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Abstract 6

Resistance mutations against one drug can elicit collateral sensitivity against other drugs. -
Multi-drug treatments exploiting such trade-offs can help slow down the evolution of re- s
sistance. However, if mutations with diverse collateral effects are available, a treated o
population may evolve either collateral sensitivity or collateral resistance. How to de- 1o
sign treatments robust to such uncertainty is unclear. We show that many resistance u
mutations in Fscherichia coli against various antibiotics indeed have diverse collateral ef- 1
fects. We propose to characterize such diversity with a joint distribution of fitness effects 13
(JDFE) and develop a theory for describing and predicting collateral evolution based on 14
simple statistics of the JDFE. We show how to robustly rank drug pairs to minimize 1s
the risk of collateral resistance and how to estimate JDFEs. In addition to practical ap- 16
plications, these results have implications for our understanding of evolution in variable 17
environments. 18


https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.267484; this version posted August 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction 1o

The spread of resistance against most antibiotics and the difficulties in developing new 2
ones has sparked considerable interest in using drug combinations and sequential drug =
treatments (Pal et al., 2015). Treatments where the drugs are chosen so that resistance 2
against one of them causes the pathogen or cancer population to become sensitive to 2
the other—a phenomenon known as collateral sensitivity—can eliminate the population 2s
before multi-drug resistance emerges (Pal et al.; 2015; Pluchino et al., 2012). 2

Successful multi-drug treatments hinge on knowmg which drugs select for collateral 2
sensitivity against which other drugs. This information is obtained empirically by expos- 2
ing bacterial and cancer-cell populations to drugs and observing the evolutionary outcomes 28
(Bergstrom et al., 2004; Roemhild et al., 2020; Jensen et al., 1997; Imamovic and Sommer, 2
2013; Lazar et al , 2018; Maltas and W ood 2019; Batra et al., 2021). Unfortunately, dif- 30
ferent experiments often produce collateral sensitivity proﬁles that are inconsistent with =
each other (e.g., 1111('1111(')\'1( and Sommer, 2013; Oz et al., 2014; Barbosa et al., 2017; Mal- s
tas and Wood, 2019). Some inconsistencies can be attrlbuted to the fact that resistance s
mutations vary between bacterial strains, drug dosages, etc. (Mira et al., 2015; Barbosa s
et al., 2017; Das et al., 2020; Pinheiro et al., 2021; Card et al., 2020; Gjini and Wood, 35
?0)1) However, wide Varlatlon in collateral outcomes is observed even between replicate 3
populations (Oz et al., 2014; Barbosa et al., 2017; Maltas and Wood, 2019; Nichol et al., &
2019). This variation suggests that bacteria and cancers have access to multiple resistance s
mutations with different collateral sensitivity profiles, such that replicates can accumu- 3
late different mutations simply due to the intrinsic randomness of the evolutionary process 4o
(Jerison et al., 2020). However, the variability of collateral effects among resistance mu- «
tations has not been characterized (but see Card et al.; 2021), and there is no principled 2
approach for accounting for this variability in designing robust multi-drug treatments. In 43
particular, it is unclear which evolutionary parameters determine the expected collateral 44
outcomes of evolution and, importantly, the uncertainty around these expectations. 45

To address this problem, here we develop a population genetics theory of evolution 4
of collateral sensitivity and resistance. Collateral sensitivity and resistance are specific o
examples of the more general evolutionary phenomenon, pleiotropy, which refers to any s
situation when one mutation affects multiple phenotypes (Wagner and Zhang, 2011; Paaby 4
and Rockman, 2013). In case of drug resistance evolution, the direct effect of resistance so
mutations is to increase fitness in the presence of one drug (the “home” environment). s
In addition, they may also provide pleiotropic gains or losses in fitness in the presence of s
other drugs (the “non-home” environments) leading to collateral resistance or sensitivity, s
respectively. 54

Classical theoretical work on pleiotropy has been done in the field of quantitative ss
genetics (Lande and Arnold, 1983; Rose, 1982; Barton, 1990; Slatkin and Frank, 1990; s
Jones et al., 2003; Johnson and Barton, 2005). In these models, primarily developed to s
understand how polygenic traits respond to selection in sexual populations, pleiotropy ss


https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.267484; this version posted August 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

manifests itself as a correlated temporal change in multiple traits in a given environment. s
The question of how new strongly beneficial mutations accumulating in one environment o
affect the fitness of an asexual population in future environments is outside of the scope of &
these models. The pleiotropic consequences of adaptation have also been explored in var- e
ious “fitness landscape” models (e.g. Connallon and Clark, 2015; Martin and Lenormand, e
2015; Harmand et al., 2017; Wang and Dai, 2019; Maltas et al., 2019; Tikhonov et al., ¢
2020). This approach helps us understand how evolutionary trajectories and outcomes s
depend on the global structure of the underlying fitness landscape. However, it is difficult s
to use these models to predict collateral outcomes because the global structure of fitness &
landscape is unknown and notoriously difficult to estimate even in controlled laboratory s
conditions. 69

