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ABSTRACT

Although genome sequence assemblies are available for a growing number of plant species, gene expression responses to
stimuli have been catalogued for only a subset of these species. Many genes show altered transcription patterns in response to
abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly,
data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related
species. Here, we trained a supervised classification algorithm to identify genes that transcriptionally respond to cold stress. A
model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance
relative to models trained using genomic, chromatin, and evolution/diversity features. Models trained with data from one species
successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained
accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and
vice versa. Models trained with data on gene expression in multiple species outperformed models trained with data from any
single species. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting
gene expression patterns in related, less-studied species with sequenced genomes.

Introduction
The genomes of over 300 plant species have been sequenced to date. Ambitious efforts are underway to sequence the genomes
of up to 10,000 plant and algae species by 20231. Even members of closely related groups of species can be adapted to different
environments and exhibit different degrees of tolerance for different stresses. The panicoid grasses are a clade of approximately
3,000 plant species, including several domesticated crops. While panicoid grasses grow in and are adapted to a wide range of
environments, many of the most agriculturally and economically important species, including maize (Zea mays ssp. mays) and
sorghum (Sorghum bicolor), were originally domesticated at tropical latitudes and are not cold tolerant. For these crops, the
low-temperatures in the spring and autumn constrain the length of the growing season and pose a major limit to total agricultural
production. While the majority of panicoid grasses are native to the tropics or subtropics2, a number of lineages have evolved
to grow in temperate environments where cold and freezing temperatures occur annually. For instance, miscanthus (Miscanthus
giganteus), a cold-tolerant relative of maize and sorghum that is native to temperate environments, exhibits substantially higher
total photosynthetic productivity per year than these crops due to its longer growing season and reduced susceptibility to
photoinhibition at chilling temperatures13. Thus, the clade contains a complex mixture of cold-tolerant species such as foxtail
millet (Setaria italica) and switchgrass (Panicum virgatum)4, 5 and cold-sensitive species including maize, sorghum (Sorghum
bicolor), proso millet (Panicum miliaceum), and pearl millet (Pennisetum glaucum).

Plants have evolved a variety of physiological, biochemical, and transcriptional regulatory mechanisms to sense and respond
to abiotic stress6. The repeated acquisition and/or loss of cold tolerance within the panicoid grasses provides an opportunity to
better understand the biochemical and evolutionary mechanisms responsible for changes in temperature tolerance. However, the
patterns of gene expression variation in response to cold stress are not conserved across species7, 8 or even between genotypes
within the same species9. The modulation of transcriptional regulation in response to abiotic stress often requires synchronous
actions among cis-regulatory elements (e.g. promoter and enhancer), trans-regulatory elements (e.g. transcription factor and
regulating RNA), transposable elements, and epigenetic regulators (e.g. DNA methylation and chromatin structure)6, 9–11.
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One explanation for the rapid divergence of cold-responsive transcriptional regulation between orthologous genes is that new
insertions of transposable elements appear to have the potential to induce the cold-responsive expression of nearby genes11–13. It
is likely that the rewiring of transcriptional regulation plays a significant role in how different plant lineages adapt independently
to low-temperature stress.

Here we demonstrate that even though orthology is not an effective predictor of transcriptional responses to cold stress
across even closely related species, it is possible to train supervised classification models using data from one species to
predict which genes will respond to cold stress in another species. The usefulness of supervised classification algorithms
has been demonstrated for a range of biological applications, such as distinguishing gene models with the potential for
expression14, inferring human gene expression based on a mouse model15, predicting functional annotations of individual gene
models from functional genomic data16, distinguishing genes involved in specialized or primary metabolism17, and predicting
post-translational modification sites18. In this study, we generated transcriptional data from four closely related species:
foxtail millet, pearl millet, switchgrass, and proso millet (Figure1A). Importantly, models used to predict which genes would
transcriptionally respond to cold stress provided equivalent prediction accuracy when trained using only features calculated
from the genome and gene model annotations as when trained using larger feature sets that included evolutionary, chromatin,
and population diversity features. With genome-and-gene-model-only feature sets, models trained in one species could be
used to make predictions in a second species. This cross-species prediction method provides an effective mean of predicting
which genes will transcriptionally respond to cold stress without the need to generate new expression datasets under equivalent
conditions for each species. With the growing number of sequenced plant genomes, the ability to predict transcriptionally
responded genes to stresses based on data from genome sequence assemblies will lower the barriers to investigating the basis of
widespread variation in stress tolerance across the plant kingdom.

