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Abstract 6

Resistance mutations against one drug can elicit collateral sensitivity against other drugs. 7

Multi-drug treatments exploiting such trade-offs can help slow down the evolution of re- 8

sistance. However, if mutations with diverse collateral effects are available, a treated 9

population may evolve either collateral sensitivity or collateral resistance. How to de- 10

sign treatments robust to such uncertainty is unclear. We show that many resistance 11

mutations in Escherichia coli against various antibiotics indeed have diverse collateral ef- 12

fects. We propose to characterize such diversity with a joint distribution of fitness effects 13

(JDFE) and develop a theory for describing and predicting collateral evolution based on 14

simple statistics of the JDFE. We show how to robustly rank drug pairs to minimize 15

the risk of collateral resistance and how to estimate JDFEs. In addition to practical ap- 16

plications, these results have implications for our understanding of evolution in variable 17

environments. 18
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Introduction 19

The spread of resistance against most antibiotics and the difficulties in developing new 20

ones has sparked considerable interest in using drug combinations and sequential drug 21

treatments (Pál et al., 2015). Treatments where the drugs are chosen so that resistance 22

against one of them causes the pathogen or cancer population to become sensitive to 23

the other—a phenomenon known as collateral sensitivity—can eliminate the population 24

before multi-drug resistance emerges (Pál et al., 2015; Pluchino et al., 2012). 25

Successful multi-drug treatments hinge on knowing which drugs select for collateral 26

sensitivity against which other drugs. This information is obtained empirically by expos- 27

ing bacterial and cancer-cell populations to drugs and observing the evolutionary outcomes 28

(Bergstrom et al., 2004; Roemhild et al., 2020; Jensen et al., 1997; Imamovic and Sommer, 29

2013; Lázár et al., 2018; Maltas and Wood, 2019; Batra et al., 2021). Unfortunately, dif- 30

ferent experiments often produce collateral sensitivity profiles that are inconsistent with 31

each other (e.g., Imamovic and Sommer, 2013; Oz et al., 2014; Barbosa et al., 2017; Mal- 32

tas and Wood, 2019). Some inconsistencies can be attributed to the fact that resistance 33

mutations vary between bacterial strains, drug dosages, etc. (Mira et al., 2015; Barbosa 34

et al., 2017; Das et al., 2020; Pinheiro et al., 2021; Card et al., 2020; Gjini and Wood, 35

2021). However, wide variation in collateral outcomes is observed even between replicate 36

populations (Oz et al., 2014; Barbosa et al., 2017; Maltas and Wood, 2019; Nichol et al., 37

2019). This variation suggests that bacteria and cancers have access to multiple resistance 38

mutations with different collateral sensitivity profiles, such that replicates can accumu- 39

late different mutations simply due to the intrinsic randomness of the evolutionary process 40

(Jerison et al., 2020). However, the variability of collateral effects among resistance mu- 41

tations has not been characterized (but see Card et al., 2021), and there is no principled 42

approach for accounting for this variability in designing robust multi-drug treatments. In 43

particular, it is unclear which evolutionary parameters determine the expected collateral 44

outcomes of evolution and, importantly, the uncertainty around these expectations. 45

To address this problem, here we develop a population genetics theory of evolution 46

of collateral sensitivity and resistance. Collateral sensitivity and resistance are specific 47

examples of the more general evolutionary phenomenon, pleiotropy, which refers to any 48

situation when one mutation affects multiple phenotypes (Wagner and Zhang, 2011; Paaby 49

and Rockman, 2013). In case of drug resistance evolution, the direct effect of resistance 50

mutations is to increase fitness in the presence of one drug (the “home” environment). 51

In addition, they may also provide pleiotropic gains or losses in fitness in the presence of 52

other drugs (the “non-home” environments) leading to collateral resistance or sensitivity, 53

respectively. 54

Classical theoretical work on pleiotropy has been done in the field of quantitative 55

genetics (Lande and Arnold, 1983; Rose, 1982; Barton, 1990; Slatkin and Frank, 1990; 56

Jones et al., 2003; Johnson and Barton, 2005). In these models, primarily developed to 57

understand how polygenic traits respond to selection in sexual populations, pleiotropy 58
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manifests itself as a correlated temporal change in multiple traits in a given environment. 59

The question of how new strongly beneficial mutations accumulating in one environment 60

affect the fitness of an asexual population in future environments is outside of the scope of 61

these models. The pleiotropic consequences of adaptation have also been explored in var- 62

ious “fitness landscape” models (e.g. Connallon and Clark, 2015; Martin and Lenormand, 63

2015; Harmand et al., 2017; Wang and Dai, 2019; Maltas et al., 2019; Tikhonov et al., 64

2020). This approach helps us understand how evolutionary trajectories and outcomes 65

depend on the global structure of the underlying fitness landscape. However, it is difficult 66

to use these models to predict collateral outcomes because the global structure of fitness 67

landscape is unknown and notoriously difficult to estimate even in controlled laboratory 68

conditions. 69

Here, we take a different approach which is agnostic with respect to the global structure 70

of the fitness landscape. Instead, we assume only the knowledge of the so-called joint 71

distribution of fitness effects (JDFE), i.e., the probability that a new mutation has a 72

certain pair of fitness effects in the home and non-home environments (Jerison et al., 2014; 73

Martin and Lenormand, 2015; Bono et al., 2017). JDFE is a natural extension of the DFE, 74

the distribution of fitness effects of new mutations, often used in modeling evolution in a 75

single environment (King, 1972; Ohta, 1987; Orr, 2003; Rees and Bataillon, 2006; Eyre- 76

Walker and Keightley, 2007; Martin and Lenormand, 2008; MacLean and Buckling, 2009; 77

Kryazhimskiy et al., 2009; Levy et al., 2015). Like the DFE, the JDFE is a local property 78

of the fitness landscape which means that it can be at least in principle estimated, for 79

example using a variety of modern high-throughput techniques (e.g., Qian et al., 2012; 80

Hietpas et al., 2013; Van Opijnen et al., 2009; Stiffler et al., 2015; Chevereau et al., 2015; 81

Levy et al., 2015; Blundell et al., 2019; Bakerlee et al., 2021). The downside of this 82

approach is that the JDFE can change over time as the population traverses the fitness 83

landscape (Good et al., 2017; Venkataram et al., 2020; Aggeli et al., 2020). However, in 84

the context of collateral drug resistance and sensitivity, we are primarily interested in 85

short time scales over which JDFE can be reasonably expected to stay approximately 86

constant. 87

The rest of the paper is structured as follows. First, we use previously published 88

data to demonstrate that the bacterium Escherichia coli has access to drug resistance 89

mutations with diverse collateral effects. This implies that, rather than treating collateral 90

effects as deterministic properties of drug pairs, we should think of them probabilistically, 91

in terms of the respective JDFEs. We then show that a naive intuition about how the 92

JDFE determines pleiotropic outcomes of evolution can sometimes fail, and a rigorous 93

mathematical approach is therefore required. We develop such an approach, which reveals 94

two key “pleiotropy statistics” of the JDFE that determine the dynamics of fitness in the 95

non-home condition. Our theory makes quantitative predictions in a variety of regimes if 96

the population genetic parameters are known. However, we argue that in the case of drug 97

resistance evolution the more important problem is to robustly order drug pairs in terms of 98

their collateral sensitivity profiles even if the population genetic parameters are unknown. 99
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We develop a metric that allows us to do so. Finally, we provide some practical guidance 100

for estimating the pleiotropy statistics of empirical JDFEs in the context of ranking drug 101

pairs. 102

Results 103

Antibiotic resistance mutations in E. coli have diverse collateral 104

effects 105

We begin by demonstrating that JDFE is a useful concept for modeling the evolution 106

of collateral antibiotic resistance and sensitivity. If all resistance mutations against a 107

given drug had identical pleiotropic effects on the fitness of the organism in presence of 108

another drug, the dynamics of collateral resistance/sensitivity could be understood with- 109

out the JDFE concept. On the other hand, if different resistance mutations have different 110

pleiotropic fitness effects, predicting the collateral resistance/sensitivity dynamics requires 111

specifying the probabilities with which mutations with various home and non-home fitness 112

effects arise in the population. The JDFE specifies these probabilities. Therefore, for the 113