Here, we take a different approach which is agnostic with respect to the global structure 7
of the fitness landscape. Instead, we assume only the knowledge of the so-called joint =
distribution of fitness effects (JDFE), i.e., the probability that a new mutation has a =
certain pair of fitness effects in the home and non-home environments (Jerison et al.; 2014; 7
Martin and Lenormand, 2015; Bono et al.; 2017). JDFE is a natural extension of the DFE, 7
the distribution of fitness effects of new mutations, often used in modeling evolution in a
single environment (King, 1972; Ohta, 1987; Orr, 2003; Rees and Bataillon, 2006; Eyre-
Walker and Keightley, 2007; Martin and Lenormand, 2008; MacLean and Buckling, 2009;
Kryazhimskiy et al.; 2009; Levy et al., 2015). Like the DFE, the JDFE is a local property s
of the fitness landscape which means that it can be at least in principle estimated, for
example using a variety of modern high-throughput techniques (e.g., Qian et al.; 2012;
Hietpas et al., 2013; Van Opijnen et al., 2009; Stiffler et al., 2015; Chevereau et al., 2015; &
Levy et al., 2015; Blundell et al., 2019; Bakerlee et al., 2021). The downside of this e
approach is that the JDFE can change over time as the population traverses the fitness s
landscape (Good et al., 2017; Venkataram et al., 2020; Aggeli et al., 2020). However, in e
the context of collateral drug resistance and sensitivity, we are primarily interested in e
short time scales over which JDFE can be reasonably expected to stay approximately e
constant. 87

The rest of the paper is structured as follows. First, we use previously published s
data to demonstrate that the bacterium Fscherichia coli has access to drug resistance s
mutations with diverse collateral effects. This implies that, rather than treating collateral o
effects as deterministic properties of drug pairs, we should think of them probabilistically, o
in terms of the respective JDFEs. We then show that a naive intuition about how the o
JDFE determines pleiotropic outcomes of evolution can sometimes fail, and a rigorous o
mathematical approach is therefore required. We develop such an approach, which reveals o
two key “pleiotropy statistics” of the JDFE that determine the dynamics of fitness in the o
non-home condition. Our theory makes quantitative predictions in a variety of regimes if o
the population genetic parameters are known. However, we argue that in the case of drug o
resistance evolution the more important problem is to robustly order drug pairs in terms of o8
their collateral sensitivity profiles even if the population genetic parameters are unknown. oo
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We develop a metric that allows us to do so. Finally, we provide some practical guidance 100
for estimating the pleiotropy statistics of empirical JDFEs in the context of ranking drug 1o
pairs. 102

Results 103

Antibiotic resistance mutations in F. coli have diverse collateral .
effects 105

We begin by demonstrating that JDFE is a useful concept for modeling the evolution 1o
of collateral antibiotic resistance and sensitivity. If all resistance mutations against a 1o
given drug had identical pleiotropic effects on the fitness of the organism in presence of 108
another drug, the dynamics of collateral resistance/sensitivity could be understood with- 10
out the JDFE concept. On the other hand, if different resistance mutations have different 1.0
pleiotropic fitness effects, predicting the collateral resistance/sensitivity dynamics requires 1
specifying the probabilities with which mutations with various home and non-home fitness 11
effects arise in the population. The JDFE specifies these probabilities. Therefore, for the 13
JDFE concept to be useful in the context of collateral resistance/sensitivity evolution, 1.
we need to show that resistance mutations against common drugs have diverse collateral 1
effects in the presence of other drugs. 116

To our knowledge, no data sets are currently publicly available that would allow us 17
to systematically explore the diversity of collateral effects among all resistance mutations s
against any one drug in any organism. Instead, we examined the fitness effects of 3883 110
gene knock-out mutations in the bacterium FEscherichia coli, measured in the presence 120
of six antibiotics (Chevercau et al., 2015), as well as the fitness effects of 4997 point 1z
mutations in the TEM-1 §-lactamase gene measured in the presence of two antibiotics 12
(Stiffler et al., 2015). 123

