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Abstract 

Categorization is an essential cognitive and perceptual process for recognition and decision making. The 

posterior parietal cortex (PPC), particularly the lateral intraparietal (LIP) area has been suggested to 

transform visual feature encoding into cognitive or abstract category representations. By contrast, areas 

closer to sensory input, such as the middle temporal (MT) area, encode stimulus features but not more 

abstract categorical information during categorization tasks. Here, we compare the contributions of PPC 

subregions in category computation by recording neuronal activity in the medial superior temporal (MST) 

and LIP areas during a categorization task. MST is a core motion processing area interconnected with MT, 

and often considered an intermediate processing stage between MT and LIP. Here we show that MST 

shows robust decision-correlated category encoding and working memory encoding similar to LIP, 

suggesting that MST plays a substantial role in cognitive computation, extending beyond its widely 

recognized role in visual motion processing.    

 

Introduction 

Assigning incoming sensory stimuli into behaviorally relevant categories is essential for 

recognizing the significance of sensory information and generating task-appropriate behavioral responses. 

Previous studies, particularly those based on delayed match to category paradigms (DMC)1,2, have shown 

that several cortical areas, including the prefrontal cortex (PFC)2-6 , posterior parietal cortex (PPC) 1,3,7,8 , 

and inferior temporal (IT) cortex9,10 , are involved in the visual categorization process. Recently, LIP (a 

subdivision of PPC) was shown to play a causal role in perceptual and categorical decisions about visual 

motion stimuli11. LIP also shows categorical encoding that is stronger, shorter in latency, and more 

strongly decision correlated than PFC activity3. Upstream visual motion processing areas, such as the 

middle temporal area (MT), show strong direction encoding, but not abstract categorical encoding, of 

visual motion during the same visual motion categorization task1. How motion direction encoding in MT 

is transformed into more cognitive categorical encoding in downstream areas, such as LIP, remains unclear. 

One possibility is that this transformation is achieved by flexible readout of MT activity by LIP. Alternatively, 

other brain areas may play a role in mediating this transformation. Here we address this question by 

directly comparing the roles of LIP and MST, an important parietal motion processing area that is 

reciprocally connected with both LIP and MT12,13, in visual-motion categorization in order to understand 

how sensory encoding of visual motion is transformed into flexible, learning-dependent, and task-related 

categorical representations.  

MST has been identified as an important motion processing area within the dorsal visual pathway. 

MST is involved in the perception of both 2D and 3D visual motion patterns, and MST neurons typically 

have large receptive fields with responses that are selective for both simple motion stimuli as well as 

complex motion patterns such as “optic flow” stimuli as are generated by one’s own motion through the 

visual world14-21 . It has also been suggested that MST is involved in transforming spatial information 

between different reference frames during self-motion22,23. Moreover, dorsal MST (MSTd) also integrates 

visual and vestibular signals24-28. However, MST’s contributions to cognitive functions have been less 

studied compared to other PPC areas such as LIP and 7a22,29,30. One recent study found striking motion-

direction selectivity in MST during the delay-period of a delayed match to sample task31, whereas obvious 

selective delay period activity was not observed in MT spiking activity in that study, or in recordings from 

MT during a visual motion categorization task1. Several studies which compared neural activity between 
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MST and LIP did find encoding of extraretinal or task-related factors in MST, but that encoding was 

typically weak in comparison with cognitive encoding in LIP29,30,32.  

Here we directly compared neural activity between MST and LIP while monkeys performed a 

visual motion DMC task in which they needed to categorize a sample stimulus, maintain sample-category 

information in short-term memory, and determine whether a subsequent test stimulus was a categorical 

match or non-match to the sample. We found that MST neurons showed significant motion category 

encoding during stimulus presentation and memory delay periods of the DMC task, qualitatively similar 

to that observed in LIP. Also similar to LIP, MST category encoding was correlated with monkeys’ trial-by-

trial categorical decisions, revealed by comparing category selectivity on correct vs. error trials. However, 

our analysis suggests that LIP is more closely involved in the categorical-decision process compared to 

MST, as decision-correlated category encoding in MST tended to be longer-latency and weaker than in LIP 

in the period immediately following stimulus presentation. Instead, category encoding in MST peaked 

later in the trial, around the time of transition from the sample to memory delay. Furthermore, both 

spiking and local field potential (LFP) neural activity in MST showed substantial categorical encoding 

during the working memory period, and that encoding correlated with the monkeys’ trial-by-trial 

categorical choices. In summary, our results show that MST encodes abstract and task-related factors such 

as categorical decisions and working memory, going beyond its traditionally recognized role in visual 

motion processing. This also gives insight into the functional roles of hierarchically interconnected PPC 

subregions in perceptual and cognitive functions.  

 

Results 

Task and behavioral performance 

We trained two monkeys to perform a visual-motion DMC task, in which they needed to decide 

whether two sequentially presented motion stimuli were a categorical match or non-match, which they 

reported by releasing or holding a manual touch-bar respectively (Fig. 1a).  To solve the task, monkeys 

needed to first categorize the sample stimulus and remember it during the delay period in order to 

compare it to the category of the upcoming test stimulus. The stimulus set consisted of ten directions of 

100% coherence random-dot movies that were assigned to two learned categories (five motion directions 

per category) by an arbitrary category boundary (Fig. 1b). There were two near-boundary directions in 

each category which were 10° from the boundary, while the other 6 directions were evenly spaced (60°). 

Both monkeys performed the DMC task with high accuracy during both MST and LIP recording sessions 

(Fig. 1c, monkey M: MST = 90.9 %± 4.0%, LIP = 87.6% ± 4.3%; monkey Q: MST = 89.5 % ± 2.7%, LIP = 86.7% 

± 3.8%), and greater than 70% correct for the near-boundary directions. Monkeys’ accuracies were 

significantly greater for sample-directions that were farther from (≥30 degree) the boundary as compared 

with the near-boundary directions for both MST and LIP recording sessions (near vs. far: (monkey M, MST: 

79.4% vs. 98.9%, p = 1.15e-35, df = 81, tstat = -21.8;  LIP: 77.7% vs. 94.2%, p = 1.034e-34, df = 61, tstat = -

26.0); (monkey Q, MST: 80.0% vs. 95.9%, p = 3.13e-32, df = 52, tstat = -26.96;  LIP: 75.2% vs. 94.4%, p = 

3.26e-28, df = 37, tstat = -31.3); paired t test).  

Category selectivity in MST and LIP 
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We recorded neuronal spiking activity and LFP signals from MST and LIP (targeting one brain area 

per session) while monkeys performed the DMC task (Fig. 1d). In total, we isolated 648 and 361 single 

neurons from MST (Monkey M: 140, Monkey Q: 508) and LIP (Monkey M: 89, Monkey Q: 272), respectively. 

571 MST neurons (Monkey M: 105, Monkey Q: 466) and 326 LIP neurons (Monkey M: 78, Monkey Q: 248) 

showed task related responses in the DMC task (see criterion in Methods). A large proportion of neurons 

recorded from both areas showed significant category encoding in the DMC task (MST: 407 of 571, 

Monkey M: 68, Monkey Q: 339, LIP: 203 of 326, Monkey M: 58, Monkey Q: 145), see criterion in Methods). 

Fig. 2a,b shows two example MST neurons. The first one (Fig. 2a) showed binary-like responses to the 

sample category during the sample, delay and test periods of the DMC task; while the second neuron (Fig. 

2b) showed significant category encoding mainly during the late sample and delay periods. Fig. 2c,d shows 

two example LIP neurons which encoded the sample categories during the sample, delay, and test periods. 

We also identified 68 MST neurons and 56 LIP neurons which were direction-tuned, but did not show any 

obvious sample category selectivity (see criterion in Methods, example neurons in Extended Data Fig.1). 

 To characterize the strength and time-course of neuronal sample category encoding across the 

MST and LIP populations, we calculated an ROC-based category tuning index (rCTI) for each single neuron 

recorded from both areas. As used previously8, the rCTI index quantifies each neuron’s category selectivity 

by comparing neuronal discriminability between pairs of directions in the same vs different categories 

(see Methods). rCTI values can range from -0.5 to +0.5 with more positive values indicating stronger 

category selectivity. As shown in Fig. 2e, the averaged sample rCTI values of both MST and LIP neurons 

are significantly shifted toward positive values shortly after sample onset, and maintained significantly 

positive values during the delay and test periods. This indicates that both MST and LIP showed significant 

category encoding during all periods of the DMC task. Comparing the two areas, LIP showed greater rCTI 

values during the early sample period (50 to 350ms after sample onset, p = 0.027, df = 905, tstat = -2.22, 

unpaired t test), while MST showed significantly greater category encoding during the late sample and 

early delay periods (-300 to 300ms relative to sample offset, p = 0.003, df = 905, tstat = -2.97, unpaired t 

test). Meanwhile, both MST and LIP neurons showed significant encoding of test stimulus category during 

the test period (Extended Data Fig. 2). 