JDFE concept to be useful in the context of collateral resistance/sensitivity evolution, 114

we need to show that resistance mutations against common drugs have diverse collateral 115

effects in the presence of other drugs. 116

To our knowledge, no data sets are currently publicly available that would allow us 117

to systematically explore the diversity of collateral effects among all resistance mutations 118

against any one drug in any organism. Instead, we examined the fitness effects of 3883 119

gene knock-out mutations in the bacterium Escherichia coli, measured in the presence 120

of six antibiotics (Chevereau et al., 2015), as well as the fitness effects of 4997 point 121

mutations in the TEM-1 β-lactamase gene measured in the presence of two antibiotics 122

(Stiffler et al., 2015). 123

For the four out of six antibiotics used by Chevereau et al. (2015), we find between 124

12 (0.31 %) and 170 (4.38 %) knock-out mutations that provide some level of resistance 125

against at least one of the antibiotics (false discovery rate (FDR) ∼ 25%; Figure 1, 126

Supplementary Table S1; see Materials and Methods for details). Plotting on the x-axis 127

the fitness effect of each knock-out mutation in the presence of the drug assumed to be 128

applied first (i.e., the home environment) against its effect in the presence of another drug 129

assumed to be applied later (i.e., the non-home environment, y-axis), we find mutations 130

in all four quadrants of this plane, for all 12 ordered drug pairs (Figure 1, Supplementary 131

Table S1). Similarly, we find diverse collateral effects among mutations within a single 132

gene (Figure S1; see Materials and Methods for details). 133

Since both data sets represent subsets of all resistance mutations, we conclude that 134

E. coli likely have access to resistance mutations with diverse pleiotropic effects, such 135

that a fitness gain in the presence of any one drug can come either with a pleiotropic 136
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Figure 1. (Previous page) Fitness effects of gene knock-out mutations in E. coli in
the presence of four antibiotics. Data are from Chevereau et al. (2015). Each diagonal panel
shows the distribution of fitness effects (DFE) of knock-out mutations in the presence of the
corresponding antibiotic (equivalent to Figure 1C in Chevereau et al. (2015)). Scale of the y-axis
in these panels is indicated inside on the right. The estimated measurement noise distributions
are shown in red (see Materials and Methods for details). Note that some noise distributions
are vertically cut-off for visual convenience. The number of identified beneficial mutations (i.e.,
resistance mutations) and the expected number of false positives (in parenthesis) are shown in
the bottom left corner. The list of identified resistance mutations is given in the Supplementary
Table S1. Off-diagonal panels show the fitness effects of knock-out mutations across pairs of
drug environments. The x-axis shows the fitness in the environment where selection would
happen first (i.e., the “home” environment). Each point corresponds to an individual knock-out
mutation. Resistance mutations identified in the home environment are colored according to
their collateral effects, as indicated in the legend. The numbers of mutations of each type are
shown in the corresponding colors in the bottom left corner of each panel. TET: tetracycline;
NIT: nitrofurantoin; MEC: mecillinam; CPR: ciprofloxacin.

gain or a pleiotropic loss of fitness in the presence of other drugs. Therefore, the JDFE 137

framework is suitable for modeling the evolution of collateral resistance/sensitivity. In 138

the next section, we formally define a JDFE and probe our intuition for how its shape 139

determines the fitness trajectories in the non-home environment. 140

JDFE determines the pleiotropic outcomes of adaptation 141

For any genotype g that finds itself in one (“home”) environment and may in the fu- 142

ture encounter another “non-home” environment, we define the JDFE as the probability 143

density Φg (∆x,∆y) that a new mutation that arises in this genotype has the selection 144

coefficient ∆x in the home environment and the selection coefficient ∆y in the non-home 145

environment (Jerison et al., 2014). For concreteness, we define the fitness of a genotype as 146

its malthusian parameter (Crow and Kimura, 1972). So, if the home and non-home fitness 147

of genotype g are x and y, respectively, and if this genotype acquires a mutation with 148

selection coefficients ∆x and ∆y, its fitness becomes x+ ∆x and y + ∆y. This definition 149

of the JDFE can, of course, be naturally extended to multiple non-home environments. 150

In principle, the JDFE can vary from one genotype to another. However, to develop a 151

basic intuition for how the JDFE determines pleiotropic outcomes, we assume that all 152

genotypes have the same JDFE. We discuss possible extensions to epistatic JDFEs in 153

Appendix A. 154

The JDFE is a complex object. So, we first ask whether some simple and intuitive 155

summary statistics of the JDFE may be sufficient to predict the dynamics of the non- 156

home fitness of a population which is adapting in the home environment. Intuitively, 157

if there is a trade-off between home and non-home fitness, non-home fitness should de- 158
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Figure 2. Gaussian JDFEs and the resulting fitness trajectories. A–E. Contour lines
for five Gaussian JDFEs. “x” marks the mean. For all distributions, the standard deviation is
0.1 in both home- and non-home environments. The correlation coefficient ρ is shown in each
panel. F–J. Home and non-home fitness trajectories for the JDFEs shown in the corresponding
panels above. Thick lines show the mean, ribbons show ±1 standard deviation estimated from
100 replicate simulations. Population size N = 104, mutation rate U = 10−4 (Ub = 4.6× 10−5).

cline; if the opposite is true, non-home fitness should increase. Canonically, a trade-off 159

occurs when any mutation that improves fitness in one environment decreases it in the 160

other environment and vice versa (Roff and Fairbairn, 2007). Genotypes that experience 161

such “hard” trade-offs are at the Pareto front (Shoval et al., 2012; Li et al., 2019). For 162

genotypes that are not at the Pareto front, some mutations that are beneficial in the 163

home environment may be beneficial in the non-home environment and others may be 164

deleterious. In this more general case, trade-offs are commonly quantified by the degree 165

of negative correlation between the effects of mutations on fitness in the two environments 166

(Roff and Fairbairn, 2007; Tikhonov et al., 2020). Thus, we might expect that evolution 167

on negatively correlated JDFEs would lead to pleiotropic fitness losses and evolution on 168

positively correlated JDFEs would lead to pleiotropic fitness gains. 169

To test this intuition, we generated a family of Gaussian JDFEs that varied, among 170

other things, by their correlation structure (Figure 2; Materials and Methods). We then 171

simulated the evolution of an asexual population on these JDFEs using a standard Wright- 172

Fisher model (Materials and Methods) and tested whether the trade-off strength, mea- 173

sured by the JDFE’s correlation coefficient, predicts the dynamics of non-home fitness. 174

Figure 2 shows that our naive expectation is incorrect. Positively correlated JDFEs 175

sometimes lead to pleiotropic fitness losses (Figure 1D,I), and negatively correlated JD- 176
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FEs sometimes lead to pleiotropic fitness gains (Figure 2B,G). Even if we calculate the 177

correlation coefficient only among mutations that are beneficial in the home environment, 178

the pleiotropic outcomes still do not always conform to the naive expectation, as the sign 179

of the correlation remains the same as for the full JDFEs in all these examples. 180

There are other properties of the JDFE that we might intuitively expect to be predic- 181

tive of the pleiotropic outcomes of adaptation. For example, among the JDFEs considered 182

in Figure 2, it is apparent that those with similar relative probability weights in the first 183

and fourth quadrants produce similar pleiotropic outcomes. However, simulations with 184

other JDFE shapes show that even distributions that are similar according to this metric 185

can also result in qualitatively different pleiotropic outcomes (Supplementary Figure S2). 186

