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Abstract16

All animal behaviour must ultimately be governed by physical laws. As a basis for understanding the physics17

of behaviour in a simple system, we here develop an effective theory for the motion of the larval form of18

the fruitfly Drosophila melanogaster, and compare it against a quantitative analysis of the real animal’s19

behaviour. We first define a set of fields which quantify stretching, bending, and twisting along the larva’s20

antero- posterior axis, and then perform a search in the space of possible theories that could govern the long-21

wavelength physics of these fields, using a simplified approach inspired by the renormalisation group. Guided22

by symmetry considerations and stability requirements, we arrive at a unique, analytically tractable free-field23

theory with a minimum of free parameters. Unexpectedly, we are able to explain a wide-spectrum of features24

of Drosophila larval behaviour by applying equilibrium statistical mechanics: our theory closely predicts the25

animals’ postural modes (eigenmaggots), as well as distributions and trajectories in the postural mode26

space across several behaviours, including peristaltic crawling, rolling, self-righting and unbiased substrate27

exploration. We explain the low-dimensionality of postural dynamics via Boltzmann suppression of high28

frequency modes, and also propose and experimentally test, novel predictions on the relationships between29

different forms of body deformation and animal behaviour. We show that crawling and rolling are dominated30

by similar symmetry properties, leading to identical dynamics/statistics in mode space, while rolling and31

unbiased exploration have a common dominant timescale. Furthermore, we are able to demonstrate that32

self-righting behaviour occurs continuously throughout substrate exploration, owing to the decoupling of33

stretching, bending, and twisting at low energies. Together, our results demonstrate that relatively simple34

effective physics can be used to explain and predict a wide range of animal behaviours.35
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Introduction36

Animals have evolved a wide variety of strategies for locomotion. This allows them to search for resources,37

adequate habitats, or mating partners, as well as escape predators. Yet, despite this diversity, all animal38

movement is fundamentally a physical act, and must therefore be governed by physical laws. Determining the39

form of these laws, which must emerge from the interaction of nervous system, musculature, body mechanics,40

and the environment [1,2], is a fundamental and inspiring problem in modern biology [3], with applications41

in engineering fields such as robotics [4, 5].42

Recent work has leveraged the development of low-cost, high-detail imaging technologies and advanced43

data analysis techniques to provide fine-grained characterisations of animal behaviour. For instance, pio-44

neering work on the nematode worm C. elegans demonstrated the existence of a low-dimensional postural45

basis in which to describe the animals’ shape changes over time [6], and similar bases have been found for46

other slender-bodied animals including zebrafish [7], snakes [8], and the Drosophila melanogaster larva [9].47

Subsequent work, particularly in the nematode, has exploited such low-dimensional postural bases to theo-48

retically investigate a wide range of behaviours using data-driven methods [6, 10–13]. However, principled,49

interpretable theories of animal behaviour are lacking, and it remains unclear why animal behaviour often50

appears to be low-dimensional at all, or what factors determine the dynamics and statistics within the51

low-dimensional postural mode space.52

Here, we address these questions by studying the Drosophila larva. The larva has emerged as an excellent53

model system to investigate the molecular, cellular, neural, and physical bases of behaviour [14–19]. This54

small animal (≈ 1 mm long) hatches and grows within decaying fruit before travelling further afield in order55

to pupate and metamorphosise into its adult form, and so, must be capable of complex three-dimensional56

movement. Correspondingly, Drosophila larvae are able to perform a wide repertoire of behaviours under57

experimental conditions [20], including: peristaltic crawling [21], rolling [22–24], self-righting [16, 25, 26],58

rearing [20], hunching [23], and digging [27–30]. Recent modelling studies have exploited this system to59

explore the importance of biomechanics in understanding the animal’s crawling (in one spatial dimension,60

1D) [19, 31–33] and substrate exploration/taxis behaviours (in two spatial dimensions, 2D) [18, 19, 34]. Ad-61

ditionally, the larva provides a prototypical example of the bilaterally-symmetric, slender, soft, segmented62

body physics that are common to many animals, and that are increasingly being exploited in the design of63

robotic systems [4, 5]. A physical theory of larval behaviour should thus advance general understanding of64

soft physics at organismal scales, and also has engineering potential.65

Here, we have developed an effective theory [35] describing the physics of three dimensional (3D) movement in66

fruitfly larvae. An effective theory provides a simplified description of the key physical principles governing67

a system’s behaviour at a particular scale of interest, while remaining agnostic as to the causes of this68

behaviour at a finer scale. This approach – widely adopted in physics – has the advantage of generating69

concrete predictions that can be compared to measurement on a specific system (with minimal parameter70

fitting), while contributing to a deeper understanding of that sytem’s behaviour. We choose this approach71

due to its successes in statistical field theory [36] and condensed matter physics [37], where low-energy72

effective theories can be used to both exploit and explain the dominance and properties of long-wavelength73

fluctuations (i.e. the “low-dimensionality”) in the behaviour of many non-living systems [36].74

Our theory describes the stretching, bending, and torsion along the fruitfly larva’s antero-posterior (AP) axis75

in 3D. To construct it, we employ a simple symmetry-based approach inspired by the use of the renormali-76

sation group within statistical and quantum field theory [36, 38, 39]. We start from an arbitrary dissipative77

Hamiltonian field theory for a set of fields describing deformations along the larval anteroposterior axis. By78

restricting our attention to low energies, we arrive at a unique quadratic Hamiltonian. To capture the effects79

of unmodelled “high energy” dynamics, we apply an equilibrium statistical physics hypothesis to generate80

predictions from our low energy theory. We show that our effective theory is able to explain and predict many81

features across a broad range of larval behaviours, including self-righting, peristalsis, rolling, and unbiased82

substrate exploration. Furthermore, by performing quantitative behavioural experiments in live Drosophila83
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Fig 1. Constructing an effective theory of larval midline physics. A) An illustration of the
Drosophila larva with its midline overlaid (black, blue=head, orange=tail). B) We measure the
displacement of the larva from an undeformed configuration (bottom) to a deformed configuration (top)
via four scalar fields parametrised by arc-length s (measured along the body from s = 0 at the tail, to
s = 1 at the head) and time t. The fields correspond to the 3 translations x(s, t), y(s, t), z(s, t) and the
torsional rotation of the body about each point θ(s, t). C) We restrict attention to low energy, long
wavelength, low frequency motions of the midline (top) rather than the higher energy, short wavelength,
high frequency motions (bottom). D) We impose continuous symmetry of the effective theory under overall
translations and rotations. E) We impose discrete symmetry of the effective theory under
anterior–posterior (A/P) axial reflections, left-right (L/R) mediolateral reflections, dorsal–ventral (D/V)
reflections, and clockwise–counterclockwise (CW/CCW) torsional reflections. We also require that our
effective theory be described by an analytic, local Hamiltonian field theory (not illustrated in this figure).

larvae, we demonstrate that the statistics of several real larval behaviours can be surprisingly well described84

using our equilibrium hypothesis. We explain the low-dimensionality of behaviour by Boltzmann suppression85

of higher-energy, shorter-wavelength motions, with elementary low-energy, long-wavelength motions conse-86

quently dominating the animal’s behaviour. We discuss the implications of these results for behavioural87

control in Drosophila larvae and other animal systems.88

1 Results89

1.1 An effective theory of the larval midline90

To advance the understanding of the physical basis of behaviour in Drosophila larvae, we constructed a theory91

from “first principles”. This essentially involved a “search” in the space of possible physical theories of the92

postural mechanics of the animal; we arrived at a unique theory by iteratively restricting our search space93

using symmetry and stability requirements, and through focusing attention exclusively upon the important94

low-energy (long-wavelength) physics by using a form of dimensional analysis inspired by the renormalisation95

group [36]. This type of approach has been successfully used in statistical mechanics [40], quantum field96

theory [38, 39], and condensed matter [37]. Perhaps most famously, Type-I superconductivity was initially97

formalised using the phenomenological Landau-Ginzburg theory [36], which was built using relatively simple98
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symmetry and stability requirements, long before it was possible to investigate the microscopic properties99

of superconductors. It is in this spirit that we have approached larval behaviour, attempting to determine100

the relevant effective physics with minimal reference to microscopic details of the animal’s nervous system,101

musculature, or biomechanics.102

We include a more detailed derivation of our theory in Appendix A, but, in essence, the approach consisted103

of the following steps: first, we focus our attention upon the anteroposterior (AP) axis of the animal, which104

for brevity we shall refer to as the midline (and which roughly corresponds to the neutral axis studied105

in rod mechanics). This choice allows us to capture the kinematics of several larval behaviours, while106

remaining at a tractable scale: segmental axial compression/expansion [21] and transverse bending along107

the midline [23,24,41,42], and rotation of each body segment about the midline [16,23–26].108

Second, we introduce a reference frame with which to measure deformations of the midline (i.e. larval109

postures). It is necessary to choose an “undeformed” reference configuration against which to measure the110

deformations of the larva. For this purpose, we choose a configuration in which the larva is “straightened out”111

and “untwisted”. This allows us to parametrise deformations by a single spatial parameter, the arc-length112

s measured along the midline from tail (s = 0) to head (s = 1) in the reference configuration, along with113

the time t measured relative to an arbitrary initial time t0; we will often refer to s simply as “space”, since114

together with t it forms the underlying 2-dimensional space-time of our theory. We introduce a right-handed115

Cartesian frame aligned with the anatomical frame of the reference configuration. In particular, the origin116

is fixed at the tail; the positive x-axis is directed along the midline and passes through the centroid of each117

transverse cross-section of the body, at the intersection of the anatomical sagittal and coronal planes; the118

x− z plane is aligned with the sagittal plane of the reference configuration with the positive z − axis along119

the dorsal axis; the x− y plane is aligned with the coronal plane with the positive y− axis directed towards120

the left-hand-side of the larva. The deformation of the larva is then given by the fields x(s, t), y(s, t), z(s, t)121

which measure the time-varying Cartesian displacement at each point along the midline, and θ(s, t) which122

measures the rotation of transverse cross sections about the midline, relative to the undeformed configuration123

(Figure 1A). For brevity we combine these four scalar fields into a vector ψ = [x, y, z, θ]
T

(s, t).124

Thirdly, we use of an effective statistical equilibrium hypothesis, postulating that the probability of a given125

field configuration ψ can be expressed in terms of an effective postural mechanical energy H [ψ] (also referred126

to as the Hamiltonian) via the Boltzmann distribution127

p [ψ] =
1

Z
e−βH[ψ], Z =

∫
Dψe−βH[ψ] (1)

Here Z is the partition function, which is defined so as to normalise the probability distribution. Because128

we are dealing with continuous fields the partition function takes the form of a path integral, with the129

measure Dψ intended to denote integration over all possible field configurations. We assume that the130

Hamiltonian H has the locality property, meaning that it can be written as an integral over space s of131

a Hamiltonian density H depending on the field ψ and its derivatives with respect to s and t as H =132 ∫
dsH(ψ, ∂tψ, ∂sψ, ∂

2
sψ, . . . ∂

120
s ∂37

t ψ, . . . ). For brevity we will often refer to the Hamiltonian density as133

simply the Hamiltonian; although this terminology is technically incorrect it is in common usage within field134

theory [36,38,39].135

As in many other statistical field theories [36], the effective form of the Hamiltonian density H is strongly136

constrained by symmetry properties, and takes a very simple form in the limit of low energies. In particular,137

since the larva moves at speeds which are almost negligible relative to the speed of light, we use a non-138

relativistic classical mechanics framework and impose Galilean invariance. This means that the energy of a139

given larval postural configuration should not depend on overall translations and rotations of the larva in140

space. Mathematically, this manifests as a minimum order of differentiation required for a term to be present141

in the Hamiltonian, e.g. the Hamiltonian cannot contain a term in x2 because on translation x→ x+∆x we142

have x2 → (x+∆x)2 6= x2, however the Hamiltonian can contain a term in (∂sx)2 because ∂s(x+∆x) = ∂sx.143
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We further impose reflection symmetry; this is motivated by the bilateral symmetry of the larva, which144

we interpret as meaning that a left-handed deformation of the midline should have the same energy as a145

right-handed deformation (so that the transformation y → −y should leave the Hamiltonian invariant).146

Combining this left-right symmetry with overall rotational symmetry generates a greater range of reflection147

symmetries – if we rotate the larva 180◦ in the sagittal plane before performing a left-right reflection, we148

have, in effect, performed a dorsal/ventral reflection, and we can clearly see that the Hamiltonian should149

be invariant under such D/V reflections z → −z; similar constructions lead to requirements for invariance150

under axial reflections x → −x and clockwise/counterclockwise reflections θ → −θ. Incorporating these151

reflection invariances into the Hamiltonian density decouples the scalar fields x, y, z, θ from one another up152

to quadratic order, and further removes all linear terms from the Hamiltonian, so that we can write it in the153

form154

H =
∑
i

Hi(ψi) +HI(ψ) (2)

where dependence on the derivatives of fields are implied, the term HI contains all quartic and higher order155

terms, and the summation is over a set of purely quadratic, decoupled Hamiltonians, one for each field156

x, y, z, θ ∈ ψ.157

As we restrict attention to low energies (long wavelengths, low frequencies, and small field/derivative am-158

plitudes) both the higher order terms in HI and the higher derivatives within the quadratic Hamiltonians159

Hi become less relevant, and the Hamiltonian is dominated by the lowest order derivatives allowed by our160

symmetry requirements (Appendix A). In this case we therefore arrive at Hamiltonian densities of fixed form161

Hx =
1

2
(∂tx)2 +

1

2
cx(∂sx)2, Hθ =

1

2
(∂tθ)

2 +
1

2
cθ(∂sθ)

2 (3)

Hy =
1

2
(∂ty)2 +

1

2
cy(∂2

sy)2, Hz =
1

2
(∂tz)

2 +
1

2
cz(∂

2
sz)

2 (4)

where we have eliminated the coefficients of the first term in each Hamiltonian via a suitable rescaling of the162

fields, in order to leave just four free parameters ci. We note in passing that these Hamiltonians are in the163

same form as the Hamiltonian densities for stretching, bending, and torsion of a deformable rod in classical164

linear elasticity theory, with stretching governed by the linear wave equation and bending governed by the165

Euler-Bernoulli beam theory [43]. Our theory is thus strongly reminiscent of the phenomenological elasticity166

models that have been used with great success in understanding mechanical properties of DNA and other167

polymers [40,44–46]; the key difference is our inclusion of kinetic energy, owing to the larva’s relatively large168

size and our interest in the larva’s dynamics.169

Having decoupled the Hamiltonian, the Boltzmann distribution and the partition function now factor into170

separate contributions from each field171

p [ψ] = p[x]p[y]p[z]p[θ] =
1

ZxZyZzZθ
e−βHxe−βHye−βHze−βHθ (5)

with Zx =
∫
Dxe−βHx , and equivalent expressions for the other field-specific partition functions.172

Since, by necessity, behavioural data tracks only discrete points along the larval body, we next discretise the173

scalar fields and their derivatives using standard finite difference schemes. We choose to measure the fields at174

N = 12 discrete points along the midline, corresponding to the boundaries between the 11 body segments in175
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the Drosophila larva: T1 – T3 (thoracic), A1 – A8 (abdominal) along with the head and tail extremities. It176

is necessary to introduce boundary conditions on our scalar fields in order to correctly specify the particular177

difference operators used in our discretisation. We impose vanishing force/moment (Neumann) boundary178

conditions on the transverse and torsional fields, and periodic boundary conditions on the axial field. The179

Neumann boundary conditions represent the absence of bending or twisting moments at the head and tail180

extremities, while the periodic axial boundary conditions represent the presence of a visceral piston in the181

larva which couples the motion of the head and tail.182

We reduce the number of free parameters in our model by assuming that the transverse fields have an183

“internal” circular rotational symmetry, i.e. we assume that the physics of mediolateral and dorsoventral184

motions should be equivalent and write cy = cz, leaving three free parameters. This is motivated both by a185

desire for simplicity in our theory, and by the approximately circular cross-section of the larva, which should186

lead to a similar passive bending response in the mediolateral and dorsoventral directions. The introduction187

of periodic boundary conditions to model the visceral piston of the larva introduces a similar “rotational”188

symmetry into the effective theory. We discuss the implications of these symmetries later in the paper,189

during our modal analysis and while studying peristalsis and rolling behaviours.190