 The latency of category selectivity for each neuron in both areas was determined by assessing the 

time-course of the rCTI (see Methods). This revealed that the distributions of category-selectivity latencies 

(across all the category-selective neurons) were similar between two areas (Fig. 2g, p = 0.144, zval = -1.46, 

ranksum = 75108, Wilcoxon test). To examine whether either brain area plays a leading role in categorizing 

sample stimuli, we compared the timing of category selectivity among those neurons that were category-

selective during the sample period.  We found that category encoding tended to emerge with a shorter 

latency in LIP than MST (Fig. 2g, p = 4.83e-04, zval = -3.49, ranksum = 3.40e+04, Wilcoxon test): a 

significantly higher proportion of neurons in LIP than MST were category-selective in the early sample 

period (50-350 ms following sample onset, p = 0.036, chi2stat = 4.38, chi-square test), and this trend was 

reversed during the late sample period (351-650 ms after sample onset, p = 1.16e-04, chi2stat = 14.85, 

chi-square test).  

 We next assessed category information at the population level using linear classifiers (support 

vector machine (SVM)) trained on neuronal pseudopopulations to decode the sample category on a trial-

by-trial basis (see Methods). To mitigate the contribution of the category-independent direction tuning to 

category decoding performance, we trained and tested the classifier using different groups of directions 

in each category with similar angular distances (Extended Data Fig. 3a) as in previous studies from our 
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group4,8. As shown in Fig. 2f, we found significant sample-category decoding in both MST and LIP in the 

sample, delay, and test periods. Interestingly, category encoding in MST emerged more gradually than LIP, 

reaching its initial peak during the late sample period. By contrast, LIP category decoding showed an initial 

peak during the early sample period. To assess category-independent motion direction encoding (i.e. the 

ability to discriminate between directions in the same category) in both MST and LIP, we trained linear 

direction classifiers (SVM) to decode the sample direction within each category (see Methods and 

Extended Data Fig.3b). This revealed substantial direction decoding in both MST and LIP primarily during 

the sample period (Extended Data Fig. 4). 

 We were interested in the relationship between category encoding in both cortical areas and task 

difficulty. We assessed it by comparing category selectivity between the trials in which the sample 

direction was near vs. far from the category boundary. Because the more difficult (near-boundary) 

directions were spaced differently than the directions closer to the center of the categories, we could not 

use the rCTI or category classifier to directly compare the category selectivity for directions that were 

close vs. far from the category boundary. To address this, we used an unbiased fraction explained variance 

(FEV) analysis (see Methods) to quantify the selectivity among the five opposite direction pairs (180 

degrees apart). We grouped the five direction pairs into more-difficult and easier groups (based on 

distance from the boundary) and then averaged the selectivity of the direction pairs belonging to each 

group. We found that sample category selectivity was significantly greater for more difficult trials than for 

easier trials in both MST and LIP during the delay period of the DMC task (MST: p = 5.99e-14, df = 566, 

tstat = 7.70; LIP: p = 1.33e-6, df = 317, tstat = 4.93; paired t test, Extended Data Fig. 5). This is consistent 

with a previous rodent study showing stronger category selectivity for auditory stimuli near the category 

boundary33, and suggests that category encoding in both MST and LIP was correlated with the levels of 

task difficulty. 

Decision-correlated neural activity in MST and LIP  

 To test whether sample category encoding in both MST and LIP was correlated with the monkeys’ 

trial-by-trial categorical decisions, we compared neuronal activity between correct and error trials. There 

are two potential scenarios for decision-correlated category selectivity, with each suggestive of a 

particular kind of correlation between neuronal category selectivity and monkeys’ decisions: 1) similar 

category selectivity on correct and error trials, indicating that stimulus tuning was fixed rather than 

varying with the monkeys’ decisions; 2) significantly different category selectivity between correct and 

error trials, suggesting that stimulus selectivity was closely and dynamically coupled to the monkeys’ 

decision process. Of particular interest is category selectivity that showed an opposite sign between 

correct and error trials, indicating a close relationship between neural category selectivity and the 

monkeys’ behavior. Fig. 3a,b show activity for example MST and LIP neurons on correct and error trials 

(same neurons as Fig. 2a,c). The example neurons from both areas showed significantly different category 

encoding between correct and error trials, and their category preferences were reversed in sign on error 

compared to correct trials during most of the task periods. This suggests that both MST and LIP activity 

was correlated with monkeys’ categorical decisions. 

 To quantify decision-correlated neural activity at the population level, we first trained sample 

category SVM classifiers, using activity on correct trials, and then tested their decoding performance on 

error trials. We only included trials in which the test motion directions were far (>= 30 degrees) from the 

boundary, as the errors on these trials were most likely due to mis-categorizing the sample stimulus. 
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Sample category encoding which reversed its sign between correct and error trials would be expected to 

produce decoding performance values significantly below the chance level. Indeed, decoding 

performance dropped below chance shortly following sample onset and was maintained below chance 

throughout all task periods for both MST and LIP (Fig. 3c,d), indicating that population activity in both 

areas was significantly correlated with the monkeys’ trial-by-trial categorical decisions.  

We examined stimulus-related and choice-related components of category selectivity for each 

single neuron from both areas using a partial correlation analysis. We calculated the r-stimulus (the partial 

correlation between neuronal activity and stimulus category, given the monkeys’ choices) and r-choice 

(the partial correlation between neuronal activity and monkeys’ categorical choice, given the stimulus 

category) for each neuron using both correct and error trials (see Methods). Only trials in which the sample 

directions were near the boundary but the test directions were far from the boundary were included in 

this analysis, as there were sufficient numbers of errors on these trials and these errors were most likely 

due to mis-categorizing the sample stimulus. This analysis revealed a significant correlation of neuronal 

activity with both the physical stimuli and monkeys’ categorical choices in all three periods of the DMC 

task and in both cortical areas (Fig. 3e,f). Meanwhile, neural activity in both MST and LIP was more closely 

correlated with monkeys’ categorical choices than the physical stimulus category during most of the task 

periods, indicated by the higher r-choice than r-stimulus values (p < 0.05, paired t test). Interestingly, LIP 

activity was more decision-correlated than MST during the early-to-mid sample period (r-choice, 150-350 

ms after sample onset, p = 0.036, df = 799, tstat = -2.11, unpaired t-test), and became more choice-

correlated than stimulus-correlated from the middle sample period (335 ms after sample onset). However, 

MST activity became more choice-correlated from the later sample period (615 ms after sample onset). 

Furthermore, LIP activity during the test period was more decision-correlated than MST activity (p = 

0.0064, df = 799, tstat = -2.74, unpaired t-test). 

Together, the decoding and partial correlation analyses indicate that sample category encoding 

was correlated with monkeys’ categorical decisions in both MST and LIP, with significantly stronger 

correlations observed in LIP than MST during the early sample period. 

Temporal stability of category encoding in MST and LIP  

 The differences between MST and LIP category encoding shown so far are likely to arise from the 

patterns of information flow between these areas for mediating the DMC task. To further test how sample 

category information transitioned into and was maintained during the delay period, we evaluated the 

stability of category encoding across all DMC task periods. Specifically, we aimed to test whether 

population category encoding was stable across different task periods by training and testing the category 

classifier using neural data from different time points in the trial. For example, if a classifier trained using 

neuronal data from one task period (e.g. sample period) showed high decoding performance when tested 

at another task period (e.g. delay period), this would indicate stable neuronal encoding between those 

task periods. Fig. 4a,b show the results from MST and LIP, respectively. In LIP, there were two stable 

periods of high category-classification accuracy spanning the sample and delay period respectively, 

indicated by the appearance of two separated rectangular regions of elevated classification accuracy 

during the sample and test periods. This indicates that the format of population category encoding in LIP 

was different between the sample and delay periods, and suggests a sharp transition of category encoding 

around the time of the early delay. In contrast to LIP, there were no obviously separated stable periods of 

category-classification for MST during the sample and delay periods, and the time period of high decoding 
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performance for MST continued from the late sample into the early delay. This indicates that category 

encoding in MST was consistent between the late sample and early delay periods. Furthermore, a period 

of high-accuracy category classification was evident in LIP when training on the early sample and testing 

on the test period. However, this was not observed in MST. This indicates consistent sample-category 

encoding between sample and test periods in LIP. Together, these results suggest that LIP is more involved 

in encoding category information during the sample and test periods and maintaining category 

information in working memory，while MST appears more involved in transitioning category information 

from sensory encoding into working memory.  

Dimensionality of MST and LIP encoding 

 The results so far show that both MST and LIP activity encodes the visual motion categories, and 

that category encoding is decision-correlated in both areas. However, solving the DMC task requires a 

representation of multiple stimulus and task variables, including stimulus directions, sample and test 

categories, encoding sample information in working memory, and the comparison between sample and 

test stimuli. In order to assess the involvement of MST and LIP in representing multiple DMC task variables, 

we examined neural encoding of different task variables using a dimensionality reduction approach. We 

used demixed principal component analysis (dPCA) to decompose neural pseudopopulation activity into 

individual components which correspond to neural representations of different task variables34. 