Overall, our simulations show that JDFEs with apparently similar shapes can pro- 187

duce qualitatively different trajectories of pleiotropic fitness changes (e.g., compare Fig- 188

ures 2A,F and 2B,G or Figures 2D,I and 2E,J). Conversely, JDFEs with apparently differ- 189

ent shapes can result in rather similar pleiotropic outcomes (e.g., compare Figures 2B,G 190

and 2E,J or Figures 2A,F and 2D,I). Thus, while the overall shape of the JDFE clearly 191

determines the trajectory of pleiotropic fitness changes, it is not immediately obvious 192

what features of its shape play the most important role, particularly if the JDFE is more 193

complex than a multivariate Gaussian. In other words, even if we have perfect knowledge 194

of the fitness effects of all mutations in multiple environments, converting this knowledge 195

into a qualitative prediction of the expected direction of pleiotropic fitness change (gain 196

or loss) does not appear straightforward. Therefore, we next turn to developing a popu- 197

lation genetics model that would allow us to predict not only the direction of pleiotropic 198

fitness change but also the expected rate of this change and the uncertainty around the 199

expectation. 200

The population genetics of pleiotropy 201

To systematically investigate which properties of the JDFE determine the pleiotropic 202

fitness changes in the non-home environment, we consider a population of size N that 203

evolves on a JDFE in the “strong selection weak mutation” (SSWM) regime, also known 204

as the “successional mutation” regime (Orr, 2000; Desai and Fisher, 2007; Kryazhimskiy 205

et al., 2009; Good and Desai, 2015). 206

We consider an arbitrary JDFE without epistasis, that is a situation when all genotypes 207

have the same JDFE Φ (∆x,∆y). We explore an extension to JDFEs with simple forms 208

of epistasis in Appendix A. We assume that mutations arise at rate U per individual 209

per generation. In the SSWM limit, a mutation that arises in the population either 210

instantaneously fixes or instantaneously dies out. Therefore, the population is essentially 211

monomorphic at all times, such that at any time t we can characterize it by its current 212

pair of fitness values (Xt, Yt). If a new mutation with a pair of selection coefficients 213

(∆x,∆y) arises in the population at time t, it fixes with probability π (∆x) = 1−e−2∆x

1−e−2N∆x 214

(Kimura, 1962) in which case the population’s fitness transitions to a new pair of values 215
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(Xt + ∆x, Yt + ∆y). If the mutation dies out, an event that occurs with probability 216

1 − π (∆x), the population’s fitness does not change. This model specifies a continuous- 217

time two-dimensional Markov process. 218

In general, the dynamics of the probability density p(x, y, t) of observing the random 219

vector (Xt, Yt) at values (x, y) are governed by an integro-differential forward Kolmogorov 220

equation, which is difficult to solve (Materials and Methods). However, if most mutations 221

that contribute to adaptation have small effects, these dynamics are well approximated by 222

a diffusion equation which can be solved exactly (Materials and Methods). Then p(x, y, t) 223

is a normal distribution with mean vector 224

m(t) =

(
x0
y0

)
+

(
r1
r2

)
NUb t (1)

and variance-covariance matrix 225

σ2(t) =

(
D11 D12

D12 D22

)
NUb t, (2)

where are r1 and r2, given by equations (7) and (8) in Materials and Methods, are the 226

expected fitness effects in the home and non-home environments for a mutation fixed in the 227

home environment, and D11, D12 and D22, given by equations (9)–(11) in Materials and 228

Methods, are the second moments of this distribution. Here, Ub = U
∫∞
−∞ dη

∫∞
0
dξΦ(ξ, η) 229

is the total rate of mutations beneficial in the home environment, and x0 and y0 are the 230

initial values of population’s fitness in the home and non-home environments. 231

Equations (1), (2) show that the distribution of population’s fitness at time t in the 232

non-home environment is entirely determined by two parameters, r2 and D22, which we 233

call the pleiotropy statistics of the JDFE. The expected rate of fitness change in the non- 234

home environment depends on the pleiotropy statistic r2, which we refer to as the expected 235

pleiotropic effect. Thus, evolution on a JDFE with a positive r2 is expected to result in 236

pleiotropic fitness gains and evolution on a JDFE with a negative r2 is expected to result 237

in pleiotropic fitness losses. Equation (2) shows that the variance around this expectation 238

is determined by the pleiotropy variance statistic D22. Since both the expectation and the 239

variance change linearly with time (provided r2 6= 0), the change in the non-home fitness 240

in any replicate population would eventually have the same sign as r2, but the time scale 241

of such convergence depends on the “collateral risk” statistic c = r2/
√
D22 (Materials and 242

Methods). This observation has important practical implications, and we return to it in 243

the Section “Robust ranking of drug pairs”. 244

These theoretical results suggest a simple explanation for the somewhat counter- 245

intuitive observations in Figure 2. We may intuitively believe that evolution on negatively 246

correlated JDFEs should lead to fitness losses in the non-home environment because on 247

such JDFEs mutations with largest fitness benefits in the home environment typically 248

have negative pleiotropic effects. However, such mutations may be too rare to drive adap- 249

tation. At the same time, the more common mutations that do typically drive adaptation 250
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Figure 3. Pleiotropy statistics predict the properties of non-home fitness trajec-
tories in simulations. Each point corresponds to an ensemble of replicate simulation runs
with the same population genetic parameters on one of 125 Gaussian JDFEs (see Supplementary
Table S3 for the JDFE parameters). A. Expected pleiotropic effect r2 versus the scaled slope
of the mean rate of non-home fitness change observed in SSWM simulations. B. Pleiotropic
variance D22 versus the scaled rate of change in the variance in non-home fitness observed in
SSWM simulations. C, E, G. Expected pleiotropic effect r∗2 versus the scaled slope of the mean
rate of non-home fitness change observed in Wright-Fisher simulations. D, F, H. Pleiotropic
variance D∗22 versus the scaled rate of change in the variance in non-home fitness observed in
Wright-Fisher simulations simulations. (See Supplementary Figure S3 for comparison between
simulations and the unadjusted pleiotropy statistics r2 and D22.) 1000 replicate simulations
were carried out in the SSWM regime. All Wright-Fisher simulations were carried out with
U = 10−4 and variable N , 300 replicate simulations per data point. (see Materials and Methods
for details). In all panels, the grey dashed line represents the identity (slope 1) line, and the
solid line of the same color as the points is the linear regression for the displayed points (R2

value is shown in each panel; P < 2× 10−16 for all regressions).
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may have positive pleiotropic effects, in which case the population would on average gain 251

non-home fitness, as in Figure 2B. Our theory shows that to predict the direction of 252

non-home fitness change, the frequency of beneficial mutations with various pleiotropic 253

effects and the strength of these effects need to be weighted by the likelihood that these 254

mutations fix. The expected pleiotropic effect r2 accomplishes this weighting. 255

We tested the validity of equations (1) and (2) by simulating evolution in the SSWM 256

regime on 125 Gaussian JDFEs with various parameters (Materials and Methods) and 257

found excellent agreement (Figure 3A,B). However, many microbes likely evolve in the 258

“concurrent mutation” regime, i.e., when multiple beneficial mutations segregate in the 259

population simultaneously (Desai and Fisher, 2007; Lang et al., 2013). As expected, our 260

theory fails to quantitatively predict the pleiotropic fitness trajectories when NUb > 1 261

(Supplementary Figure S3). However, the expected rate of change of non-home fitness 262

and its variances remain surprisingly well correlated with the pleiotropy statistics r2 and 263

D22 across various JDFEs (Supplementary Figure S3). In other words, we can still use 264

these statistics to correctly predict whether a population would lose or gain fitness in 265

the non-home environment and to order the non-home environments according to their 266

expected pleiotropic fitness changes and variances. We will exploit the utility of such 267

ranking in the next section. 268

We next sought to expand our theory to the concurrent mutation regime. A key 269

characteristic of adaptation in this regime is that mutations whose fitness benefits in the 270

home environment are below a certain “effective neutrality” threshold are usually outcom- 271

peted by superior mutations and therefore fix with lower probabilities than predicted by 272

Kimura’s formula (Schiffels et al., 2011; Good et al., 2012). Good et al. (2012) provide an 273

equation for calculating the fixation probability π∗(∆x) for a mutation with home fitness 274

benefit ∆x in the concurrent mutation regime (equation (6) in Good et al. (2012)). Thus, 275

by replacing 2ξ (the approximate fixation probability in the SSWM regime) in equations 276

(8) and (11) with π∗(ξ), we obtain the adjusted pleiotropy statistics r∗2 and D∗22 for the 277

concurrent mutation regime (see Materials and Methods for details). 278

To test how well these statistics predict the dynamics of fitness in the non-home en- 279

vironment, we simulated evolution on the same 125 JDFEs using the full Wright-Fisher 280

model with a range of population genetic parameters that span the transition from the 281

successional to the concurrent mutation regimes for 1000 generations. We find that r∗2 282

quantitatively predicts the expected rate of non-home fitness change, with a similar ac- 283

curacy as Good et al. (2012) predict the rate of fitness change in the home environment, 284

as long as NUb > 1 (Figure 3C,E,G; compare with Figure S3A,C,E). D∗22 also predicts 285

the empirically observed variance in non-home fitness trajectories much better than D22, 286

although this relationship is more noisy than between mean fitness and r∗2 (Figure 3D,F,H; 287

compare with Figure S3B,D,F). Some of this noise can be attributed to sampling, as we 288

estimate both the mean and the variance from 300 replicate simulation runs, and the 289

variance estimation is more noisy. Even in the absence of sampling noise however, we do 290

not expect that D∗22 would predict the non-home fitness variance perfectly because our 291
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theory does not account for the autocorrelation in the fitness trajectories that arise in 292

the concurrent mutation regime but not in the successive mutation regime (see Appendix 293