Our discretised Hamiltonian is then given by191

H =
1

2

(
pT
xpx + pT

y py + pT
z pz + LTL

)
︸ ︷︷ ︸

kinetic

+
1

2

(
ω2
sx

TD2,cx + ω2
by

TD4,fy + ω2
bz

TD4,fz + ω2
t θ

TD2,fθ
)

︸ ︷︷ ︸
potential

(6)

where we have once again combined the Hamiltonians for the separate fields, i.e. H = Hx +Hy +Hz +Hθ,192

and we have indicated that the Hamiltonian corresponds to the total effective mechanical energy of the193

midline, and is the sum of kinetic and potential energies.194

In these expressions the lower-case bold symbols x,y, z,θ denote vectors containing measurements of the195

scalar fields x, y, z, θ at uniformly sampled discrete points along the midline si, while the vectors px, py, pz196

contain the discrete measurements of the translational momenta and L contains discrete measurements of197

angular momentum about the midline.198

The parameters ωs, ωb, ωt measure the ratio of elastic to inertial effective forces and determine the abso-199

lute frequencies of stretching, bending, and twisting motions, respectively. Note these parameters are not200

numerically equal to the parameters ci in the earlier Hamiltonian density, as they have absorbed constants201

associated with the discretisation of space. The upper-case bold symbols D2,c, D4,f , D4,f , and D2,f , denote202

the finite difference operators we mentioned above. D2,c is the (N − 1)× (N − 1) second difference matrix203

with periodic boundary conditions204

D2,c =


2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

 (7)

D2,f is the N ×N second difference matrix with free-free boundary conditions205
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D2,f =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 (8)

and D4 is the N ×N fourth difference matrix with free-free boundary conditions206

D4 =



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1


(9)

1.2 Neuromuscular and dissipative effects207

Before exploring the behaviour of our effective theory, we first consider the effects of neuromuscular forcing208

within the low-energy limit that we set above, since it is not intuitively clear whether our Hamiltonian209

approach can effectively model these effects. To examine this issue we postulate that the Hamiltonian derived210

above correctly encapsulates the low-energy dynamics, as well as the statistics, of our deformation fields. In211

this case, we can derive partial differential equations governing evolution of the fields x, y, z, θ ∈ ψ by first212

taking the Legendre transform of the Hamiltonian to find the Lagrangian density L(ψ) =
∑
i πi∂tψi−H(ψ)213

and then finding the corresponding Euler-Lagrange equations which extremise the action S =
∫
dtdsL. Since214

our Hamiltonian density is quadratic, so is the corresponding Lagrangian density, and the Euler-Lagrange215

equation is therefore linear, and can be written with generality as216

∑
n,m

(−1)n+m∂ns ∂
m
t

[
∂L

∂(∂ns ∂
m
t φ)

]
= Pφφ = 0 (10)

Here, φ ∈ ψ is used as a stand-in for any of the scalar fields x, y, z, θ, and Pφ is a linear differential operator217

encoding the Euler-Lagrange dynamics. In the presence of generalised forces acting on the field φ, the right218

hand side is nonzero, and in general we will have instead219

Pφφ = Pµτ (11)

where τ = τ(s, t) is a field whose derivatives produce generalised forces conjugate to the mechanical field220

φ. Note that if our field τ is to produce only forces internal to the mechanical system, such as the forces221

produced by muscles which have attachment sites within the body, then, by definition, the resulting dynamics222

must be Galilean invariant [47] (this is equivalent to requiring that muscle forces alone cannot produce a223

change in the total momentum or angular momentum of the midline in the absence of a ground reaction).224

Just as Galilean invariance limited the lowest order derivatives that could appear in our Hamiltonian density225

(and by extension Pφ), here this invariance limits the lowest order derivative that can appear in Pµ. As226

an example, if φ represents the mediolateral transverse deflection field y(s, t) then the field τ(s, t) could227
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represent an internal bending torque field, in which case we would have Pµ = ∂2
s . Conversely, if φ represents228

the axial field x(s, t) then the field τ(s, t) could represent internal tension forces, and we would have Pµ = ∂s.229

The field τ may also have its own dynamics and may be reciprocally coupled to the mechanical field φ.230

Assuming we remain within a linear, low-energy regime, we can write231

Pττ = Pνφ (12)

where Pν is constrained by symmetry. For instance, Galilean invariance will again set the lowest order of232

derivative present within Pν , representing the idea that the neuromuscular system cannot produce forces233

which depend upon the overall translation or rotation of the larva in space. However, in general Pτ , repre-234

senting the dynamics of the τ field itself, is not required to satisfy any symmetries.235

Now we note that we can apply the operator Pµ to Equation 12, and assuming the commutativity of our236

linear partial differential operators (i.e. assuming Clairaut’s Theorem holds) we can write237

PτPµτ = PµPνφ (13)

but by Equation 11 we have Pµτ = Pφφ, so this is equivalent to238

PτPφφ = PµPνφ =⇒ [PτPφ − PµPν ]φ = 0 (14)

This means the field τ can be eliminated by modifying the dynamics for the field φ. This can be rewritten239

simply as240

P ′φφ = 0 (15)

where P ′φ is again a linear differential operator. Note that P ′φφ is guaranteed to be the Euler-Lagrange241

equation of a new quadratic Lagrangian L′, although this Lagrangian may contain fractional derivatives242

(corresponding to odd-order derivatives in the Euler-Lagrange equations [48], see Appendix C). Crucially,243

the lowest order terms appearing in L′ will generally be of the same order as the lowest order terms in L244

since both Pφ and P ′φ are Galilean invariant. Thus, on rescaling, L′ should be equivalent to L up to a change245

in value of the free parameters, and thus the new Hamiltonian H′ will be similarly equivalent to H.246

We therefore conclude that, within a linear approximation to the dynamics, and upon applying a rescaling247

of the fields, space, and time, the only effect of neuromuscular forcing is a rescaling of the free parameters248

in our original Hamiltonian density. This is an essentially irrelevant difference, since the values of the free249

parameters are to be fixed by experiment.250

1.3 Modal analysis and Gaussian statistics251

Having formulated our effective theory, we next seek a convenient coordinate system in which to explore252

its behaviour. For this, we apply modal analysis, which, for our purposes, is formally identical to principal253

components analysis (PCA) (see below). Modal analysis gives a description of our theory in terms of a set of254

non-interacting, elementary collective motions of the body segments, with each collective motion measured255

by a modal coordinate, analogous to a principal component, and possessing a characteristic frequency and256
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forward crawling backward crawling

A

B

C i ii iii iv v

Fig 2. Modal analysis of the effective theory predicts the principal components and
dimensionality of larval behaviour. A) First six mode shapes predicted by our effective theory
(coloured lines) compared to principal components of stretching (extracted from recordings of forward and
backward peristaltic crawling behaviour), bending (extracted from recordings of unbiased substrate
exploration, rolling, and self-righting behaviour) and twisting (extracted from recordings of self-righting
behaviour) deformations. PCA was performed on individual larvae. Median principal component shown in
black, interquartile range in dark grey, and 2nd–98th percentile range in light grey. Downward deflection
corresponds to segmental compression (stretching modes), right-handed bending (bending modes) or
clockwise rotation (twisting modes). Mode shape predictions are parameter-free. B) Predicted proportion
of variance explained by each theoretical mode shape (coloured lines) compared to observed proportion of
variance along each theoretical mode during real behaviour (median in black, interquartle range in dark
grey, 2nd–98th percentile range in light grey). Data are shown for individual modes (top) and cumulatively
(bottom). Larval behaviour is low-dimensional in that a large proportion of variance can be explained by
the first few longest wavelength modes in each behaviour, as predicted by our theory. C) The frequency
relationships observed between stretching modes during forward (i) and backward (ii) crawling, bending
modes during unbiased exploration (iii), and twisting modes during self-righting (iii) compared to the fit by
our model (boxplots show real data; coloured lines show model fit; fit obtained by tuning the three free
parameters ωs, ωb, ωt using nonlinear least squares). (v) Frequencies of the first stretching mode during
forward/backward crawling (fw/bk crawl) and the first “C-bending” mode during unbiased exploration
(reorient) compared to the angular velocity of rolling. Our theory correctly predicts that the angular
velocity of rolling should match the frequency of C-bending during exploration (p = 0.23, Mann-Whitney
U-test) but incorrectly predicts that the frequency of forward and backward crawling should match
(p = 0.009). 9
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mode fw crawl bk crawl model explore roll SR model SR model

1 30.70 27.40 31.50 85.72 82.01 90.22 82.67 41.43 41.14
2 57.91 53.90 62.99 94.52 91.60 96.75 93.91 59.40 60.06
3 65.43 63.83 71.55 97.02 95.84 98.51 97.03 70.19 71.23
4 79.34 78.70 80.10 98.27 97.52 98.95 98.28 77.00 78.84
5 82.81 83.74 84.48 98.83 98.36 99.33 98.93 83.71 84.56
6 88.98 89.70 88.85 99.43 99.15 99.60 99.32 88.21 89.17
7 91.92 93.07 91.88 99.72 99.60 99.81 99.60 90.92 93.12
8 94.17 94.56 94.90 99.93 99.91 99.96 99.81 95.00 96.67
9 97.38 97.56 97.45 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 — — — — — —

Table 1. Cumulative percentage of variance explained by the stretching, bending, and twisting modes
during different larval behaviours, compared to model predictions (fw crawl = forward peristaltic crawling;
bk crawl = backward peristaltic crawling; explore = unbiased substrate exploration; roll = rolling; SR =

self-righting). Reported values are median across trials/individuals.

real (70%) real (90%) model (70%) model (90%)

axial (forward crawling) 3.33 6.35 2.82 6.38
axial (backward crawling) 3.42 6.09 2.82 6.38
transverse (exploration) 0.82 1.49 0.85 1.65
transverse (rolling) 0.85 1.83 0.85 1.65
transverse (self-righting) 0.78 1.00 0.85 1.65
torsional (self-righting) 2.98 6.66 2.89 6.21

Table 2. Number of modes required to explain 70–90% of variance during different larval behaviours,
compared to model prediction. These percentages represent the range of commonly used thresholds when

estimating the dimensionality of a system via PCA [49]. Reported values were computed by linear
interpolation of data in Table 1.
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mode shape describing the spatial pattern of movement, equivalent to a principal component vector – also257

referred to as an eigenmaggot in the field [9]258

The mode shapes are formally given by the eigenvectors of the difference matrices in our effective theory, so259

that transforming to modal coordinates diagonalises these matrices. This means that the Hamiltonian can260

be written in the form261

H =
1

2

∑
i

[
P 2
i + ω2

iQ
2
i

]
, ωi = ω

√
λi (16)

Here Qi denotes the i’th modal coordinate, Pi denotes its conjugate momentum, and ωi is the characteristic262

frequency of the mode. Frequency is written in terms of an absolute frequency scale ω, and the i’th eigenvalue263

λi of the relevant difference operator. The absolute frequency scale ω corresponds to the relevant free264

parameter ωs, ωb, or ωt in our discretised Hamiltonian, depending upon which field the mode belongs to.265

Clearly the ratio of frequencies for two modes of the same deformation field is independent of the absolute266

frequency scale, depending only upon the eigenvalues of the difference matrices267

ωi
ωj

=

√
λi√
λj

(17)

In terms of the modal coordinates, the Boltzmann distribution completely factors as268

p =
∏
i

1

Zi
e−βHi(Qi,Pi) =

∏
i

1

Zi
e−

β
2 (P 2

i +ω2
iQ

2
i ) (18)

where Zi = 2π/βωi is the partition function for the mode described by Qi, Pi. Clearly, in this description,269

each modal coordinate has simple Gaussian statistics. Indeed, we can interpret our modal analysis as270

finding the eigenvectors of the covariance matrix of a multidimensional Gaussian distribution, obtained from271

the Boltzmann distribution with our specific quadratic Hamiltonian. Here is the connection to PCA we272

described earlier – the eigenvectors of the covariance matrix are exactly the principal component vectors,273

which coincide, exactly, with our mode shapes; the principal components, representing projection onto these274

vectors, are then exactly equivalent to the modal coordinates. Because the mode shapes depend only upon the275

difference matrices in the Hamiltonian, we can make parameter-free predictions of the principal component276

vectors extracted from larval behaviour.277

Furthermore, examination of Equation 18 shows that each modal coordinate (principal component) Qi has278

variance σ2
i = 1

βω2λi
, as predicted by equipartition of energy amongst the modes [40]. It is thus clear that the279

proportion of variance explained by each mode of a given deformation field is independent of the temperature280

β and absolute frequency ω parameters, since we have281

σ2
i∑
i σ

2
i

=
λ−1
i∑
i λ
−1
i

(19)

This, therefore, enables us to make parameter-free predictions of both the mode shapes and the proportion282

of variance explained by each mode (Table 1 and Figure 2; see Appendices E, F for calculations of the283

eigenvalues and eigenvectors for axial and torsional deformations, and G for analytical approximations for284

transverse deformations).285
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1.4 Principal components analysis286

We compare the mode shapes predicted by our effective theory to those obtained via PCA of real larval287

behaviour in Figure 2. There is a strikingly good agreement between theory and experiment across all of the288

deformation modes and larval behaviours we studied : axial compression/expansion observed during forward289

and backward peristaltic crawling, mediolateral transverse bending during unbiased substrate exploration290

behaviour, mediolateral–dorsoventral transverse bending observed during self-righting and rolling behaviours,291

and twisting observed during self-righting (Figure 2A).292

Furthermore, the proportion of variance explained by each of our predicted modes is surprisingly well ex-293

plained by equipartition of energy, with substantial variance explained by the first few long-wavelength modes294

(Figure 2B and Table 1). Indeed, our equilibrium model predicts that 80.10% of variance in stretching should295

be explained by the first four axial modes; on average, these modes explained 79.34% and 78.70 of axial vari-296

ance during forward and backward crawling, respectively. Similarly, we predict that 82.67% of variance in297

transverse bending should be explained by the first transverse mode alone; on average, this “C-bending”298

mode explained 85.72%, 82.01%, and 90.22% of transverse variance during unbiased exploration, rolling, and299

self-righting behaviours, respectively. Meanwhile, we predict that 71.23% of variance in twisting should be300

explained by the first three torsional modes; on average, these modes explained 70.19% of torsional variance301

during self-righting. Since our model is able to predict the proportion of variance along each mode, it is also302

able to directly predict the “PCA dimension” of larval behaviours, i.e. the number of modes required to303

explain some threshold proportion of variance (usually set to between 70–90% of variance) [49]. We list our304

predicted dimensions along with those computed from real data in Table 2, where we have used linear inter-305

polation to predict the (fractional) dimension required to explain 70% or 90% of variance, providing lower306

and upper bounds on the PCA dimension. Again, there is good agreement between theory and experiment,307

with a maximum error between our predicted lower and upper dimensions and the data-estimated dimensions308

of 0.65. Thus, we believe our model provides a plausible explanation for the observed low-dimensionality of309

larval behaviour: shorter wavelength modes suffer from Boltzmann suppression. This means that all modes310

have the same energy on average, but this amount of energy produces much larger amplitude excursions in311

the long-wavelength modes than in their short-wavelength counterparts. As a result, observations of larval312

behaviour are dominated by the long-wavelength modes.313

One of the striking results of our analysis is that the eigenmaggot shapes are largely conserved between314

unbiased behaviour and rolling behaviour – our theory also gives a strong explanation of why this must be315

the case: these shapes are encoded in the effective physics of the midline. This, would otherwise be, highly316

non-intuitive. For instance, it may be surprising that similar proportions of transverse variance are explained317

by C-bending during unbiased behaviour (85.72%) and rolling (82.01%), despite this type of deformation318

being more visually obvious during rolling. However, our equilibrium effective theory tells us that this should319

be true simply because equipartition of energy amongst the modes should generically lead to a large amount320

of variance being explained by C-bending.321

The predictions so far have been independent of the particular values of our models’ parameters. We can322

now fix some of these parameters before moving forward, by considering the timescales of axial, transverse,323

and torsional deformations during larval behaviour. In particular, we have tuned the three free natural324

frequency parameters of our theory (which determine the relative timescales of the axial, transverse, and325

torsional deformations, as well as the overall absolute timescale of our model) to fit the observed frequencies326

for each mode. Indeed, we were able to find qualitatively good fits to these spectra (Figure 2C), although327

we were required to separately fit the spectrum of forward and backward peristaltic crawling as the overall328

timescales of these behaviours differ from one another [21,50]. Explaining this discrepancy will require future329

modification of our effective theory.330

We note that we have determined the average frequency ratio between the first mediolateral bending mode331

during unbiased behaviour and the first axial mode during forward crawling to be ≈ 0.4 (reported value is332

the ratio of median frequencies for the two behaviours). Our low-energy effective theory is able to fit, but not333
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explain, this frequency ratio due to the lack of energetic interactions between axial and transverse modes.334