Specifically, we decomposed population activity into four task-related variables: sample stimuli, test 

stimuli, sample-test interaction, and timing (condition-independent) (see Methods). This revealed two key 

differences between MST and LIP activity in the DMC task. First, dimensionality of the neural 

representations was greater in MST than LIP, as the first 10 principle components (PCs) explained much 

less variance of the population activity in MST (Figure5 a,c,e,g, shown separated by each monkey, MST vs. 

LIP: monkey M: 82.1±2.16% vs. 92.3± 1.82%, p < 0.001 monkey Q: 64.6± 3.93% vs. 80.1± 2.25%, p < 0.001, 

bootstrap). The greater dimensionality of MST population activity is also evident by directly estimating 

the dimensions of neural activity (p < 0.001 for each monkey, bootstrap, see methods). This suggest that 

neural activity in the DMC task is more homogenous across neurons in LIP than MST. The first PC of the 

population activity, which represents the stimulus-independent visual response to both sample and test 

stimuli in this case (Extended Data Fig. 6), explained more than 50% of the total variance of LIP population 

activity for both monkeys (monkey M = 73.3± 5.80 %, monkey Q = 56.2± 4.24 %), but less than 50% in MST 

(monkey M = 30.1±2.20%, monkey Q = 24.1± 6.57 %, p < 0.001 for both monkeys, bootstrap). The stimulus-

independent visual response in PPC has been suggested to reflect visual salience and bottom-up 

attention35,36. Thus, this result is consistent with LIP showing a greater involvement in salience encoding 

than MST. Second, the task stimuli (sample, test, and sample-test interaction) explained much more 

variance of neural activity in MST than LIP (Fig. 5 b,d,f,h, p < 0.001 for each monkey, bootstrap), consistent 

with MST’s well-known role in visual motion processing. 

Decision and working memory encoding in LFP beta oscillations  

Although previous studies of visual categorization primarily focused on analyzing category 

encoding in neuronal spiking activity, other studies have identified categorization-task related LFP 

activity37,38. Recent evidence suggests that LFP oscillations in PFC, particularly within the beta-band, might 

play a role in visual categorization. Beta-band synchrony within PFC, and between PFC and other brain 

areas such as anterior intraparietal cortex (AIP) and striatum, has been shown to represent task related 

information in categorization tasks37,39 . However, the role of oscillatory activity in PPC during the visual 
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categorization process has not been closely examined, except for one previous study which examined LFP 

oscillations in the anterior intraparietal (AIP) area during spatial categorization37. To better understand 

task-related LFPs in both MST and LIP during the DMC task, we computed the single-trial LFP power 

spectra for channels in which there was at least one task-related neuron, and then averaged them across 

trials based on the sample category (see Methods). We found significant oscillatory activity modulation 

during the DMC task both during different task epochs and by the different motion categories, particularly 

in the beta band (12-30Hz). The beta power of MST and LIP LFPs decreased during the sample and early 

delay periods, and then recovered to baseline during the mid-to-late delay (Extended Data Fig. 7). 

Interestingly, beta power was significantly modulated by sample category in both MST and LIP shortly 

before and during the delay in both monkeys (Fig. 6a-d), with most recording channels showing stronger 

beta power for one particular sample category (preferred) than the other sample category (non-

preferred). The preferred sample categories were consistent between MST and LIP recording channels for 

both monkeys. Furthermore, the magnitude of beta modulation was different between MST and LIP 

during different task periods (Fig. 6e-h). MST showed significantly stronger category-selective beta activity 

than LIP during the late-sample-to-early-delay period (-200-200ms to sample offset, monkey M: 16-28Hz, 

p = 0.029, df = 122, tstat = - 2.20; monkey Q: 10-20Hz, p = 0.0096, df = 568, tstat = -2.60; unpaired t test), 

whereas LIP showed stronger category-selective beta activity during the mid-to-late delay period of the 

DMC task (201-1000ms after sample offset, monkey M: 10-22Hz, p = 0.026, df = 122, tstat = -2.26; monkey 

Q: 10-22HZ, p = 3.66e-10, df = 568, tstat = 6.38; unpaired t test).   

To further test whether beta band LFP oscillations were correlated with monkeys’ categorical 

decisions, we compared category-selective beta activity between correct and error trials. As in the analysis 

of spiking activity, we only included trials in which the test directions were far from the category boundary 

(for which errors were most likely due to misclassifying the sample). As shown in Fig. 7, category- selective 

beta oscillations during error trials in both MST and LIP were either reversed in sign compared to correct 

trials (monkey M, Fig. 7a-f), or were greatly reduced in strength (monkey Q, Fig. 7g-l). These results 

indicate that the beta oscillations of LFPs in both MST and LIP were not merely a passive reflection of 

sample stimulus feature processing, but were instead correlated with working memory and decision 

processes.  

 

Discussion 

We directly compared neuronal encoding between MST and LIP during a visual motion 

categorization task in an effort to understand how visual feature encoding is transformed into abstract 

categorical representations and decisions. First, we found that MST exhibits more flexible and task-related 

encoding than expected during the DMC task, with MST neurons showing abstract and decision-correlated 

encoding of visual motion categories with a similar strength as in LIP. This suggests that MST plays a 

greater role in cognitive functions than is widely assumed—going beyond its well-established role in visual 

motion processing. Second, we found substantial encoding of extraretinal task-relevant information in 

MST in both spiking and LFP neural activity during the working-memory delay period of the DMC task. This 

is consistent with a recent report of delay-period direction encoding during a motion-direction matching 

task, highlighting MST’s engagement with the frontal-parietal loop associated with working memory, and 

extends MST’s role toward more flexible or abstract decision making. Furthermore, LIP and MST differed 

in their time-courses of category selectivity, with greater category selectivity in the early sample period in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


LIP, whereas category selectivity in MST peaked in strength around the transition from the sample to delay 

period.  

Circuit mechanisms underlying motion categorization 

Previous studies have given insight into the neural mechanisms underlying the transformation 

from visual feature encoding to more abstract categorical representations1,2,40,41. In particular, a line of 

studies from our group have focused on visual motion categorization across a hierarchy of visual, parietal, 

and frontal lobe cortical areas. We showed that neural activity in PFC, LIP, and MIP all encode learned 

categories during the DMC task, with evidence suggesting that LIP is more closely involved in the motion 

categorization process compared to MIP and PFC3,8. In contrast, neural activity in MT, an upstream motion 

processing area that provides input to LIP (and MST), showed strong direction encoding, but did not show 

an obvious encoding of the learned categories or altered direction tuning as a result of categorization 

training1.  

In the present study, we show that neurons in MST, an important motion processing area within 

PPC, showed significant category encoding which was qualitatively similar to that in LIP during the DMC 

task. In addition, we compared neuronal category encoding between correct and error trials in both MST 

and LIP, and found such encoding in both areas was closely correlated with monkeys’ trial-by-trial 

decisions. These results are consistent with MST playing an important role in transforming upstream 

motion direction encoding (i.e. in MT) into abstract and task-related categorical representations. This 

indicates that multiple interconnected PPC subregions, including LIP, MST, and perhaps other PPC regions 

such as the ventral intraparietal area and 7a, are involved in the categorization process.  

Although category encoding was broadly similar between LIP and MST, several pieces of evidence 

suggest that LIP might be more involved in the rapid categorization of visual stimuli than MST. First, 

category selectivity peaked in strength during the early sample period in LIP, but peaked in strength later 

in the sample period in MST. Second, category selectivity in LIP correlated more closely with monkeys’ 

trial by trial categorical decisions than in MST shortly following sample onset. These results are consistent 

with recent work from our group showing that LIP plays a causal role in motion-based categorical and 

perceptual decisions11.  Category encoding in MST might arise from feedback from higher decision-related 

brain areas, such as LIP and PFC. Thus, it will be important for future studies to test whether MST also 

plays a causal role in the motion categorization process beyond its known role in visual motion processing. 

It has been suggested that LIP plays a general role in encoding abstract or categorical information 

about visual stimuli7,40,41. A previous study showed that LIP neurons can encode both learned motion-

categories and the learned pairings between associated shapes, suggesting a generality of category- or 

task-related encoding in LIP across multiple visual feature domains7. Meanwhile, studies from other 

groups have also shown that LIP represents a wide range of higher order factors beyond categorization, 

such as: task rules42, numerosity43, priority44, sensorimotor transformation45, motor error for corrective 

saccades46 and saccade timing47. Together, this evidence supports the view that LIP is generally involved 

in mediating abstract cognitive computations, beyond its role in visual-spatial functions such as attention 

and saccade planning. However, to our knowledge, MST has not been reported to encode visual features 

beyond visual motion, in addition to encoding vestibular stimuli and contributing to smooth pursuit eye 

movements14,26,48,49. Therefore, it will be important to test whether abstract encoding in MST is specialized 

for motion-based tasks, or whether it shows more generalized cognitive encoding during tasks based on 

other visual features as in LIP.  
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Mnemonic encoding in MST and LIP and persistent activity 

We observed that single-neuron activity and LFPs in both MST and LIP encoded categorical 

information during the delay period of the DMC task, and such mnemonic representations in both areas 

were correlated with the monkeys’ trial-by-trial decisions. This suggests that both areas are involved in 

maintaining category information in short-term working memory.  However, delay period encoding 

differed between MST and LIP in several ways. First, delay-period category selectivity was stronger in MST 

than LIP during the early delay period, but this pattern was reversed at the end of the delay period (Fig. 