D in Desai and Fisher (2007)). To our knowledge, the correct analytical calculation for 294

fitness variance even in the home environment is not yet available. 295

Overall, our theory allows us to quantitatively predict the dynamics of non-home fit- 296

ness in a range of evolutionary regimes if the JDFE and the population genetic parameters 297

N and Ub are known. However, neither the full JDFE nor the population genetic parame- 298

ters will likely be known in most practical situations, such as designing a drug treatment 299

for a cancer patient. In the next section, we address the question of how to robustly select 300

drug pairs for a sequential treatment, assuming that the pleiotropy statistics r2 and D22 301

are known but the population genetic parameters are not. In the Section “Measuring 302

JDFEs” we provide some guidance on how the JDFE can be measured. 303

Robust ranking of drug pairs 304

Consider a hypothetical scenario where a drug treatment is being designed for a patient 305

with a tumor or a bacterial infection. In selecting a drug, it is desireable to take into 306

account not only the standard medical considerations, such as drug availability, toxicity, 307

etc., but also the possibility that the treatment with this drug will fail due to the evolution 308

of resistance. Therefore, it may be prudent to consider a list of drugs pairs (or higher-order 309

combinations), ranked by the propensity of the first drug in the pair to elicit collateral 310

resistance against the second drug in the pair. All else being equal, the drug deployed 311

first should form a high-ranking pair with at least one other secondary drug. Then, if 312

the treatment with the first drug fails, a second one can be deployed with a minimal 313

risk of collateral resistance. Thus, we set out to develop a metric for ranking drug pairs 314

according to this risk. 315

Clearly, any drug pair with a negative r2 is preferable over any drug pair with a positive 316

r2, since the evolution in the presence of the first drug in a pair with r2 < 0 is expected 317

to elicit collateral sensitivity against the second drug in the pair but the opposite is true 318

for drug pairs with r2 > 0. It is also clear that among two drug pairs with negative r2, a 319

pair with a more negative r2 and lower D22 is preferable over a pair with a less negative 320

r2 and higher D22 because evolution in the presence of the first drug in the former pair 321

will more reliably lead to stronger collateral sensitivity against the second drug in the 322

pair. The difficulty is in how to compare and rank two drug pairs where one pair has 323

a more negative r2 but higher D22. Our theory shows that the chance of emergence of 324

collateral resistance monotonically increases with the collateral risk statistic c = r2/
√
D22 325

(see Materials and Methods). Thus, we propose to rank drug pairs by c from lowest 326

(most negative and therefore most preferred) to highest (least negative or most positive 327

and therefore least preferred). 328

To demonstrate the utility of such ranking, consider four hypothetical drug pairs with 329

JDFEs shown in Figure 4A. The similarity between their shapes makes it difficult to 330
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Figure 4. Robust ranking of drug pairs. A. Four hypothetical JDFEs, ranked by their
c statistic. For all four JDFEs, the mean and the standard devion in the home environment
are −1 × 10−3 and 0.01, respectively. The mean and the standard deviation in the non-home
environment are 1×10−4 and 5.1×10−3 (rank 1), 2.6×10−3 and 7.5×10−3 (rank 2), 5.1×10−3

and 7.5 × 10−3 (rank 3), 7.5 × 10−3 and 0.01 (rank 4). Correlation coefficient for all four
JDFEs is −0.9. B. Collateral resistance risk over time, measured as the fraction of populations
with positive mean fitness in the non-home environment. These fractions are estimated from
1000 replicate Wright-Fisher simulation runs with N = 104, U = 10−4 (NUb = 0.46). Colors
correspond to the JDFEs in panel A. Numbers indicate the c-rank of each JDFE. C. A priori
c-rank (x-axis) versus the a posteriori rank (y-axis) based on the risk of collateral resistance
observed in simulations, for all 125 Gaussian JDFEs and all NUb values shown in Figure 3.
Grey dashed line is the identity line.
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predict a priori which one would have the lowest and highest probabilities of collateral 331

resistance. Thus, we rank these JDFEs by their c statistic. To test whether this ranking 332

is accurate with respect to the risk of collateral resistance, we simulate the evolution of 333

a Wright-Fisher population in the presence of the first drug in each pair for 600 gener- 334

ations and estimate the probability that the evolved population has a positive fitness in 335

the presence of the second drug, i.e., the probability that it becomes collaterally resistant 336

(Figure 4B). We find that our a priori ranking corresponds perfectly to the ranking ac- 337

cording to this probability, evidenced by the consistent higher collateral resistance risk for 338

JDFEs with higher c over time (Figure 4B). Interestingly, the top ranked JDFE does not 339

have the lowest expected pleiotropic effect r2. Nevertheless, the fact that the pleiotropic 340

variance statistic D22 for this JDFE is small ensures that the risk of collateral resistance 341

evolution is the lowest. This 1 to 1 rank correlation holds more broadly, for all 125 342

Gaussian JDFEs and all population genetic parameters considered in the previous section 343

(Figure 4D). In other words, we can use the collateral risk statistic c to robustly rank 344

drug pairs according to the risk of collateral resistance evolution, irrespectively of the 345

population genetic parameters. 346

Measuring JDFEs 347

So far, we assumed that the parameters of the JDFE on which the population evolves 348

are known. In reality, they have to be estimated from data, which opens up at least two 349

practically important questions. The first question is experimental. From what types of 350

data can JDFEs be in principle estimated and how good are different types of data for this 351

purpose? We can imagine, for example, that some properties of JDFEs can be estimated 352

from genome sequencing data (Jerison et al., 2020) or from temporally resolved fitness 353

trajectories (Bakerlee et al., 2021). Here we focus on the most direct way of estimating 354

JDFE parameters, from the measurements of the home and non-home fitness effects of 355

individual mutations. The experimental challenge with this approach is to sample those 356

mutations that will most likely contribute to adaptation in the home environment (see 357

“Discussion” for an extended discussion of this problem). Below, we propose two potential 358

strategies for such sampling: the Luria-Delbrück (LD) method and the barcode lineage 359

tracking (BLT) method. The second question is statistical: how many mutants need to 360

be sampled to reliably rank drug pairs according to the risk of collateral resistance? We 361

evaluate both proposed methods with respect to this property. 362

The idea behind the LD method is to expose the population to a given drug at a 363

concentration above the minimum inhibitory concentration (MIC), so that only resistant 364

mutants survive (Pinheiro et al., 2021). This selection is usually done on agar plates, so 365

that individual resistant mutants form colonies and can be isolated. The LD method is 366

relatively easy to implement experimentally, but it is expected to work only if the drug 367

concentration is high enough to kill almost all non-resistant cells. In reality, resistant mu- 368

tants may be selected at concentrations much lower than MIC (Andersson and Hughes, 369
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2014). Furthermore, mutants selected at different drug concentrations may be genetically 370

and functionally distinct (Lindsey et al., 2013; Pinheiro et al., 2021) and therefore may 371

have statistically different pleiotropic profiles. As a result, mutants sampled with the LD 372

method may not be most relevant for predicting collateral evolution at low drug con- 373

centrations, and other sampling methods may be required for isolating weakly beneficial 374

mutations. 375

Isolating individual weakly beneficial mutations is more difficult because by the time 376

a mutant reaches a detectable frequency in the population it has accumulated multiple 377

additional driver and passenger mutations (Lang et al., 2013; Nguyen Ba et al., 2019). 378

One way to isolate many single beneficial mutations from experimental populations is 379

by using the recently developed barcode lineage tracking (BLT) method (Levy et al., 380