However, in Appendix D we extend our theory to a higher energy regime by including a prototypical nonlinear335

axial-transverse interaction (based on the geometric/kinematic nonlinearity in [19]); this interaction may lead336

to transfer of energy between the axial and transverse fields via a 2 : 1 parametric resonance, thus predicting337

an axial-transverse frequency ratio of ≈ 0.5, close to our measured value.338

At this point, we are left with the temperature β as the only free parameter of the theory; this is joined by339

an additional parameter in the following section.340

1.5 Non-Gaussian Statistics and Degeneracy341

Although the Gaussian statistics of our theory successfully predict mode shapes and the proportion of342

variance along each modal coordinate during real larval behaviour, they will in general fail to adequately343

describe the probability distributions of these coordinates, which can be strongly non-Gaussian (Figure 3;344

Anderson-Darling normality test, p < 0.01 for all distributions of modal coordinates).345

This discrepancy might be corrected by perturbatively modifying the Hamiltonian of our theory in order to346

bring the predicted statistics closer to those we observe. Indeed, such perturbative modifications to a theory347

are a cornerstone of the effective theory approach [35,36]. However, in our case we can make some progress348

simply by looking closer at the symmetries of our Hamiltonian, without modification. In particular, we note349

that our choice of periodic boundary conditions for the axial field, representing the visceral piston [21] –350

which mechanically couples the head and tail extremities – introduces an effective rotational symmetry into351

our theory. We similarly introduced a rotational symmetry though our choice to set the mediolateral and352

dorsoventral frequency parameters to be equal, representing the approximately circular cross-section of the353

animal. Both symmetries manifest as degeneracies in the eigenvalue spectrum of our Hamiltonian – in other354

words, the axial stretching/compression modes appear in pairs with identical frequency, and similarly for355

every mediolateral bending mode there is a corresponding dorsoventral mode with the same frequency.356

In our theory, due to Noether’s theorem [51], the symmetries mentioned above are associated with mechanical357

invariants: quantities which, like energy, do not change during the evolution of a closed system. The358

derivation is presented below.359

We start from the Hamiltonian for a pair of modes with degenerate frequency360

Hd =
1

2

[
P 2

1 + P 2
2 + ω2

i

(
Q2

1 +Q2
2

)]
(20)

here, ωi is the common frequency of the two modes with coordinates Q1, Q2 and conjugate momenta P1,361

P2. To make the rotational symmetry of this Hamiltonian manifest, we take a canonical transformation to362

polar coordinates in the Q1 – Q2 plane, by setting Q1 = A cosφ, Q2 = A sinφ, where A is the “amplitude”,363

or distance from the origin, in the plane, and φ is the “phase”. In terms of these new coordinates we obtain364

the Hamiltonian365

Hd =
1

2
p2
A +

[
M2A−2 + ω2

iA
2
]︸ ︷︷ ︸

Ueff

(21)

where pA is the canonical momentum associated with the amplitude coordinate A, and M is the canonical366

momentum associated with the phase coordinate φ, corresponding to the angular momentum in the Q1 –367

Q2 plane. Note that φ does not appear in the Hamiltonian. This signifies that there is no energetic “cost”368
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associated with rotations in the Q1 – Q2 plane – this is our internal rotational symmetry. As a consequence,369

the angular momentum M is a mechanical invariant. This is a straightforward consequence of Hamilton’s370

equation for the dynamics of M ,371

Ṁ =
∂H

∂φ
= 0 (22)

Since the time derivative of M is zero, M itself must be conserved – it stays constant over time. This372

canonical momentum can therefore be treated as a parameter in the Hamiltonian, defining an effective373

potential energy for the amplitude coordinate (we have labelled this Ueff in Equation 21). We formally374

derive the maximum entropy distribution subject to a fixed value of M and a fixed ensemble average of the375

Hamiltonian Hd in Appendix I, finding376

p(A, φ, pA,M) =
1

Z
exp(−β

2

(
p2
A +M2A−2 + ω2

iA
2
)
)δ (M −M0) (23)

This can be interpreted as the usual Boltzmann statistics for Hd multiplied by an additional Dirac delta377

function which constrains M to take a fixed value M0. We calculate the partition function to be378

Z =

∫
dΩ exp(−β

2

(
p2
A +M2A−2 + ω2

iA
2
)
)δ (M −M0) =

2π2

βωi
e−β|M0|ωi (24)

where the measure dΩ represents integration over phase space. Note that the most probable behaviour of the379

system can be obtained from a saddle point approximation to the partition function integral, corresponding380

to minimisation of the Hamiltonian Hd subject to M = M0. This minimisation is straightforward, and tells381

us that the amplitude takes a fixed value A =
√
M0/ωi, which is nonzero for all M0 6= 0, and with zero382

associated momentum pA = 0. Thus, the most probable behaviour consists of a circular trajectory in the Q1383

– Q2 plane, in which our original modal coordinates execute sinusoidal oscillations in quadrature (i.e. with384

a 90◦ relative phase shift).385

1.6 Analyses of larval peristalsis and rolling behaviours386

We now turn our attention to the peristaltic crawling and rolling behaviours of the larva. Both behaviours387

involve a continuous, ongoing, seemingly out-of-equilibrium, motion of the body. In peristalsis, a wave of388

segmental compression and expansion passes along the body. In forward crawling, this wave travels from389

the tail of the animal, along its anteroposterior axis, until it reaches the head. At this point the head,390

tail, and internal viscera move in synchrony [21], and a new wave is initiated at the tail. In backward391

crawling the behaviour is similar, except the wave travels from head to tail and propagates at around half392

the speed of its forward–propagating counterparts (Figure 2). In both cases, the wave has a single “peak” of393

maximal compression, but is spread across several segments, so that it appears largely as a broad sinusoid394

of compression and expansion (recall that the first two axial modes alone explain around 55% of variance395

during these behaviours, Table 1). In rolling, the larva enters a C-bend configuration (corresponding to396

the first bending mode of our model – recall that this mode explains around 80% of variance during the397

behaviour, Table 1). The C-bend stays in the plane of the substrate while the body rotates, so that the398

C-bend propagates around the body axis in a clockwise or counterclockwise direction. For clockwise rolling,399

the C-bend might first be directed to the right of the body, then ventrally, then to the left, then dorsally,400

then back to the right; for counterclockwise rolling the sequence is reversed.401

To the eye, rolling and peristalsis behaviours could scarcely look more different. However, owing to the402

similar underlying rotational symmetry of the axial and transverse fields in our model, and the resulting403
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Fig 3. Similar physics underlies crawling and rolling behaviours (Caption next page.)
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Fig 3. Similar physics underlies crawling and rolling behaviours (Previous page.) Ai) (top) A
pair of modes with equal (degenerate) frequency ω can be described in terms of their respective modal
coordinates (e.g. we use X1, X2 for first pair of axial modes, and Y , Z for first mediolateral and first
dorsoventral bending mode) or in terms of their amplitude A and phase θ. (bottom) Since our effective
energy depends only on A and not θ, our model is symmetric under continuous rotations of the degenerate
modes. Aii) This rotation corresponds to moving the peak of axial compression along the body, considering
the head and tail as rigidly linked via the visceral piston [21] (rotation of X1, X2 plane; top) or to rotating
the direction of a C-bend around the body axis (rotation of Y , Z plane, bottom) Aiii) By Noether’s
theorem [47] the rotational invariance is linked to a conserved mechanical invariant (generalised momentum
M) corresponding to the momentum of a compression wave propagating along the body (top) or a C-bend
rotating around the body axis (bottom). Aiv) Incorporating the conserved momentum into the theory as a
constraint gives rise to an effective potential energy (Ueff , top) for the amplitude A [52]. The associated
Boltzmann statistics for A can then be computed (middle); the most probable (average) trajectory
minimizes the effective potential (orange lines) and has angular momentum M , corresponding to oscillation
of the degenerate modes in quadrature (bottom) with amplitude

√
M/ω and frequency ω. Av) The

quadrature modal oscillations correspond to peristaltic compression waves (top; oscillation in X1, X2) or
rolling (bottom; oscillation in Y , Z). B, C) Fit of the model average trajectory and Boltzmann statistics to
real data for forward crawling (B) and rolling (C); amplitudes were normalised so that

√
M/ω = 1. i)

Average trajectory (unit circle), real data (black), and a matched number of Markov chain Monte Carlo
(MCMC) samples from the Boltzmann distribution (coloured circles) in the degenerate mode plane. ii)
separate plots of the data in (i), including the analytical Boltzmann probability density function (pdf) iii)
Representative trajectories of modal coordinates, amplitude, and phase over time (black) compared to
average trajectory (coloured line) iv) Kernel density estimate (KDE, black) of the pdf of each quantity in
(iii), computed over all trials and compared to predicted pdf (coloured line), with two predicted error
bounds corresponding to either 2nd–98th percentile for MCMC samples drawn from the predicted pdf
(light grey; see Methods) or interquartile range from the same MCMC samples (dark grey). v) cumulative
distribution function (cdf) for each quantity in (iv) (same colorscheme; ), with results of
Kolmogorov-Smirnov comparisons between the predicted cdf and the corresponding empirical distribution
functions.

degeneracy of the axial and transverse spectra, both behaviours should share be described in mode space by404

the degenerate statistics that we derived in the previous section, differing only in the values of the invariant405

M0 and the inverse temperature β.406

In Figure 3 we plot experimental estimates for the first pair of degenerate modes during peristalsis (first407

two axial compression modes, labelled X1, X2, Figure 3B) and during rolling (first mediolateral and first408

dorsoventral bending mode, labelled Y , Z, Figure 3C), respectively, alongside a fit of our model to this409

data. To perform our fit, we first eliminated M0 by normalising the modes by the location of the peak of410

the amplitude distribution (this peak lies at
√
M0/ω in our model; Since the free parameter ω was fixed411

in the previous section, normalisation is equivalent to fixing M0). We then tuned β to fit the normalised412

amplitude distribution using nonlinear least squares. We also plot our estimate of the (average) behavioural413

trajectory both in the normalised mode space, where it corresponds to the unit circle, and as time series for414

the individual modes, their amplitude A, and their phase φ. For both behaviours, the fit by our model is415

qualitatively very good. Indeed, we find only one statistically significant difference between the predicted416

and observed kinematic distributions, for the phase φ during rolling (KS test, p < 0.01, Figure 3Cv; all other417

comparisons have p ≥ 0.11). This distribution is predicted to be uniform, but shows a peak near 0◦ (which418

corresponds to pure mediolateral C-bending), possibly reflecting the transitions to/from rolling at the initial419

and final portions of our recordings.420

We also note that our estimate of the average behavioural trajectory provides a novel experimental test of421

our theory of rolling. In particular, our estimated trajectory tells us that the average angular velocity with422

which the C-bend rotates about the body axis should simply be given by the frequency of the first transverse423

mode ωb,1. Indeed, this parameter should set the dominant timescale of the first transverse mode across424
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Fig 4. Approximately Gaussian statistics of bending and twisting deformations. Kernel density
estimate (black) of the probability density function (pdf) and cumulative density function (cdf) for the first
five bending modes Yi (during unbiased exploration, left) and the first five twisting modes Θi (during a
mixture of unbiased exploration and self-righting, right) with Kolmogorov-Smirnov comparisons to the
distributions predicted by our model. Each mode was normalised by the mode-specific standard deviation√
σ2
i , which is fixed by our model up to an overall scaling by β. We determined this parameter by fitting

the variance of the modes using nonlinear least squares. After normalisation, our model predicts each
modal coordinate to have a zero-centred Gaussian distribution with unit variance (red and yellow lines).
Although our model closely predicts the observed distributions (KS distance D ≤ 0.09 for all bending
distributions and D ≤ 0.08 for 3 of 5 twisting distributions), all comparisons reached statistical significance
(p < 0.01; see text for discussion).

all behaviours. Thus we predict that the average frequency of C-bending during unbiased behaviour should425

match the average angular velocity of rolling. Indeed, we find no statistically significant difference between426

our estimates of these two quantities (Figure 2; two-sided Mann-Whitney U-test, p = 0.4).427

1.7 Study of bending deformations during larval substrate exploration428

Next we consider the statistics of bending deformations during substrate exploration. In this case, we can429

expect to obtain a correct description when M0 = 0 for the transverse modes, since this means that bending430

deformations will remain plane [41,42] rather than rotationally propagating around the midline as in rolling431

behaviour.432

Setting M0 = 0 and assuming all bending occurs in the mediolateral plane, we can write the distribution for433

the i’th mediolateral modal coordinate Yi as434
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p(Yi) =
1

ZY,i
exp(−βω

2
i

2
Y 2
i ) (25)

with the configurational partition function435

ZY,i =
1

βωi
(26)

Thus in the case M0 = 0 the predicted modal distributions are again zero-centred Gaussians with variances436

σ2
i = 1/βω2

bλi, in line with our earlier results in which the momenta M were neglected.437

We fit the free parameter β to fit the variances σ2
i of the all the observed modal distributions during unbiased438

behaviour. In Figure 4 we plot the first five modal distributions on axes normalised by our predicted439

σi; with this normalisation, our model predicts that all of the modal distributions should correspond to440

the standardised Gaussian distribution with zero mean and unit variance. There is again a qualitatively441

good agreement between theory and experiment. The observed distributions are approximately zero-centred442

(absolute mean |m| ≤ 0.028 for all distributions), have variances which are well fit by our model (see443

Figure 2B), and have low skew (absolute skew |S| ≤ 0.52 for all distributions), but have heavier tails than444

our predicted Gaussian distributions (Fisher’s kurtosis K ≥ 3.9 for all distributions, compared to K = 0 for445

normal distribution), leading to statistically significant differences for all comparisons between our model’s446

predicted bending mode distributions and the observed distributions, although the Kolmogorov-Smirnov447

statistical distance between predicted and observed distributions remains small (KS test distance D ≤ 0.09,448

p < 0.01 for all comparisons). The inability of our effective theory to explain the tails of the transverse449

bending distributions during unbiased behaviour is unsurprising given our restriction to the relevant low-450

energy physics, since large amplitude bends should be associated with higher elastic energies. Given the451

qualitatively good fit between our predicted Gaussian statistics and the observed bending mode distributions,452

we believe our effective theory should still be seen as a useful starting point for the development of higher453

energy theories, and can hopefully still provide a useful explanatory model.454

1.8 Statistics of twisting455

The degenerate frequencies of axial and transverse modes resulted from underlying continuous symmetries –456

periodic boundary conditions for the axial modes, and radial symmetry about the midline for the transverse457

modes. The torsional modes possess no such underlying symmetry, and so are non-degenerate. In this case,458

our model predicts that the torsional modes should have Gaussian statistics, with the relative variances of459

the torsional modes fixed by the eigenvalues of the second difference matrix with free boundary conditions,460

and the overall variance determined by the inverse temperature β of the Boltzmann distribution (Section461

1.3).462

As for the bending deformations during unbiased exploration (see previous section), our Gaussian model463

provides a qualitatively good approximation to the distributions of the torsional mode amplitudes (which we464

were able to observe during a mixture of both self-righting and unbiased exploration behaviour; Figure 4).465

However, all of the measured distributions show statistically significant differences when formally compared466

to the Gaussian model predictions (KS test D = 0.16 ± 0.10, p < 0.01 for all comparisons). This is467

unsurprising, given that we expect large torsional deformations to lie outside the domain of validity of our468

low-energy theory. We believe our qualitative Gaussian approximation should still be seen as a useful starting469

point for the development of higher energy theories, and should still provide a useful explanatory model.470
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A B Ci ii

D Ei ii

Fig 5. Model-driven investigation of self-righting behaviour suggests the larva rights itself
using twisting deformations A) In the twist-based model of self-righting (SR), the larva begins in an
“upside-down” configuration (top), twists along its length to attach its mouth hooks to the substrate
(middle) and then un-twists to align its body with the substrate (bottom). Alternatively, the larva may
self-right via rolling (roll-based SR, see text). Bi) Representative trajectory showing the rotation angle of
all body segments (apart from T2) about the body axis during the final portion of SR behaviour; note that
the thoracic segments (T1, T3) remain in fixed alignment with the substrate throughout, while abdominal
segments (A1–A8) rotate to align with them, until eventually the body is completely aligned with the
substrate (yellow lines). Bii) overall rotation of the body (black) and estimated torsion along the body
(grey, torsion estimated using first two torsional modes) for the trajectory shown in (Bi). C) overall
rotation and torsion along the body are strongly negatively correlated (Pearson’s r2 = 0.81), with a slope
near that predicted by the twist-based SR model (measured λ = −1.03, blue, vs predicted λ = −1, yellow),
strongly suggesting Di, Dii) Kernel density estimates of the pdf and cdf for the first bending mode,
measured in the plane of the substrate, during SR (black), substrate exploration (bright red), and rolling
(dark red). The distribution during SR is closer to that for exploration (Kolmogorov-Smirnov distance
D = 0.25) than that for rolling (Kolmogorov-Smirnov distance D = 0.32) and all distributions differ
significantly (Kolmogorov-Smirnov test p < 0.01 for all comparisons) E) Furthermore, the angular velocity
during rolling (dark red) matches the frequency of C-bending during unbiased exploration (bright red;
p = 0.23, Mann-Whitney U test) while the angular velocity during self-righting differs from both (yellow,
p < 0.01, Mann-Whitney U test), suggesting that self-righting is not driven by bending as in the roll-based
SR model.