2e) with LIP showing stronger late-delay category encoding. A similar pattern of results was evident in LFP 

activity, with stronger category-selective beta-band activity during the late sample and early delay periods 

in MST than LIP, but stronger beta-band encoding in LIP than MST during the mid-to-late delay. Meanwhile, 

the format of population category encoding in LIP differed between the sample and delay periods, as the 

category encoder trained in one period did not generalize to other time periods; whereas MST showed 

more consistent or temporally stable population category encoding throughout the late sample and early 

delay. Thus, MST activity appears more consistent with being involved in the transition of sample-period 

encoding into working memory, while LIP appears more involved in maintaining task-relevant information 

during the delay. 

Cognitive functions of MST 

MST is reciprocally connected with several subregions of parietal cortex, including LIP, VIP and 

7a12. MST is understood to be an important motion processing stage, but has been less implicated in 

higher cognitive functions. In particular, MST has been suggested to contribute to the perception of 

complex motion patterns, and integrating visual and vestibular signals for heading direction perception 

during self-motion14,15,19,22,24-26 . During motion-based decision tasks, MST has been suggested to function 

as an intermediate processing stage between primary motion processing in MT and more cognitive 

processing in LIP17,50. Here we show that MST activity was closely correlated with monkeys’ categorical 

decisions in a similar manner as LIP, raising the possibility that MST is also causally involved in mediating 

such decisions. We also show that MST activity persistently encodes decision-correlated category 

information during the delay period of the DMC task, unlike upstream visual areas such as MT during the 

same task1. This is consistent with a previous study finding robust persistent direction-selective activity in 

MST in a delayed motion matching task31, but shows that delay-period encoding in MST extends to 

cognitive variables, beyond encoding of basic stimulus features.  This also suggests that MST is more 

closely associated than MT with frontal-parietal circuits associated with working memory and task-related 

encoding. Previous work also found neural encoding in MST that appeared as intermediate between MT 

and LIP—for example, showing strong direction encoding as in MT with a modest influence of extraretinal 

or cognitive factors compared to that observed in LIP29,30,32. The more cognitive encoding observed in the 

present study could arise due to the specific demands of the categorization task compared to tasks used 

in previous MST studies. Another difference is in the method of neuron sampling (e.g. how neurons were 

selected and/or pre-screened before recording during the main task), as well as the areas of MST targeted 

for recordings. Most of the MST neurons in our study were recorded from MSTd, and we recorded from 

all task-related neurons which we encountered (see Methods), whereas previous studies appeared to 

more frequently sample motion direction selective neurons from lateral MST (MSTl). Therefore, it will be 

important for future studies to further test the differential roles of MSTd and MSTl in cognitive functions. 

Beta-band LFP activity during categorization and working memory 
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Frontoparietal oscillatory synchrony has been suggested to play a role in cognitive functions, such 

as attention51, visual working memory52 , and decision-making53,54. Specifically, the beta oscillation (12-

30HZ), often linked to motor functions, has been hypothesized to maintain the current sensorimotor or 

cognitive state via top-down selection of relevant neural ensembles37,55. There is increasing evidence that 

beta-band synchrony may also play a role in categorization and working memory. Previous studies have 

shown that beta-band LFP oscillatory coherence in both PFC and PPC is category-selective and may 

emphasize the encoding of task-relevant categories37,38. Interestingly, only category-selective PFC neurons, 

but not non-selective neurons, in those previous studies were synchronized with PPC beta oscillations, 

suggesting that long-range beta-band synchrony could act as a filter supporting task relevant encoding37. 

Category-selective beta-band synchrony has also been shown to develop between PFC and striatum in 

parallel with category learning39. Furthermore, beta-band synchrony between PFC and PPC as well as 

within PFC has been shown to encode stimulus information in working memory52. Consistent with 

previous studies, we found that beta-band LFP activity in both MST and LIP showed decision-related 

category representation shortly before and during the working memory delay, suggesting that PPC beta 

activity is involved in categorization and working memory. This is also consistent with the view that 

working memory is supported by frontal-parietal coordination. A previous study showed that beta-band 

LFP oscillations in PFC and AIP were especially prominent during the late sample and early delay periods 

of a rule based spatial categorization task37, whereas we found decreased beta-band LFP oscillations in 

LIP and MST during this period of the DMC task. Moreover, that study suggests that PFC circuits might 

compute the spatial categories and relay that information back to the parietal cortex, whereas our 

previous study showed that PPC is more likely to lead the motion categorization process compared to 

PFC3. These differences could be due to the different tasks (motion vs spatial categorization) and different 

PPC subregions (LIP, MST, and AIP) studied.  

Overall, this study suggests that MST plays an non-trivial role in higher cognitive functions such as 

categorical decisions and working memory, extending beyond its traditionally recognized role in sensory 

processing of visual motion. It will be important to extend this work to examine whether MST plays a more 

general and causal role in cognitive functions beyond the tasks and stimuli tested here, as well as to 

examine the differential roles of the wider network of PPC subregions in flexible cognition.  
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Methods 

 

Behavioral task and stimulus display. 

The DMC task is similar as the tasks reported previously except that two near-boundary directions 

were added into each category. In this task, monkeys were trained to release a lever when the categories 

of sequentially presented sample and test stimuli matched, or hold the lever when the sample and test 

categories did not match. Stimuli consisted of 10 motion directions (15°, 35°, 55°, 75°, 135°, 195°,215°, 

235°, 255°, 315°) grouped into two categories separated by a learned category boundary oriented at 45° 

(Fig. 1b). Trials were initiated by the monkey holding the lever and keeping central fixation. Monkeys 

needed to maintain fixation within a 2.5° radius of a fixation point through the trial. 500 ms after gaze 

fixation was maintained, a sample stimulus was presented for 650 ms, followed by a 1000 ms delay and a 

650 ms test stimulus. If the categories of the sample and test stimuli matched, monkey needed to release 

a manual touch-bar within the test period to receive a juice reward. Otherwise, monkeys needed to hold 

the touch-bar during the test period and a second delay (150 ms) period, and wait for the second test 

stimulus, which was always a match, and then release the touch-bar. Therefore, monkeys concluded all 

trials with the same motor response (lever release).  The motion stimuli were full contrast, 9° diameter, 

random-dot movies composed of 190 dots per frame that moved at 12°/s with 100% coherence. Task 

stimuli were displayed on a 21-inch color CRT monitor (1280*1024 resolution, 75 Hz refresh rate, 57 cm 

viewing distance). Identical stimuli, timing, and rewards were used for both monkeys in all LIP, and MST 

recordings. All ten motion directions were used for sample stimuli during all the recording sessions. 

Different from sample stimuli, ten motion directions were only used for test stimuli in about half of the 

recording sessions, while the four near-boundary directions were not used for test stimuli during the other 

half of the recording sessions. Monkeys’ eye positions were monitored by an EyeLink 1000 optical eye 

tracker (SR Research) at a sampling rate of 1 kHz and stored for offline analysis. Stimulus presentation, 

task events, rewards, and behavioral data acquisition were accomplished using an Intel-based PC 

equipped with MonkeyLogic software running in MATLAB (http://www.monkeylogic.net). 

Electrophysiological recording. 

Two male monkeys (Macaca mulatta, 8–12 kg) were implanted with a head post and recording 

chambers positioned over PPC. Stereotaxic coordinates for chamber placement were determined from 

magnetic resonance imaging (MRI) scans obtained before chamber implantation. We accessed area LIP 

and MST from the same PPC chamber, which was positioned over the intraparietal sulcus (IPS). Monkey 

M’s chamber was centered, under head stereotactic condition, at 10 mm lateral to the middle sagittal line, 

and 3 mm posterior to the middle coronal line, while Monkey Q’s chamber was positioned more laterally 

(centered ~13mm lateral to the middle sagittal line, and 1.5 mm posterior to the middle coronal line) to 

gain more access to MSTd. Both chambers sit perpendicular to the sagittal plane. All experimental and 

surgical procedures were in accordance with the University of Chicago Animal Care and Use Committee 

and National Institutes of Health guidelines. Monkeys were housed in individual cages under a 12-h 
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light/dark cycle. Behavioral training and experimental recordings were conducted during the light portion 

of the cycle.  

LIP and MST recording sessions were interleaved in each monkey to reduce the influence of timing 

on the neuronal responses and monkeys’ behavior. In monkey M, 52 LIP recordings sessions were 

followed by 90 MST sessions and an additional 15 LIP sessions. For monkey Q, we first recorded 24 LIP 

recording sessions followed by 25 MST sessions, then conducted 8 LIP sessions followed by 21 MST 

sessions, and finally recorded 6 LIP sessions followed by 7 MST sessions. 