2015; Venkataram et al., 2016). In a BLT experiment, each cell is initially tagged with a 381

unique DNA barcode. As long as there is no recombination or other DNA exchange, any 382

new mutation is permanently linked to one barcode. A new adaptive mutation causes 383

the frequency of the linked barcode to grow, which can be detected by sequencing. By 384

sampling many random mutants and genotyping them at the barcode locus, one can 385

identify mutants from adapted lineages even if they are rare (Venkataram et al., 2016). 386

As a result, BLT allows one to sample mutants soon after they acquire their first driver 387

mutation, before acquiring secondary mutations. 388

To evaluate the quality of sampling based on the LD and BLT methods, we consider the 389

following hypothetical experimental setup. K beneficial mutants are sampled from each 390

home environment (with either one of the methods), and their home and non-home fitness 391

(Xi, Yi) are measured for each mutant i = 1, . . . , K. Since we are ultimately interested 392

in ranking drug pairs by their risk of collateral resistance, we estimate the collateral risk 393

statistic ĉ from these fitness data for each drug pair and use ĉ to rank them (see Materials 394

and Methods for details). We compare such a priori ranking of 125 hypothetical drug 395

pairs with Gaussian JDFEs used in previous sections with their a posteriori ranking based 396

on the risk of collateral resistance observed in simulations. 397

To model the LD sampling method on a given JDFE, we randomly sample K mutants 398

whose home fitness exceeds a certain cutoff. To model a BLT experiment, we simulate 399

evolution in the home environment and randomly sample K beneficial mutants from gen- 400

eration 250 (see Materials and Methods for details). We find that the ĉ-ranking estimated 401

with either LD or BLT methods captures the a posteriori ranking surprisingly well, even 402

when the number of sampled mutants is as low as 10 per drug pair (Figure 5). Given that 403

the JDFEs with adjacent ranks differ in c by a median of only 0.65%, the strong correla- 404

tions shown in Figure 5 suggest that even very similar JDFEs can be differentiated with 405

moderate sample sizes. As expected, this correlation is further improved upon increased 406

sampling, and it is insensitive to the specific home fitness threshold that we use in the 407

LD method (Figure S4). We conclude that estimating JDFE parameters is in principle 408

feasible with a modest experimental effort, at least for the purpose of ranking drug pairs. 409
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Figure 5. Sampling effects on the ranking of drug pairs. Both panels show correlations
between the a priori estimated c-rank (x-axis) of the 125 Gaussian JDFEs and their a posteriori
rank (y-axis) based on the observed risk of collateral resistance (same data as the y-axis in
Figure 4C). A. The c statistic is estimated using the Luria-Delbrück method (see text for
details). Cutoff for sampling mutations is 0.5σ, where σ is the standard deviation of the JDFE
in the home environment. See Figure S4 for other cutoff values. B. The c statistic is estimated
using the barcode lineage tracking method with N = 106 and U = 10−4 (see text and Materials
and Methods for details).

Discussion 410

We have shown that many resistance mutations against multiple drugs in E. coli exhibit 411

a diversity of collateral effects. If this is true more generally, it implies that there is an 412

unavoidable uncertainty in whether any given population would evolve collateral resis- 413

tance or sensitivity, which could at least in part explain inconsistencies in experimental 414

observations. We quantified the diversity of pleiotropic effects of mutations with a joint 415

distribution of fitness effects (JDFE) and developed a population genetic theory for pre- 416

dicting the expected collateral outcomes of evolution and the uncertainty around these 417

expectations. Our theory shows that in the successional mutations regime the ensem- 418

ble average rate at which fitness in the non-home environment is gained or lost during 419

adaptation to the home environment is determined by the pleiotropy statistic r2 given by 420

equation (8). How strongly the non-home fitness in any individual population deviates 421

from this ensemble average is determined by the pleiotropy variance statistic D22 given 422

by equation (11). Importantly, r2 and D22 are properties of the JDFE alone, i.e., they 423

do not depend on the parameters of any specific population. In the concurrent mutations 424

regime, the expected rate of non-home fitness gain or loss and the associated variance are 425

reasonably well predicted by the adjusted pleiotropy statistics r∗2(N,Ub) and D∗22(N,Ub). 426

Unlike r2 and D22, the adjusted statistics depend on the population size N and the rate 427
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of beneficial mutations Ub. 428

To quantitatively predict the rate or the probability of evolution of collateral drug 429

resistance in practice would require the knowledge of both the JDFE for the focal bacterial 430

or cancer-cell population in the presence of the specific pair of drugs and its in vivo 431

population genetic parameters. Since estimating the latter parameters is very difficult, it 432

appears unlikely that we would be able to quantitatively predict the dynamics of collateral 433

effects, even if JDFEs were known. A more realistic application of our theory is that it 434

allows us to rank drug pairs according to the risk of collateral resistance even when the 435

population genetic parameters are unknown. Such robust ranking can be computed based 436

on the collateral risk statistic c = r2/
√
D22, a property of the JDFE but not of the evolving 437

population. Drug pairs with positive values of c have a higher chance of eliciting collateral 438

resistance than collateral sensitivity and should be avoided; drug pairs with more negative 439

values of c have a lower risk of collateral resistance evolution than those with less negative 440

values. 441

What the most effective ways of measuring JDFEs are and whether it will be possible 442

to measure JDFE in vivo are open questions. We speculate that the answers will depend 443

on the shapes of the empirical JDFEs because some shapes may be more difficult to 444

estimate than others. For example, if empirical JDFEs resemble multivariate Gaussian 445

distributions, then we can learn all relevant parameters of such JDFE by sampling a 446

handful of random mutants and measuring their fitness in relevant environments. One can 447

also imagine more complex JDFEs where mutations beneficial in the home environment 448

have a dramatically different distribution of non-home fitness effects than mutations that 449

are deleterious or neutral in the home environment. In this case, very large samples 450

of random mutations would be necessary to correctly predict the pleiotropic outcomes 451

of evolution, so that methods that preferentially sample beneficial mutations may be 452

required. We have considered two such methods, which are experimentally feasible. We 453

have shown that both of them perform extremely well on Gaussian JDFEs in the sense 454

that as few as 10 mutants per drug pair are sufficient to produce largely correct ranking 455

of hypothetical drug pairs. However, it may be difficult to apply these methods in vivo, 456

in which case JDFEs would have to be estimated in the lab, with selection pressures 457

reproducing those in vivo as accurately as possible. 458

Our model relies on two important simplifications. It describes the evolution of an 459

asexual population where all resistance alleles arise from de novo mutations. In reality, 460

some resistance alleles in bacteria may be transferred horizontally (Sun et al., 2019). 461

Understanding collateral resistance evolution in the presence of horizontal gene transfer 462

events would require incorporating JDFE into other evolutionary dynamics models (e.g., 463

Neher et al., 2010). Another major simplification is in the assumption that the JDFE 464

stays constant as the population adapts. In reality the JDFE will change over time 465

because of the depletion of the pool of adaptive mutations and because of epistasis (Good 466

et al., 2017; Venkataram et al., 2020). How JDFEs vary among genetic backgrounds is 467

currently unknown. In Appendix A, we have shown that our main results hold at least 468
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in the presence of a simple form of global epistasis. Empirically measuring how JDFEs 469

vary across genotypes and theoretically understanding how such variation would affect 470

the evolution of pleiotropic outcomes are important open question. 471

While we were primarily motivated by the problem of evolution of collateral drug 472

resistance and sensitivity, our theory is applicable more broadly. The shape of JDFE must 473

play a crucial role in determining whether the population evolves towards a generalist or 474

diversifies into multiple specialist ecotypes. Previous literature has viewed this question 475

primarily through the lense of two alternative hypotheses: antagonistic pleiotropy and 476

mutation accumulation (Visher and Boots, 2020). Antagonistic pleiotropy in its strictest 477

sense means that the population is at the Pareto front with respect to the home and 478

non-home fitness, such that any mutation beneficial in the home environment reduces the 479

fitness in the non-home environment (Li et al., 2019). The shape of the Pareto front then 480

determines whether selection would favor specialists or generalists (Levins, 2020; Visher 481

and Boots, 2020). Alternatively, a population can evolve to become a home-environment 482

specialist even in the absence of trade-offs, simply by accumulating mutations that are 483

neutral in the home environment but deleterious in the non-home environment (Kawecki, 484

1994). More recently, it has been recognized that antagonistic pleiotropy and mutation 485

accumulation are not discrete alternatives but rather extremes of a continuum of models 486

