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Abstract: 

Research on the gut-brain axis has accelerated substantially over the course of the last years. Many 
reviews have outlined the important implications of understanding the relation of the gut microbiota 
with human brain function and behavior. One substantial drawback in integrating gut microbiome and 
brain data is the lack of integrative multivariate approaches that enable capturing variance in both 
modalities simultaneously. To address this issue, we applied a linked independent component analysis 
(LICA) to microbiota and brain connectivity data.  

We analyzed data from 58 healthy females (mean age = 21.5 years). Magnetic Resonance Imaging data 
were acquired using resting state functional imaging data. The assessment of gut microbial 
composition from feces was based on sequencing of the V4 16S rRNA gene region. We used the LICA 
model to simultaneously factorize the subjects’ large-scale brain networks and microbiome relative 
abundance data into 10 independent components of spatial and abundance variation.  

LICA decomposition resulted in four components with non-marginal contribution of the microbiota 
data. The default mode network featured strongly in three components, whereas the two-lateralized 
fronto-parietal attention networks contributed to one component. The executive-control (with the 
default mode) network was associated to another component. We found the abundance of Prevotella 
genus was associated to the strength of expression of all networks, whereas Bifidobacterium was 
associated with the default mode and frontoparietal-attention networks.  

We provide the first exploratory evidence for multivariate associative patterns between the gut 
microbiota and brain network connectivity in healthy humans, taking into account the complexity of 
both systems.   
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Introduction 

The gut-brain axis (GBA) is the bidirectional biochemical signaling that takes place between the 
gastrointestinal tract (GI tract) and the central nervous system (CNS)(1). The microbiota-GBA is used 
to describe the complex effects of the commensal gut bacteria (the microbiota) in the interplay 
between the gut and the brain. Recently, many studies have outlined the important implications of 
understanding the relation of the gut microbiota with human brain function and behavior. Several 
intermediary pathways have been proposed: specifically, bi-directional interactions between 
microbiota and the brain are plausible via modulation of vagal nerve activity, via neuromodulators or 
their precursors such as serotonin or tryptophan, via the Hypothalamic-Pituitary-Adrenal System (HPA-
axis) and via interactions with the immune system (1–4).  

In recent years, researchers aimed at elucidating these interactions, highlighting putative pathways, 
hormonal or immunological agents, and targeting the activity and interaction of certain bacterial 
strains (3). However, these studies have not taken into account the complexity and, especially, the full 
multivariate nature of both the brain and the gut microbiome.  

One of these complex traits of the brain is the intrinsic connectivity between different brain regions. 
So far, studies assessing the relation between gut microbiome composition and intrinsic brain 
connectivity – with resting state fMRI – are rare, limited in rigor, and inconclusive (5). A recent study 
tested the effects of four weeks multi-strain probiotics supplementation (6). The authors report mild 
probiotics-induced changes in resting state connectivity of some of the ten networks tested. The 
strongest modulation was found in differences between the placebo (n=15) and probiotics (n=15) 
group, with the latter showing a relatively stronger increase in connectivity of the salience network to 
superior frontal brain regions. In another placebo-controlled trial of probiotics (n=20 per group), 
Bifidobacterium longum influenced resting neural oscillations measured with 
magnetoencephalography (MEG), which correlated with enhanced vitality and reduced mental fatigue 
during a social stress induction task. Modulations of theta and alpha band oscillations by probiotics 
were localized in the frontal and cingulate cortex and supramarginal gyrus (7). However, these results 
(in relatively small samples) have not been related to probiotics-induced effects on gut microbiota 
composition. 