The recording equipment and procedures were the same as in the previous studies3,8,11. All 

recordings on monkey M were conducted using single 75-μm tungsten microelectrodes (FHC). while most 

of the recordings on monkey Q were conducted using 16-channels (Plexon) linear v-probes after identified 

the locations of brains areas using single channel recording. In general, LIP neurons were found at more 

medial locations and MST neurons were found at more lateral locations within the same recording 

chamber. LIP was 4-8mm below the surface and MST was 4-10mm below the surface in both monkeys. 

Neurophysiological signals were amplified, digitized and stored for offline spike sorting (Plexon) to verify 

the quality and stability of neuronal isolations.  

Receptive field mapping and stimulus placement.  

 Most LIP neurons as well as some MST neurons were tested with a memory-guided saccade (MGS) 

task before the DMC task. LIP neurons were identified by spatially selective visual or persistent activity 

during the MGS task for single channel recoding. During multi-channel recording, we included all the 

neurons recorded from the same grid locations and similar depths where we recorded spatially selective 

persistent activity neurons. MST neurons were identified by visual responses to visual motion patterns 

(whole screen expansion-contraction, as well as the linear motion stimuli used in the DMC task), and little 

or no modulation during the MGS task. For single channel recording in MST, we only recorded from 

neurons that showed activity modulation during the DMC task (but were not necessarily direction-

selective). We included all the neurons recorded from the locations which were identified as MST for 

multi-channel recording. LIP and MST neurons were also differentiated based on anatomical criteria, such 

as the location of each electrode track relative to that estimated from the MRI scans, the pattern of gray–

white matter transitions encountered on each electrode penetration, and the relative depths of each 

neuron. 

The placement of motion stimuli differed slightly between single channel recording and multi-

channel recording sessions. For single channel recording, motion stimuli for the DMC task were always 

placed in LIP neurons’ receptive fields (RFs), or the locations in the contralateral visual field which evoked 

the maximum visual response of MST neurons to the motion stimuli. The typical eccentricity of stimulus 

placement was ~6.0-10.0°. For each multi-channel recording session, we first identified one stimulus or 

task responsive neuron according to above criteria, and then placed the motion stimuli according to the 

RF of the identified neuron.   

  

Data analysis. 

Pre-analysis neuron screening: 
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We identified well-isolated singe units in both LIP and MST that showed task-related activity in 

the DMC task, using the following criteria: (1), the maximum averaged firing rate during at least one of 

the four different task periods (sample period, earlier delay period, later delay period, and test period) 

should be no less than 1 spike/s; (2), the activity should exhibit at least one kind of task-related modulation 

(such as: sample category selectivity, test category selectivity, sample direction selectivity, test direction 

selectivity, two-way nested ANOVA test, p < 0.01) during one of the four task periods, or the mean activity 

during at least one of the four task periods should be significantly different from the baseline activity 

(fixation period) . In total, 326 LIP neurons and 571 MST neurons were included for further analysis.  

ROC-based category tuning index (rCTI): 

We used the rCTI measurement to quantify the category selectivity, which was described in detail 

in our previous work8 and defined as follows: 

rCTI = BCD - WCD, 

WCD = (2*| ROC(75,195) - 0.5| + | ROC(135,195) - 0.5|+ | ROC(75,135) - 0.5| + 2*| ROC(255,15) - 0.5| 

+ | ROC(315,15) - 0.5| +| ROC(255,315) - 0.5|+2*| ROC(55,215) - 0.5| + | ROC(55,75) - 0.5| 

+ | ROC(195,215) - 0.5| + 2*| ROC((35,235) - 0.5| + | ROC(35,15) - 0.5| +| ROC(255,235) - 0.5|)/16; 

BCD = (2*| ROC(75,15) - 0.5| + | ROC(75,315) - 0.5|+ | ROC(135,255) - 0.5|+ | ROC(135,15) - 0.5| 

+ 2*| ROC(195,255) - 0.5| +| ROC(195,315) - 0.5|+2*| ROC(55,35) - 0.5| + | ROC(55,255) - 0.5| 

+ | ROC(75,235) - 0.5|+2*| ROC(215,235) - 0.5| + | ROC(195,35) - 0.5|+ | ROC(215,15) - 0.5|)/16 ; 

Identify category-selective neuron: 

We performed a shuffle analysis to determine whether a neuron showed significant category 

selectivity, by determining whether the rCTI value of this neuron was significantly above chance level. To 

obtain a null distribution (chance level), we shuffled the direction labels of trials within each session to 

calculate the rCTI, and bootstrapped for 500 times. The rCTI value was determined as being statistically 

significant if it was greater than 99% of values from the null distribution. We applied this method to the 

mean activity within each time bin during the task period spanning from 50 ms after sample onset to 

200ms after test onset (300ms bin size, six time-bins in total). Neurons were identified as category- 

selective if their rCTI value was greater than the significant threshold in at least one time-bin. 

Classification of “pure direction selective” neurons: 

We identified the pure direction selective neurons according to the following criteria: (1), the 

neuron should be not identified as category-selective by the above criteria; (2) there was significant 

difference between activity to the different motion directions (one-way ANOVA, p < 0.01). 

Determine the latency of category selectivity: 

 For each neuron, we defined the threshold of significant category selectivity based on rCTI value. 

We set the rCTI value, which was three times SD above the baseline rCTI values (calculated during the 

fixation period using 100ms bin size stepped by 5ms), as the threshold. The latency of category selectivity 
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was defined as the middle time-point of the first time-bin at which the rCTI value exceeded the threshold 

for at least two consecutive time bins. 

Support vector machine (SVM) decoding: 

Similar to previous studies4,8, we used linear SVM classifiers to separately decode sample direction 

and category from a pseudo-population from the two cortical areas. Activities from different neurons in 

one cortical area were treated as if they were recorded simultaneously although neurons were mostly 

recorded separately. In training the SVM classifier, a hyperplane that best separates the trials belonging 

to two (category classifier) or five (direction classifier) different classes was determined. Each class 

corresponds to one type of category identity for category classifiers and one motion direction for direction 

classifier. As in previous studies4, we wanted to eliminate the contribution of direction selectivity and 

category selectivity to the performances of the category classifiers and directions classifiers, respectively. 

 Therefore, to train and test the category classifier, we separated our trials into two groups based 

on the motion directions (see Extended Data Fig. 3a, bright and dark arrows). We trained one classifier 

using directions from one group and tested with the directions in the other group. A second classifier was 

constructed by switching the training and testing groups. We then averaged the performance of these 

two classifiers. In this case, we minimized the contribution of the direction selectivity into the 

performance of category classifier. For the direction classifier, we trained and tested two classifiers using 

the directions within each category separately, and then averaged the performances of the two classifiers. 

This eliminated the contribution of category selectivity to the decoding performance of the direction 

classifiers. 

Decoding was applied to the mean firing rates of neurons within a 100 ms sliding window (10 ms 

step). For each neuron, we randomly selected 66% of trials to train the classifier and left the other 34% of 

trials for testing. We then randomly sampled, with replacement, 160 trials from the training set and 80 

trials for the testing set for bootstrapping. For each iteration of the bootstrap, we randomly selected 100 

neurons with replacement from the neuron population from each area to perform the analysis. In order 

to reduce the potential confound caused by uneven numbers of trials of different motion directions, a 

minimum number for trials of each motion direction was required for random sampling (10 and 5 trials 

for training and testing data of each direction, respectively). We bootstrapped all decoding analyses 200 

times.  

Partial correlation analysis 

A partial correlation analysis was performed similar to previous studies11. For each trial during the 

DMC task, we obtained three parameters, i.e., the category identity of sample stimuli, the neuronal 

activity, and the monkeys’ categorical choice (deduced from monkeys’ behavior), for the calculation. The 

stimulus category was assigned with different values for different motion categories: 1 and -1 are used 

for category 1 and category 2, respectively. Different categorical choices were also coded as different 

values (1 for choosing category 1 and -1 for choosing category 2). Two measures were then calculated: r 

stimulus = r(neuronal activity, stimulus category| choice category), the partial correlation between 

neuronal activity and stimulus category, given the monkeys’ categorical choices; and r choice = r(neuronal 

activity, categorical choice | stimulus category), the partial correlation between neuronal activity and 

monkeys’ categorical choices, given the stimulus category. In Fig. 3e,f, the partial correlation analysis was 

applied on each neuron’s average firing rate in a 100ms window, advanced in 10 ms steps. To perform 
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this analysis, we only included the trials in which the sample motion directions were close (10°) to 

boundary directions but the test directions were far from the boundary. This is because there were 

enough errors for these trials, and the errors on these trials were most likely due to mis-categorizing the 

sample stimulus which was close to the boundary.  