Results
Cold-Responsive Genes and Gene Expression Patterns Vary Among Related Species
Both maize and sorghum are sensitive to cold stress4, 7, 19, 20. Reports of the differences in the degrees of low-temperature
tolerance among Paniceae species are sparse and varied, although switchgrass is extremely tolerant of cold and freezing, at
least under some conditions4, 5, 21. Cold tolerance can vary substantially depending on treatment, developmental stage, and
acclimation (as previously reviewed4). Here, we grew seedlings of four Paniceae species under controlled conditions and
assayed freezing tolerance at the three-leaf stage using an in vitro electrolyte leakage assay resulting from cell breakage to
quantify the extent of damage. When not previously acclimated to stress conditions, switchgrass and foxtail millet seedlings
showed slower rates of electrolyte leakage when challenged with progressively greater freezing stress compared to pearl millet
and proso millet seedlings grown and tested under the same conditions (Figure 1B). Therefore, low-temperature tolerance is
not monophyletic within the Paniceae and could reflect the parallel adaptation of different lineages within the grass tribe to
temperate climates (Figure 1A and B).

Changes in gene expression induced by cold stress were assayed using paired control and stress treatment RNA-seq
datasets collected from foxtail millet, pearl millet, switchgrass, and proso millet at the three-leaf stage 0.5, 1, 3, 6, 16, and 24
hours after the onset of cold stress. Among genes showing cold-responsive changes in mRNA abundance, at least 47% were
not syntenically conserved among the four species (Supplementary Table S1 and Figure S1A). The number of nonsyntenic
genes that responded transcriptionally to cold stress was more variable across species compared to syntenic genes (Figure
S1A). Syntenic orthologous genes and promoters are derived from a single common ancestral gene and promoter of the most
recent common ancestor of the species being studied. However, despite this shared evolutionary history, a gene responding
transcriptionally to cold stress in one species was not a good predictor of whether syntenic orthologous genes in related species
would also respond to cold stress in the same treatment at the same developmental stage (Figure S1B). This low conservation of
transcriptional responses across conserved genes in related species is consistent with the results of a previous comparison of
the transcriptional responses of maize and sorghum to cold stress7 and the variation in transcriptional responses to cold stress
between different alleles of the same gene in maize9.

Supervised Classification Algorithms Can Accurately Predict Cold Responsiveness
Stress-responsive transcriptional regulation of a given gene cannot be predicted efficiently using data from orthologous genes in
related species. However, perhaps specific features or properties of the gene itself which can be used to predict whether its
expression will respond to cold stress. We first evaluated this approach in maize, as many different types of feature data are
available for all or nearly all gene models in this plant16. One potential factor that could confound efforts to predict differential
gene expression is that the average gene expression level itself is a reasonably good predictor of whether or not a gene will be
identified as showing statistically significant differential expression. In the current study, the areas under the receiver operating
characteristic curves (AUC-ROCs) for predicting differential expression solely based on average expression levels varied from
0.48 to 0.70 for the six species tested (Figures 2A and S2A). Average gene expression levels can be predicted reasonably well
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Figure 1. Phylogenetic and phenotypic relationships between foxtail millet, pearl millet, switchgrass, and proso
millet. A. Species tree for the six species investigated in this study. Branches shown in red are relatively cold tolerant
compared to branches shown in blue. Branch supports are Bayesian posterior probabilities, node bars show 95% highest
posterior density (95% HPD) of node age and the scale bar represents millions of years ago. The whole genome duplication
events are marked by stars and indicating that the species contains two subgenomes. Maize was not included during species
tree analysis and the divergence time between maize and sorghum was calibrated to 11.9 million years ago22. B. Electrolyte
leakage from non-acclimated leaves frozen to a range of different temperatures. Curves were fitted using nonlinear regression
with a sigmoidal dose-response model. LT50 values are the concentrations that give half-maximal effects23. Error bars indicate
standard error of the mean from at least three replicate measurements.

based on genomic features24. Clearly, if not controlled for, the association between average gene expression and the odds of a
gene being identified as differentially expressed would lead to a misleading estimate of prediction accuracy. We therefore used a
gene binning strategy where genes were divided into 12 bins (dodeciles) based on average expression levels and subsampled to
ensure equal representation of cold-response and cold nonresponsive genes within each dodecile (Figure 2A, S2B, and 3). After
binning and subsampling, the prediction of which genes would be differentially expressed based solely on average expression
values produced AUC-ROCs of approximately 0.5, i.e., equal to the null expectation for balanced data (Figures 2A and S2A).
We also performed gene-family guided splitting, a strategy proposed by Washburn et al.24, to avoid obtaining misleadingly high
accuracy values that can result when prediction models learn gene family-specific features (Figure 3).