For the four out of six antibiotics used by Chevercau et al. (2015), we find between 12
12 (0.31 %) and 170 (4.38 %) knock-out mutations that provide some level of resistance 12
against at least one of the antibiotics (false discovery rate (FDR) ~ 25%; Figure 1, 1
Supplementary Table S1; see Materials and Methods for details). Plotting on the z-axis 1
the fitness effect of each knock-out mutation in the presence of the drug assumed to be 1
applied first (i.e., the home environment) against its effect in the presence of another drug 12
assumed to be applied later (i.e., the non-home environment, y-axis), we find mutations 1.
in all four quadrants of this plane, for all 12 ordered drug pairs (Figure 1, Supplementary 1
Table S1). Similarly, we find diverse collateral effects among mutations within a single 13
gene (Figure S1; see Materials and Methods for details). 133

Since both data sets represent subsets of all resistance mutations, we conclude that 134
E. coli likely have access to resistance mutations with diverse pleiotropic effects, such 13
that a fitness gain in the presence of any one drug can come either with a pleiotropic 1
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Figure 1. (Previous page) Fitness effects of gene knock-out mutations in E. coli in
the presence of four antibiotics. Data are from Chevercau et al. (2015). Each diagonal panel
shows the distribution of fitness effects (DFE) of knock-out mutations in the presence of the
corresponding antibiotic (equivalent to Figure 1C in Chevereau et al. (2015)). Scale of the y-axis
in these panels is indicated inside on the right. The estimated measurement noise distributions
are shown in red (see Materials and Methods for details). Note that some noise distributions
are vertically cut-off for visual convenience. The number of identified beneficial mutations (i.e.,
resistance mutations) and the expected number of false positives (in parenthesis) are shown in
the bottom left corner. The list of identified resistance mutations is given in the Supplementary
Table S1. Off-diagonal panels show the fitness effects of knock-out mutations across pairs of
drug environments. The z-axis shows the fitness in the environment where selection would
happen first (i.e., the “home” environment). Each point corresponds to an individual knock-out
mutation. Resistance mutations identified in the home environment are colored according to
their collateral effects, as indicated in the legend. The numbers of mutations of each type are
shown in the corresponding colors in the bottom left corner of each panel. TET: tetracycline;
NIT: nitrofurantoin; MEC: mecillinam; CPR: ciprofloxacin.

gain or a pleiotropic loss of fitness in the presence of other drugs. Therefore, the JDFE 13
framework is suitable for modeling the evolution of collateral resistance/sensitivity. In 13
the next section, we formally define a JDFE and probe our intuition for how its shape 13
determines the fitness trajectories in the non-home environment. 140

JDFE determines the pleiotropic outcomes of adaptation 141

For any genotype ¢ that finds itself in one (“home”) environment and may in the fu- 1
ture encounter another “non-home” environment, we define the JDFE as the probability 1
density @, (Az, Ay) that a new mutation that arises in this genotype has the selection 1
coefficient Az in the home environment and the selection coefficient Ay in the non-home 1
environment (Jerison et al.; 2014). For concreteness, we define the fitness of a genotype as 14
its malthusian parameter (Crow and Kimura, 1972). So, if the home and non-home fitness 14
of genotype g are x and y, respectively, and if this genotype acquires a mutation with 1
selection coefficients Az and Ay, its fitness becomes = + Ax and y + Ay. This definition 14
of the JDFE can, of course, be naturally extended to multiple non-home environments. 1so
In principle, the JDFE can vary from one genotype to another. However, to develop a s
basic intuition for how the JDFE determines pleiotropic outcomes, we assume that all s
genotypes have the same JDFE. We discuss possible extensions to epistatic JDFEs in  1s3
Appendix A. 154

The JDFE is a complex object. So, we first ask whether some simple and intuitive 1ss
summary statistics of the JDFE may be sufficient to predict the dynamics of the non- 1se
home fitness of a population which is adapting in the home environment. Intuitively, s
if there is a trade-off between home and non-home fitness, non-home fitness should de- 1ss
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Figure 2. Gaussian JDFEs and the resulting fitness trajectories. A—E. Contour lines
for five Gaussian JDFEs. “x” marks the mean. For all distributions, the standard deviation is
0.1 in both home- and non-home environments. The correlation coefficient p is shown in each
panel. F—J. Home and non-home fitness trajectories for the JDFEs shown in the corresponding
panels above. Thick lines show the mean, ribbons show +1 standard deviation estimated from
100 replicate simulations. Population size N = 10*, mutation rate U = 10~ (U, = 4.6 x 107?).