Unbiased fraction of explained variance (FEV) 

To test the correlation between category representation and the level of task difficulty, we 

quantified category selectivity for different direction pairs for each MST and LIP neuron.   To quantify the 

amount of information that a neuron encoded about motion category that was independent of the 

absolute neuronal firing rate, we calculated the unbiased fraction of explained variance (FEV) in the 

neuron's firing rate that could be attributed to sample category with the following: 

 FEVfactor = SSfactor-(k-1)MSE /SStotal +MSE,  

where SS indicates the sum of squares, MSE indicates mean square error, and k indicates number 

of conditions. In Extended Data Fig. 5, we first calculated the FEV values of the five opposite (180 degrees 

apart) motion direction pairs. Then, the FEVs of five direction pairs were combined into two groups 

according to their distance relative to the boundary (easier: ≥ 30°, more-difficult: 10°). 

dPCA analysis 

Demixed principal component analysis was performed using the methodology and code from a 

previous study (Kobak, Brendel et al.,http://github.com/machenslab/dPCA) that reduces the 

dimensionality of the population activity as the standard PCA and demixes all task variables. Specifically, 

we tested how much each task variable (sample stimuli, test stimuli, sample-test interaction, timing) 

contributes to the MST and LIP population activity during the DMC task.  

As demonstrated in previous study34, the dPCA finds separate decoder (F) and encoder (D) 

matrices for each task variable (∅) by minimizing the loss function: 

                       

2

0 0 0

0

dPCAL X F D X= −
 

where X is a linear decomposition of the data matrix, which contains the instantaneous firing rate 

of the recorded neurons, into variable-specific averages: 

                      
0

0

noiseX X X= +
 

Here, we decomposed the neural activities into four parts: condition-independent, sample-

dependent (10 sample directions), test-dependent (two test categories), dependent on the sample-test 

interaction, and noise. The decoder and encoder axes permit us to reduce the data into a few components 

capturing the majority of the variance of the data dependent on each task variable. In order to diminish 

the confound caused by the difference of population size between two brain areas to the dimension 

reduction analysis, we randomly sampled the population activity of 100 neurons with replacement from 

each brain area to perform the PCA and dPCA analysis. We then repeated the analysis 1000 times. 

Estimate the dimensionality of population activity: We computed the dimensionality of the 
distribution of population vector responses in both LIP and MST, using the methodology described in a 
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previous study56. These population vectors populate a cloud of points across many task conditions and 
time steps. The dimensionality is estimated as a weighted measure of the number of axes explored by 
that cloud: 
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(A)
i

i

i

i

Dim




=



 

 Where A denotes the population response matrix with each column representing one neuron, 
and λi is the ith eigenvalue of the covariance matrix of A. The eigenvectors of the covariance matrix of A 
are the axes of the population response cloud. The resulted dimensionality can be thought as 
corresponding to the number of dimensions required to explain about 80% of the total variance. 
 

LFP analysis: 

All the recording channels in which there was at least one task-related neuron recorded were 

included in the analysis in the current study. We excluded trials or sessions with artifacts in the LFP, such 

as those in which there were many time points (≥50ms) for which the LFP amplitude was clipped because 

of a mismatch in dynamic range between the amplifier and recording system. The LFP signal was pre-

filtered by a band stop filter (Butterworth, 59-61 Hz) to remove power-line noise, and then z-scored in 

each recording session. We then used a MATLAB-based multi-taper analysis toolbox (chronux57) to analyze 

the power frequency spectra. The spectrograms were estimated using the LFPs within a 300 ms time 

window stepped by 10 ms. 

In order to quantify the category selectivity in LFP activity, we first computed the single-trial 

power spectra of LFPs for each channel. We then averaged power spectra across trials based on the 

sample category, and calculated the difference of power spectra between two sample categories for each 

channel. We defined the sample categories for which most of the recording channels exhibited higher or 

lower beta power during the delay period as the preferred or non-preferred categories for each monkey, 

respectively.  

 

 

Figure legends 

Fig. 1 Task, behavioral performance and recording positions. a. Sequence of the DMC task. Monkeys 

needed to either release a touch-bar when the categories of sample and test stimuli matched, or hold the 

bar and wait for the second test stimulus when they did not match. The yellow dashed circle indicates the 

position of a neuron’s receptive field. b. Monkeys needed to group ten motion directions into two 

categories (corresponding to the red and blue arrows) separated by a learned category boundary (black 

dashed line). c. Two monkeys’ averaged performance (accuracy) for the ten sample direction conditions 

during MST and LIP recording sessions are shown separately. Error bars denote the ±STD across sessions.  

Fig. 2 Sample category selectivity in MST and LIP during the DMC task.  a-b Two example neurons from 

MST showed significant sample category selectivity. Average activity for each sample direction is plotted 

as a function of time. Different colors represent different sample categories, and different shades indicate 

the angular distance from the boundary. The first and second dashed vertical lines denote the time for 
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sample stimulus onset and offset, respectively, while the third dashed vertical line indicates the time of 

test stimulus onset. c-d. Two example neurons from LIP are shown in the same format as a,b. e-f. 

Population level sample category selectivity in MST (pink) and LIP (green).  e. A category tuning index (rCTI) 

shows the magnitude and time course of sample category selectivity. Shaded area denotes ±SEM. The 

black stars indicate the time points for which there was a significant difference between MST and LIP 

(unpaired t test, p < 0.05). f. Time course of sample category classification accuracy in MST (pink) and LIP 

(green) is measured using an SVM classifier. Shaded area denotes ±STD. g. The distributions of category 

selectivity latencies for category-selective neurons in MST and LIP. The above inset shows the cumulative 

distributions of category selectivity latencies only for neurons that were category-selective during the 

sample period. 

Fig. 3 Sample category encoding in MST and LIP correlated with monkeys’ categorical decisions. a. An 

example MST neuron’s activity on correct (solid) and error (dashed) trials. Different colors represent 

different sample categories, and shaded areas denote ±SEM. b. An example neuron from LIP. c-d. The 

magnitude and time course of sample category selectivity on error trials in MST (c) and LIP (d) were 

determined by category SVM classifier. The shaded area denotes ±STD. The black stars indicate the time 

points for which the decoding performance was significantly lower than chance level (bootstrap, p < 0.05). 

e-f. Stimulus- and choice-related components of category selectivity in MST (e) and LIP (f) were 

determined by a partial correlation analysis. The values of r-stimulus (the partial correlation between 

neuronal activity and stimulus category, given the monkeys’ choices) and r-choice (the partial correlation 

between neuronal activity and monkeys’ choice, given the stimulus category) are plotted across time. The 

black stars indicate the time points for which there was a significant difference between r-choice and r-

stimulus (paired t test, p < 0.05). 

Fig. 4 Stability of category selectivity in MST and LIP. a. The stability of MST sample category encoding was 

determined by training the classifier at one time point (y axis) and testing at other time points (x axis). 

Classification accuracy is indicated by color at each x-y coordinate. The purple and orange bars indicate 

the timing of the sample and delay periods, respectively. b. The stability of sample category encoding in 

LIP.  

Fig. 5 Demixed PCA (dPCA) applied to MST and LIP population activity in the DMC task.  a. Cumulative 
variance explained by PCA (dashed) and dPCA (solid) for MST (pink) and LIP (green) population activity for 
monkey M. Only the first 15 principal components (PCs) were shown. dPCA explains almost the similar 
amount of variance as standard PCA (compare the solid line to dashed line). The shaded area denotes the 
±STD of the dPCA.  b.  Variance of the individual demixed PCs of MST population activity for monkey M. 
Each bar shows the proportion of total explained variance, which is contributed by four different task 
components represented by different colors. The pie chart shows the total variance explained by each 
task variable. c. Variance of the individual demixed PCs of LIP population activity for monkey M. d-f. The 
results of dPCA applied to MST and LIP population activity of monkey Q. 
 
Fig. 6 Beta-band oscillatory activity of LFPs in both MST and LIP encoded sample category information 
during working memory. a-b. Category-selective LFP activity for monkey M. a. The averaged sample 
category-selective LFP power recorded from MST electrodes in time-frequency space. The first and second 
dashed vertical lines denote the time interval for sample stimulus, while the third dashed vertical line 
indicates the time of test stimulus onset. Power is normalized to 1/f.  The purple and orange bars mark 
the late-sample-to- early-delay as well as mid-to-late delay periods used in later analysis in e-h. b. 
Averaged sample category-selective LFP power recorded from LIP electrodes. Strong category-selective 
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LFP activity is seen in the beta band during the mid-to-late delay period of the DMC task. c-d. The 
comparisons of category- selective LFP power between MST (pink) and LIP (green) during the late-sample 
to early-delay(e) and mid-to-late delay (f) periods for monkey M. The shaded area denotes ±SEM. The 
black star marks the frequency band for which there was significant difference between MST and LIP. e-f. 
Sample category-selective LFP activity in MST (c) and LIP (d) electrodes for monkey Q. g-h. The 
comparisons of category-selective LFP activity between MST and LIP for monkey Q. 
 
Fig. 7 Beta-band LFP activity in both MST and LIP correlated with monkeys’ categorical decisions. a-f. 
Sample category-selective LFP activity on both correct and error trials for monkey M. a-b. Category- 
selective LFP activity in MST (a) and LIP (b) on correct trials. c-d. Category-selective LFP activity in MST (c) 
and LIP (d) on error trials. The grey bar marks the time period used for further analysis in e-f. e-f. 
Comparisons of category-selective LFP activity in MST (e) and LIP (f) between correct and error trials. The 
shaded area denotes ±SEM. The black star marks the frequency band for which there was significant 
difference between correct and error trials. g-l. Sample category-selective LFP activity on both correct and 
error trials for monkey Q.  
 