1.9 Model-driven experimental characterisation of larval self-righting behaviour471

Finally, we turn our attention to the self-righting (SR) behaviour of the larva. This behaviour can be472

observed by experimentally preparing larvae in an “upside-down” configuration with their dorsal surface473

in contact with the substrate, after which the larva is able to turn itself so that its ventral surface is in474

contact with the substrate, and the animals’ normal spontaneous behaviour resumes [16]. At present, there475

is no widely accepted theoretical, mechanistic explanation for how the larva accomplishes self-righting. An476

obvious explanation would be that the larva simply uses the same mechanism that it uses to roll (as described477

previously in this paper), which we will call the rolling-based SR model. However, an alternative explanation478

has been posited [16, 25, 26], which suggests that during self-righting, and unlike during rolling behaviour,479
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the larva twists its body so as to attach its mouth hooks to the substrate, before rotating the rest of its480

segments to bring the body fully into alignment with the substrate (Figure 5A). We will call this alternative481

explanation the twist-based SR model. Armed with our theory of 3-dimensional larval movement, we are482

well placed to formalise these explanations and assess exactly how self-righting is accomplished. Since we483

have already explored rolling behaviour earlier in this paper, we will now focus on the twist-based SR model.484

We first observe that the passive mechanical equilibrium of our effective theory, i.e. the minimum energy485

configuration, has all segments aligned with one another, since in this configuration there is no energy stored486

in the twisting or bending of body segments relative to one another. Thus, after attachment of the mouth487

hooks to the substrate, the minimum energy configuration (which corresponds to the most probable configu-488

ration due to the negative exponential weighting of energy in the Boltzmann distribution) will consist of all489

segments being aligned with the substrate. In other words, attachment of the mouth hooks to the substrate490

should be sufficient to produce full self-righting, via subsequent “passive” relaxation towards equilibrium.491

We can formulate several experimental tests of this twist-based SR model. First, this model suggests that492

the head and mouth parts of the larva should not rotate relative to the substrate during SR, while the other493

parts of the body should rotate into alignment with the head and mouth parts. Indeed, this is exactly what494

we observe (Figure 5B), in contradiction to the rolling-based SR model, which would require the head and495

mouth parts to rotate along with the rest of the body during SR.496

Second, the overall (average) rotation of the larva relative to the substrate, captured by the zero-frequency497

torsional mode, should be strongly correlated with the higher torsional modes. This follows because the498

attachment of the mouth hooks to the substrate introduces a constraint on the torsional modes, which is499

exactly what allows overall rotation of the larva to be driven by torsional deformations during self-righting.500

In particular, the following identities must hold501

θhead =
N∑
i=0

vi,headΘi = 0 =⇒ 〈θi〉 = Θ0 = − 1

v0,head

N∑
i=1

vi,headΘi (27)

where θhead is the rotation of the head, vi,head is the element of the i’th torsional mode shape at the head,502

and Θi is the i’th torsional modal coordinate (with i = 0 corresponding to the zero-frequency overall rotation503

mode). The overall rotation of the body at any instant is given by the average over segments 〈θi〉, which504

corresponds exactly with the zero-frequency mode Θ0. This relationship can be interpreted as a simple505

restatement of the fact that the overall rotation is proportional to the torsional deformation in the twist-506

based SR model. As our model explains, > 55% of the variance in torsional deformations is accounted for507

by the first and second torsional modes alone. We should therefore have the approximation508

Θ0 ≈ −
1

v0,head
(v1,headΘ1 + v2,headΘ2) (28)

Experimentally, we have indeed observed a very strong correlation between the overall rotation and the509

torsion accounted for by the first two torsional modes (representative trajectory Figure 5Bii, correlation plot510

Figure 5C; Pearson’s r2 = 0.81) with a slope parameter very close to the predicted relationship (observed511

λ = −1.03 vs. ideal λ = −1). Although there is a statistically significant difference between the observed512

correlation slope and that predicted (p < 0.01 two-sided Wald test under null hypothesis that λ = −1),513

this is to be expected given the approximate nature of Equation 28. Note again that this observation is in514

contradiction to the rolling-based SR model, which would require there to be no such constrained relationships515

between the torsional modes; if there was such a constraint, the larva would produce a very large, clearly516

observable torsion during rolling as Θ0 increases approximately linearly during rolling, sometimes for several517

complete rotations (Figure 3). Unexpectedly, the correlation between overall rotation and torsion remains518

present even for very small overall rotations, i.e. rotation and torsion are correlated even when the larva is519
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righted. This suggests that twist-based SR may be an ongoing process that occurs during other behaviours.520

Thirdly, the rolling-based SR model suggests that self-righting should be driven by similar bending de-521

formations as those seen during rolling behaviour, rather than the twisting deformations predicted by the522

twist-based SR model. Therefore, the rolling-based SR model predicts that the angular velocity associated523

with overall rotation during self-righting, i.e. d
dtΘ0, should be equal to the average frequency of C-bending524

during unbiased substrate exploration behaviour. This relationship holds during rolling, with the angular525

velocity of rolling closely matching the average frequency of C-bending during exploration (median = 0.46526

Hz for rolling; median = 0.43 Hz for exploration; Mann-Whitney U-test p = 0.23; Figure 5E, see Section 1.6).527

However, during self-righting behaviour, the rate of overall rotation is lower than both the C-bending fre-528

quency during exploration, and the rate of overall rotation during rolling (median = 0.25 Hz for self-righting;529

Mann-Whitney U-test p < 0.01 for both comparisons). This result is again in favour of the twist-based rather530

than rolling-based model of self-righting.531

Finally, we directly compare the distribution of C-bend amplitudes during self-righting, rolling, and unbiased532

substrate exploration. We find that the C-bend amplitude distribution during self-righting is closer to that533

observed during unbiased exploration than that observed during rolling (KS distance, D = 0.25 SR vs534

unbiased exploration, D = 0.32 SR vs rolling; Figure 5D). However, all three distributions differ from one535

another (KS test p < 0.01 for all comparisons): the C-bend distribution is unimodal and approximately536

zero-centred Gaussian, the rolling distribution is bimodal (with peaks corresponding to large-amplitude left-537

handed or right-handed C-bending) and zero-centred, and the self-righting distribution is bimodal and not538

zero-centred. Qualitatively, one of the peaks in the SR distribution appears to coincide with the peak of539

the C-bend distribution for unbiased behaviour, and the other appears to coincide with one of the peaks of540

the rolling distribution. Thus, although C-bending does not appear to play the same role during SR as it541

does during rolling (since the first three experimental tests point to SR being driven by twisting rather than542

bending), large-amplitude C-bending does appear to be a clear feature of SR. It is unclear why this should543

be the case. One possibility is that C-bending during SR is a result of twist-bend coupling, a phenomenon544

that occurs due to the geometrically nonlinear rod kinematics that become apparent at large deformations545

(higher energy scales) [53], and which is not accounted for in our (linear) low-energy theory. Alternatively,546

this observation may be due simply to our inability to measure segmental rotations greater than ∼ 90◦ due547

to occlusion of the anatomical landmarks used during tracking (see Methods), so that we are only able to548

measure the final stages of SR; perhaps the initial stages of SR consist of rotation driven by C-bending,549

as in rolling behaviour, and the larva only attaches its mouth hooks once it is close to being righted. This550

would explain why we observe a large-amplitude peak in the C-bend distribution despite the fact that overall551

rotation appears to be driven by twisting rather than bending. The resolution of this issue is unfortunately552

beyond the scope of this paper; further progress must wait until either a higher energy theory is developed553

or experimental limits are extended.554

2 Discussion555

In this paper we develop an effective theory for the study of movement in small animals. In particular, our556

work presents a model of the low-energy physics of the Drosophila larval AP axis (midline), and experimental557

demonstration of this model’s ability to predict real behavioural data. Our model is the first to describe the558

fully 3-dimensional motions of the larval midline, including stretching along, bending of, and twisting about559

the body axis. We believe it sets the stage for development of similar theories for the behaviour of a large560

class of small animals with “slender” or “rod-like” body morphologies, including the invertebrate nematode561

worm C. elegans and the vertebrate zebrafish D. rerio. Our theory may also be extended to the behaviour562

of larger animals such as snakes.563

The relation of theory to experimental observations564
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Our effective theory makes several predictions, many of which we have directly tested. For instance, our565

theory makes parameter-free predictions of the principal components of stretching, bending, and twisting,566

as well as the proportion of variance explained by each component. These predictions closely match the567

results of PCA applied to real larval deformations during a range of behaviours including forward/backward568

peristaltic crawling, unbiased substrate exploration, rolling, and self-righting (Figure 2). Since our effective569

theory correctly predicts the proportion of variance associated with each mode, it may provide a simple570

explanation for the low-dimensionality of larval behaviour, via Boltzmann suppression of short wavelength571

modes. In this view, all of the deformation modes have the same average energy (due to equipartition),572

but because the longer wavelength modes are “softer” than the “stiff” short wavelength modes, this energy573

causes larger fluctuations in the longer wavelength modes. Thus, observations of behaviour are dominated574

by the first few long wavelength modes.575

Our theory is also able to predict low-dimensional average trajectories for the larva’s rhythmic rolling and576

peristalsis behaviours (Figure 3). It is also able to very closely predict the stretching and bending mode577

distributions during these behaviours, and provides a good first approximation to the bending and twisting578

mode distributions observed during substrate exploration and self-righting behaviours (Figure 3 and 4). As579

a test of our model’s utility, we were also able to use it to investigate the mechanism underlying self-righting580

behaviour; our analysis in terms of our model’s modes supported a view of self-righting being driven by581

twisting deformations, rather than the bending deformations that drive rolling behaviour.582

Given our model’s explicit focus on the low-energy physics of the larva, we expect it to break down at the583

higher energy scales governing short-wavelength and large amplitude deformations of the body. Indeed,584

although our model provides a qualitatively very good fit to the mode shapes extracted from recordings of585

real animal behaviour, the fit is certainly better for the dominant long-wavelength modes than for their short-586

wavelength counterparts (Figure 2). Furthermore, although we successfully predict the variance structure of587

bending and twisting deformations, and our predicted Gaussian statistics for the corresponding distributions588

in mode space are therefore qualitatively very good, our theory does not account for higher-order statistics.589

We are thus unable to account for the heavy tails of these distributions, which represent relatively high-energy,590

large-amplitude bending and twisting deformations. Given our theory’s success at low energies, however,591

we are hopeful that it may provide a useful starting point for a perturbative approach to understanding the592

higher energy regime [35].593

The model we propose raises several interesting conceptual questions – in particular, it remains unclear,594

first, why our assumption of statistical equilibrium provides such a good description of larval behaviour;595

and, secondly, why our theory works despite containing no detailed description of the larva’s neuromuscular596

system, environment, or detailed features of the (presumably nonlinear) biomechanics. We consider these597

two questions in detail below.598

Statistical equilibrium and its power to explain larval behaviour599

We constructed our effective theory of the larval midline using an approach borrowed from statistical field600

theory [36], in which emphasis is placed on the symmetry and stability requirements that strongly constrain601

the theoretical description of a physical system at low energies. The theory that we obtained by applying this602

method essentially predicts that the larval midline should be governed by the statistical mechanics of linear603

elasticity [43], similar to the theoretical description of polymer mechanics via wormlike chain models [45].604

This similarity follows simply from the observation that the larval midline and long polymers possess similar605

symmetries; both systems can be efficiently described by “infinitely thin” curves in space, with invariance606

under overall translations and rotations as well as reflection invariance. These symmetries lead the low-energy607

descriptions of these disparate systems to coincide. However, whereas the statistical equilibrium of polymer608

models usually has a relatively straightforward explanation in terms of essentially “random” collisions of the609

polymer with surrounding solvent molecules [45], here the success of the statistical equilibrium hypothesis610

in predicting features of larval behaviour is highly surprising and requires further consideration.611

Crucially, our use of equilibrium statistical mechanics necessarily presupposes some mechanism that is not612
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contained directly in our effective theory. This should be clear since the effective theory is described by613

a quadratic Hamiltonian, which should give rise to linear deterministic dynamics [51], and so our theory614

contains no mechanism by which trajectories may “wander” or “mix” in the phase space [54]; in other615

words, the deterministic dynamics of our theory cannot explain its predicted statistics without modification.616

This is actually a fundamental issue at the foundations of equilibrium statistical mechanics, and not specific617

to our theory alone, since for very many systems to which equilibrium statistics are applied it is either not618

possible to prove that the underlying dynamics of the system are capable of driving the system to equilibrium,619

or it is possible to show that the dynamics are outright incapable of this feat (as in the case of our effective620

theory) [40,54].621

In some cases, effective equilibrium statistics may arise even though the underlying system is known to be out622

of equilibrium [55,56]; presumably this must occur in the case of the larva, whose body mechanics experience623

a strong flow of energy from the musculature. Indeed, it is interesting to consider how equilibrium statistics624

may arise in larval behaviour. One argument is that small nonlinear modifications to our effective theory625

should generically lead to energetic coupling between modes; it is quite possible that such coupling may lead626

to chaotic dynamics, providing a mechanism by which the modes may thermalise. Our previous work on the627

planar mechanics of unbiased exploration [19] suggests that beyond the low energy limit we have considered628

here, the mechanics of bending and stretching of the midline should indeed become energetically coupled,629

leading to chaotic motion. However, it is currently unclear whether this planar model is sufficiently ergodic to630

explain the appearance of equilibrium statistics. Recent work in the nematode C elegans has experimentally631

demonstrated the presence of a symmetric Lyapunov spectrum for the animal’s dynamics, strongly suggestive632

of deterministic chaos arising due to (damped, driven) Hamiltonian mechanics [13, 57]; if such a spectrum633

is present in larval behaviour, it may go some way towards explaining the animals’ behavioural statistics.634