cline; if the opposite is true, non-home fitness should increase. Canonically, a trade-off 1so
occurs when any mutation that improves fitness in one environment decreases it in the 160
other environment and vice versa (Roff and Fairbairn, 2007). Genotypes that experience 1
such “hard” trade-offs are at the Pareto front (Shoval et al., 2012; Li et al., 2019). For e
genotypes that are not at the Pareto front, some mutations that are beneficial in the 163
home environment may be beneficial in the non-home environment and others may be 164
deleterious. In this more general case, trade-offs are commonly quantified by the degree 165
of negative correlation between the effects of mutations on fitness in the two environments 166
(Roff and Fairbairn, 2007; Tikhonov et al., 2020). Thus, we might expect that evolution e
on negatively correlated JDFEs would lead to pleiotropic fitness losses and evolution on  1es
positively correlated JDFEs would lead to pleiotropic fitness gains. 169

To test this intuition, we generated a family of Gaussian JDFEs that varied, among 1o
other things, by their correlation structure (Figure 2; Materials and Methods). We then 1
simulated the evolution of an asexual population on these JDFEs using a standard Wright- 17
Fisher model (Materials and Methods) and tested whether the trade-off strength, mea- 13
sured by the JDFE’s correlation coefficient, predicts the dynamics of non-home fitness. 17
Figure 2 shows that our naive expectation is incorrect. Positively correlated JDFEs s
sometimes lead to pleiotropic fitness losses (Figure 1D,I), and negatively correlated JD- s

7


https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.267484; this version posted August 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

FEs sometimes lead to pleiotropic fitness gains (Figure 2B,G). Even if we calculate the 17
correlation coefficient only among mutations that are beneficial in the home environment, s
the pleiotropic outcomes still do not always conform to the naive expectation, as the sign 17
of the correlation remains the same as for the full JDFEs in all these examples. 180

There are other properties of the JDFE that we might intuitively expect to be predic- 1
tive of the pleiotropic outcomes of adaptation. For example, among the JDFEs considered 1
in Figure 2, it is apparent that those with similar relative probability weights in the first 1ss
and fourth quadrants produce similar pleiotropic outcomes. However, simulations with 1s
other JDFE shapes show that even distributions that are similar according to this metric 1ss
can also result in qualitatively different pleiotropic outcomes (Supplementary Figure S2). 1

Overall, our simulations show that JDFEs with apparently similar shapes can pro- 1
duce qualitatively different trajectories of pleiotropic fitness changes (e.g., compare Fig- 1ss
ures 2AF and 2B,G or Figures 2D I and 2E,J). Conversely, JDFEs with apparently differ- s
ent shapes can result in rather similar pleiotropic outcomes (e.g., compare Figures 2B,G 190
and 2E,J or Figures 2A F and 2D,I). Thus, while the overall shape of the JDFE clearly 1o
determines the trajectory of pleiotropic fitness changes, it is not immediately obvious 10
what features of its shape play the most important role, particularly if the JDFE is more 103
complex than a multivariate Gaussian. In other words, even if we have perfect knowledge 104
of the fitness effects of all mutations in multiple environments, converting this knowledge 10
into a qualitative prediction of the expected direction of pleiotropic fitness change (gain 196
or loss) does not appear straightforward. Therefore, we next turn to developing a popu- 1o
lation genetics model that would allow us to predict not only the direction of pleiotropic 10
fitness change but also the expected rate of this change and the uncertainty around the 10
expectation. 200

The population genetics of pleiotropy 201

To systematically investigate which properties of the JDFE determine the pleiotropic 20
fitness changes in the non-home environment, we consider a population of size N that 203
evolves on a JDFE in the “strong selection weak mutation” (SSWM) regime, also known 20
as the “successional mutation” regime (Orr, 2000; Desai and Fisher, 2007; Kryazhimskiy 20
et al., 2009; Good and Desai, 2015). 206

We consider an arbitrary JDFE without epistasis, that is a situation when all genotypes 207
have the same JDFE & (Az, Ay). We explore an extension to JDFEs with simple forms 20
of epistasis in Appendix A. We assume that mutations arise at rate U per individual 20
per generation. In the SSWM limit, a mutation that arises in the population either 2o
instantaneously fixes or instantaneously dies out. Therefore, the population is essentially 2u
monomorphic at all times, such that at any time ¢ we can characterize it by its current 22
pair of fitness values (X;,Y;). If a new mutation with a pair of selection coefficients 23
(Az, Ay) arises in the population at time ¢, it fixes with probability 7 (Ax) = % 214
(Kimura, 1962) in which case the population’s fitness transitions to a new pair of values 2
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(X¢+ Az, Y; + Ay). If the mutation dies out, an event that occurs with probability 2
1 — m (Az), the population’s fitness does not change. This model specifies a continuous- 21v
time two-dimensional Markov process. 218