 
 

Reference 

 
1 Freedman, D. J. & Assad, J. A. Experience-dependent representation of visual categories in parietal 

cortex. Nature 443, 85-88, doi:10.1038/nature05078 (2006). 
2 Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual 

stimuli in the primate prefrontal cortex. Science 291, 312-316, doi:10.1126/science.291.5502.312 
(2001). 

3 Swaminathan, S. K. & Freedman, D. J. Preferential encoding of visual categories in parietal cortex 
compared with prefrontal cortex. Nat Neurosci 15, 315-320, doi:10.1038/nn.3016 (2012). 

4 Sarma, A., Masse, N. Y., Wang, X. J. & Freedman, D. J. Task-specific versus generalized mnemonic 
representations in parietal and prefrontal cortices. Nat Neurosci 19, 143-149, 
doi:10.1038/nn.4168 (2016). 

5 Roy, J. E., Buschman, T. J. & Miller, E. K. PFC neurons reflect categorical decisions about ambiguous 
stimuli. J Cogn Neurosci 26, 1283-1291, doi:10.1162/jocn_a_00568 (2014). 

6 Cromer, J. A., Roy, J. E. & Miller, E. K. Representation of multiple, independent categories in the 
primate prefrontal cortex. Neuron 66, 796-807, doi:10.1016/j.neuron.2010.05.005 (2010). 

7 Fitzgerald, J. K., Freedman, D. J. & Assad, J. A. Generalized associative representations in parietal 
cortex. Nat Neurosci 14, 1075-1079, doi:10.1038/nn.2878 (2011). 

8 Swaminathan, S. K., Masse, N. Y. & Freedman, D. J. A comparison of lateral and medial 
intraparietal areas during a visual categorization task. J Neurosci 33, 13157-13170, 
doi:10.1523/JNEUROSCI.5723-12.2013 (2013). 

9 Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. A comparison of primate prefrontal 
and inferior temporal cortices during visual categorization. J Neurosci 23, 5235-5246 (2003). 

10 Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K. & Poggio, T. Dynamic population coding 
of category information in inferior temporal and prefrontal cortex. J Neurophysiol 100, 1407-1419, 
doi:10.1152/jn.90248.2008 (2008). 

11 Zhou, Y. & Freedman, D. J. Posterior parietal cortex plays a causal role in perceptual and 
categorical decisions. Science 365, 180-185, doi:10.1126/science.aaw8347 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically 
and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296, 65-
113, doi:10.1002/cne.902960106 (1990). 

13 Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical 
connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299, 421-
445, doi:10.1002/cne.902990404 (1990). 

14 Britten, K. H. Mechanisms of self-motion perception. Annu Rev Neurosci 31, 389-410, 
doi:10.1146/annurev.neuro.29.051605.112953 (2008). 

15 Bradley, D. C., Maxwell, M., Andersen, R. A., Banks, M. S. & Shenoy, K. V. Mechanisms of heading 
perception in primate visual cortex. Science 273, 1544-1547, doi:10.1126/science.273.5281.1544 
(1996). 

16 Duffy, C. J. & Wurtz, R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of 
response selectivity to large-field stimuli. J Neurophysiol 65, 1329-1345, 
doi:10.1152/jn.1991.65.6.1329 (1991). 

17 Celebrini, S. & Newsome, W. T. Neuronal and psychophysical sensitivity to motion signals in 
extrastriate area MST of the macaque monkey. J Neurosci 14, 4109-4124 (1994). 

18 Graziano, M. S., Andersen, R. A. & Snowden, R. J. Tuning of MST neurons to spiral motions. J 
Neurosci 14, 54-67 (1994). 

19 Geesaman, B. J. & Andersen, R. A. The analysis of complex motion patterns by form/cue invariant 
MSTd neurons. J Neurosci 16, 4716-4732 (1996). 

20 Saito, H. et al. Integration of direction signals of image motion in the superior temporal sulcus of 
the macaque monkey. J Neurosci 6, 145-157 (1986). 

21 Sakata, H., Shibutani, H., Ito, Y. & Tsurugai, K. Parietal cortical neurons responding to rotary 
movement of visual stimulus in space. Exp Brain Res 61, 658-663, doi:10.1007/BF00237594 (1986). 

22 Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the 
posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20, 303-330, 
doi:10.1146/annurev.neuro.20.1.303 (1997). 

23 Fetsch, C. R., Wang, S., Gu, Y., Deangelis, G. C. & Angelaki, D. E. Spatial reference frames of visual, 
vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior 
temporal area. J Neurosci 27, 700-712, doi:10.1523/JNEUROSCI.3553-06.2007 (2007). 

24 Gu, Y., Angelaki, D. E. & Deangelis, G. C. Neural correlates of multisensory cue integration in 
macaque MSTd. Nat Neurosci 11, 1201-1210, doi:10.1038/nn.2191 (2008). 

25 Gu, Y., DeAngelis, G. C. & Angelaki, D. E. A functional link between area MSTd and heading 
perception based on vestibular signals. Nat Neurosci 10, 1038-1047, doi:10.1038/nn1935 (2007). 

26 Gu, Y., Deangelis, G. C. & Angelaki, D. E. Causal links between dorsal medial superior temporal 
area neurons and multisensory heading perception. J Neurosci 32, 2299-2313, 
doi:10.1523/JNEUROSCI.5154-11.2012 (2012). 

27 Gu, Y., Fetsch, C. R., Adeyemo, B., Deangelis, G. C. & Angelaki, D. E. Decoding of MSTd population 
activity accounts for variations in the precision of heading perception. Neuron 66, 596-609, 
doi:10.1016/j.neuron.2010.04.026 (2010). 

28 Yu, X. & Gu, Y. Probing Sensory Readout via Combined Choice-Correlation Measures and 
Microstimulation Perturbation. Neuron 100, 715-727 e715, doi:10.1016/j.neuron.2018.08.034 
(2018). 

29 Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of action in macaque LIP. Nat 
Neurosci 9, 948-955, doi:10.1038/nn1716 (2006). 

30 Williams, Z. M., Elfar, J. C., Eskandar, E. N., Toth, L. J. & Assad, J. A. Parietal activity and the 
perceived direction of ambiguous apparent motion. Nat Neurosci 6, 616-623, doi:10.1038/nn1055 
(2003). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 Mendoza-Halliday, D., Torres, S. & Martinez-Trujillo, J. C. Sharp emergence of feature-selective 
sustained activity along the dorsal visual pathway. Nat Neurosci 17, 1255-1262, 
doi:10.1038/nn.3785 (2014). 

32 Eskandar, E. N. & Assad, J. A. Distinct nature of directional signals among parietal cortical areas 
during visual guidance. J Neurophysiol 88, 1777-1790, doi:10.1152/jn.2002.88.4.1777 (2002). 

33 Xin, Y. et al. Sensory-to-Category Transformation via Dynamic Reorganization of Ensemble 
Structures in Mouse Auditory Cortex. Neuron 103, 909-921 e906, 
doi:10.1016/j.neuron.2019.06.004 (2019). 

34 Kobak, D. et al. Demixed principal component analysis of neural population data. Elife 5, 
doi:10.7554/eLife.10989 (2016). 

35 Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey 
parietal cortex. Nature 391, 481-484, doi:10.1038/35135 (1998). 

36 Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu Rev Neurosci 22, 319-
349, doi:10.1146/annurev.neuro.22.1.319 (1999). 

37 Antzoulatos, E. G. & Miller, E. K. Synchronous beta rhythms of frontoparietal networks support 
only behaviorally relevant representations. Elife 5, doi:10.7554/eLife.17822 (2016). 

38 Stanley, D. A., Roy, J. E., Aoi, M. C., Kopell, N. J. & Miller, E. K. Low-Beta Oscillations Turn Up the 
Gain During Category Judgments. Cereb Cortex 28, 116-130, doi:10.1093/cercor/bhw356 (2018). 

39 Antzoulatos, E. G. & Miller, E. K. Increases in functional connectivity between prefrontal cortex 
and striatum during category learning. Neuron 83, 216-225, doi:10.1016/j.neuron.2014.05.005 
(2014). 

40 Freedman, D. J. & Assad, J. A. A proposed common neural mechanism for categorization and 
perceptual decisions. Nat Neurosci 14, 143-146, doi:10.1038/nn.2740 (2011). 

41 Freedman, D. J. & Assad, J. A. Neuronal Mechanisms of Visual Categorization: An Abstract View 
on Decision Making. Annu Rev Neurosci 39, 129-147, doi:10.1146/annurev-neuro-071714-033919 
(2016). 

42 Stoet, G. & Snyder, L. H. Single neurons in posterior parietal cortex of monkeys encode cognitive 
set. Neuron 42, 1003-1012, doi:10.1016/j.neuron.2004.06.003 (2004). 

43 Nieder, A. & Dehaene, S. Representation of number in the brain. Annu Rev Neurosci 32, 185-208, 
doi:10.1146/annurev.neuro.051508.135550 (2009). 