A few studies did assess the relation between gut microbiome composition and intrinsic brain 
connectivity. One resting state fMRI study (n=30), which included a subgroup of smokers, focused on 
the association of gut microbiota composition with insula connectivity and found its connection to 
several brain regions, such as occipital and lingual gyrus, frontal pole and cerebellar regions, to be 
associated with microbiota diversity and structure (8). Other exploratory region-of-interest (ROI) 
analyses did not reveal significant associations. Another resting state fMRI study (n=28 vs 19) 
demonstrated that in end-stage renal disease, the integrity of the default mode network (DMN) was 
decreased along with alterations in the gut-microbiota composition (9). Taken together, these results 
are difficult to integrate and comprehend, as studies focus on one aspect of the modalities, such as 
connectivity from one particular ROI, or the gut-brain axis in targeted patient groups, or with different 
types of interventions. Most importantly, all previous studies have performed bivariate associations 
between one gut-microbiome composition measure and one brain connectivity measure (i.e. within 
one network or between two brain networks).  

Indeed, in research, one approach to understand such complex systems is to try to elucidate the 
function of all its components sequentially and then to integrate interactions between a limited 
number of components. The opposite approach of investigation is to aim at integration at a 
macroscopic level. In this approach as many components as possible are sampled and patterns are 
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investigated by dimensionality reduction. This has been attempted for the gut-brain axis very often 
narratively, in multiple reviews. Yet, no empirical attempt has been made so far to try to integrate the 
functions of the brain and the gut microbiome at a macroscopic level to determine associations 
between variance in macroscopic components of the two systems. In a similar approach, using data 
from the Human Connectome, researchers linked several lifestyle, demographic and psychometric 
measures in a positive-negative mode of brain connectivity (10).  

Here, we aim to assess the relation between these two complex, multivariate modalities, focusing on 
canonically established brain networks in resting state that represent major modes of brain functioning 
in an unperturbed fashion (11). We asked if the inter-individual variability in abundance of gut 
microbiome genera was linked to variability in brain functional connectivity in canonical brain 
networks, when taking into account the full complexity of both. 

One substantial methodological challenge is the multivariate and simultaneous integration of gut 
microbiome and brain data that enable capturing variance in both modalities simultaneously. To 
address this issue, we applied a linked independent component analysis ((12, 13), LICA) to microbiota 
and brain connectivity data (Figure 1). LICA enables data reduction in several modalities simultaneously 
and thereby is able to demonstrate joint inter-individual variation patterns in different modalities. We 
chose to investigate four very well characterized and often replicated brain networks (11). We used 
this selection in previous work to investigate the impact of fasting on functional connectivity in rest 
(14). We limited our study to a set of four networks of interest (the lateralized fronto-parietal 
(left/right) attention networks, FPN; the executive control network, ECN; and the default mode 
network, DMN) due to their importance in the neuroimaging field, their comparatively clear and 
cognitive functional profile and their importance in mental disease or previous microbiome research 
(10, 11, 14–16).  

 

Figure 1. We linked functional brain connectivity in four well-established brain networks with relative abundance of human 
gut bacteria (microbiota). Panel A describes the Linked ICA that decomposed, simultaneously, the variability in functional 
connectivity of the four networks and the relative abundance of bacterial taxa (genera). This resulted in 10 components for 
which we have individual subject loadings as well as the loadings of each input feature depicted in panel B. The loadings 
represent voxel-wise association to the component in functional connectivity per network and genera-wise association to the 
component in the gut-microbiome.  
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Results 

For 58 subjects, the spatial template maps of right and left frontoparietal-attention networks (FPN), 
executive control (ECN), default mode network (DMN) (11) were projected onto the subjects resting 
state fMRI time-courses to create network maps per subject. Gut microbiome composition was based 
on sequencing of the V4 region of the 16S rRNA gene on the Illumina HiSeq platform. We used the LICA 
model to simultaneous factorize the subjects' brain networks and gut microbiome relative abundance 
into ten independent components (12, 13).  

 

Joint decomposition of brain networks and microbiome relative abundance 

From the 10 components, six showed a non-marginal (proportion > 0.2) contribution on both the gut 
microbiota relative abundance and the brain connectivity patterns (Component 0, 1, 3, 4, 6 and 7ö 
Figure 2). From these six components, the first extracted component (component 0) was explained by 
a single subject, therefore, this component was disregarded for further analyses. Additionally, sanity 
checks on brain connectivity showed, for component 4, equal values for all voxels in the brain data. 
This renders interpretation of this component hardly possible and could potentially relate to residual 
noise being picked up and explained. This component was therefore also discarded. 