A set of features was assembled for each maize gene including gene sequence features, chromatin features, and diver-
sity/evolutionary features16 (Supplementary Table S2). Random forest models25 trained using the complete set of features were
able to predict which genes would exhibit differential expression in response to cold stress and which would not with an AUC
of 0.82 (Figure 2B). Models trained with subsets of features did not match the accuracy of the combined model. A model
trained using only features that can be extracted from genomic sequence data was able to predict which genes would exhibit
differential expression in response to cold stress and which would not with an AUC of 0.78 (Figure 2B).

Unlike the combined model, which requires data obtained using a range of specialized sequencing techniques, as well as
resequencing data from diverse populations, the pure genomic feature model can be applied to any species with a sequenced
genome and annotated gene models. We scored the same set of genomic sequence-derived features for each gene model in
foxtail millet, pearl millet, switchgrass, and proso millet and trained the species-specific random forest prediction models
for each of the four species. The AUC values (indicating the accuracy of species-specific models for classifying genes as
cold-responsive or nonresponsive) were 0.83 for foxtail millet, 0.89 for pearl millet, 0.80 for switchgrass, and 0.85 for proso
millet (Figure 4A).

Each species-specific model showed similar trends in terms of which features were estimated to play the largest roles
in determining accuracy. The contents of CG and AA dinucleotides in the CDS region consistently ranked as the two most
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Figure 2. Cold-responsive gene prediction in maize. A. Baseline expression control. Upper: Accuracy of genes being
scored as cold-responsive genes solely based on average FPKM values before and after baseline expression control; Lower:
Distribution of average FPKM values of cold-responsive genes (CR) and nonresponsive genes (NR), and training sets
resampled from genes in 12 bins with balanced gene expression levels (darker color). B. Receiver operating characteristic
(ROC) curves showing the classification accuracy of the maize models using different types of features

.

important features distinguishing cold-responsive genes from genes that did not transcriptionally respond to cold stress. A
complete list of estimated importance values for each feature in each species-specific model is provided in Supplementary
Table S5. Separate models were trained using only sequence features calculated for specific gene regions: CDS, intron, 5’UTR,
3’UTR, upstream, and downstream regions (Figure 4A). A second set of models was trained using all sequence features except
for those calculated for one of the same six regions (Figure 4B). It appears that CDS, 5’UTR, and 3’UTR features provided
more useful information for predicting whether or not a given gene model will respond to cold stress than introns, upstream, or
downstream regions. CDS-only models consistently performed the best of any of the single sequence context models, but they
did not exceed the prediction accuracy of the full model in any of the four species tested.

Models Trained in One Species Can Predict Cold-Responsive Gene Expression in Another Species
Because the same sequence features can be calculated for genes in different species, it is possible to evaluate how well
cold-responsive gene expression can be predicted in one species based on only information about which genes did and did not
respond to cold in another species. We used single species models trained in foxtail millet, pearl millet, switchgrass, or proso
millet to predict which genes would transcriptionally respond to cold in foxtail millet, pearl millet, switchgrass, proso millet,
sorghum, and maize (Figure 5). The accuracy with which cold-responsive gene expression was predicted across species was
comparable or only modestly less than the accuracy of within-species prediction. Predictions using species that were more
closely related were not obviously, consistently superior to predictions using species that share common cold-stress phenotypes
(sensitivity or tolerance).

A final model was trained using data from all the four Paniceae species (foxtail millet, pearl millet, switchgrass, and proso
millet) and its accuracy was assessed using separate data from the same four species as well as data from maize and sorghum.
The model trained with data from four species outperformed all cross-species prediction models trained with data from a
single species, except in maize. The four species models also outperformed within-species predictions in foxtail millet, proso
millet, switchgrass, and sorghum. Unexpectedly, models trained in different species tended to exhibit similar performance
when predicting cold-responsive gene expression in the same species, while models trained in a single species tended to exhibit
a wider range of performances when predicting cold-responsive gene expression in different species. Models consistently
performed the best in classifying either pearl millet or proso millet genes as cold-responsive or nonresponsive and generally
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Figure 3. Workflow of the supervised machine classification model for predicting cold-responsive genes.

performed the worst in predictions from maize. This pattern would be consistent with the notion that a certain proportion of
classification errors resulted from varying amounts of noise in the ground truth classifications of gene expression patterns in
individual species and/or variation in the accuracy of gene structural annotations used to calculate the sequence features used
for prediction.

The successful cross-species predictions for cold-responsive genes between cold-tolerant and cold-sensitive species or
between genetically relatively distant species indicate that cold-responsive genes in Panicoideae share a high level of similarity
in terms of gene sequence features. The determinants of gene expression under cold stress are consistent across species at the
gene sequence level, even though only a small proportion of cold-responsive genes were conserved in different species (Figure
S1B). It appears that low-temperature-tolerant species with independent origins employ a similar set of strategies to confer this
trait. We further conducted k-mean clustering analysis of cold-responsive genes from the four Paniceae species based on gene
expression in response to different durations of cold treatment (Figure S3A-D). Interestingly, we found genes belonging to each
of the four species were distributed across all of the clusters (Figure S3E).