(Bono et al., 2020; Jerison et al., 2014, 2020). The JDFE provides a mathematical way to 487

describe this continuum. For example, strict antagonistic pleiotropy can be modeled with 488

a JDFE with zero probability weight in the first quadrant and a bulk of probability in 489

the fourth quadrant. A mutation accumulation scenario can be modeled with a “+”-like 490

JDFE where all mutations beneficial in the home environment are neutral in the non-home 491

environment (i.e., concentrated on the x-axis) and all or most mutations neutral in the 492

home environment (i.e., those on the y-axis) are deleterious in the non-home environment. 493

Our theory shows that in fact all JDFEs with negative r2 lead to loss of fitness in the non- 494

home environment and therefore can potentially promote specialization. While our theory 495

provides this insight, further work is needed to understand how JDFEs govern adaptation 496

to variable environments. This future theoretical work, together with empirical inquiries 497

into the shapes of JDFEs, will not only advance our ability to predict evolution in practical 498

situations, such as drug resistance, but it will also help us better understand the origins 499

of ecological diversity. 500

Materials and Methods 501

Analysis of knock-out and deep mutational scanning data 502

Knock-out data. Chevereau et al. (2015) provide growth rate estimates for 3883 503

gene knock-out mutants of E. coli in the presence of six antibiotics. Our goal is to 504

identify those knock-out mutations that provide resistance against one drug and are also 505

collaterally resistant or collaterally sensitive to another drug. However, it is unclear 506
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from these original data alone which mutations have statistically significant beneficial 507

and deleterious effects because no measurement noise estimates are provided. To address 508

this problem, we obtained replicate wildtype growth rate measurements in the presence 509

of antibiotics from Guillaume Chevereau and Tobias Bollenbach (available at https: 510

//github.com/ardellsarah/JDFE-project). In this additional data set, the wildtype 511

E. coli strain is measured on average 476 times in the presence of each drug. We estimate 512

the wildtype growth rate rWT as the mean of these measurements, and we obtain the 513

selection coefficient for all knock-out mutants as si = ri − rWT. We also obtain the 514

noise distribution Pnoise(s) from the replicate wildtype measurements (shown in red in the 515

diagonal panels in Figure 1). Modeling Pnoise(s) as normal distributions, we obtain the 516

P -values for each mutation in the presence of each antibiotic. 517

We then call any knock-out mutant as resistant against a given drug if its selection 518

coefficient in the presence of that drug exceeds a critical value s+α > 0. We choose s+α 519

using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) so that the 520

false discovery rate (FDR) among the identified resistant mutants is α ≈ 0.25. We could 521

not find an s+α for α . 0.25 for trimethoprim (TMP) and chloramphenicol (CHL), i.e., 522

there were not enough knock-out mutations with positive selection coefficients to reliably 523

distinguish them from measurement errors. 524

We apply the same procedure to identify mutations that are collaterally resistant and 525

collaterally sensitive against a second drug among all mutations that are resistant against 526

the first drug, except we aim for FDR . 0.10. 527

Deep mutational scanning data. Stiffler et al. (2015) provide estimates of relative 528

fitness for 4997 point mutations in the TEM-1 β-lactamase gene in the presence of ce- 529

fotaxime (CEF) and four concentrations of ampicillin (AMP). They report two replicate 530

measurements per mutant in each concentration of AMP but unfortunately only a single 531

measurement per mutant in the presence of CEF. We chose CEF as the home environment 532

and call all mutations with positive measured fitness effects as resistant against CEF. For 533

each such mutation, we use two replicate measurements in each concentration of AMP to 534

estimate its mean fitness effect and the 90% confidence interval around the mean, based 535

on the normal distribution. We call any CEF-resistant mutation with the entire confi- 536

dence interval above (below) zero as collaterally resistant (sensitive) against AMP at that 537

concentration. All remaining CEF-resistant mutations are called collaterally neutral. 538

Theory 539

Successional mutations regime. We assume that an asexual population evolves 540

according the Wright-Fisher model in the strong selection weak mutation (SSWM) limit 541

(Orr, 2000; Kryazhimskiy et al., 2009; Good and Desai, 2015), also known as the “suc- 542

cessional mutations” regime (Desai and Fisher, 2007). In this regime, the population 543

remains monomorphic until the arrival of a new mutation that is destined to fix. The 544
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waiting time for such new mutation is assumed to be much longer than the time it takes 545

for the mutation to fix, i.e., fixation happens almost instantaneously on this time scale, 546

after which point the population is again monomorphic. If the per genome per generation 547

rate of beneficial mutations is Ub, their typical effect is s and the population size is N , 548

the SSWM approximation holds when NUb � 1/ ln (Ns) (Desai and Fisher, 2007). 549

We describe our population by a two-dimensional vector of random variables (Xt, Yt), 550

where Xt and Yt are the population’s fitness (growth rate or the Malthusian param- 551

eter) in the home and non-home environments at generation t, respectively. We as- 552

sume that the fitness vector of the population at the initial time point is known and is 553

(x0, y0). We are interested in characterizing the joint probability density p(x, y, t) dx dy = 554

Pr {Xt ∈ [x, x+ dx), Yt ∈ [y, y + dy)}. 555

We assume that all genotypes have the same JDFE Φ (∆x,∆y), i.e., there is no epis- 556

tasis. In the exponential growth model, the selection coefficient of a mutation is the 557

difference between the mutant and the ancestor growth rates in the home environment, 558

i.e., ∆x. The probability of fixation of the mutant is given by Kimura’s formula, which 559

we approximate by 2∆x for ∆x > 0 and zero otherwise (Crow and Kimura, 1972). 560

If the total rate of mutations (per genome per generation) is U , the rate of mutations 561

beneficial in the home environment is given by Ub = Ufb where fb =
∫∞
−∞ dη

∫∞
0
dξ Φ(ξ, η) 562

is the fraction of mutations beneficial in the home environment. Once such a mutation 563

arises, its selection coefficients in the home and non-home environments are drawn from 564

the JDFE of mutations beneficial in the home environment Φb(∆x,∆y) = Φ(∆x,∆y)/fb. 565

Then, in the SSWM limit, our population is described by a two-dimensional continuous- 566

time continuous-space Markov chain with the transition rate from state (x, y) to state 567

(x′, y′) given by 568

2NUbQ(x′, y′|x, y) =

{
2NUb (x′ − x) Φb (x′ − x, y′ − y) if x′ > x,
0 otherwise.

(3)

The probability distribution p(x, y, t) satisfies the integro-differential forward Kolmogorov 569

equation (Van Kampen, 1992) 570

1

NUb

∂p

∂t
(x, y, t)

= 2

∫ ∞
−∞

dη

∫ ∞
−∞

dξ
(
p(ξ, η, t)Q(x, y|ξ, η)− p(x, y, t)Q(ξ, η|x, y)

)
(4)

with the initial condition 571

p(x, y, 0) = δ(x− x0) δ(y − y0). (5)

When beneficial mutations with large effects are sufficiently rare, equation (4) can be 572

approximated by the Fokker-Planck equation (Van Kampen, 1992) 573

1

NUb

∂p

∂t
= −r1

∂p

∂x
− r2

∂p

∂y
+
D11

2

∂2p

∂x2
+D12

∂2p

∂x∂y
+
D22

2

∂2p

∂y2
, (6)

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2021. ; https://doi.org/10.1101/2020.08.25.267484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/


where 574

r1 = 2

∫ ∞
−∞

dη

∫ ∞
0

dξ ξ2 Φb(ξ, η), (7)

r2 = 2

∫ ∞
−∞

dη

∫ ∞
0

dξ η ξ Φb(ξ, η) (8)

are the expected fitness effects in the home and non-home environments for a mutation 575

fixed in the home environment, and 576

D11 = 2

∫ ∞
−∞

dη

∫ ∞
0

dξ ξ3 Φb(ξ, η), (9)

D12 = 2

∫ ∞
−∞

dη

∫ ∞
0

dξ η ξ2 Φb(ξ, η), (10)