In general, the dynamics of the probability density p(zx,y,t) of observing the random 210
vector (X;,Y;) at values (z,y) are governed by an integro-differential forward Kolmogorov 2
equation, which is difficult to solve (Materials and Methods). However, if most mutations 2z
that contribute to adaptation have small effects, these dynamics are well approximated by 2
a diffusion equation which can be solved exactly (Materials and Methods). Then p(x,y,t) 23

is a normal distribution with mean vector 24

m(t):(x°>+<T1)NUbt (1)

Yo T2
and variance-covariance matrix 225
Dy D
2 11 12
o’(t) = NUyt, 2
®) ( Diy Dy ) b (2)

where are r; and 79, given by equations (7) and (8) in Materials and Methods, are the 2
expected fitness effects in the home and non-home environments for a mutation fixed in the 2
home environment, and Dy1, D1y and Das, given by equations (9)—(11) in Materials and 2
Methods, are the second moments of this distribution. Here, U, = U ffooo dn fooo dED(E,m) 20
is the total rate of mutations beneficial in the home environment, and zy and g, are the 23
initial values of population’s fitness in the home and non-home environments. 231

Equations (1), (2) show that the distribution of population’s fitness at time ¢ in the s
non-home environment is entirely determined by two parameters, ro and Dso, which we 233
call the pleiotropy statistics of the JDFE. The expected rate of fitness change in the non- 23
home environment depends on the pleiotropy statistic 79, which we refer to as the expected 23
pleiotropic effect. Thus, evolution on a JDFE with a positive ry is expected to result in 2
pleiotropic fitness gains and evolution on a JDFE with a negative ry is expected to result 23
in pleiotropic fitness losses. Equation (2) shows that the variance around this expectation 23
is determined by the pleiotropy variance statistic Dyy. Since both the expectation and the 23
variance change linearly with time (provided 75 # 0), the change in the non-home fitness 240
in any replicate population would eventually have the same sign as r9, but the time scale 2u
of such convergence depends on the “collateral risk” statistic ¢ = r5/v/Day (Materials and 2
Methods). This observation has important practical implications, and we return to it in 2
the Section “Robust ranking of drug pairs”. 244

These theoretical results suggest a simple explanation for the somewhat counter- 2s
intuitive observations in Figure 2. We may intuitively believe that evolution on negatively 2
correlated JDFEs should lead to fitness losses in the non-home environment because on 2
such JDFEs mutations with largest fitness benefits in the home environment typically 2es
have negative pleiotropic effects. However, such mutations may be too rare to drive adap- 24
tation. At the same time, the more common mutations that do typically drive adaptation s
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Figure 3. Pleiotropy statistics predict the properties of non-home fitness trajec-
tories in simulations. Each point corresponds to an ensemble of replicate simulation runs
with the same population genetic parameters on one of 125 Gaussian JDFEs (see Supplementary
Table S3 for the JDFE parameters). A. Expected pleiotropic effect 79 versus the scaled slope
of the mean rate of non-home fitness change observed in SSWM simulations. B. Pleiotropic
variance Do versus the scaled rate of change in the variance in non-home fitness observed in
SSWM simulations. C, E, G. Expected pleiotropic effect 75 versus the scaled slope of the mean
rate of non-home fitness change observed in Wright-Fisher simulations. D, F, H. Pleiotropic
variance D3, versus the scaled rate of change in the variance in non-home fitness observed in
Wright-Fisher simulations simulations. (See Supplementary Figure S3 for comparison between
simulations and the unadjusted pleiotropy statistics ro and Dsy.) 1000 replicate simulations
were carried out in the SSWM regime. All Wright-Fisher simulations were carried out with
U = 10~* and variable N, 300 replicate simulations per data point. (see Materials and Methods
for details). In all panels, the grey dashed line represents the identity (slope 1) line, and the
solid line of the same color as the points is the linear regression for the displayed points (R?
value is shown in each panel; P < 2 x 10716 for all regressions).
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may have positive pleiotropic effects, in which case the population would on average gain s
non-home fitness, as in Figure 2B. Our theory shows that to predict the direction of 25
non-home fitness change, the frequency of beneficial mutations with various pleiotropic 2s3
effects and the strength of these effects need to be weighted by the likelihood that these 254
mutations fix. The expected pleiotropic effect ro accomplishes this weighting. 255