Discussion
Several factors have lowered the barriers to generating reference genome sequences for new species, including declining
sequencing costs, advances in long-read sequencing technologies, and improvements to genome assembly and annotation
algorithms. To date, over 300 plant genomes have been sequenced; in addition, a recent study collected transcriptome data
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Figure 4. Supervised machine learning models for Paniceae grass species based on gene sequence features. A. Bar
plot showing the prediction accuracies achieved by the full gene sequence models and single feature group models for foxtail
millet, pearl millet, switchgrass, and proso millet. B. Importance of single feature groups, as revealed by changes in accuracy
when leaving one feature group out of the full sequence model. The value (percentage) was calculated based on changes
relative to the full model. Negative values indicate a decrease in accuracy compared to the full model, while positive values
indicate an increase in accuracy compared to the full model when excluding the feature group.

from 1,124 plant species26. Unfortunately, progress in generating layers of functional genomic data, including RNA-seq data
for many of these newly sequenced genomes, has been much slower due to issues ranging from seed dormancy and limited
access to wild plant species to difficulties in staging plants or delivering controlled stresses, tissues, and cell types, which
require complicated, labor-intensive techniques to sample. As mentioned above, methods used to predict stress-responsive
gene expression based on data on orthologous genes in related species have low accuracy and would, in any case, likely
miss the changes in gene regulation associated with differences in stress tolerance between related species. Instead, we have
demonstrated that supervised classification algorithms trained on gene features, including sets of features that can be calculated
solely from genomic sequence data and gene structural annotation, can provide significant accuracy to predict which genes will
transcriptionally respond to a specific abiotic stress (cold, in this case). The success we achieved in prediction based on gene
sequence features greatly expands the potential application of this technique to nonmodel species—including those adapted to
extreme environments—for which a reference genome sequence has been generated but substantial functional genomic datasets
are lacking.

The application of supervised classification, and machine learning algorithms in general, requires the careful use of
controls to avoid getting the right answer for the wrong reasons. Here, we identified three potential risk factors that might
produce apparently high accuracy for reasons that would not be biologically meaningful. The data sets used for the supervised
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Figure 5. Performance of models trained for cross-species prediction. Prediction accuracy of models trained in foxtail
millet, pearl millet, switchgrass, proso millet, or a combination of these four species for classifying cold-responsive genes from
nonresponsive genes in Panicoideae grass species including maize, sorghum, and the four species mentioned above. Accuracies
of AUC under ROC curves are presented with standard deviations calculated from five-fold cross validation.

machine learning models in our study were well balanced by controlling baseline gene expression between cold-responsive and
nonresponsive gene sets and controlling evolutionary relatedness between training and test sets by family-guided training/test
splitting. Failure to properly address these factors would likely produce misleading results. Ranking genes by their baseline
expression values (average FPKM) allowed us to predict cold-responsive genes with a relatively high performance in most
cases (AUCs ranging from 0.48 to 0.70) compared to the expectation by chance (AUC=0.50) (Figure 2A and Supplementary
Figure S2), indicating that the accuracy of predicting cold-responsive genes could be confounded by baseline gene expression
variation. To accurately evaluate the performance of feature groups and to ensure that genes are classified solely based on
their intrinsic features, we controlled the baseline expression bias between cold-responsive and nonresponsive genes using a
binning approach after sorting the genes based on average FPKM values. By randomly selecting the same number of genes
from cold-responsive and nonresponsive pools in each bin according to the smaller sample size in either pool, the newly
constructed data set was balanced, as it contained the same number of cold-responsive genes and nonresponsive genes with
comparable baseline expression profiles. After controlling for baseline gene expression, the prediction accuracy for classifying
transcriptional responses to cold stress approached the accuracy of expectation by chance (AUC=0.50), implying that our data
set for model training was optimized without interference from baseline expression bias. Furthermore, we used the “gene-family
guided splitting” method to properly structure the model training and testing data sets to avoid dependencies between the sets.
This method ensured that genes within the same family were not split between the training and testing data sets. Genes within or
across species could share evolutionary histories, such as gene duplication and gene family relatedness, which would interfere
with the model learning only from the desired features. By contrast, simply allocating the genes randomly into training and
testing sets without considering their evolutionary relatedness causes model overfitting and can lead to false positive, spurious
conclusions24. In addition, many stresses are difficult to replicate effectively across different species or laboratories4; here,
we were able to use plants grown in the same laboratory with consistent growth conditions and treatments, and at the same
developmental stage. This consistency represents an advantage that undoubtedly contributed to the success of prediction.