D22 = 2

∫ ∞
−∞

dη

∫ ∞
0

dξ η2 ξ Φb(ξ, η) (11)

are the second moments of the distribution of the fitness effects of mutations fixed in 577

the home environment. The solution to equation (6) with the initial condition (5) is a 578

multi-variate normal distribution with the mean vector m(t) and the variance-covariance 579

matrix σ2(t) given by equations (1), (2). 580

Concurrent mutations regime. The theory we developed so far for the successional 581

mutations regime breaks down in the concurrent mutations regime, i.e., when multiple 582

adaptive mutations segregate in the population simultaneously (Desai and Fisher, 2007). 583

The main effect of competition between segregating adaptive lineages is that many new 584

beneficial mutations arise in relatively low-fitness genetic backgrounds and have almost no 585

chance of surviving competition (Desai and Fisher, 2007; Schiffels et al., 2011; Good et al., 586

2012). As a result, the fixation probability of a beneficial mutation with selective effect 587

∆x in the home environment is no longer 2∆x. Instead, beneficial mutations that provide 588

fitness benefits below a certain threshold xc behave as if they are effectively neutral (i.e., 589

their fixation probability is close to zero), and most adaptation is driven by mutations 590

with benefits above xc, where xc depends on the population genetic parameters N and 591

Ub as well as the shape of the distribution of fitness effects of beneficial mutations. Good 592

et al. (2012) derived equations that allow us to calculate the effective fixation probability 593

π∗(∆x;N,Ub) of a beneficial mutation with the fitness benefit ∆x in the home environment 594

in the concurrent mutation regime. Thus, to predict the average rate of non-home fitness 595

change, we replace the SSWM fixation probability 2ξ in equation (8) with π∗(ξ;N,Ub) 596

and obtain the adjusted expected pleiotropic effect 597

r∗2(N,Ub) =

∫ ∞
−∞

dη

∫ ∞
0

dξ η π∗(ξ;N,Ub) Φb(ξ, η). (12)
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We similarly obtain the adjusted pleiotropic variance statistic 598

D∗22(N,Ub) =

∫ ∞
−∞

dη

∫ ∞
0

dξ η2 π∗(ξ;N,Ub) Φb(ξ, η), (13)

although, as discussed in Section “The population genetics of pleiotropy”, we do not 599

expect D∗22 to capture all of the variation in non-home fitness trajectories. 600

To calculate π∗(∆x;N,Ub) for the Gaussian JDFEs shown in Figure 2, we first sub- 601

stitute equation (20) in Good et al. (2012) with β = 2 into equations (18), (19) in Good 602

et al. (2012) and then numerically solve these equations for xc and v using the Find- 603

Root numerical method in Mathematica. Note that all our Guassian JDFEs share the 604

same mean and variance in the home environment, so we need to solve these equations 605

only once for each pair of N and Ub values. We then substitute the obtained values 606

of xc and v into equations (4) and (9) in Good et al. (2012) and calculate π∗ by a 607

numerical integration of equation (6) in Good et al. (2012) in R (available at https: 608

//github.com/ardellsarah/JDFE-project). 609

Ranking of drug pairs 610

According to equations (1), (2), both the expected non-home fitness and its variance 611

change linearly with time, so that at time t the mean is Z = c
√
NUb t standard deviations 612

above y0 (if r2 > 0) or below y0 (if r2 < 0), where c = r2/
√
D22. In other words, if r2 > 0, 613

the bulk of the non-home fitness distribution eventually shifts above y0, and if r2 < 0, it 614

shifts below y0. All else being equal, a larger value of |c| implies faster rate of this shift. 615

The interpretation of these observations in terms of collateral resistance/sensitivity is 616

that adaptation in the presence of the first drug will eventually lead to collateral resistance 617

against the second drug if r2 > 0 and to collateral sensitivity if r2 < 0. Furthermore, all 618

else being equal, collateral sensitivity evolves faster and the chance of evolving collateral 619

resistance is smaller for drug pairs with more negative c (i.e., larger |c|). Thus, we use c 620

to order drug pairs from the most preferred (those with the most negative values of c) to 621

least preferred (those with least negative or positive values of c). 622

Generation of JDFEs 623

Gaussian JDFEs. The JDFEs in Figure 2 have the following parameters. Mean in the 624

home environment: −0.05. Standard deviation in both home and non-home environments: 625

0.1. Means in the non-home environment: 0.08, 0.145, 0, −0.145, −0.08 in panels A 626

through E, respectively. 627

The JDFEs in Figure 3 have the following parameters. Mean and standard deviation 628

in the home environment: −0.001 and 0.01, respectively. The non-home mean varies 629

between 0.0001 and 0.01. The non-home standard deviation varies between 0.0001 and 630

0.01. The correlation between home and non-home fitness varies between −0.9 and 0.9, 631
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for a total of 125 JDFEs. All parameter values and the resulting pleiotropy statistics for 632

these JDFEs are given in the Supplementary Table S3. 633

JDFEs with equal probabilities of pleiotropically beneficial and deleterious 634

mutations. All JDFEs in Figure S2 are mixtures of two two-dimensional uncorrelated 635

Gaussian distributions, which have the following parameters. Mean in the home environ- 636

ment: 0.4. Standard deviation in both home and non-home environments: 0.1. Means in 637

the non-home environment: 0.1 and −0.1 in panel A, 0.5 and −0.5 in panel B, 0.17 and 638

−0.5 in panel C, and 0.5 and −0.17 in panel D. 639

Simulations 640

We carried out two types of simulations, SSWM model simulations and full Wright-Fisher 641

model simulations. 642

Strong selection weak mutation. The SSWM simulations were carried out using 643

the Gillespie algorithm (Gillespie, 1976), as follows. We initiate the populations with 644

home and non-home fitness values x0 = 0 and y0 = 0. At each iteration, we draw the 645

waiting time until the appearance of the next beneficial mutation from the exponential 646

distribution with the rate parameter NUb and advance the time by this amount. Then, 647

we draw the selection coefficients ∆x and ∆y of this mutation in the home- and non- 648

home environment, respectively, from the JDFE (a multivariate normal distribution). 649

With probability 2∆x, the mutation fixes in the population. If it does, the fitness of the 650

population is updated accordingly. 651

Wright-Fisher model. We simulate evolution in the home environment according 652

to the Wright-Fisher model with population size N as follows. We initiate the whole 653

population with a single genotype with fitness x0 = 0 and y0 = 0 in the home and non- 654

home environments. Suppose that at generation t, there are K(t) genotypes, such that 655

genotype i has home- and non-home fitness Xi and Yi, respectively, and it is present at 656

frequency fi(t) > 0 in the population. We generate the genotype frequencies at generation 657

t + 1 in three steps. In the reproduction step, we draw random numbers B′i(t + 1), 658

i = 1, ..., K(t) from the multinomial distribution with the number of trials N and success 659

probabilities pi(t) = fi(t) + fi(t)
(
Xi(t)−X(t)

)
, where X(t) =

∑K(t)
i=1 Xi(t)fi(t) is the 660

mean fitness of the population in the home environment at generation t. In the mutation 661

step, we draw a random number M of new mutants from the Poisson distribution with 662

parameter NU , where U is the total per individual per generation mutation rate. We 663

randomly determine the “parent” genotypes in which each mutation occurs and turn the 664

appropriate numbers of parent individuals into new mutants. We assume that each new 665

mutation creates a new genotype and has fitness effects ∆x and ∆y in the home and 666

non-home environments. ∆x and ∆y are drawn randomly from the JDFE Φ(∆x,∆y). 667
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We obtain each mutants fitness by adding these values to the parent genotype’s home 668

and non-home fitness values. In the final step, all genotypes that are represented by zero 669

individuals are removed and we are left with K(t + 1) genotypes with Bi(t + 1) > 0, 670

i = 1, . . . , K(t+ 1) individuals. Then we set fi(t+ 1) = Bi(t+ 1)/N . 671

Sampling beneficial mutants from JDFEs and estimating the c 672

statistic 673

We model the LD sampling method by randomly drawing mutants from the JDFE until 674

the desired number K of mutants whose home fitness exceeds the focal threshold are 675

sampled. We estimate the c statistic from the pairs of home and non-home fitness effects 676