 

 

Figure 2 Decomposition of brain connectivity and microbiome. The plot shows the percentage of contribution per input 
modality. FPr and FPl are right and left fronto-parietal networks, DMN is default mode and ECN is executive control network.  

We consequently investigated the association between brain connectivity and gut microbiota relative 
abundance in the four remaining components. We characterized each component by the contribution 
of the different modalities (proportion > 0.2 for brain or microbiome). For each component, we plotted 
the brain-network and their voxel-wise loading and listed the bacterial genera that were non-
marginally associated with the component. For brain connectivity data, the z-maps from the Linked 
ICA were thresholded at a z > 3 for display purposes (see Neurovault: 
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https://neurovault.org/collections/TRVFBPAB/ for z maps of the brain data four components). The z-
scores reflect how strongly a voxel covaries in connectivity with the respective input network. For 
microbiome data, high loadings reflect a robust covariation in relative abundance of a particular genus 
in that particular component. Similarly, we thresholded the microbiome loading at z>2.3 as they were 
more sparse compared to brain loadings (See Figure 3 for a visualization of these results and the 
DondersSharingCollection for the unthreshholded decomposition data).  

The microbiota accounted for the majority of the variability that could be explained by component 1, 
3 and 6. Component 1 also has strong contributions from variability in the DMN and the ECN and the 
microbiota. Looking at the variability in each modality more deeply, the LICA enabled us to say which 
voxels show variation in functional connectivity to the respective network between subjects. For the 
microbiota, LICA gives an indication of between-subject variation in relative abundance of the gut 
microbiota genera for that component. For instance, ECN in component 1 varied between subjects in 
core hubs of the ECN, such as the dorsal paracingulate cortex, middle frontal and superior frontal gyri. 
The ECN largely consists of middle frontal and superior frontal gyri, paracingulate cortex and dorsal 
posterior parietal cortex (11, 17). This covariance in core hubs of the ECN can be interpreted as this 
component explaining functional connectivity strength, or the strength of the expression of the ECN in 
the subjects, and this strength of expression being related to variation in relative abundance of gut 
microbiota. The ECN has been demonstrated to overlap spatially with brain activity observed in 
cognitive control tasks, emotion tasks and response inhibition (11). Similarly, for the DMN, component 
1 picked up on variability in the posterior core hub of the DMN (the posterior cingulate and 
retrosplenial cortex; 13, 16). The DMN is the large-scale brain network that was identified first and it 
is probably the most often studied of all so-called resting-state networks. DMN modulations have been 
implicated in a broad range of disorders (19–22). The most prominent feature of the DMN is its task-
negative nature; the areas of the DMN deactivate when an individual is engaged in most tasks (23–25). 
It has been associated to a broad range of cognitive processes such as self-referenced thought and 
self-monitoring (23), passive, broad attention (20, 26), auto-biographical memory retrieval (27, 28), 
imparting meaning in the current sensory input depending on prior experiences (29), mind-wandering 
and future thinking (29, 30) as well as homeostatic functions (23, 24, 31, 32). Prevotella_9 was more 
abundant and Blautia was less abundant with increasing between-subject functional connectivity of 
these hubs of the two networks. Component 2 had a contribution of over 50% from variability in 
microbiota abundance and the DMN. Bifidobacterium was more abundant and Prevotella_9 and 
Bacteroides were less abundant with increasing functional connectivity in anterior core hubs of the 
DMN. Component 6 had the strongest contribution of all components from microbiota of around 75%, 
yet also explained variability in the two-lateralized fronto-parietal attention networks. As the name of 
these networks suggest, they encompass fronto-parietal brain regions, which are commonly and 
reliably associated to brain activity in attention tasks (11) and are modulated with varying degree of 
attention demand (33).  The topology of the loading of these networks on this component overlaps 
with their common, canonical spatial profile in lateral frontal and parietal brain areas. Thus, again this 
component is associated to the between-subjects variation of the strength of expression of the 
lateralized attention networks. Prevotella_9, Bifidobacterium, genera belonging to Lachnospiracaceae 
family, and Faecalibacterium were more abundant and Christensenellacea_R-7_group was less 
abundant with stronger expression of the attention networks. Component 7 was associated to 
variability in the DMN again and to roughly 25% of the microbiota. The spatial pattern of between-
subject variation could be interpreted as elevated connectivity of the DMN to parts of the so-called 
salience network (such as dorsal anterior cingulate cortex (dorsal ACC) and ventrolateral prefrontal 
cortex (VLPFC)), which has in previous literature been associated with effects of elevated stress on 
DMN resting state connectivity (15, 16). Ruminocuccus_2 was more abundant and Blautia was less 
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abundant in individuals that showed this elevated connectivity pattern of DMN to dorsal ACC and 
VPLFC. 