Separate predictions using distinct or ‘leaving-one-out’ subsets revealed that features calculated from CDS, 5’UTR and
3’UTR regions were much more important for obtaining accurate predictions than features calculated from intron, upstream, or
downstream regions (Figure 4). The involvement of UTRs in transcriptional regulation was also observed in a study utilizing
deep learning24, but CDS regions were not analyzed in that study due to technical limitations. In models trained using features
calculated from all gene regions, CG dinucleotide content ranked top two in terms of feature importance in foxtail millet,
pearl millet, switchgrass, and proso millet. The cytosines in CG sites are active targets of methylation and can be involved in
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regulating gene expression27, but there is also evidence that CG sites can contribute to the regulation of transcriptional activity
independently of DNA methylation28.

A strikingly low level of conservation of cold responsiveness was observed among syntenic orthologous genes across the
species examined in this study (Supplementary Figure S1). The divergence of transcriptional patterns between orthologous
genes can result from either trans-regulatory changes or cis-regulatory changes. In a comparison of natural maize haplotypes,
cis-regulatory divergence was observed much more frequently than trans-regulatory divergence9. The notion that the high
degree of divergence in cold-responsive expression between orthologous genes in related species is indeed primarily due to
cis-regulatory changes is consistent with the observation that feature importance was conserved between models trained in
different species. Specifically, a median of 70% of the 20 features with the highest importance scores overlapped between
models trained in different species. In addition, the importance of cis-regulatory changes could explain why the models trained
in one species that were successful at predicting cold-responsive gene expression tended to be successful in a second species.
However, it is too early to conclude with certainty that features consistently ranked as highly important in multiple models play
a causal role in determining whether a gene will transcriptionally respond to cold stress or whether they are simply correlated
with this response.

Materials and Methods

Plant Material, Growth, and Stress Conditions
For three of the six species tested, we employed the same genotype that had been sequenced to assemble the reference genome
for that species: maize (Zea mays ssp. mays genotype B73), sorghum (Sorghum bicolor genotype BTx623), and foxtail millet
(Setaria italica genotype Yugu1). For the three other species, we were unable to employ the reference genotype and used
another variety instead: switchgrass (Panicum virgatum genotype kanlow), proso millet (Panicum miliaceum genotype earlybird
USDA PI 578073), and pearl millet (Pennisetum glaucum syn Cenchrus americanus genotype USDA PI 583800). For maize
and sorghum, gene expression data and details about growth conditions and stress treatments were described in Zhang et al.
(2017)7. Seeds were planted in standard potting mix (40% Canadian peat, 40% coarse vermiculite, 15% masonry sand, and 5%
screened topsoil) in a Percival growth chamber (Percival model E-41L2) under 111 mol m-2 s-1 light intensity, 60% relative
humidity, and a 12 h/12 h day-night cycle at 29◦C during the day and 23◦C at night. To target the approximately three-leaf
stage in the different species, planting dates were staggered to allow cold-stress treatments to be performed simultaneously for
batches of seedlings from multiple species: foxtail millet, pearl millet, switchgrass, and proso millet seedlings were subjected to
cold-stress treatment at 12, 10, 17, and 14 days after planting, respectively. Seedlings at the desired growth stage were divided,
with one half of each variety transferred to a growth chamber maintained at 6◦C and the other half used as the control. The
seedlings were always transferred to cold-stress treatment at the end of the 12-hour day cycle. Paired samples were collected
from control and cold-stress treatments at 0.5, 1, 3, 6, 16, and 24 h after the onset of cold stress. Each sample was a pool of
all above ground tissue from at least three individual seedlings. Samples were collected from three independent biological
replicates grown and harvested on separate dates.