We tested the validity of equations (1) and (2) by simulating evolution in the SSWM 256
regime on 125 Gaussian JDFEs with various parameters (Materials and Methods) and s
found excellent agreement (Figure 3A,B). However, many microbes likely evolve in the 2
“concurrent mutation” regime, i.e., when multiple beneficial mutations segregate in the 250
population simultaneously (Desai and Fisher, 2007; Lang et al., 2013). As expected, our 26
theory fails to quantitatively predict the pleiotropic fitness trajectories when NU, > 1 2=
(Supplementary Figure S3). However, the expected rate of change of non-home fitness 22
and its variances remain surprisingly well correlated with the pleiotropy statistics ro and 263
Dy across various JDFEs (Supplementary Figure S3). In other words, we can still use 26
these statistics to correctly predict whether a population would lose or gain fitness in 2
the non-home environment and to order the non-home environments according to their 266
expected pleiotropic fitness changes and variances. We will exploit the utility of such 26
ranking in the next section. 268

We next sought to expand our theory to the concurrent mutation regime. A key 20
characteristic of adaptation in this regime is that mutations whose fitness benefits in the 20
home environment are below a certain “effective neutrality” threshold are usually outcom- 2n
peted by superior mutations and therefore fix with lower probabilities than predicted by 2
Kimura’s formula (Schiffels et al.; 2011; Good et al., 2012). Good et al. (2012) provide an 27
equation for calculating the fixation probability 7*(Az) for a mutation with home fitness 27
benefit Az in the concurrent mutation regime (equation (6) in Good et al. (2012)). Thus, s
by replacing 2¢ (the approximate fixation probability in the SSWM regime) in equations 2
(8) and (11) with 7*(&), we obtain the adjusted pleiotropy statistics 75 and D3, for the on
concurrent mutation regime (see Materials and Methods for details). 278

To test how well these statistics predict the dynamics of fitness in the non-home en- 27
vironment, we simulated evolution on the same 125 JDFEs using the full Wright-Fisher 2s0
model with a range of population genetic parameters that span the transition from the s
successional to the concurrent mutation regimes for 1000 generations. We find that r3 2
quantitatively predicts the expected rate of non-home fitness change, with a similar ac- 23
curacy as Good et al. (2012) predict the rate of fitness change in the home environment, 2s
as long as NU, > 1 (Figure 3C,E,G; compare with Figure S3A,C,E). DJ, also predicts s
the empirically observed variance in non-home fitness trajectories much better than Das, 266
although this relationship is more noisy than between mean fitness and r; (Figure 3D,F H; 2
compare with Figure S3B,D,F). Some of this noise can be attributed to sampling, as we 2
estimate both the mean and the variance from 300 replicate simulation runs, and the 280
variance estimation is more noisy. Even in the absence of sampling noise however, we do 200
not expect that D3, would predict the non-home fitness variance perfectly because our 2
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theory does not account for the autocorrelation in the fitness trajectories that arise in 20
the concurrent mutation regime but not in the successive mutation regime (see Appendix 203
D in Desai and Fisher (2007)). To our knowledge, the correct analytical calculation for 2e
fitness variance even in the home environment is not yet available. 205

Overall, our theory allows us to quantitatively predict the dynamics of non-home fit- 206
ness in a range of evolutionary regimes if the JDFE and the population genetic parameters 207
N and U, are known. However, neither the full JDFE nor the population genetic parame- 20
ters will likely be known in most practical situations, such as designing a drug treatment 200
for a cancer patient. In the next section, we address the question of how to robustly select 300
drug pairs for a sequential treatment, assuming that the pleiotropy statistics ro and Doy 3:1
are known but the population genetic parameters are not. In the Section “Measuring 3o
JDFEs” we provide some guidance on how the JDFE can be measured. 303

Robust ranking of drug pairs 304

Consider a hypothetical scenario where a drug treatment is being designed for a patient s
with a tumor or a bacterial infection. In selecting a drug, it is desireable to take into o
account not only the standard medical considerations, such as drug availability, toxicity, so
etc., but also the possibility that the treatment with this drug will fail due to the evolution 0
of resistance. Therefore, it may be prudent to consider a list of drugs pairs (or higher-order 30
combinations), ranked by the propensity of the first drug in the pair to elicit collateral s
resistance against the second drug in the pair. All else being equal, the drug deployed su
first should form a high-ranking pair with at least one other secondary drug. Then, if 32
the treatment with the first drug fails, a second one can be deployed with a minimal a3
risk of collateral resistance. Thus, we set out to develop a metric for ranking drug pairs s
according to this risk. 315

Clearly, any drug pair with a negative 7 is preferable over any drug pair with a positive s
r9, since the evolution in the presence of the first drug in a pair with ro < 0 is expected a7
to elicit collateral sensitivity against the second drug in the pair but the opposite is true s
for drug pairs with ro > 0. It is also clear that among two drug pairs with negative 9, a 310
pair with a more negative ro and lower Doy is preferable over a pair with a less negative 32
ro and higher Dy because evolution in the presence of the first drug in the former pair sz
will more reliably lead to stronger collateral sensitivity against the second drug in the s
pair. The difficulty is in how to compare and rank two drug pairs where one pair has 3
a more negative ro but higher Dys. Our theory shows that the chance of emergence of 32
collateral resistance monotonically increases with the collateral risk statistic ¢ = ry/ NI
(see Materials and Methods). Thus, we propose to rank drug pairs by ¢ from lowest s
(most negative and therefore most preferred) to highest (least negative or most positive s
and therefore least preferred). 228