 

Figure 3. Summary results of the contribution of each modality are shown in the first column (left). Second and third columns 
display the spatial project of the brain modalities, e.g. which voxels covary most strongly with covariation in other 
modalities (brain networks and microbiota abundance). Fourth column (right) displays the genera that show a covariance in 
abundance that is linked to covariance in the brain networks. The colors align with the modalities of the LICA (the four brain 
networks and the gut microbiota). For display purposes genera loading were cut at z >2.3 (for more details see the method 
section). See supplementary material for full list of genera loadings on the four components.   
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Discussion 

In this study, we provide the first evidence for multivariate associative patterns between the gut 
microbiota and brain network connectivity in healthy humans. We used a novel multivariate modality 
integration technique to explain inter-individual differences in brain connectivity in four canonical 
networks and the gut microbiota. We see our exploratory results as a map that could show high 
potential to guide future research on the relation of gut-brain interactions in a hypothesis-generating 
manner. We have linked ECN connectivity to an abundance of Prevotella_9 and Blautia; DMN 
connectivity to Prevotella_9, Blautia, Ruminococcus_2, Bifidobacterium, and Bacteroides; fronto-
parietal attention network connectivity to Prevotella_9, Bifidobacterium, Faecalibacterium, 
Christensenellacea_R-7_group, and certain genera belonging to Lachnospiracaceae. DMN connectivity 
that has been linked to stress is associated with Ruminocuccus_2 and Blautia. The spatial associations 
in the components to core hubs of the respective networks can be seen as a conceptual validation of 
our approach (11, 16, 34). Furthermore, we observe the between-subject variation in functional 
connectivity in core hubs of the respective networks in three of the four components as a link between 
an individual’s connectivity strength and the relative abundance of certain microbiota. These findings 
can be taken as an indication that certain microbial genera are associated with the normal expression 
of all four canonical resting state networks and their natural variation between healthy subjects.  

On the side of the bacterial genera that were associated with brain network connectivity, we found 
that inter-individual variation in abundance of the Bifidobacterium genus was prominently 
contributing to two of our four identified components. Variation in abundance of Bifidobacteria were 
associated with increased connectivity of the medial prefrontal cortex of the DMN and parietal regions 
and in another component with modulated connectivity of the core hubs of the fronto-parietal 
attention network. The Bifidobacterium genus is probably one of the most noticeable targets in current 
gut-brain axis research (2, 35, 36). This strong focus is potentially related to a landmark study, which 
showed that germ-free mice have altered HPA-axis function, and this altered HPA activity was reversed 
by colonization with a Bifidobaterium (1). Bifidobacteria are one of the most important and abundant 
genera during development and have been associated with decreased levels of inflammation in human 
development (37). Bifidobacterium longum, a strain commonly used in probiotic products, influenced 
resting neural activity that correlated with enhanced vitality and reduced mental fatigue during a social 
stress induction task (7). The medial prefrontal cortex and the DMN have been related to 
autobiographic  and episodic memory or prior knowledge structures(38), which fits to findings of the 
link between increased Bifidobacteria after interventions and elevated verbal episodic memory(6). 
Furthermore, Bagga and colleagues  also found altered functional connectivity of  the DMN after 
probiotic use (including B. longum) (6). Component 3 might therefor partially reflect episodic memory-
related modulations in Bifidobacteria and DMN connectivity. A probiotics trial with Bidfidobacterium 
longum using electrophysiological resting state brain recordings found evidence for an association of 
increased frontal midline mobility and improved memory after probiotics consumption compared to 
placebo (39). The authors related the brain recordings to attention-related brain activity. Moreover, 
the fact that out of >50 genera that featured in our analysis, Bifidobacteria featured in two of the four 
components both underscores their putative influence in the gut-brain interaction and the validity of 
our integrative approach. In summary, we found evidence for a relation of Bifidobacteria abundance 
to attention- and potentially memory-related brain network activity at rest.  