Alternatively, the presence of noisy forcing may also be a factor in explaining thermalisation (we comment635

on this below).636

Accurate prediction of larval behaviour without a detailed description of the neuromuscular637

system638

We note that our theory is able to explain features of larval behaviour without including a detailed description639

of the animals’ nervous system. We argue that it is able to do so by capturing the essential combined effects640

of the body physics and the musculature. That is, the free parameters in our theory capture the role of both641

body mechanics and neuromuscular forcing. The first three of our parameters control the natural frequency642

scales for stretching, bending, and torsional deformations. It is clear that the timescale of peristaltic crawling643

can be experimentally influenced by perturbing either the central nervous system [58–61] or feedback from644

peripheral sensory neurons [62,63], suggesting that the effect of both the nervous system and body mechanics645

should be captured by our phenomenological axial natural frequency parameter.646

The temperature parameters in our theory govern the average energy of, and the strength of fluctuations647

in larval deformations. We have commented above on how this parameter may represent the effects of648

unmodelled dynamics in the theory, including the effect of mechanical coupling between stretching and649

bending deformations, which may lead to deterministic chaotic dynamics [19]. However, it is also clear that650

this parameter must include the role of the neuromuscular system and the environment. Indeed, maintaining651

an average energy in the larva must require a constant input of energy from the musculature to balance652

frictional losses to the environment. Furthermore, this parameter may reflect the role of neuromuscular653

noise. Indeed, inclusion of noisy forcing into the linear deterministic dynamics of our current effective theory654

could give rise to a Langevin dynamics capable of explaining the appearance of equilibrium statistics [40,64].655

The final parameters in our theory, the momenta M , which we associate with the deformations during656

crawling and rolling, govern the (average) amplitude of axial compressions during peristaltic crawling and657

transverse C-bending during rolling. Again, although we derived these momenta as the mechanical invariants658

related to our theory’s underlying rotational symmetries via Noether’s theorem, the maintenance of these659

momenta in the presence of environmental perturbations and noise is likely to be a crucial effect of the660

neuromuscular system.661
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Although our effective theory does not directly contain a description of the larval nervous system, this does662

not mean that it has nothing to say about the role of the neuromuscular system. Indeed, by providing663

a description in which the phenomenological parameters support multiple mechanistic interpretations (see664

above), our theory is able to contribute to advancing our fundamental understanding of movement control,665

by focusing effort on teasing apart the contributions due to intrinsic properties of body mechanics, from those666

produced via neural actions and sensory processes. For example, the outcome of recent genetic screens aimed667

at mapping genes (e.g. microRNAs) affecting larval movement [25, 26, 65] can now be pursued considering668

effects of gene modulation and control on body mechanics, as well as, on neural development, function and669

control. In addition, we can also envisage projections of our work into neural aspects of robotic design and670

development: a theoretical understanding of what body mechanics can achieve per se, can help define the671

minimal requirements needed to effectively command robotic movement.672

More generally, our theory suggests that considerations of the effective physics of the body can go a long673

way to explaining complex and diverse behaviours. In this context, the role of the nervous system may be674

seen as being more modulatory in nature – shifting the global phenomenological parameters of the system –675

rather than representing a precise micro-management system acting to control the exact trajectories of the676

animal body during behaviour.677

Given the simplicity of our starting assumptions we believe our effective theory may be readily applicable678

to studying the behaviour of other animals with similar morphologies to the Drosophila larva. This includes679

several other important “model species” such as the nematode worm C. elegans, and the zebrafish D. rerio,680

thus opening the way to the investigation of both, invertebrate and vertebrate systems.681

3 Methods682

3.1 Self-righting behaviour assays683

Self-righting (SR) assays were conducted as done previously [16] on 1st instar wild-type larvae (w1118),684

separately to our experiments on unbiased behaviour and rolling. Briefly, parental lines were raised at 25◦C685

in collection cages bearing apple juice-based medium agar plates, supplemented with yeast paste. From686

these plates, stage 17 embryos [66] were collected and transferred to a fresh plate. Next, freshly-hatched687

first instar larvae were transferred again on 0.9% agarose plates. After one minute of acclimatisation, we688

conducted self-righting assays by gently rolling over the larvae with a small brush pen to an upside-down689

position. Wild type larvae normally take approximately 6–7 seconds to rectify their position (self-right). SR690

sequences were recorded at 10 fps with a Basler ace acA800-510µm (CMOS) monochrome USB 3.0 Camera691

mounted on the Leica MZ75 stereomicroscope.692

3.2 Peristalsis assay693

The data we used to quantify peristalsis behaviour was previously collected and published in [50]. Videos of694

forward and backward crawling were collected at 30 fps. The lengths of abdominal segments were measured695

at the left and right sides of the body; we used the mean of left and right measurements to estimate the696

midline segment length prior to further analysis (see below).697
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3.3 Rolling and unbiased exploration behaviour assays698

3.3.1 Fly strains699

For behavioural assay of unbiased behaviour and rolling, we used R69F06-GAL4 and a control line with700

no GAL4 expression, w;;attp2, from the Rubin GAL4/LexA collection [67, 68]. These were crossed to701

UAS-CsChrimson::mVenus [69] for optogenetic activation of rolling behaviour. For mechanical nociceptive702

stimulation behavior experiment, CantonS were used. All flies are raised at 25◦C for 4 days – 3rd instar703

larvae before wandering stage animals are used for behaviour experiment.704

3.3.2 Behavioural apparatus705

The apparatus comprises a video camera (FLIR GS3-U3-51S5M-C camera, 2048 × 2048), for monitor-706

ing larvae, a light illuminator (LED 624 nm) for optogenetic activation, and a computer, similar to [23].707

Recordings were captured at 30 fps and were controlled through the Multi-Worm Tracker (MWT) soft-708

ware (http://sourceforge.net/projects/mwt) [70], whilst control of the hardware module was controlled709

through the Stimulus Control Module (SCM) software. For mechanical stimulation, video was captured 30710

fps using FLIR software.711

3.3.3 Behavioural experiments712

Embryos were collected for 24 hours at 25◦C. Foraging third instar larvae were used for all experiments.713

Larvae were raised in the dark at 25◦C for 4 days on fly food containing trans-retinal (Sigma, R2500), at714

a concentration of 200 µM. Before an experiment, larvae were separated from food by suspension in 15%715

sucrose and then washed with water. Larvae were dried, then transferred to the centre of a 25 × 25 cm716

transparent plastic, square plate covered in a layer of 2% agar gel. Between 20–60 larvae were transferred717

to the plate for any given recording. Optogenetic stimulation was delivered in two 15 second bouts at an718

irradiance of 600 µW/cm2, with a 30 second interval between bouts. Experiments were run under infrared719

light to avoid tonic activation of UAS-CsChrimson::mVenus. For mechanical nociceptive stimulation, single720

larvae were placed on 2% agar gel. After larvae started crawling, they were pinched by forceps (Dumont,721

N5) to evoke rolling behavior.722

3.3.4 Behaviour quantification723

For calculation of larval midlines during exploration and rolling, behavioural recordings were captured with724

the Multi-worm Tracker (MWT) software http://sourceforge.net/projects/mwt [70]. MWT returns a 2D725

contour (outline) for each larva tracked, at 30fps. From these contours, we computed the larval midline726

using the choreography package (bundled with MWT) [70]. The estimated midline is given by a set of727

equally spaced points, allowing characterisation of transverse bending but not axial compression/expansion.728

Larval midlines and contours were used to score bouts of rolling behaviour, as described elsewhere [71].729

Larvae that were tracked for fewer than 5 seconds, or travelled less than one body length in distance, were730

rejected. To determine angular velocity of rolling behaviour, videos were manually scored using the Fiji731

software (NIH) [72]. First, we scored the angle of larval rotation to the nearest 60 degree interval (0, 60, 120,732

180, 240, 300), where 0 degrees represented dorsal-side up, and 180 degrees represented dorsal-side down.733

The trachea and posterior spiracles were used as landmarks to determine the degree of rotation around the734

anteroposterior axis. The duration of a roll was demarcated by the first and last frame in which the larva735
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presented movement perpendicular to it’s body axis. The mean angular velocity of rolling was calculated as736

the total angle rotated divided by the duration of roll.737

For calculation of larval deformations during self-righting, DeepLabCut (version 2.2b5) was used. Using a738

standard DeepLabCut pipeline [73], at least 20 distinct frames were extracted per studied video using DLC’s739

K-means clustering. Up to 44 features were manually labelled per frame according to their visibility. These740

included points consisting of a Contour (Thoracic Segments [T1-3 left and right], Abdominal Segments [A1-8741

left and right]), Mouth Hooks and a Tracheal System (Abdominal Segments [A1-8 Trachea left and right] and742

Posterior Spiracles). These manually annotated frames served as a training dataset fed into the ResNet-50743

provided by DLC. The ResNet-50 was trained for 1,000,000 iterations via batch processing across NVIDIA744

V100 GPUs. All video frames were then analysed using this trained network to produce estimated poses. We745

then estimated the midline using the mean of the left and right contour markers, and estimated a tracheal746

centroid by taking the mean of the left and right trachea markers.747

We estimated the segmental rotation angles θi between the substrate surface normal and the local sagittal748

plane as θi = tan−1(di/ri), where di is the measured distance between the midline and the tracheal centroid749

at the i′th segment, and ri is the radius of the body at that segment. We estimated the segmental diameter750

(and hence radius) as being equal to the measured width of the larva in our camera projection, at each video751

frame.752

3.4 Comparison of experiment to theory753

For unbiased exploration, rolling, and self-righting behaviour, postural principal components (“eigenmag-754

gots”) were extracted from the midline data using the singular value decomposition (SVD)-based principal755

components analysis (PCA) provided by the scikit-learn python machine learning module [74]. Prior to756

PCA, we removed the overall translational and rotational degrees of freedom of the animal by computing the757

angles between segments [75]. For self-righting behaviour, we additionally performed PCA on the estimated758

abdominal rotation angles.759

For peristalsis behaviour, principal components were extracted from measurements of abdominal segment760

lengths during forward and backward crawling (data previously published in [50]) using the same SVD-based761

PCA decomposition as for unbiased behaviour and rolling behaviour. Overall translation was not measured762

in this dataset so did not need to be removed prior to PCA.763

For comparison to our theory, the experimental data was also projected onto the modal basis of our effective764

theory. We projected the abdominal segment length data onto the eigenvectors V2,c of the circulant second765

difference matrix D2,c, which is identical to a spatial discrete Fourier transform basis (Appendix E), to766

obtain estimates of the axial modal coordinates Xi. We also normalised to correct for the truncation of767

the axial modal basis (since only abdominal segments were measured). In particular, we modelled the axial768

displacements as arising from a measurement process769

xmeasured = Pxreal (29)

where P is the matrix which projects the “full” vector of axial displacements xreal onto the subspace of770

abdominal displacements (i.e. P models our lack of thoracic data). We wish to estimate the amplitudes X771

of the axial modes. These mode amplitudes are defined via x = V2,cX. Thus, we have772

xmeasured = PV2,cXreal (30)

Ideally, we would like to invert this expression in order to find Xreal given xmeasured. We can use the773
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orthonormality of the eigenbasis to write V−1
2,c = VT

2,c (orthonormality follows from the fact that the circulant774

second difference matrix is real and symmetric). However, the projection matrix is singular (as are all775

projection matrices). We therefore use the Moore-Penrose pseudoinverse projection PT = P+ to write an776

initial estimate of the mode amplitudes using the truncated basis vectors VT
2,cP

+,777

Xestimate = VT
2,cP

+xreal ≈ Xreal (31)

Using our expression for xreal in terms of Xreal lets us write778

VT
2,cP

+PV2,cXreal ≈ Xreal (32)

Which tells us our approximation will be improved by bringing the transformation on the left closer to the779

identity transformation. We cannot rotate our basis vectors to orthogonalise them (since our purpose is780

to estimate the deflections along the particular basis vectors in V2,c). However, we can at least bring our781

transformation closer to an identity by normalising our new basis. To see this, imagine we have a pure782

deflection Xi along a single mode vector vi. Then our transformation would give the approximation783

vTi P+PviXi ≈ Xi (33)

which can clearly be made exact by normalising by the scalar vTi P+Pvi. Writing all such normalising factors784

in the matrix N = diag(VT
2,cP

+PV2,c) gives the improved approximation785

N−1VT
2,cP

+PV2,cXreal ≈ Xreal (34)

Finally, we again use our expression for Xreal in terms of xmeasured (along with the weak-inverse property of786

the pseudoinverse P+PP+ = P+) to write our estimate of the mode amplitudes as787

Xreal ≈ N−1VT
2,cP

+xmeasured (35)

In addition to applying this transformation, for figure 3 we further applied a brickwall (0.5–1.5Hz) bandpass788

filter to the first pair of axial modes to remove noise and artifacts associated with the truncation.789

The estimated abdominal and thoracic rotation angles θ were projected onto the eigenvectors of the free-790

boundary second difference matrix D2,f . Since we were unable to measure the rotation of the second thoracic791

segment T2, we estimated the torsional mode amplitudes using a similar method as for the axial modes,792

applying the transformation793

Θreal ≈ N−1VT
2,fP

+θmeasured (36)

where now VT
2,f is the eigenbasis of the free-boundary second difference matrix and P is the projection794

matrix modelling our lack of measurements for T2.795

The midline data from unbiased exploration, rolling, and self-righting behaviour experiments was projected796

onto the eigenvectors of the free-boundary fourth difference matrix D4,f . We estimated the eigenvectors797

numerically using the numpy python numerics module [76] as the resulting eigenvectors are more accurate798
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than our analytical asymptotic approximations. To remove the overall translational and rotational degrees799

of freedom we performed this projection using the angles between midline segments, as for PCA (above), by800

similarly transforming the eigenvectors into the angle space. Unbiased behaviour occurs mainly in the plane801

of the substrate with little rolling, so we use the projection to estimate the mediolateral transverse modal802

coordinates Yi during this behaviour. By contrast, the larva continuously rotates during rolling so that our803

top–down view allows us to effectively estimate the modal amplitude in the mediolateral–dorsoventral plane,804

Ai =
√
Y 2
i + Z2

i rather than the individual mediolateral (Yi) or dorsoventral (Zi) modal coordinates.805

To estimate the mean modal frequencies during behaviour we first estimated the power spectral density806

(PSD) of each modal coordinate, for each individual larva tested, using the Welch spectrogram averaging807

method, implemented in the scipy python scientific computing module [77]. Since peristalsis is a highly808

rhythmic behaviour, the estimated PSDs are tightly peaked [50]. We therefore estimated the mean modal809

frequencies during this behaviour using the strongest peak in the PSD. Unbiased behaviour is aperiodic,810

displaying a “spread” in the PSD estimates rather than cleanly localised peaks [34]. We therefore estimated811

the mean modal frequencies during this behaviour using the spectral centroid, i.e. the weighted average812

of the PSD. The higher modes are associated with a very low variance, and for the fifth transverse mode813

and above the spectrum drops towards the uniform PSD expected of white noise. In this case the spectral814

centroid stays close to the mid-point of the spectrum; for our sampling rate of 30 Hz, the Nyquist frequency815

is 15 Hz and the spectral centroid of white noise is 7.5 Hz. We therefore attempted to fit only the frequencies816

of the first four transverse modes.817

Unless otherwise noted above all statistical analyses and tests were performed using the scipy statistics818

submodule [77].819
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A Detailed construction of the effective theory1011

In the main text, we summarised the construction of an effective Hamiltonian H for the axial, transverse, and1012

torsional deformation fields x, y, z, θ of the larval midline. In this section we work through this construction1013

in greater detail. Rather than starting directly from the Hamiltonian we will instead start from it’s Legendre1014

transform, the Lagrangian1015

L = πψ −H (37)

where ψ = [x, y, z, t]T is the vector of deformation fields and π is the conjugate canonical momentum vector.1016

Assuming locality, we can write the Lagrangian as an integral L =
∫
dsL of a Lagrangian density. This1017

Lagrangian density is the Legendre transform of the Hamiltonian density in the main text, and it can be1018

written in terms of the fields and their derivatives at a point in space and time (s, t)as1019