Xi and Yi of these i = 1, . . . , K sampled mutants. To do so, we first estimate r2 and D22 677

as r̂2 = 1/K
∑K

i=1Xi Yi and D̂22 = 1/K
∑K

i=1Xi Y
2
i . We then calculate ĉ = r̂2/

√
D̂22. 678

For the BLT sampling method, we simulate the Wright-Fisher model as described 679

above for N = 106 and U = 10−4 for 250 generations. At generation 250, we randomly 680

sample existing beneficial mutants proportional to their frequency in the population with- 681

out replacement (i.e., the same beneficial mutation is sampled at most once). Sampling 682

more than ∼ 50 distinct beneficial mutants from a single population becomes difficult 683

because there may simply be not enough such mutants or some of them may be at very 684

low frequencies. Therefore, if the desired number of mutants to sample exceeds 50, we run 685

multiple replicate simulations and sample a maximum of 100 distinct beneficial mutants 686

per replicate until the desired number of mutants is reached. We then estimate the c 687

statistics as with the LD method. 688

Code availability 689

All scripts are available at https://github.com/ardellsarah/JDFE-project. 690
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Supplementary Figures 913

Supplementary Figure S1. Fitness effects of single point mutations in the TEM-1
β-lactamase gene in E. coli in the presence of cefotaxime and ampicillin. Data from
Stiffler et al. (2015). Panels show data for different concentrations of ampicillin, as indicated.
Fitness is measured as the change in the log ratio of the mutant to wildtype frequency during
growth in the presence of the drug. Cefotaxime (CEF) is chosen as the home environment
(see Materials and Methods for details). Each point represents a single point mutation and is
colored by its (collateral) fitness effect in the presence of ampicillin, as indicated in the legend.
The numbers of mutations with positive fitness in the presence of cefotaxime with different
collateral effects are shown in the lower right corner of each panel.
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Supplementary Figure S2. Same as Figure 2, but for JDFEs with equal probability weights
in the first and fourth quadrants. See Materials and Methods for details.

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2021. ; https://doi.org/10.1101/2020.08.25.267484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/


0.3

3

0.3 3

×10–7

×10–6

0.3

3

0.3 3 ×10–6

×10–8

0.3

3

0.3 3 ×10–6

×10–9

−1

0

2

0−1 ×10–4

×10–5

1 2

−1

0

2

−1 0 1

x10–6

×10–42

−5

0

5

0−1 1

×10–5

×10–42

NUb = 0.46 NUb = 4.6 NUb = 46

Expected pleiotropic effect, r2

Pleiotropic variance, D22

A C E

B D F

Supplementary Figure S3. Same as Figure 3C–H, but with r2 and D22 shown on the x-axis.

34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2021. ; https://doi.org/10.1101/2020.08.25.267484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/


0

50

100

0 50 100 0 50 100 0 50 100

Sampled mutants
1 R2 = 0.19
10 R2 = 0.88

102 R2 = 0.95
103 R2 = 0.97

Sampled mutants
1 R2 = 0.34
10 R2 = 0.81

102 R2 = 0.90
103 R2 = 0.93

Sampled mutants
1 R2 = 0.40
10 R2 = 0.81

102 R2 = 0.88
103 R2 = 0.88

Estimated c-rank

R
an

k 
by

 ri
sk

 o
f c

ol
la

te
ra

l 
re

si
st

an
ce

1σ 2σ 3σ
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mutations, as indicated above each panel (σ is the standard deviation of the JDFE in the home
environment). See Materials and Methods for details.
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Supplementary Tables 914

Supplementary Table S1. P -values and calls of collateral effects of beneficial knock-out
mutations in the Chevereau et al. (2015) data (see Materials and Methods for details).

Supplementary Table S2. Calls of collateral effects of mutations beneficial in CEF in the
Stiffler et al. (2015) data (see Materials and Methods for details).

Supplementary Table S3. Parameters and summary statistics of simulation results for all
Gaussian JDFEs used in Figure 3.
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Appendix A JDFE with global epistasis 915

Results in the main text were derived under the assumption that all genotypes have the 916

same JDFE, i.e., in the absence of epistasis. In reality, JDFEs probably vary from one 917

genotype to another, but how they vary is not yet well characterized. Recent studies 918

have found that the fitness effects of many mutations available to a genotype in a given 919

environment depend primarily on the fitness of that genotype in that environment (Khan 920

et al., 2011; Chou et al., 2011; Wiser et al., 2013; Kryazhimskiy et al., 2014; Johnson et al., 921

2019; Wang et al., 2016; Aggeli et al., 2020; Lukačǐsinová et al., 2020). This dependence 922

is sometimes referred to as global or fitness-dependent epistasis (Kryazhimskiy et al., 923

2009, 2014; Reddy and Desai, 2020; Husain and Murugan, 2020). Here, we ask whether 924

our main results would hold if the pathogen population evolves on a JDFE with global 925

epistasis. 926

Global epistasis can be modeled in our framework by assuming that the JDFE Φg of 927

genotype g depends only the fitness of this genotype in the home and non-home envi- 928

ronments, x(g), y(g), i.e. Φg (∆x,∆y) = Φx(g),y(g) (∆x,∆y), which is a two-dimensional 929

extension of the model considered by Kryazhimskiy et al. (2009). Thus, in the SSWM 930

regime, the population can still be fully described by its current pair of fitness values in 931

the home and non-home environments (Xt, Yt). The dynamics of the probability density 932

p(x, y, t) are governed by the same Kolmogorov equation as in the non-epistatic case, 933

which can still be approximated by a diffusion equation (6). However, while in the non- 934

epistatic case the drift and diffusion coefficients of this equation, r1, r2, D11, D12 and 935

D22 are constants, in the presence of global epistasis, they become functions of x and 936

y. Although this equation cannot be solved analytically in the general case, it can be 937

solved numerically, provided that the functions r1(x, y), r2(x, y), D11(x, y), D12(x, y) and 938

D22(x, y) are known. Thus, in principle, our theory can predict the trajectories of non- 939

home fitness in the presence of global epistasis. 940

To explore the implications of global epistasis for collateral drug resistance evolution, 941

we consider the simplest scenario where the functional form of global epistasis (i.e., how 942

Φx,y depends on x and y) is the same across different drugs. In this case, we would expect 943

that the ranking of drug pairs according to the risk of collateral resistance would be the 944

same for all genotypes. In particular, the drug pair whose risk of collateral resistance risk 945

is the lowest for the wildtype should also be the pair with the lowest risk for the evolved 946

genotypes. 947

To test this prediction, we model resistance evolution on Gaussian JDFEs whose mean 948

vector and the correlation coefficient are fixed while the standard deviations σh(x) and 949

σnh(y) in the home and non-home environments decrease linearly with the fitness in the 950

respective environment, σh(x) = max {0, σh,0 − γh x} and σnh(y) = max {0, σnh,0 − γnh y}. 951

Appendix 1 Figure 1A shows how one such JDFE changes along an expected evolutionary 952

trajectory. The corresponding expected home and non-home fitness trajectories and their 953

variance are shown in Appendix 1 Figure 1B. Appendix 1 Figure 1C shows how the 954
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Appendix 1 Figure 1. Evolution on JDFEs with global epistasis and the risk of
collateral resistance. A. Gaussian JDFE with global epistasis as it changes along the expected
evolutionary trajectory shown in panel B. Parameters of the initial JDFE at x = y = 0 are the
same as for the rank 1 JDFE in Figure 4A; γh = γnh = 0.5. B. Home and non-home fitness
trajectories for the JDFE with global epistasis shown in panel A. Thick lines show the mean,
ribbons show ±1 standard deviation estimated from 500 replicate simulations. Population size
N = 104, mutation rate U = 10−4. Dashed vertical lines indicate the time points at which
the JDFE snapshots in panel A are shown. C. Probability of collateral resistance over time for
four Gaussian JDFE with global epistasis. Parameters of the initial JDFEs at x = y = 0 are
the same as for the four JDFE in Figure 4A, and γh = γnh = 0.5 for all of them. N = 104,
mutation rate U = 10−4, 1500 replicate simulation runs per JDFE. Colored numbers indicate
the predicted c-rank of the initial JDFEs (same as in Figure 4A).
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probability (risk) of collateral resistance changes over time on four different JDFEs with 955

global epistasis. For the ancestral strain (whose fitness we set by convention to x = y = 0), 956

these four JDFEs are identical to those shown in Figure 4A; as the populations evolve, 957

JDFEs change as specified above with γh = γnh = 0.5. As expected, the ranking of these 958

epistatic JDFEs according to the risk of collateral resistance stays constant over time and 959

can be predicted from estimates of the c parameters for the ancestral strain. 960
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