Electrolyte Leakage Analysis
Plants used for electrolyte leakage analysis were harvested from non-acclimated plants at the same growth stage and conditions
described above. Leaf tissue was harvested from pearl millet and proso millet using a 5 mm punch, and three punches were
tested per sample. For switchgrass and foxtail millet, the narrow leaf blades prevented the even application of the 5 mm punch;
instead, six 5 mm leaf sections were cut with a razor blade and pooled for each sample. Efforts were made to ensure that
equivalent portions of the leaf were included in each replicate, and only the midsection of each leaf was used, avoiding the stalk
or tip. All leaf samples were immersed in sterile water with a resistivity of 18.2 MΩ at 25◦C. All conductivity measurements
were performed with an Accumet 200 conductivity meter (Fisher Scientific, probe: catalog number 13-620-101). Initial readings
were collected from samples incubated at 0◦C for 30 min in a pre-cooled chiller (initial measurement). After pre-chilling, a
small ice crystal was added to each sample to initiate ice nucleation. After nucleation, individual samples were incubated in the
chiller at a rate of -0.5◦C per 0.5 hour, and samples were removed when the temperature reached -1◦C, -1.5◦C, -2◦C, -2.5◦C,
-3◦C, -3.5◦C, and -4◦C. The samples were thawed at 4◦C in a cooling water bath for 2-4 hours, incubated at room temperature
for 30 minutes, and mixed on an orbital shaker at 250–300 rpm (rotations per minute) for an additional 20 minutes at room
temperature. At this point, the conductivity of the water was measured (treatment measurement). Finally, each sample was
incubated at 65◦C for 30 minutes and shaken for 20 minutes before a final conductivity reading was taken for each sample (final
measurement). Percent electrolyte leakage for each sample was calculated using the formula (treatment measurement - initial
measurement)/(final measurement - initial measurement). The LT50 (temperature of 50% electrolyte leakage) for each set of
samples was defined to be the LOGEC50 value for a sigmoidal curve fit to the percent leakage values calculated at different
temperatures, based on the initial and final measurements. Curves were fit to percent electrolyte leakage value points using the
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sigmoidal dose-response model provided by the software package GraphPad Prism (v 8.1.2) following the protocol outlined by
Thalhammer and coworkers23.

Generating RNA-Seq Data and Identifying Cold-responsive Genes
RNA isolation and library construction were performed as described by Zhang et al. (2017). Sequencing was conducted at
the Illumina Sequencing Genomics Resources Core Facility at Weill Cornell Medical College with 1 x 50bp (SE) run on the
HiSeq2500 platform. Raw sequencing data from maize and sorghum with the same experimental design and cold treatment were
previously deposited at NCBI (http://www.ncbi.nlm.nih.gov/bioproject) under accession number PRJNA3446537. The raw reads
were quality filtered, and adaptors were removed from the data with the sequence pre-processing tool Trimmomatic (v 0.38)29

(MINLEN = 36, LEADING = 3, TRAILING = 3, SLIDINGWINDOW= 4,15). The trimmed reads were mapped to the corre-
sponding reference genome for each species using GSNAP30(v 2018-03-25)29 (-B 4 -N 1 -n 2 -Q -nofails format=sam). Genome
assemblies of Setaria italica (v2.2)31, Panicum virgatum (v4.1)(DOE-JGI, http://phytozome.jgi.doe.gov/), Zea mays (APGv4)32,
and Sorghum bicolor (v3.1.1)33 were downloaded from Phytozome version 12.1. Genome assemblies for Panicum miliaceum
and Pennisetum glaucum were downloaded from NCBI34 and the Gigascience Database (http://dx.doi.org/10.5524/100192)35,
respectively. Samtools (v 1.9)36 was used to convert the raw SAM output from GSNAP to sorted BAM files. FPKM (Fragments
Per Kilobase of transcript per Million mapped reads) values were calculated using sorted bam files with cufflinks (v2.2)37.
Genes were classified as expressed if their averaged FPKM values at all time points under both treatment and control conditions
were ≥114. HTSeq (v 0.6.1) was used to extract the number of reads in each RNA-seq library that were mapped to annotated
exons of each gene in each species using union mode38. Read counts were used to identify cold-responsive genes by comparing
the expression of genes in treatment vs. control samples, with differentially expressed genes defined as having adjusted p-value
<0.05 and absolute log2 of fold change ≥ 2 at any of the six time points using DESeq239. Nonresponsive genes were defined as
those meeting the definition of expressed genes with absolute log2 of fold change of between treatment and control value ≤ 0.5
at all time points. Raw sequencing data that were not already public were deposited into NCBI’s SRA. See data availability
statement.

Quantifying Gene Features
Genomic features of foxtail millet, switchgrass, maize, and sorghum were scored using the corresponding gff annotation
file and the mRNA transcript that was scored as primary for each individual gene model. For pearl millet and proso millet,
instead, all annotated genes were scored due to the lack of primary transcripts information. Annotation of UTR sequences was
inconsistent across species. In pearl millet and proso millet, UTR annotations were absent while in maize, sorghum, switchgrass,
and foxtail millet, only a partial set of genes included UTR annotations. When UTRs were present, their median lengths
were approximately 200 bp (5’UTR) and 350 bp (3’UTR). These lengths were standardized for all species. The frequencies
of all individual nucleotides (4 features) and dinucleotides (16 features) were calculated for each of six regions: the CDS,
intron, estimated 5’UTR, estimated 3’UTR, 1 Kb upstream of the 5’UTR starting site, and 1 Kb downstream of the (Figure
3). Overall, 120 features were scored for each gene. The code used to calculate these features has been deposited in Github
(https://github.com/shanwai1234/GenomeFeature).