To demonstrate the utility of such ranking, consider four hypothetical drug pairs with s
JDFEs shown in Figure 4A. The similarity between their shapes makes it difficult to s
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Figure 4. Robust ranking of drug pairs. A. Four hypothetical JDFEs, ranked by their
c statistic. For all four JDFEs, the mean and the standard devion in the home environment
are —1 x 1073 and 0.01, respectively. The mean and the standard deviation in the non-home
environment are 1 x 107* and 5.1 x 1073 (rank 1), 2.6 x 1072 and 7.5 x 1073 (rank 2), 5.1 x 1073
and 7.5 x 1073 (rank 3), 7.5 x 1073 and 0.01 (rank 4). Correlation coefficient for all four
JDFEs is —0.9. B. Collateral resistance risk over time, measured as the fraction of populations
with positive mean fitness in the non-home environment. These fractions are estimated from
1000 replicate Wright-Fisher simulation runs with N = 10* U = 10~* (NU, = 0.46). Colors
correspond to the JDFEs in panel A. Numbers indicate the c-rank of each JDFE. C. A priori
c-rank (z-axis) versus the a posteriori rank (y-axis) based on the risk of collateral resistance
observed in simulations, for all 125 Gaussian JDFEs and all NU values shown in Figure 3.
Grey dashed line is the identity line.
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predict a priori which one would have the lowest and highest probabilities of collateral sx
resistance. Thus, we rank these JDFEs by their ¢ statistic. To test whether this ranking 33
is accurate with respect to the risk of collateral resistance, we simulate the evolution of 333
a Wright-Fisher population in the presence of the first drug in each pair for 600 gener- 33
ations and estimate the probability that the evolved population has a positive fitness in 33
the presence of the second drug, i.e., the probability that it becomes collaterally resistant 33
(Figure 4B). We find that our a priori ranking corresponds perfectly to the ranking ac- s
cording to this probability, evidenced by the consistent higher collateral resistance risk for sss
JDFEs with higher ¢ over time (Figure 4B). Interestingly, the top ranked JDFE does not 33
have the lowest expected pleiotropic effect ro. Nevertheless, the fact that the pleiotropic 3«
variance statistic Doy for this JDFE is small ensures that the risk of collateral resistance s
evolution is the lowest. This 1 to 1 rank correlation holds more broadly, for all 125 s
Gaussian JDFEs and all population genetic parameters considered in the previous section s
(Figure 4D). In other words, we can use the collateral risk statistic ¢ to robustly rank s
drug pairs according to the risk of collateral resistance evolution, irrespectively of the s
population genetic parameters. 346

Measuring JDFEs 347

So far, we assumed that the parameters of the JDFE on which the population evolves s
are known. In reality, they have to be estimated from data, which opens up at least two 34
practically important questions. The first question is experimental. From what types of s
data can JDFEs be in principle estimated and how good are different types of data for this s
purpose? We can imagine, for example, that some properties of JDFEs can be estimated s
from genome sequencing data (Jerison et al.; 2020) or from temporally resolved fitness 3s3
trajectories (Bakerlee et al., 2021). Here we focus on the most direct way of estimating ss
JDFE parameters, from the measurements of the home and non-home fitness effects of s
individual mutations. The experimental challenge with this approach is to sample those 356
mutations that will most likely contribute to adaptation in the home environment (see s
“Discussion” for an extended discussion of this problem). Below, we propose two potential s
strategies for such sampling: the Luria-Delbriick (LD) method and the barcode lineage 350
tracking (BLT) method. The second question is statistical: how many mutants need to s
be sampled to reliably rank drug pairs according to the risk of collateral resistance? We sa
evaluate both proposed methods with respect to this property. 362

The idea behind the LD method is to expose the population to a given drug at a s
concentration above the minimum inhibitory concentration (MIC), so that only resistant e
mutants survive (Pinheiro et al.; 2021). This selection is usually done on agar plates, so s
that individual resistant mutants form colonies and can be isolated. The LD method is e
relatively easy to implement experimentally, but it is expected to work only if the drug se
concentration is high enough to kill almost all non-resistant cells. In reality, resistant mu- ses
tants may be selected at concentrations much lower than MIC (Andersson and Hughes, 36
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2014). Furthermore, mutants selected at different drug concentrations may be genetically 7o
and functionally distinct (Lindsey et al., 2013; Pinheiro et al.; 2021) and therefore may sn
have statistically different pleiotropic profiles. As a result, mutants sampled with the LD s
method may not be most relevant for predicting collateral evolution at low drug con- a3
centrations, and other sampling methods may be required for isolating weakly beneficial 37
mutations. 375