For component 7, the spatial patterns of association were similar to results showing an alerted state 
of the DMN after social stress induction (15). In data using a similar paradigm, Bifidobacterium longum 
modulated activity in similar regions that were influenced by social stress and also in the hippocampus, 
a region that is part of the DMN (7). This pattern particularly varied with abundance in Blautia and 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266122doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266122
http://creativecommons.org/licenses/by-nc/4.0/


Ruminococcus 2. Although Bifidobacterium did not covary with this component, the Bifidobacterium 
intake might have indirectly affected DMN connectivity in stress, potentially via modulation of the 
abundance of Ruminococcus 2 and Blautia. Indeed, the pre-existing levels of Blautia and Ruminococcae 
correlated with the metabolic outcomes of a Bifidobacterium-targeting prebiotic intervention in obese 
patients(40). Furthermore, Blautia has been found to be the only genus to be enriched in depression-
model rats(41) and both Blautia and Ruminococcae correlated with stress-related depression-like 
behaviour in mice(42). In summary, variations in Blautia and Ruminococcus 2 abundance might relate 
to stress-induced modulation of DMN connectivity.  

The association of Components 1, 3 and 6 with Prevotella_9 is interesting as this genus has been 
previously involved in psychiatric disorders, cognition and brain connectivity changes. For example, in 
autism spectrum disorder (ASD), which is characterized by atypical brain network organization 
(including DMN and ECN, as in component 1) (43), a higher relative abundance of Prevotella (and 
Bifidobacterium) has been linked with a beneficial effect of Microbiota Transfer Therapy (44). 
Accordingly, lower relative abundance of Prevotella has been associated with psychiatric disorders like 
ADHD in children (45), Parkinson’s disease (46), and ASD (47). Furthermore, the gut-brain axis may play 
a role in the disturbed executive functioning in ASD (for a review, see (48)). Our finding of a positive 
correlation of Prevotella with DMN and ECN functioning and also fronto-parietal attention network 
modulations support these results. Previous work showed a link between gut microbiota and resting-
state functional connectivity, as assessed here (9, 49). Interestingly, in one study assessing bivariate 
relationships, Prevotella and Bacteroides were associated with insular connectivity (8). The insula has 
not only been discussed as part of the salience network, but also as an important component of the 
general task positive network (50, 51). In our case, both of the Prevotella and Bacteroides genera were 
negatively associated with DMN in component 3. As the DMN is thought to be anti-correlated with the 
task positive network, our finding is in line with previous results (50). Prevotella seem to be associated 
to healthy modulation in brain connectivity related to attention, cognitive control, episodic memory 
and a range of other psychological functions. 

Our design and approach have limitations in the interpretation of the results. First, these findings are 
necessarily limited to more common genera. We capped our analysis at genera that are at least 
detectable in 30% of our subjects. Genera with lower occurrence rates in individuals might have 
unequally strong leverage on the LICA. As a consequence of this methodological choice, we cannot 
exclude an overestimation of the loadings for the more common taxa (given the sample size) and we 
cannot assess the rare genera and their association with brain network connectivity.  