L = L(s, t, x, y, z, θ, ∂sx, ∂tx, . . . , ∂
143
s ∂32

t θ, . . . ) (38)

As is common in field theory, we will occasionally refer to this Lagrangian density simply as the Lagrangian,1020

despite the fact that this term technically refers to the integral of the density. Given a Lagrangian, the1021

conservative dynamics of the deformation fields can be obtained from the Euler-Lagrange field equations1022

∑
n,m

(−1)n+m∂ns ∂
m
t

[
∂L

∂(∂ns ∂
m
t ψi)

]
(39)

with ψi ∈ ψ. Assuming the Lagrangian is analytic, we can perform a Taylor expansion and write1023

L = a+
∑

b∂gs∂
h
t ψi +

1

2

∑
c(∂ns ∂

m
t ψi)(∂

n′

s ∂
m′

t ψj) + higher order terms (40)

Here we have adopted the convention that the zero’th order derivative is the identity, i.e. ∂0ψi = ψi and1024

summations are over all non-negative integer-order derivatives of the fields; indices on the constants b, c have1025

been dropped (there is a unique constant for each summand).1026

We can discard the constant a since it will not appear in the Euler-Lagrange equations and therefore does1027

not effect the physics. Similarly, any linear terms (contained in the first summation) with g > 0 or h > 01028

will not contribute to the Euler-Lagrange equations and can also be discarded, leaving only linear terms of1029

the form biψi. Furthermore, only quadratic terms where the sum n+m+ n′ +m′ is even will contribute to1030

the Euler-Lagrange equations (as can be checked by the interested reader).1031

We now apply our first symmetry requirement: that the Lagrangian be invariant under a reflection of each1032

of the fields ψi → −ψi individually. This removes the remaining linear terms, and constrains ψi = ψj in the1033

quadratic terms, i.e. to quadratic order the deformation fields are now completely decoupled. This lets us1034

write the Lagrangian as a sum of field-specific quadratic Lagrangians plus an interaction part,1035

L = Lx + Ly + Lz + Lθ + LI (41)

where each of the first four Lφ contains only the quadratic terms for the field φ ∈ {x, y, z, θ}, i.e.1036
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Lφ =
1

2

∑
c(∂ns ∂

m
t φ)(∂n

′

s ∂
m′

t φ) (42)

while LI contains all higher order terms and interactions. We will now focus our attention on the quadratic1037

Lagrangians, while continuing to use φ as a generic field symbol to denote any of the specific fields x, y, z, θ1038

in our theory. Applying our second symmetry requirement: invariance under overall translations of the fields1039

φ→ φ+ ∆φ. This eliminates the zero’th order derivative term where n = m = n′ = m′ = 0, corresponding1040

to φ2, and we can also safely eliminate any other term containing a zero’th order derivative (since all such1041

terms are completely equivalent to terms without a zero’th order derivative on going to the Euler-Lagrange1042

equation). In other words, the only remaining terms must be of a minimum order with n + m ≥ 1 and1043

n′ +m′ ≥ 1.1044

Turning our attention to the Lagrangians for the transverse y and z fields, we can now apply our third1045

symmetry requirement: invariance under overall rotations of the fields. For an infinitesimal rotation through1046

angle δ about the center of the midline (s = 1/2), this takes the form φ→ φ+(s−1/2)δ. This condition rules1047

out the term c(∂sφ)2, and thus all remaining terms must be of minimum order 2m+n ≥ 2 and 2m′+n′ ≥ 21048

in Ly and Lz.1049

Now we focus our attention on the low-energy (long-wavelength, low-frequency, low-amplitude) physics of1050

the midline, by using a form of dimensional analysis inspired by the renormalisation group [36, 40]. We1051

first note that by focusing on low energies we are interested primarily in small deformations of the larva,1052

characterised by small amplitudes of the fields and their derivatives, and we can therefore discard the1053

interaction Lagrangian LI entirely (technically some terms in the interaction could be required to counteract1054

instabilities of the fields [36], but we will soon see that we are lucky in this respect).1055

We proceed by introducing a rescaling of space s = σs′ and time t = τt′ into our theory, along with a1056

compensatory rescaling of the field amplitude φ = εφ′. For τ > 1, σ > 1 we are essentially “zooming out”1057

and viewing the larva on longer length and time scales. As we do so, the constants in our Lagrangians1058

change, since on rescaling we have1059

1

2

∑
c(∂ns ∂

m
t φ)(∂n

′

s ∂
m′

t φ)→ 1

2

∑
c

ε2

σn+n′τm+m′
(∂ns′∂

m
t′ φ
′)(∂n

′

s′ ∂
m′

t′ φ
′) (43)

=
1

2

∑
c′(∂ns′∂

m
t′ φ
′)(∂n

′

s′ ∂
m′

t′ φ
′) (44)

(45)

with the ratio of the constants before and after the rescaling transformation given by1060

c′/c =
ε2

σn+n′τm+m′
(46)

We can use our amplitude rescaling parameter ε to “fix” a certain set of constants within the Lagrangian,1061

allowing us to observe how the other constants grow or shrink relative to the fixed set. Since we have discarded1062

the interaction Lagrangian, we can focus on each of our field-specific quadratic Lagrangians as though1063

each governed a completely separate subsystem. We start with the Lagrangians for x and θ, for which we1064

determined the minimum order terms to be given by n+m = 1 and n′+m′ = 1 on the basis of translation and1065

reflection invariance. There are three unique terms satisfying these conditions, namely the terms containing1066

(∂sφ)2, (∂tφ)2 and (∂sφ)(∂tφ). Fixing the coefficient of the first term gives c′/c = 1 = ε2/σ2 =⇒ ε = σ,1067

while fixing the coefficient of the second term gives c′/c = 1 = ε2 = τ2 =⇒ ε = τ = σ. Substituting these1068

into the coefficient of the third term gives c′/c = ε2/στ = 1 so that this term neither grows nor shrinks1069
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relative to the first two. What about the higher order terms? We can substitute ε = τ = σ into the growth1070

equation (Equation 46) to find the relationship1071

c′/c =
σ2

σn+n′+m+m′
(47)

This tells us that in Lx and Lθ, all terms satisfying 2 < m+m′+n+n′, i.e. all terms above the lowest order,1072

will shrink on rescaling. We can follow the same argument for the y and z fields. In this case we determined1073

the minimum order terms to be given by the condition 2 = 2m + n and 2 = 2m′ + n′. There are just two1074

unique terms satisfying these conditions, namely the terms containing (∂2
sφ)2 and (∂tφ)2. Fixing these terms1075

during rescaling gives ε = τ = σ2. The higher order terms in Ly and Lz then change on rescaling as1076

c′/c =
σ2

σn+n′+2m+2m′
(48)

which tells us that all terms satisfying 2 < n+n′+2m+2m′ will shrink on rescaling; again, this corresponds1077

to all terms containing derivatives higher than the minimal order.1078

On repeated rescalings, most of the constants in our theory flow towards zero exponentially fast, and only1079

the minimal order derivatives maintain non-zero coefficients. At the fixed point, we are therefore left with1080

the Lagrangians1081

Lx =
1

2
(∂tx)2 − cx

1

2
(∂sx)2, Lθ =

1

2
(∂tθ)

2 − cθ
1

2
(∂sθ)

2 (49)

Ly =
1

2
(∂ty)2 + cy

1

2
(∂2
sy)2, Lz =

1

2
(∂tz)

2 + cz
1

2
(∂2
sz)

2 (50)

where we have removed the coefficient of the first term in each Lagrangian through an appropriate redefinition1082

of the fields, leaving 4 free parameters. The first pair of Lagrangians, governing the axial deformations x and1083

the torsional deformations θ, are recognisable as giving linear wave mechanics. Meanwhile, the second pair,1084

governing transverse bending deformations y, z, are recognisable as giving Euler-Bernoulli beam mechanics.1085

Thus, our derivation tells us that the low-energy physics of the larva should be dominated by the classical1086

linear elasticity theory of deformable rods [52]. We note that our theory is thus strongly reminiscent of1087

the phenomenological elastic models of that have been used with great success in understanding mechanical1088

properties of DNA and other polymers [40, 44–46], with the key difference being the inclusion of kinetic1089

energy, owing to the larva’s relatively large size and our interest in the larva’s dynamics.1090

B Momentum-space coarse-graining causes no flow in non-interacting1091

theory space1092

In this section we provide a proof that the coarse-graining step of renormalisation causes no flow of the1093

coupling constants within the non-interacting (Gaussian) theory space. To show this, we will start from the1094

partition function path integral1095

Z =

∫
Dφe−βH[φ] (51)
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for a single scalar field φ ∈ ψ = [x, y, z, θ]
T

.1096

In what follows, we will perform a “momentum-space” coarse-graining. As a preliminary requirement, we1097

must rewrite the field φ in terms of its spatial Fourier components φk, which are labelled by their wavenumber1098

k (which plays the role of momentum in quantum field theories, hence the nomenclature); intuitively, φk1099

measures the magnitude of a sinusoidal excitation of the φ field with wavenumber k. In terms of these1100

Fourier modes, the partition function is given by1101

Z =

∫ ∏
k<Λ

dφke
−βH[φ] (52)

where the high wavenumber (short wavelength) cut-off Λ is imposed because we expect our long-wavelength1102

effective theory to break down beyond some short distance scale ∼ 1/Λ. To enact our coarse-graining, we1103

introduce a new cut-off Λ′ < Λ, and redefine the Fourier modes φk, the Hamiltonian H, and the partition1104

function in terms of Λ′. In particular, we split the modes φk into low-wavenumber and high-wavenumber1105

modes as1106

φk = φ−k + φ+
k (53)

where the low-wavenumber modes are given by1107

φ−k =

{
φk k < Λ′

0 Λ′ < k < Λ
(54)

and the high-wavenumber modes are given by1108

φ+
k =

{
0 k < Λ′

φk Λ′ < k < Λ
(55)

A generic Hamiltonian can then be written as1109

H [φk] = H−
[
φ−k
]

+H+
[
φ+
k

]
+HI

[
φ−k , φ

+
k

]
(56)

where H−, H+ depend only upon either the low- or high-wavenumber modes, respectively, whereas HI1110

governs interactions between the low- and high-wavenumber modes. The partition function now becomes1111

Z =

∫ ∏
k<Λ′

dφ−k

∫ ∏
Λ′<k<Λ

dφ+
k e
−β(H−+H++HI) =

∫ ∏
k<Λ′

dφ−k

[
e−βH

−
∫ ∏

Λ′<k<Λ

dφ+
k e
−β(H++HI)

]
︸ ︷︷ ︸

e−βH
′[φ−]

(57)

The bracketed term on the right hand side can now be used to define a new effective, coarse-grained Hamil-1112

tonian H ′ [φ−] for the low-wavenumber modes, from which we have integrated out the dependence upon the1113

high-wavenumber modes, as indicated by the underbrace.1114
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In our particular case, we are interested only in the low-energy behaviour of the larval midline. We can1115

therefore keep terms only up to quadratic order in H (see previous section) and neglect any higher-order1116

contributions. In this case, the H must be diagonalised in Fourier space, so that HI = 0 and there are1117

no interactions between the Fourier modes. This means that the integral within the brackets above must1118

evaluate to a constant which is independent of the low-wavenumber modes, i.e. we can simply write1119

∫ ∏
Λ′<k<Λ

dφ+
k e
−βH+

= C (58)

so that the coarse-grained Hamiltonian is given by the expression1120

e−βH
′

= e−βH
−
∫ ∏

Λ′<k<Λ

dφ+
k e
−βH+

= Ce−βH
−

(59)

Taking the logarithm and rearranging then gives1121

H ′ = H− − logC

β
(60)

But since addition of a constant to the Hamiltonian cannot effect any physics, the new coarse-grained1122

Hamiltonian H ′ can be taken as being exactly equal to the original low-wavenumber Hamiltonian H−. Note1123

that this means that, starting from a quadratic Hamiltonian, the coarse-graining step of renormalisation1124

cannot cause any change in the parameters within the Hamiltonian, and all RG flow must be generated1125

purely by the rescalings of s, t, and φ, all of which we accounted for in the previous section. By contrast,1126

at higher energy scales, the presence of interactions between modes will cause HI 6= 0, so that the coarse-1127

graining integration over the high-wavenumber modes will in general cause a change in the parameters in1128

the low-wavenumber effective Hamiltonian.1129

C Accounting for dissipative effects within Lagrangian field the-1130

ory1131

In this section, we wish to provide an intuitive understanding for how a (fractional) quadratic Lagrangian1132

density is able to account for the types of dissipation encountered within systems modelled by linear partial1133

differential equations (PDEs). In particular, we will attempt to demonstrate how the general 2-dimensional1134

scalar linear PDE of the form1135

∑
p,q

cp,q∂
p
s∂

q
t φ(s, t) = 0, p, q ∈ [0, 1, 2, 3, . . . ] (61)

can be derived from a quadratic Lagrangian, via the Euler-Lagrange equation1136

∑
n,m

(−1)n+m∂ns ∂
m
t

[
∂L

∂(∂ns ∂
m
t φ)

]
= 0 (62)

We start from the quadratic Lagrangian1137
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L =
∑
n,m

(−1)−(n+m)cn,m (∂ns ∂
m
t φ)

2
(63)

Applying the Euler-Lagrange equation then gives the PDE1138

∑
n,m

cn,m∂
2n
s ∂2m

t = 0 (64)

This tells us that if integer-order derivatives appear in the Lagrangian, then only even-order derivatives can1139

appear in the Euler-Lagrange equation; this is the case usually considered, and leads to purely conservative1140

behaviour.1141

However, intuitively, if we were to extend the Lagrangian to contain half-integer-order derivatives n,m ∈1142

[0, 1/2, 1, 3/2, 2, 5/2, . . . ], with possibly imaginary coefficients due to the factor of (−1)−(n+m), and provided1143

the principle of least action results in a suitably generalised Euler-Lagrange equation, then the resulting1144

dynamics should be capable of containing any integer-order derivative (i.e. derivatives of both odd and even1145

order). In this case a simple relabelling scheme p = 2n, q = 2m recovers the original general 2-dimensional1146

scalar linear PDE (Equation 61). Indeed, the Euler-Lagrange equation does generalise to this case [48].1147

D Weak axial–transverse interactions and the crawling/exploration1148

frequency ratio1149

We next consider the frequency relationship between the axial and transverse modes. Since the axial and1150

transverse fields do not interact in our theory, it cannot tell us their relative frequencies. However, we can1151

make good progress towards this aim by incorporating only a small nonlinear coupling into our theory.1152

Indeed, we have previously analysed the coupling between axial and mediolateral transverse degrees of1153

freedom [19] using a simplified Hamiltonian for the axial and mediolateral transverse motions of the larva’s1154

head1155

H∗h =
1

2

[
p2
q +

1

(1 + εq)2
p2
φ + q2 + 2λ2φ2

]
(65)

where q and φ are dimensionless variables characterising the axial stretch and mediolateral transverse bending1156

angle, pq and pφ are the canonical momenta conjugate to these variables, λ is the axial–transverse frequency1157

ratio, and ε is a global amplitude scale which multiplies the dimensionless quantities q, φ to give the real1158

axial stretch and mediolateral bending angle of the head.1159

In the limit of small amplitudes the axial and transverse degrees of freedom are uncoupled, as in the effective1160

theory we present this paper. We are interested in small coupling corrections to the uncoupled behaviour,1161

so we expand the head Hamiltonian in a perturbation series in the amplitude parameter ε1162

H∗h = [H∗h]ε→0︸ ︷︷ ︸
H0

+ ε

[
∂H∗h
∂ε

]
ε→0︸ ︷︷ ︸

H1

+ε2
[
∂2H∗h
∂ε2

]
ε→0

+ · · · (66)
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To keep our focus on the simplest model demonstrating axial-transverse coupling, we will keep only the1163

zero-order small-amplitude term H0 and the first order correction εH1, finding1164

H0 =
1

2

[
p2
q + p2

φ + q2 + λ2φ2
]