For maize, additional non-genomic sequence features were scored as detailed by Dai and coworkers16. Briefly, the epigenetic
features included DNA methylation (quantified separately in the CG, CHG, and CHH contexts), three histone modifications
(H3K4me3, H3K27me3, and H3K27ac), and open chromatin (quantified by ATAC-seq)40. Diversity and evolutionary features
included GERP (genomic evolutionary rate profiling) scores41, PAV (Presence–Absence variations) frequency, orthologous gene
in close relatives, synonymous mutation rate (Ks), non-synonymous mutation rate (Ka), Ka/Ks value, minor allele frequency
(MAF) distributions, and SNP density features. MAF distributions and SNP density were calculated from the maize 282
association panel with data downloaded from Panzea (https://www.panzea.org/)42. Ka and Ks values for maize genes were
calculated based on orthologous genes in maize, sorghum, and foxtail millet, and the resulting values were obtained from
the previous work43. A syntenic gene list for Z. mays, S. biocolor, S. italica, S. viridis, O. sativa, B. distachyon, and O.
thomaeum was downloaded from Figshare (http://dx.doi.org/10.6084/m9.figshare.3113488.v1)7. Any missing values in the
non-sequence-based feature set for maize were imputed using the median value for that feature across all genes. Summaries of
feature values for foxtail millet, pearl millet, proso millet, switchgrass, sorghum, and maize are provided in Supplementary
Table S3 and S4.

Binning of Cold-Responsive and Nonresponsive Genes
A binning method was used to reduce the bias of baseline gene expression and to balance the number of genes in the cold-
responsive and nonresponsive datasets for supervised machine learning classification. The joint set of all cold-responsive
and nonresponsive genes was sorted and segmented into 12 bins (dodeciles) based on average expression value. Within each
dodecile, all genes of the less abundant class (either cold responsive or nonresponsive) were included as potential data points
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for training and testing, while the more abundant class was randomly subsampled to provide equal numbers of cold-responsive
and nonresponsive genes within that particular dodecile.

Gene-Family Guided Splitting of Training and Testing Data Sets
Protein sequences were clustered into families using the Markov Cluster (MCL) Algorithm as previously described24, 44.
Gene families were defined using OrthoMCL clustering with an inflation index of 1.545. Pairwise similarity of the protein
sequence encoded by the primary annotated transcript of each gene was quantified using the e-value reported by BLASTP46.
Training/testing dataset splits were conducted at the gene-family level, meaning that different genes belonging to the same gene
family were never present in both the training and testing dataset simultaneously to prevent the supervised machine learning
models from learning family-specific features.

Random Forest Training, Classification, and Evaluation
Feature datasets were pre-processed using the scale and center transformation methods of the "preProcess()" function in the R
package caret47. The Random Forest classification model25 was employed as implemented in the R statistical programming
language (v3.4.4)48. The random forest models were built with the class label vector as a factor type using 1001 trees
(ntree=1001). Models were run with "importance" set to "T" to also calculated the “Mean Decrease in Accuracy” measure of
importance for each feature.

Receiver Operating Characteristic (ROC) Curves for each model were generated using the R package ROCR49. The
“prediction()” function from the ROCR package was used to evaluate the model; the “performance()” function was used with
the arguments “tpr” and “fpr” to generate curves; and the argument “auc” was used to calculate the area under the curves.
Classification performance was assessed by examining the area under the receiver operating characteristic curve (AUC) for the
testing data set.

The control line for expression data in the ROC curve plots indicates the accuracy with which genes can be classified as
cold responsive or nonresponsive based solely on average FPKM values across all tested time points and treatments. False
positive rates, true positive rates, and AUC for expression control were calculated using the Scikit-Learn package50.

Cross-Species Prediction
Prediction models trained using data from either one or several species were used to make predictions for data collected from
the other single species. The same gene-family-guided splitting approach described above was used to ensure that an individual
gene family was not present in the training data from one species and the testing data from another species. Testing data were
balanced using the same binning method described above. For each species used as a target for cross-species prediction, the
amount of testing data used was subsampled to produce a testing dataset including the same number of genes as the testing data
used for intraspecies prediction with 5-fold cross validation.