Second, the selection of brain networks was motivated by their role in cognition specifically to high-
level cognitive constructs such as attention and cognitive control  and their relevance in the literature 
. While we perceive this selection as well-motivated and we have demonstrated their sensitivity (14), 
it is a subjective pre-selection. We might not cover other cognitive processes and associated brain 
networks equally well. Nevertheless, due to the limited power in our sample and for the advantage of 
choosing networks that are more readily interpreted, we chose to limit our selection of brain networks 
to these four.  

Third, we investigated a very homogenous, healthy and young group of only female participants. 
Although this naturally limits the generalizability of the results, we believe that our data still serves an 
orientating purpose and is therefore valuable. In replication attempts, this homogeneity and special 
characteristic of our sample should be considered. We would like to reiterate that we see a strong 
need to replicate the current results in larger and more diverse samples.  
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In summary, we provided the first evidence for multivariate associative patterns between large-scale 
brain network functional connectivity of four very well-established brain networks and the relative 
abundance of gut microbiota in a sample of healthy female individuals. This link provides a map for 
future research, involving the full complexity of both measures into account. For example, 
interventions targeting improvement in attention (for example in neurodevelopmental disorders) 
could investigate the influence on the bacterial genera associated to the attention networks. 
Moreover, it can provide a roadmap to investigate how the effect of probiotic intervention trials with 
compounds that benefit certain genera could explicitly test modulations in cognitive functions 
associated to the brain networks we investigated or to brain connectivity itself. Furthermore, future 
research might investigate the mechanistic nature of our multivariate associative patterns and aim to 
assess the generalizability to other healthy samples as well as their potential disruption in the diseased 
brain.  

   

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266122doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266122
http://creativecommons.org/licenses/by-nc/4.0/


Material and Methods 

Sample  

We analyzed pre-intervention data from a probiotics intervention study on 64 healthy female 
participants (mean age = 21.5 (0.45) years) (52). In total, 58 of the 64 participants were included in the 
analyses. Six participants were excluded from the final analyses, due to high depression scores (N=1), 
missing feces samples (N=2), and movement exceeding 4mm between acquisitions (n=3). For more 
detailed characteristic of the samples and exclusion criteria as well as the ethical declaration, please 
see the Material and Methods section of Papalini et al. (52). Briefly, participants with relevant medical 
history of e.g. psychiatric and/or gastrointestinal disorder were excluded. Also, use of antibiotics and 
diet like e.g. vegan diet were part of the exclusion criteria.  

fMRI data acquisition 

Participants were screened for compatibility to magnetic resonance imaging (MRI). MRI data were 
acquired using a 3T MAGNETOM Prisma system, equipped with a 32-channel head coil. After three 
short task-related fMRI scans (see Papalini et al.), nine minutes of resting state fMRI was acquired. 3D 
echo planar imaging (EPI) scans using a T2*weighted gradient echo multi-echo sequence (Poser, 
Versluis et al. 2006) were acquired (voxel size 3.5 x 3.5 x 3 mm isotropic, TR = 2070 ms, TE = 9 ms; 19.25 
ms; 29.5 ms; 39.75 ms, FoV = 224mm). The slab positioning and rotation (average angle of 14 degrees 
to AC axis) optimally covered both prefrontal and deep brain regions. Subjects were instructed to lie 
still with their eyes open and refrain from directed thought. A whole-brain high-resolution T1-weighted 
anatomical scan was acquired using a MPRAGE sequence (voxel size 1.0 x 1.0 x 1.0 isotropic, TR = 2300 
ms, TE = 3.03 ms, 192 slices). 

MRI data preprocessing: FSL (FMRIB, University of Oxford, UK; www.fmrib.ox.ac.uk/fsl; (Jenkinson et 
al., 2012) was used for pre-processing, data-denoising, and generation of subject-specific network 
maps. Pre-processing steps included three-dimensional movement correction, and spatial smoothing 
using a 5 mm full-width at half maximum (FWHM) Gaussian kernel to reduce inter-subject variability 
and a high-pass filter (> 0.007 Hz) was applied. All pre-processing steps, except temporal filtering, were 
conducted before AROMA data denoising (53, 54). Briefly, ICA-AROMA is designed to identify motion-
related artifacts by matching single subject ICA components to four robust and standardized features. 
The data is denoised by linear regression of ICA components identified as noise by AROMA and 
subsequently the high pass filter was applied. Prior to all group analyses, data were normalized to MNI 
space and re-sampled to 2 mm³ resolution using FMRIB’s Nonlinear Image Registration Tool (FNIRT). 

