following the steps outlined by 108

PRSice [20] for the computation of PRS. This included removal of variants that were 109

missing for more than 2% of participants, removal of variants with a 110

minor-allele-frequency less than 0.02, removal of variants with a Hardy-Weinberg 111

equilibrium exact test pvalue < 10−6 , removal of variants within the major 112

histocompatibility complex on chromosome 6, and removal of non-synonymous variants. 113

Because neighboring genetic variants can be correlated due to linkage disequilibrium, 114

genetic variants were clumped in PLINK, wherein groups of variants correlated at 115

r2 > 0.1 were identified across a sliding window of 250 kilobases. Within each group, 116

only the variant with the lowest p-value in the GIANT genome-wide association study 117

of height [13] was retained. 118

A PRS is a metric reflecting an individual’s genetic burden for a disease or trait of 119

interest. [21, 22]. Prior work on the genetic basis of height has found that a PRS for 120

height captures over 20% of the variance in independent samples [13]. PRS are 121

calculated by averaging the number of disease-associated alleles, weighted by their effect 122

size, from an independent study [23]. Put differently, a linear regression predicting the 123

outcome trait is modeled at each individual variant, using the effect size from an 124

independent study. These predictions are then averaged across all models. The one free 125

parameter is the decision of which variants to include in the calculation of the PRS. 126

Typically, the significance of the association of each variant in the independent study is 127

used. Thus, multiple scores are calculated, including only variants that are associated 128

below different p-value thresholds (e.g. p < 5 × 10−1, p < 5 × 10−2, p < 5 × 10−3, etc.). 129

While a PRS including all variants (i.e. p < 1.0) typically does not perform the best, 130

neither does a PRS including only variants which surpass family-wise error rate 131

correction for multiple comparison (i.e. p < 5 × 10−8 ). Finally, the confounding effects 132

of ancestral populations apply to PRS analyses as well. PRS work best when the 133

independent study (e.g. the GIANT study used here) was conducted within a 134

homogeneous sample of participants all of whom are from the same ancestral 135

background, and when the sample the PRS is being calculated for is of the same 136

background. For instance, PRS computed from studies of individuals of European 137

descent are well-known to produce biased results in samples of African or Asian 138

descent [24,25]. 139

PRSice and PLINK were used to compute PRS for height in the openSNP sample, 140

using the results from the GIANT study of height. PRS were computed at 14 different 141

p-value thresholds (p < 10−8 to p < 1.0), shown in Fig 1. Linear regressions predicting 142

height in the training data were fit in R [26]. Chromosomal sex was the first variable 143

included in the model, followed by the top three genome-wide principal components, 144

which help to control for differences in ancestral background [27] . Chromosomal sex 145

predicted 46.81% of the variance in the training data, and the addition of the three 146

principal components subsequently explained 0.91% of variance. Finally, each of the 14 147

PRS were added to the model and compared. The PRS at p < 1x10−5 was observed to 148

perform best, and captured an additional 10.08% of variance. Thus, the final linear 149
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Fig 1. Variance explained as a function of pvalue threshold. PRS were
produced at a range of p-value thresholds (x-axis). Y-axis represents Nagelkerke’s
r-squared from training-sample linear regressions. The model with the best performance
in the training data (p < 5 × 10−4) was then used to predict height in the test-sample.

Fig 2. Predicted height distribution versus real height distribution.
Predicted height in the training-sample (x-axis) is displayed relative to true height
(y-axis). Points are colored by chromosomal sex. X and y-axis density plots show the
predicted and true overlap of height between the sexes.

regression model explained a total of 57.80% of the variation of height in the training 150

data set, shown in Fig 2. Predictions for height in the test data set were then generated 151

from this regression model, predicting 53.45% of variance (MSE = 47.32). 152

Discussion 153

Height is an extremely polygenic trait where even the hundreds of genome-wide 154

significant variants contribute all together for only a small portion of heritability [28]. 155

Because of the modest size of the OpenSNP cohort, the lack of statistical power was the 156

main difficulty for the challengers to capture the association signals coming from the 157

genetic variants. The winning model of the challenge incorporated the GWAS summary 158

statistics from the GIANT study to compute a PRS, in addition to deriving each 159

participant’s sex. It should be noted that PRS is a standard and widely-used technique 160

in the field of statistical genetics. While cross-population PRS have been shown to be 161

unreliable in multiple cases, such as Type II Diabetes [29], coronary artery disease [30], 162

and height [31], the similarities between the GIANT and openSNP cohorts were 163

sufficient to provide a winning strategy. This is likely because only a small portion of 164

samples were of non-European ancestry ( 7%). 165

So far, PRS are classically limited to additive models which might not represent the 166

whole complexity of the genetic architecture of some traits. Indeed, the phenotypic 167

variance explained by PRS remains modest in comparison to the heritability of the 168

traits [32] (the so-called ’missing heritability’ problem). The inability to consider 169

gene-gene interactions is one of the many factors potentially explaining for this PRS 170

weakness. In this case, the effect of a variant depends on the presence or absence of 171

another variant, a mechanism that is not captured by additive models and accounts for 172

an unknown part of the phenotypic variance [33]. Eventually, more advanced statistical 173

approaches relying on machine learning could improve on the prediction accuracy 174

provided by purely additive risk scores. Because of the diversity in available methods 175

and the world-wide distribution of excellent data scientists, we believe that 176

crowd-sourcing approaches represent a promising strategy to help improve phenotypic 177

prediction from large-scale genomic data. 178

Conclusion 179

Because of privacy concerns, studies relying on crowd-sourcing are almost impossible to 180

set up in the field of human genomics. A first experiment was carried out in 2016 to 181

predict anti-TNF treatment response in rheumatoid arthritis [34], but participants had 182

to apply to participate in the challenge. Here - thanks to the OpenSNP community - we 183

released the first crowd-sourced and fully open challenge based on publicly available 184

genome-wide genotyping data. The competition attracted 138 challengers, with diverse 185
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backgrounds, from the vibrant machine learning community. It resulted in the 186

assessment of a broad variety of methods for genotype-based phenotypic prediction 187

through a total of 1275 submissions. We hereby also report a tool to create an 188

up-to-date and curated OpenSNP cohort, making this open genomic resource much 189

more user-friendly. 190

Supporting information 191

S1. Appendix Released challenge presentation. 192

S2. Appendix Challenge leaderboard. 193

S1. Software OpenSNP cohort maker: 194

https://github.com/onaret/opensnp-cohort-maker 195

S1. Dataset Challenge dataset: 196

https://zenodo.org/record/1442755#.XlTwyHVKh1M 197
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