44 Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu Rev 
Neurosci 33, 1-21, doi:10.1146/annurev-neuro-060909-152823 (2010). 

45 Zhou, Y., Liu, Y. & Zhang, M. Neuronal Correlates of Many-To-One Sensorimotor Mapping in 
Lateral Intraparietal Cortex. Cereb Cortex, doi:10.1093/cercor/bhaa145 (2020). 

46 Zhou, Y., Liu, Y., Lu, H., Wu, S. & Zhang, M. Neuronal representation of saccadic error in macaque 
posterior parietal cortex (PPC). Elife 5, doi:10.7554/eLife.10912 (2016). 

47 Zhou, Y., Liu, Y., Wu, S. & Zhang, M. Neuronal Representation of the Saccadic Timing Signals in 
Macaque Lateral Intraparietal Area. Cereb Cortex 28, 2887-2900, doi:10.1093/cercor/bhx166 
(2018). 

48 Heide, W., Kurzidim, K. & Kompf, D. Deficits of smooth pursuit eye movements after frontal and 
parietal lesions. Brain : a journal of neurology 119 ( Pt 6), 1951-1969, 
doi:10.1093/brain/119.6.1951 (1996). 

49 Komatsu, H. & Wurtz, R. H. Modulation of pursuit eye movements by stimulation of cortical areas 
MT and MST. J Neurophysiol 62, 31-47, doi:10.1152/jn.1989.62.1.31 (1989). 

50 Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. 
Annu Rev Neurosci 21, 227-277, doi:10.1146/annurev.neuro.21.1.227 (1998). 

51 Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal 
and posterior parietal cortices. Science 315, 1860-1862, doi:10.1126/science.1138071 (2007). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 Salazar, R. F., Dotson, N. M., Bressler, S. L. & Gray, C. M. Content-specific fronto-parietal 
synchronization during visual working memory. Science 338, 1097-1100, 
doi:10.1126/science.1224000 (2012). 

53 Haegens, S. et al. Beta oscillations in the monkey sensorimotor network reflect somatosensory 
decision making. Proceedings of the National Academy of Sciences of the United States of America 
108, 10708-10713, doi:10.1073/pnas.1107297108 (2011). 

54 Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal 
and parietal cortex. Nature 453, 406-409, doi:10.1038/nature06849 (2008). 

55 Engel, A. K. & Fries, P. Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol 20, 
156-165, doi:10.1016/j.conb.2010.02.015 (2010). 

56 Recanatesi, S., Ocker, G. K., Buice, M. A. & Shea-Brown, E. Dimensionality in recurrent spiking 
networks: Global trends in activity and local origins in connectivity. PLoS Comput Biol 15, 
e1006446, doi:10.1371/journal.pcbi.1006446 (2019). 

57 Mitra, P. & Bokil, H. Observed brain dynamics.  (Oxford University Press, 2008). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1

a

b c

Sample direction

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

MST LIP

35
。

15
。

31
5。

25
5。

23
5。

21
5。

19
5。

13
5。75
。

55
。

C 1 C 2

Fixation Sample Test
500ms 650ms

Match

Non-match
   650ms

Delay
1000ms

Release

Hold

Release

Test 2Delay 2
150ms

75。
135。

195。

255。
315。

15。

55。
35。

215。

235。

C1

C2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 650 16500

20

40

60

a c

b d

e

f

Fig. 2

0 650 1650
Time from sample onset (ms)

0

20

40

60

80

0 650 1650
Time from sample onset (ms)

0.4

0.6

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

0 650 1650
0

0.02

0.04

rC
TI

0.01

0.03

0.05 MST n = 571
LIP n = 326

0 650 1650
Time from sample onset (ms)

0

10

20

30

Fi
rin

g 
ra

te
 (s

p/
s)

0 650 1650

20

40

60
Fi

rin
g 

ra
te

 (s
p/

s)

0

C1
C2

MST LIP

0 300 600

0.5

1

0

650 1650
Category selectivity latency (ms)
0.12

0.06

0.06

0.12

Pr
op

or
tio

n 
of

 n
er

uo
ns

g

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 650 1650
Time from sample onset (ms)

0.04

0.06

0.08

0.1

C
or

re
la

tio
n

0 650 16500

20

40

60
C1 correct
C2 correct
C1 error
C2  error

0 650 1650

20

40

Fi
rin

g 
ra

te
 (s

p/
s)

0

0 650 16500

0.2

0.4

0.6

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

0 650 1650
Time from sample onset (ms)

0.04

0.06

0.08

0.1

0 650 16500

0.2

0.4

0.6

0.8

1

a b

c d

e f

MST LIP

r-choice
r-stimulus

r-choice
r-stimulus

Fig. 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4

0.5

0.6

0.7

0.8

Classifier testing time (ms)

a b

0 650 1650

0

650

1650C
la

ss
ifi

er
 tr

ai
ni

ng
 ti

m
e 

(m
s)

MST LIP

0 650 1650

0

650

1650

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


LI
P

Monkey M Monkey Qa d

c

1 5 10 150

5

10

15

20

Sample 19%Sample 19%
Test 1%Test 1%

Condition-independent 71%Condition-independent 71%
S/T Interaction 9%S/T Interaction 9%

Component

f

FIg. 5

b

1 5 10 15
0

5

10

15

20

Sample 40%Sample 40%
Test 8%Test 8%

Condition-independent 46%Condition-independent 46%
S/T Interaction 6%S/T Interaction 6%

PE
V 

(%
)

e

1 5 10 15
0

5

10

15

20

Sample 33%Sample 33%
Test 3%Test 3%

Condition-independent 47%Condition-independent 47%
S/T Interaction 17%S/T Interaction 17%S/T Interaction 17%S/T Interaction 17%M

ST

5 10 15
0

20

40

60

80

100

15 10 150

20

40

60

80

100

PE
V 

(%
)

1

MST
LIP

dPCA
PCA

1 5 10 150

5

10

15

20

Sample 9%Sample 9%
Test 1%Test 1%

Condition-independent 87%Condition-independent 87%
S/T Interaction 3%S/T Interaction 3%

Component

PE
V 

(%
)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


M
on

ke
y 

Q
M

on
ke

y 
M

a b

e f

MST LIP c d

g h

Fig. 6

0 500 1000 1500
Time from sample onset (ms)
0

40

80

120

Fr
eq

ue
nc

y 
(H

z)

-0.08

-0.04

0

0.04

0.08

0 500 1000 1500
Time from sample onset (ms)
0

40

80

120

0 500 1000 15000

40

80

120
Fr

eq
ue

nc
y 

(H
z)

-0.015
-0.01
-0.005
0
0.005
0.01
0.015

0 500 1000 15000

40

80

120

0 20 40
Frequency (Hz)

0

2

4

6
*10-3

0 20 40
Frequency (Hz)

0

2

4

6

C
at

eg
or

y-
se

le
ct

iv
e

   
   

   
 p

ow
er

*10-3

MST n = 375
LIP n = 195

-1.5
-1

-0.5
0

0.5
1

0 20 40

*10-3

-1.5
-1

-0.5
0

0.5
1

0 20 40

*10-3

MST n = 69
LIP n = 55

C
at

eg
or

y-
se

le
ct

iv
e

   
   

   
 p

ow
er

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/


-1
-0.5

0
0.5

1
1.5

n = 25

0 20 40 60
Frequency(hz)

*10-3

1.5
*10-3

1
n = 50

-1
-0.5

0.5

0 20 40 60
Frequency(hz)

C
at

eg
or

y-
se

le
ct

iv
e

   
   

   
 p

ow
er

0
1
2
3
4
5

n = 159

0 20 40 60
Frequency(hz)

*10-3

a b

c d

e f

g h

i j

k l

Fig. 7

n = 298

0
1
2
3
4
5

0 20 40 60
Frequency(hz)

*10-3

C
at

eg
or

y-
se

le
ct

iv
e

   
   

   
 p

ow
er

error
correct

error
correct

MST LIP MST LIP
Monkey QMonkey M

Er
ro

r
C

or
re

ct

0 500 1000 15000

40

80

120

Fr
eq

ue
nc

y 
(H

z)

0 500 1000 15000

40

80

120

Fr
eq

ue
nc

y 
(H

z)

Time from sample onset (ms)

-0.015
-0.01
-0.005
0
0.005
0.01
0.015

0 500 1000 15000

40

80

120

-0.015
-0.01
-0.005
0
0.005
0.01
0.015

0 500 1000 15000

40

80

120

Time from sample onset (ms)

0 500 1000 15000

40

80

120

Fr
eq

ue
nc

y 
(H

z)

0 500 1000 15000

40

80

120

Fr
eq

ue
nc

y 
(H

z)

Time from sample onset (ms)

-0.08

-0.04

0

0.04

0.08

0 500 1000 15000

40

80

120

-0.08

-0.04

0

0.04

0.08

0 500 1000 15000

40

80

120

Time from sample onset (ms)

error
correct

error
correct

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.266791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266791
http://creativecommons.org/licenses/by-nc-nd/4.0/