Generation of subject-specific functional connectivity maps 

Dual (spatial and temporal) regression was used to generate subject-specific spatial maps of well-
studied, canonical large-scale brain networks(11) from the individuals’ data. The z-maps of these 
networks were temporally concatenated in one 4D file and used as input for the dual regression. These 
maps were used in a linear model fit against the individual fMRI data, resulting in the subject-specific 
temporal dynamics. Subsequently, these time-course matrices are employed in a linear model fit 
against the subject’s fMRI data set to estimate subject-specific spatial maps. From these subject-wise 
expressions of the 10 networks, we selected four networks of interest (the left and right lateralized 
fronto-parietal attention networks, FPN; the executive control network, ECN; and the default mode 
network, DMN), due to their importance in the neuroimaging field, their comparatively clear functional 
profile and their importance in mental disease or previous microbiome research (10, 11, 14–16). The 
different spatial maps for all participants are combined into a single 4D file per target network. In this 
way, we generated four files for the four respective networks of interest that contain one spatial z-
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map per subject that indicates for each voxel the connectivity strength of the respective network in 
that individual. These four network files were used as inputs to the Linked-ICA. 

Gut microbiome analysis 

Fecal samples were collected by using OMNIgene•GUT kit (DNAGenotek, Ottawa, CA) (55). Collected 
fecal samples were transported to the laboratory and aliquoted into 1.5 mL Eppendorf tubes and 
stored at −80 °C for microbiome analysis. DNA was isolated from the fecal pellets using the Maxwell® 
16 Instrument (Promega, Leiden, The Netherlands) as described previously (56). Briefly, in the 2-step 
PCR protocol the 16S rRNA gene V4 variable region was targeted by using 515F 
(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) primers, and unique barcodes 
were used to characterize a mixture of bacteria. Sequencing was performed on the Illumina HiSeq 
PE300 platform by GATC Biotech AG (Konstanz, Germany). The sequences were processed using NG-
Tax (57) analysis pipeline as described previously (58). This resulted in an Operational Taxonomical 
Unit (OTU) table containing 844 OTUs. We applied a prevalence-filtering at the genus level, selecting 
genera present in at least 30% of the samples. After this step, the OTU-table containing 644 OTUs was 
used for the downstream analyses. The gut microbiome composition tables at the phylum and genus 
taxonomic levels were provided by the ‘phyloseq’ package available in R (59).  

Linked analyses   

We used the Linked-ICA model (13) to simultaneous factorize the functional network maps (of ECN, 
FPNs and DMN) and the microbiome data of 58 subjects into independent sources (or components) of 
variation. In the brain networks, spatial variation was explained; while in the microbiome data, 
variation in relative abundance of bacterial genera was explained. In brief, Linked-ICA is an extension 
of Bayesian ICA (60) to multiple input sets, where all individual ICA factorizations are linked through a 
shared common mixing matrix that reflect the subject-wise contribution to each component (Figure 
1). 

This operation is represented in Figure 1. Factorization provides a set of spatial maps (one per feature 
modality and component), a vector of feature loadings that reflects the degree to which the 
component ’represents’ the different modalities, and a vector that reflects the contribution of the 
individual subject to a given component. All mathematical derivations involved in the Linked-ICA 
factorization can be found in the original paper describing the original algorithm (13). Further details 
and code implementing each feature extraction procedure as well as the Linked-ICA factorization are 
publicly available at (61). Given the sample size, we forced a 10 components solution. We disregarded 
components estimated with marginal (proportion < 0.2) contribution of the microbiome or brain 
networks, respectively. 

Data will be shared via the DondersSharingCollection (link to follow). 
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