(67)

and1165

H1 = −qp2
φ (68)

so that our intermediate amplitude Hamiltonian becomes1166

Hh,IA∗ = H0 +H1 =
1

2

[
p2
q + (1− 2εq)p2

φ + q2 + λ2φ2
]

(69)

Since this coupled system is still fairly difficult to analyse, we choose to focus only on the transfer of energy1167

from axial to transverse degrees of freedom. To do so, we will set the axial motion q to a prescribed function1168

of time. We choose for this purpose q = cos(ωt), which could represent either an unperturbed axial modal1169

vibration or a first-order approximation of the Fourier series expansion of a more complicated periodic1170

function. Since q and pq are now prescribed functions of time, the terms in p2
q and q2 in the Hamiltonian1171

will not effect the dynamics and can be discarded, leaving us with1172

Hh,IA∗ =
1

2
[1− 2εcos(ωt)] p2

φ +
1

2
λ2φ2 (70)

In order to simplify this Hamiltonian further, we next take a canonical transformation to new phase space1173

coordinates given by Φ = pφ/λ, P = −λφ, i.e. we scale and interchange the coordinates and momenta, which1174

allows us to group all parameters in one term and interpret the axial-transverse interaction as a sinusoidal1175

modulation of frequency1176

Hh,IA∗ =
1

2
P 2 +

1

2
λ2 [1− 2εcos(ωt)] Φ2 (71)

Finally we derive the intermediate amplitude transverse dynamics via the Hamilton’s equations, finding1177

Φ̇ =
∂H∗h,IA
∂P

= P, (72)

and1178

Ṗ = −
∂H∗h,IA
∂Φ

= −λ2 [1− 2εcos(ωt)] Φ (73)

or, converting to second-order form by differentiating the first equation with respect to time and substituting1179

into the second, we can write the dynamics in momentum space as1180

Φ̈ + λ2 [1− 2εcos(ωt)] Φ = 0 (74)
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which is in the form of the Matthieu equation [78]. It is well known that this equation exhibits the phone-1181

menon of parametric resonance, in which the passively stable equilibrium at Φ = 0 becomes unstable for1182

certain values of ε and ω, giving rise to solutions which grow with time.1183

For infinitesimal parametric perturbations (i.e. ε→ 0), resonance occurs when the axial forcing frequency ω1184

is exactly an even multiple of the natural frequency λ (i.e. ω = 2λ, ω = 4λ, etc.). For larger perturbations1185

(ε > 0), resonance occurs for a larger spread of frequencies centred on the even multiples of the natural1186

frequency [52,78].1187

In the presence of friction, larger perturbations are required to produce resonance, and the magnitude of the1188

required perturbation grows with the forcing frequency, so that only the low-order resonances are practically1189

accessible [52, 78]. The most readily excited resonance is therefore the 2 : 1 axial-transverse resonance,1190

followed by the 4 : 1 resonance, and so on. Therefore, this line of argument suggests that if the larva favours1191

the transfer of energy between axial and transverse degrees of freedom, the transverse frequency should be at1192

a low-order, even subharmonic of the axial frequency. For instance, given an axial characteristic frequency1193

of ≈ 1 Hz, the strongest parametric driving of the transverse degrees of freedom should occur when the1194

transverse frequency is ≈ 1
2 , as observed in the real larva.1195

E Analytical eigendecomposition of D2,c1196

We can find both Φa and Λa analytically by noting that D2 is a circulant matrix. Indeed, the i’th eigenvector1197

of an arbitrary circulant matrix is given by [79]1198

Φa,i =
1√
N − 1

[
1, zi, z

2
i , · · · , zN−2

i

]T
(75)

where we have used Φa,i to denote the i’th column of the eigenvector matrix Φa, and zi = e
2πij
N−1 is the1199

i’th element of the (N − 1)’th roots of unity, with j =
√
−1 the imaginary unit. Using Euler’s complex1200

exponential formula the k’th element of the i’th axial mode shape may be written1201

Φa,k,i =
1√
N − 1

[
cos

(
2πi

k

N − 1

)
+ jsin

(
2πi

k

N − 1

)]
(76)

The real and complex parts of each vector can be considered as independent mode shapes, so that the modes1202

thus come in pairs with identical spatial frequency,1203

Φa,k,i =
1√
N − 1

cos

(
2πi

k

N − 1

)
, or Φa,k,i =

1√
N − 1

sin

(
2πi

k

N − 1

)
, i ∈ [0, N/2− 1] (77)

For an arbitrary (N − 1)× (N − 1) circulant matrix with entries1204

A =



c0 cN−2 · · · c2 c1
c1 c0 cN−2 c2
... c1 c0

. . .
...

cN−3
. . .

. . . cN−2

cN−2 cN−3 · · · c1 c0

 (78)
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the eigenvalue corresponding to the i’th eigenvector is given by [79]1205

λi = c0 + cN−2zi + cN−3z
2
i + · · · + c1z

N−2
i (79)

In the case of D2 we have c0 = 2 and c1 = cN−2 = −1, so that this reduces to1206

λi = 2− zi − zN−2
i (80)

However, the N − 1’th roots of unity satisfy zN−2
i = z̄i, where the bar indicates the complex conjugate.1207

Therefore,1208

λi = 2− 2Re[zi] (81)

the real part of zi can be found by using Euler’s complex exponential formula, yielding1209

λi = 2− 2cos

(
2πi

N − 1

)
(82)

By using the trigonometric identity
√

2− 2cos (x) = 2sin
(
x
2

)
we may now calculate the natural frequency1210

of the i’th axial mode1211

ωa,i = 2ωa

∣∣∣∣sin( πi

N − 1

)∣∣∣∣ (83)

and the associated damping ratio1212

ζa,i = 2ζa

∣∣∣∣sin( πi

N − 1

)∣∣∣∣ (84)

F Analytical eigendecomposition of D2,f1213

Let us now turn our attention to the eigendecomposition of D2,f . The eigenvalue problem for this matrix1214

can be stated as1215

D2,fΦt,k,i = λt,iΦt,k,i (85)

where the subscript t is intended to indicate that we are looking for the eigenvalue–eigenvector pairs related1216

to twisting motions, k indexes over the segments of the model and i indexes over the eigenvector–eigenvalue1217

pairs. For notational clarity we will drop the subscript t and index i until later in this subsection, and write1218

the components of Φt,k,i as vk. We will define the index k to run from 0 at the tail to n+ 1 at the head.1219

Using this notation, the eigenvalue problem may be written component-wise as1220
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vk+1 − 2vk + vk−1 = λvk , k = 1, · · · , n (86)

with the “boundary conditions”1221

v1 − v0 = λv0 (87)

and1222

vn − vn+1 = λvn+1 (88)

We note that for the boundary conditions to be satisfied in general we must have1223

v1 − v0 = vn+1 − vn = 0 (89)

which motivates us to introduce new variables wk = vk+1 − vk in which the boundary conditions can be1224

written simply as w0 = wn = 0. We note that vk+1 − 2vk + vk−1 = (vk+1 − vk) − (vk − vk−1) so that the1225

component-wise eigenvalue problem can be re-written1226

wk − wk−1 = λvk , k = 1, · · · , n (90)

but vk = wk−1 + vk−1, so1227

wk − wk−1 = λwk−1 + λvk−1 , k = 1, · · · , n (91)

Noting that wk−1 − wk−2 = λvk−1, we rewrite this as1228

wk − wk−1 = λwk−1 + wk−1 − wk−2 , k = 2, · · · , n (92)

which can be rearranged to give1229

wk = (2 + λ)wk−1 − wk−2 , k = 2, · · · , n (93)

Introducing 2α = 2 + λ and shifting the index k by 1 gives the reccurrence relation1230

wk+1 = 2αwk − wk−1 , k = 1, · · · , n− 1 (94)

Considering α as an indeterminate, and assuming w1 = 1 (which we can always satisfy by normalising the1231

eigenvector, provided that w1 6= 0), we may write1232

wk+1 = Uk(α) (95)
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where Uk is the k’th Chebyshev polynomial of the second kind. Our boundary condition at the head then1233

tells us1234

0 = Un−1(α) (96)

so that we can determine α, and thus the eigenvalues λ, by finding the roots of the (n − 1)’th Chebyshev1235

polynomial of the second kind. These roots are well known, and tell us1236

αi = cos

(
iπ

n

)
(97)

so that the i’th eigenvalue is determined by the equation1237

2 + λi = 2 cos

(
iπ

n

)
(98)

rearranging gives1238

λi = −2

[
1− cos

(
iπ

n

)]
, i = 1, · · · , n− 1 (99)

or, by a trigonometric identity,1239

λi = −4 sin2

(
iπ

2n

)
, i = 1, · · · , n− 1 (100)

This gives us n−1 non-zero eigenvalues. There must clearly also be a zero eigenvalue corresponding to uniform1240

rotation of all segments, with corresponding eigenvector given by vk = c with c an arbitrary constant. We1241

can incorporate the zero eigenvector into our expression above by writing1242

λi = −4 sin2

(
(i− 1)π

2n

)
, i = 1, · · · , n (101)

so that the torsional natural frequencies may be written1243

ωt,i = 2ωt

∣∣∣∣sin( (i− 1)π

2N

)∣∣∣∣ (102)

and the associated damping ratios are1244

ζt,i = 2ζt

∣∣∣∣sin( (i− 1)π

2N

)∣∣∣∣ (103)

Each eigenvalue may now be substituted into the recurrence relations above in order to determine its corre-1245

sponding eigenvector. Carrying out this procedure gives1246
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Φt,k,i =

√
2

N
cos

π(i− 1)(k − 1/2)

N
(104)

where the prefactor
√

2/N normalises the eigenvectors to unit length.1247

G Analytical eigendecomposition of D41248

To complete the eigendecomposition of our low-energy effective Hamiltonian, we now focus on the final1249

eigenvalue problem1250

D4Φb,k,i = λb,iΦb,k,i (105)

where the subscript b is intended to indicate that we are looking for the eigenvalue–eigenvector pairs related1251

to bending motions, k indexes over the segments of the model and i indexes over the eigenvector–eigenvalue1252

pairs. As in the previous section, for notational clarity we will drop the subscript b and index i until later1253

in this subsection, and write the components of Φb,k,i as vk.1254

In the previous sections we exploited special properties of the second difference matrices to exactly compute1255

their eigenvalues and eigenvectors. In particular, we exploited the circulant character of the second difference1256

matrix with periodic boundary conditions to find its eigenvalues and eigenvectors using essentially a discrete1257

Fourier transform, while we exploited the fact that the second difference matrix with free boundaries has1258

a low bandwidth (non-zero elements only on the main diagonal and the two diagonals to either side, i.e. a1259

bandwidth of 1) in order to write a tractable low-order recurrence relation for the eigendecomposition.1260

The fourth difference matrix we are now confronted with does not share these special properties – it is not1261

circulant, and it has a higher bandwidth of 2 (i.e. five diagonals of the matrix have non-zero elements). This1262

means that the discrete Fourier approach cannot be applied, and the recurrence relation will be of 5’th order1263

and thus does not correspond to any Chebyshev polynomial.1264

Thus, we explore approximations to the eigendecomposition of D4. We begin by noting that our matrix can1265

be decomposed into a product of rectangular forward and backward second difference matrices, i.e.1266

D4 = D2,−D2,+ (106)



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1


=



1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1





1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1



T

(107)

where we have noted that the backward and forward second difference matrices are simply related by taking1267

the transpose, i.e. D2,+ = DT
2,−. Since the nonzero eigenvalues of AAT and ATA are equal for any matrix A,1268
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this means that the nonzero eigenvalues of D4 = D2,−D2,+ must be equal to those of the product D2,+D2,−,1269

i.e. the eigenvalues of1270



1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1



T 

1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1


=



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6


(108)

which is the (N − 2) × (N − 2) fourth difference matrix with fixed boundary conditions, which we denote1271

D4,fixed. So far we have made no approximation, we have simply decomposed our original fourth difference1272

matrix and proved that its nonzero eigenvalues must be identical to those for a related fourth difference1273

matrix with different boundary conditions and a reduced dimensionality. Writing our problem in this way1274

clarifies the mathematical issues we are facing – we need to find the eigenvalues of a real, symmetric,1275

pentadiagonal Toeplitz matrix. There is currently no closed-form solution to this problem. However, we can1276

use an asymptotics approach to find an exact solution in the limit N →∞.1277

To proceed, we approximate the (N − 2) × (N − 2) matrix D4,fixed by its circulant counterpart, which we1278

denote D4,c, with elements1279

D4,c



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 1 −4 6 −4
−4 1 1 −4 6


(109)

Clearly these two matrices are related by1280

D4,fixed + C = D4,c (110)

where the matrix C is zero everywhere apart from the six entries at the bottom left and top right corners1281

(we choose the symbol C to stand for “corners”). Let us consider the relative error of this approximation1282

as a function of the number of points N in our finite difference approximation. Clearly the element-wise1283

approximation error is1284

D4,c −D4,fixed = C (111)

so that using a suitable matrix norm we can define a scalar measure of the absolute error1285

‖D4,c −D4,fixed‖ = ‖C‖ (112)
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or the relative error1286

‖D4,c −D4,fixed‖
D4,fixed

=
‖C‖

D4,fixed
(113)

For concreteness let us use the L2,1 matrix norm, which is simply the sum of the Euclidean norms of the1287

columns of a matrix. Since the matrix C only changes through inclusion of more zero elements as N1288

grows, ‖C‖ is a constant in this norm. Meanwhile, incrementing N by 1 introduces an additional column1289

into D4,fixed, always with the same 5 nonzero elements, so that the matrix norm should increase linearly1290

as N → ∞. Therefore the relative error of our approximation should behave as ≈ 1/N as N increases,1291

suggesting that the eigenvalues of the two fourth difference matrices should coincide aymptotically.1292

Next we note that the circulant fourth difference matrix can be factored into a product of circulant second1293

difference matrices,1294

D4,c = D2,cD2,c (114)

Performing eigendecomposition thus gives1295

D4,c = Φ4Λ4,cΦ
T
4 = D2,cD2,c = Φ2Λ2,cΦ

T
2 Φ2Λ2,cΦ

T
2 = Φ2Λ2,cΛ2,cΦ

T
2 (115)

so that we may identify the eigenvalue matrix of the circulant fourth difference matrix with the product of1296

eigenvalue matrices of the circulant second difference matrix Λ4,c = Λ2,cΛ2,c. Since the eigenvalue matrices1297

are by definition diagonal, this means that the i’th eigenvalue of the circulant fourth difference matrix is the1298

square of the i’th eigenvalue of the circulant second difference matrix. Using our analytical solution for the1299

i’th nonzero eigenvalue of the second difference matrix thus gives the approximation1300

λb,i ≈ 16 sin4

(
πi

N − 3

)
, i = 1, · · · , N − 2 (116)

which is our final expression for the eigenvalues of the fourth difference matrix with free boundary conditions.1301

We can find the eigenvectors of D4,f analytically. Let us start from the diagonalisation condition1302

ΦT4 D4,fΦ4 = Λ4 (117)

we then perform a change of coordinates according to Φ = D1Φ4 with D1 the backward first difference matrix.1303

We invert the change of coordinates to give Φ4 = D−1
1 Φ, and insert into the diagonalisation equation to find1304

ΦTD−1,T
1 D4,fD

−1
1 Φ = Λ4 (118)

Thus we seek vectors Φ to diagonalise the central matrix product D−1,T
1 D4,fD

−1
1 . Once found, we will be1305

able to obtain expressions for the eigenvectors of the original matrix via Φ4 = D−1
1 Φ.1306

We now note that our central matrix product gives us an augmented form of the (N − 1)× (N − 1) second1307

difference matrix with free boundary conditions, i.e.1308
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ΦTD−1,T
1 D4,fD

−1
1 Φ = ΦTAΦ (119)

with the block diagonal matrix A given by1309

A =

[
0 0T

0 D2,f

]
(120)

which must have eigenvectors [0,Φ2]
T

, where Φ2 is an (N−1)-component eigenvector of the (N−1)×(N−1)1310

second difference matrix with free boundaries. Thus, the eigenvectors of the fourth difference matrix with1311

free boundaries are given by1312

Φ4 = D−1
1

[
0

Φ2

]
(121)

Meanwhile, the inverse of the backward first difference matrix is given by the N ×N summing matrix1313

D−1
1 =



1
1 1
1 1 1
...