Identifying Syntenic Orthologs
Coding sequence data for primary transcripts of S. italica (v2.2)31 and P. virgatum (v4.1) (DOE-JGI, http://phytozome.jgi.doe.gov/)
were retrieved from Phytozome version 12.1. Coding sequence data for P. miliaceum and P. glaucum were obtained from NCBI
(BioProject number PRJNA431363)34 and the GigaScience Database (http://dx.doi.org/10.5524/100192)35, respectively. The
software and corresponding settings used to identify syntenic orthologs were described previously7 with minor modifications.
The parameter settings for LASTZ51 were as described7 except that a 75% sequence identity threshold was used for alignment.
The QuotaAlign algorithm was used for further processing with -quota set to 1:1 for comparisons between S. italica and
P. glaucum, and 1:2 for comparisons between S. italica and P. miliaceum or P. virgatum due to whole genome duplication
in P. miliaceum and P. virgatum. Other parameters used for QuotaAlign and the subsequent polishing procedure were as
described previously7. The syntenic orthologous pairs between S. italica and S. bicolor were downloaded from Figshare
(http://dx.doi.org/10.6084/m9.figshare.3113488.v1)7. The Syntenic gene list generated among S. bicolor, S. italica, P. glaucum,
P. miliaceum, and P. virgatum is shown in Supplementary Table S6.

Phylogenetic Analysis of Species
A set of 7,064 gene groups were identified with syntenic ortholog representatives in sorghum, foxtail millet, pearl millet, both
subgenomes of proso millet, and both subgenomes of switchgrass (7 total gene copies). Multiple sequence alignments for the
annotated coding sequences for all seven genes within a group were generated using MAFFT (v7.149) with the parameter
setting L-INS-i52. Poorly aligned regions after multiple sequence alignment were eliminated using Gblocks (v0.91b) with the
following settings: minimum number of sequences for a conserved position: 9; minimum number of sequences for a flank
position: 14; maximum number of contiguous nonconserved positions: 8; minimum length of a block: 1053. StarBEAST2 (v
0.15.5)54 implemented in BEAST 2.5.155 employing a Bayesian Markov Chain Monte Carlo framework was used to estimate
both species trees and divergence dates. Due to the computational intensity of the analyses, an ensemble of 12 separate
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StarBEAST2 runs was employed, using different sets of 50 loci that were selected randomly (without replacement) from
the alignments. Each StarBEAST2 run used analytical population size integration, the uncorrelated lognormal clock model,
an HKY nucleotide substitution model with empirical frequencies, gamma category count of 4, and proportion invariant of
0.2. A calibrated yule model was used as a prior for tree topology using the previously estimated divergence time between
foxtail millet and sorghum of 26 million years ago as a reference31, which was derived from the divergence time between rice
and Panicodeae at approximately 50 million years ago56. Two independent runs of 40 million generations (sampled every
5000) were conducted in each analysis and combined with LogCombiner (v 2.5.1) with 20% burn-in for the species tree.
Effective sampling sizes and MCMC convergence were examined using Tracer (v 1.7.1)57. A maximum clade credibility tree
was compiled with TreeAnnotator (v 2.4.7) after discarding the initial 10% burn-in and the tree was visualized using FigTree
(v1.4.4)58.

Clustering and GO Enrichment Analyses
Clustering analysis was performed using cold-responsive genes from foxtail millet, pearl millet, switchgrass, and proso millet
as a whole. The log2 fold values were normalized by row and analyzed using the R k-means function with 20 groups. Groups
with similar expression patterns were further merged into 13 clusters, including 4 early transcriptional response clusters, 4 late
transcriptional response clusters, 2 continually changing clusters, and 3 unclassified clusters. The cluster patterns are shown in
heat maps and in graphical format. Gene Ontology (GO) annotations were downloaded from phytozome (v 12.1) for foxtail
millet and switchgrass and from published papers for proso millet34 and pearl millet35. GO enrichment analyses of gene sets
in each cluster were performed using GOATOOLS59 with all annotated genes in the genome as background. GO terms were
considered significantly enriched if p-value < 0.05 after controlling for false discovery rate using the Benjamini–Hochberg
procedure.
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Supplementary materials

Figure S1. Conserved cold-responsive genes across foxtail millet, pearl millet, switchgrass, and proso millet. A.
Proportions of syntenic orthologous genes among cold-responsive genes. B. Overlapping cold-responsive syntenic orthologs
among the four species.
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Figure S2. Baseline expression controls. A. Accuracy of genes being scored as cold-responsive genes solely based on
average FPKM values before and after baseline expression control. B. Distribution of average FPKM values of cold-responsive
genes (CR) and nonresponsive genes (NR), and training sets resampled from genes in dodeciles with balanced gene expression
levels (darker color).
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Figure S3. Gene expression clusters analysis A-D. Cold-responsive genes from foxtail millet, pearl millet, switchgrass, and
proso millet were analyzed using k-means clustering. This process identified eight major groups, as shown in heat map and
graphical format, based on patterns of gene expression at different time points. (A) Clusters containing genes of early
transcriptional responses to cold (30 min to 3 h); (B) clusters with late responded genes to cold (responded after 6h); (C and D)
genes with continuously increasing or decreasing transcriptional levels within 24hrs. Enriched GO terms within clusters were
shown in the last column. E. Percentage of genes of each of the four species distributed in clusters.
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