. . .

1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1


(122)

which can be used in conjunction with our analytical expressions for Φ2 from the previous section to find1314

the analytical eigenvectors of D4. Carrying out this procedure gives the non-normalised eigenvectors1315

Φb,k,i = sin

(
π(i− 1)j

N − 1

)
(123)

H Detailed construction of the peristalsis/rolling model1316

It is marked that the axial and transverse modes come in pairs with identical frequencies. Each such pair1317

of modes is called a degenerate pair due to their relationship to the degenerate eigenvalues of the difference1318

matrices in the effective Hamiltonian. Note that the axial modes in a degenerate pair have identical spatial1319

frequencies, while those in the transverse case have completely identical spatial components.1320

The degeneracy of the eigenvalues of the difference matrices in the effective Hamiltonian suggests that the1321

choice of corresponding eigenvectors is somewhat arbitrary. Indeed, in principal we may choose any linear1322

combination of the two degenerate eigenvectors to form the basis for each degenerate pair. Even if we limit1323

ourselves to considering only orthonormal degenerate bases, we are still free to rotate the degenerate basis1324

vectors through any angle γ that leaves them in the same plane. Such a transformation cannot change the1325

mechanics, and so the γ-rotations of the degenerate bases constitute additional continuous symmetries of1326

the effective theory. A beautiful result in classical physics known as Noether’s theorem tells us that these1327

symmetries must be linked to additional conserved quantities. Let us make these ideas more concrete by1328
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considering a particular degenerate pair with modal coordinates X1, X2, conjugate momenta p1, p2, and1329

natural frequency ω. To make the link between rotational symmetries and conservation laws most clear, we1330

will briefly switch to using the Lagrangian framework of analytical mechanics. To do so, we begin with the1331

Hamiltonian of the degenerate pair1332

H =
1

2

[
p2

1 + p2
2 + ω2

(
X2

1 +X2
2

)]
(124)

Taking the Legendre transform of the Hamiltonian yields the Lagrangian1333

L =
1

2

[
Ẋ2

1 + Ẋ2
2 − ω2

(
X2

1 +X2
2

)]
(125)

To make the rotational symmetry of this Lagrangian manifest, let us switch to polar coordinates A, γ defined1334

via X1 = A cos γ, X2 = A sin γ. We will call A the degenerate amplitude and γ the degenerate phase. The1335

Lagrangian is then1336

L =
1

2

[
Ȧ2 +A2γ̇2 − ω2A2

]
(126)

which clearly does not depend upon the angle γ. Indeed, the Euler-Lagrange equation for the degenerate1337

phase gives1338

d

dt

[
∂L

∂γ̇

]
=
∂L

∂γ
(127)

d

dt

[
A2γ̇

]
= 0 (128)

so that the bracketed expression on the left hand side must be conserved. Indeed, we recognise this expression1339

immediately as a generalised form of angular momentum, which we term the degenerate angular momentum.1340

We now switch back to using the Hamiltonian framework by taking the Legendre transform of the Lagrangian,1341

finding the degenerate Hamiltonian in polar coordinates1342

H =
1

2

[
p2 +

M2

A2
+ ω2A2

]
(129)

where p = ∂L
∂Ȧ

is the radial momentum conjugate to A and M is the degenerate angular momentum. This1343

expression is simply a restatement of the total mechanical energy of the degenerate pair in polar coordinates.1344

Note that we may now treat M as an arbitrary parameter and focus only on the dynamics of the degenerate1345

amplitude A by introducing the effective potential energy Ueff = M2

A2 + ω2A2. It should be clear that1346

for a particular choice of degenerate angular momentum M there is now a minimum degenerate energy1347

E = H(p,A) required for motion. Furthermore, the motion with this minimum energy corresponds to1348

maintaining a constant degenerate amplitude, so that the trajectory of the system describes a circle in the1349

original X1, X2 configuration space. For finite energies exceeding this minimum, the motion is instead1350

confined to an annulus in the X1, X2 configuration space.1351

We now relate this picture back to the directly observable kinematics of the larva. First, we will convert from1352

polar coordinates back to the degenerate modal coordinates X1, X2. To do so, we focus on the particular1353
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case in which E is set to its minimum value for a given M , corresponding to a conserved unit amplitude1354

A = 1. We will set this value of M momentarily. Proceeding, we see that for our choice of A, M = γ̇1355

is simply the angular velocity of the motion, so that γ = Mt and the degenerate phase evolves linearly in1356

time. Therefore, X1 = cosMt and X2 = sinMt. For this to coincide with our earlier results for the modal1357

coordinates considered independently, we must have M = γ̇ = ω, so that the modal coordinates X1 and X21358

execute sinusoidal oscillations at the degenerate natural frequency ω with unit amplitude and a 90◦ relative1359

phase shift.1360

Next, we choose to interpret X1, X2 as the two modal coordinates of the i’th axial degenerate pair with1361

natural frequency ωa,i. Using our expressions for the i’th pair of axial eigenvectors, we can write the axial1362

displacement xk of the k’th vertex of the midline as1363

xk = cos (ωa,it) cos

(
2πi

k

N − 1

)
± sin (ωa,it) sin

(
2πi

k

N − 1

)
(130)

where we have dropped the normalising factor 1√
N−1

. Using the identity cos (a) cos (b) ± sin (a) sin (b) =1364

cos (a± b), this further simplifies to1365

xk = cos

(
ωa,it± 2πi

k

N − 1

)
(131)

Interpreting 0 ≤ k
N−1 ≤ 1 as a spatial coordinate ranging over the undeformed configuration of the body,1366

this is in the form of a sinusoidal travelling wave, and the choice of a minus or plus sign in the argument1367

corresponds to the choice of a forward- or backward-propagating wave, respectively.1368

Restricting our attention to the axial degenerate pair with lowest frequency and lowest dissipation, and1369

further assuming that the segments of the larva should be held in place without slipping when not moving,1370

the translational speed of the larva should be Aγ̇ = Aωa,1.1371

Alternatively, we may choose to interpret X1, X2 as the two modal coordinates of a transverse degenerate1372

pair. For instance, the pair of transverse modes with the lowest frequency, and lowest dissipation, corresponds1373

to C-bending in the mediolateral and dorsoventral planes. The rotational symmetry of the degenerate basis1374

in this case corresponds to our arbitrary choice of mediolateral/dorsoventral axes, and the corresponding1375

degenerate angular momentum conservation law gives rise to the rotational propagation of a C-bend around1376

the body of the larva with angular velocity ωb,1. Thus we see that there should be an exact correspondence1377

between the angular velocity of rolling and the frequency of C-bending during unbiased behaviour, as we1378

suggested in the main paper; this appears to be the case in the real animal.1379

In the presence of substrate constraints acting to hold the C-shaped bend in a fixed orientation in space (for1380

instance the body may be held parallel to the plane of the substrate due to either “repulsive” ground-reaction1381

forces or “attractive” surface tension forces), this motion would have to produce a compensatory rolling of1382

the midline itself, at angular frequency ωb,1, in the opposite direction to the rotation of the C-shaped bend1383

about the midline. In other words, in the presence of substrate interaction forces, we expect the conservation1384

of the degenerate angular momentum to give rise to rolling behaviour. If we for now assume that the larva1385

should roll without slipping, the translational speed of the larva would be 2πrγ̇ = 2πrωb,1 where r is the1386

cross-sectional radius of the animal.1387
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I Modified Boltzmann distribution for degenerate modes1388

In this section we derive a maximum entropy distribution over the phase space of a pair of modes that share1389

a degenerate (identical) frequency, subject to constraints of normalisation (probabilities must add up to1390

1), constant average energy, and constant generalised angular momentum M . To simplify the presentation1391

we will work with sums over a discrete phase space and then take a continuum limit, rather than dealing1392

explicitly with integrals [40]. The first part of the derivation consists simply of finding the classical Boltzmann1393

distribution by maximising the Gibb’s entropy subject to the normalisation and energetic constraints. We1394

then impose the constant generalised angular momentum constraint before calculating the partition function1395

for the resulting modified phase space distribution.1396

The Gibb’s entropy that we will maximise is given by1397

S = −kB
∑
i

pi log pi (132)

where the summation should be interpreted as ranging over i discrete states in the phase space. The1398

maximisation is subject to the normalisation constraint1399

N∑
i

pi = 1 (133)

and the average energy constraint1400

∑
i

Hipi = 〈E〉 (134)

Hi is the Hamiltonian (total energy) calculated for the i’th state, which we constrain to take a constant aver-1401

age value 〈E〉. To find the constrained maximum of the entropy we use the method of Lagrange multipliers.1402

We construct the objective function1403

h = S − λn

[(∑
i

pi

)
− 1

]
− λE

[(∑
i

Hipi

)
− 〈E〉

]
(135)

where we have introduced the Lagrange multipliers λn and λE associated with the normalisation and average1404

energy constraints, respectively. To maximise h we set its partial derivative with respect to pi, λn, and λE1405

equal to zero, giving1406

∂h

∂λn
=
∑
i

pi − 1 = 0 (136)

and1407

∂h

∂λE
=
∑
i

Hipi − 〈E〉 = 0 (137)
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which simply recover our constraints, while taking the partial derivative with respect to the probabilities1408

then gives1409

∂h

∂pi
= −kB (log pi + 1)− λn − λEHi (138)

At a maximum of the Gibb’s entropy this quantity must equal zero. Setting this expression equal to zero1410

and rearranging then gives the log-linear probability1411

log pi = −1− λn
kB
− λE
kB

Hi (139)

which we exponentiate to find the probability in factored form1412

pi = e−1e−λn/kBe−λEHi/kB (140)

Clearly the first two factors are constant, and will be set by the normalisation condition via λn. These1413

factors thus correspond to the partition function, which we can write1414

Z = e1+λn/kB (141)

The remaining factor in the distribution will depend upon the average energy via the Lagrange multiplier1415

λE , which we identify with the inverse temperature1416

λE =
1

T
= kBβ (142)

thus the phase space distribution in the absence of a conserved momentum M corresponds to the classical1417

Boltzmann distribution for the canonical ensemble of classical statistical physics1418

pi =
1

Z
e−βHi (143)

where the partition function Z can be determined via the normalisation constraint. In the continuum limit1419

this becomes1420

p(s) =
1

Z
e−βH(s) (144)

where s denotes a particular classical state in the phase space, consisting of canonical coordinates and their1421

conjugate momenta. To take account of the exactly specified invariant momentum M we will make use of1422

the degenerate Hamiltonian written in polar coordinates,1423

H =
1

2

[
p2
A +

M2

A2
+ ω2A2

]
(145)
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in which the degenerate angular momentum M usefully appears explicitly as a parameter, A is the degenerate1424

amplitude and pA is its canonically conjugate momentum. The degenerate phase space distribution is then1425

p(A, φ, pA,M) =
1

Z
exp

(
−β

2

(
p2
A +

M2

A2
+ ω2A2

))
δ (M −M0) (146)

with δ the Dirac delta function. We can then write out our equation for the partition function Z by using1426

the normalisation condition. We must replace the sum over discrete states in the normalisation condition1427

with an integral over phase space, which ultimately gives us1428

Z =

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

∫ ∞
−∞

exp

(
−β

2

[
p2
A +

M2

A2
+ ω2A2

])
δ (M −M0) dpA dA dφ dM (147)

where the limits of integration are chosen to cover the phase space, i.e. pA and M can take all values in the1429

range infty, . . . ,∞, A is constrained to be positive, and φ ranges from 0 to 2π.1430

Since the integrand is independent of φ, the integration over this variable simply contributes a factor 2π.1431

Furthermore, due to the Dirac delta function enforcing our constraint M = M0, the integrand is zero for all1432

M 6= 0. Thus we can substitute the value M = M0 into the energy and integrate over the delta function,1433

which simply contributes a factor of unity to the integral, so that we have1434

Z = 2π

∫ ∞
0

∫ ∞
−∞

exp

(
−β

2

[
p2
A +

M2
0

A2
+ ω2A2

])
dpA dA (148)

and we can focus our attention on the integration over A and pA. Since the kinetic energy (the first term in1435

the integrand) depends only on pA and does not depend upon A, and the effective potential (the second two1436

terms in the integrand) depends upon A and does not depend upon pA, we can simplify further by factoring1437

the integration as1438

Z = 2π

∫ ∞
−∞

exp

(
−β

2
p2
A

)
dpA

∫ ∞
0

exp

(
−β

2

[
M2

0

A2
+ ω2A2

])
dA (149)

We now focus on the left-hand integral. The antiderivative can be written in terms of the error function,1439

erf, as1440

∫
exp

(
−β

2
p2
A

)
dpA =

√
π

2β
erf

(√
βp

2

)
(150)

The error function tends to 1 as its argument tends to ∞ and tends to −1 as its argument tends to −∞, so1441

the definite integral becomes1442

∫ ∞
−∞

exp

(
−β

2
p2
A

)
dpA = lim

pA→∞

√
π

2β
erf

(√
βpA
2

)
− lim
pA→−∞

√
π

2β
erf

(√
βpA
2

)
= 2

√
π

2β
(151)

Substituting this into our expression for the partition function gives1443
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Z = 4π

√
π

2β

∫ ∞
0

exp

(
−β

2

[
M2

0

A2
+ ω2A2

])
dA (152)

To calculate the remaining definite integral, we first calculate the antiderivative1444

∫
exp

(
−β

2

[
M2

A2
+ ω2A2

])
dA =

1

2

√
π

2βω2

[
eβ|M |ω (erf(a)− 1)− e−β|M |ω (erf(b)− 1)

]
(153)

with1445

a =

√
βM2 +A2

√
βω2

√
2A

(154)

and1446

b =

√
βM2 −A2

√
βω2

√
2A

(155)

Clearly our integral must diverge at A = 0 since the integrand includes a term proportional to A−2, so to1447

begin calculating our definite integral we instead find the limiting value of the antiderivative as A→ 0 from1448

above. We first distinguish two cases, corresponding to whether M is equal to zero or not. In the case M = 01449

we have erf(a)→ 0 and erf(b)→ 0 as A→ 0, so that the coefficients of the exponentials in the antiderivative1450

are equal. However, the exponentials themselves are both equal to 1, since the exponents are 0, so that the1451

exponentials cancel and the antiderivative must be equal to zero. Next considering the case M 6= 0 we have1452

erf(a)→ 1 and erf(b)→ 1 as A→ 0, so that the coefficients of the exponentials are both equal to zero. Thus1453

we have1454

lim
A→0

1

2

√
π

2βω2

[
eβ|M |ω (erf(a)− 1)− e−β|M |ω (erf(b)− 1)

]
= 0 (156)

Now let us consider the upper limit in the definite integral, for which we must take the limit A→∞ in the1455

antiderivative. In this case erf(a)→ 1 and erf(b)→ −1 so that we have1456

lim
A→∞

1

2

√
π

2βω2

[
eβ|M |ω (erf(a)− 1)− e−β|M |ω (erf(b)− 1)

]
=

√
π

2βω2
e−β|M |ω (157)

Given that the value of the antiderivative vanished at our lower limit of integration, this last expression1457

at our upper limit must be equal to the final definite integral in the partition function. Substituting this1458

expression into the partition function then gives1459

Substituting this into our expression for the partition function gives1460

Z =
2π2

βω
e−β|M |ω (158)
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or, if we choose to measure phase space volumes in units of Planck’s constant h, as is customary in classical1461

statistical mechanics [40], we have1462

Z =
1

2β~2ω
e−β|M |ω (159)

where ~ = h/2π is the reduced Planck’s constant. This is our final expression for the partition function1463

of a degenerate pair of modes subject to an average energy constraint and the constraint of the conserved1464

momentum M = M0.1465

Next, we compute the Helmholtz free energy from the partition function by using1466

F = 〈E〉 − TS = − logZ

β
(160)

Which gives1467

F =
log
(
2β~2ω

)
+ β|M |ω

β
=

log
(
2β~2ω

)
β

+ |M |ω (161)
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