Isolating individual weakly beneficial mutations is more difficult because by the time s
a mutant reaches a detectable frequency in the population it has accumulated multiple s
additional driver and passenger mutations (Lang et al., 2013; Nguyen Ba et al., 2019). s
One way to isolate many single beneficial mutations from experimental populations is s
by using the recently developed barcode lineage tracking (BLT) method (Levy et al., s
2015; Venkataram et al., 2016). In a BLT experiment, each cell is initially tagged with a sa
unique DNA barcode. As long as there is no recombination or other DNA exchange, any s
new mutation is permanently linked to one barcode. A new adaptive mutation causes ss
the frequency of the linked barcode to grow, which can be detected by sequencing. By s
sampling many random mutants and genotyping them at the barcode locus, one can sss
identify mutants from adapted lineages even if they are rare (Venkataram et al., 2016). s
As a result, BLT allows one to sample mutants soon after they acquire their first driver s
mutation, before acquiring secondary mutations. 388

To evaluate the quality of sampling based on the LD and BLT methods, we consider the s
following hypothetical experimental setup. K beneficial mutants are sampled from each 390
home environment (with either one of the methods), and their home and non-home fitness 3o
(X;,Y;) are measured for each mutant ¢ = 1,..., K. Since we are ultimately interested 3o
in ranking drug pairs by their risk of collateral resistance, we estimate the collateral risk so3
statistic ¢ from these fitness data for each drug pair and use ¢ to rank them (see Materials 30
and Methods for details). We compare such a priori ranking of 125 hypothetical drug e
pairs with Gaussian JDFEs used in previous sections with their a posteriori ranking based 306
on the risk of collateral resistance observed in simulations. 307

To model the LD sampling method on a given JDFE, we randomly sample K mutants s
whose home fitness exceeds a certain cutoff. To model a BLT experiment, we simulate 300
evolution in the home environment and randomly sample K beneficial mutants from gen- 400
eration 250 (see Materials and Methods for details). We find that the é-ranking estimated
with either LD or BLT methods captures the a posterior: ranking surprisingly well, even 40
when the number of sampled mutants is as low as 10 per drug pair (Figure 5). Given that s
the JDFEs with adjacent ranks differ in ¢ by a median of only 0.65%, the strong correla- a0
tions shown in Figure 5 suggest that even very similar JDFEs can be differentiated with o0
moderate sample sizes. As expected, this correlation is further improved upon increased o
sampling, and it is insensitive to the specific home fitness threshold that we use in the a0
LD method (Figure S4). We conclude that estimating JDFE parameters is in principle o
feasible with a modest experimental effort, at least for the purpose of ranking drug pairs. 40
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Figure 5. Sampling effects on the ranking of drug pairs. Both panels show correlations
between the a priori estimated c-rank (z-axis) of the 125 Gaussian JDFEs and their a posteriori
rank (y-axis) based on the observed risk of collateral resistance (same data as the y-axis in
Figure 4C). A. The c statistic is estimated using the Luria-Delbriick method (see text for
details). Cutoff for sampling mutations is 0.50, where o is the standard deviation of the JDFE
in the home environment. See Figure S4 for other cutoff values. B. The c statistic is estimated
using the barcode lineage tracking method with N = 10 and U = 10~* (see text and Materials
and Methods for details).

Discussion 410

We have shown that many resistance mutations against multiple drugs in E. coli exhibit
a diversity of collateral effects. If this is true more generally, it implies that there is an a1
unavoidable uncertainty in whether any given population would evolve collateral resis- a3
tance or sensitivity, which could at least in part explain inconsistencies in experimental 44
observations. We quantified the diversity of pleiotropic effects of mutations with a joint s
distribution of fitness effects (JDFE) and developed a population genetic theory for pre- s
dicting the expected collateral outcomes of evolution and the uncertainty around these
expectations. Our theory shows that in the successional mutations regime the ensem- 4
ble average rate at which fitness in the non-home environment is gained or lost during 4o
adaptation to the home environment is determined by the pleiotropy statistic ry given by 42
equation (8). How strongly the non-home fitness in any individual population deviates
from this ensemble average is determined by the pleiotropy variance statistic Doy given s
by equation (11). Importantly, o and Dy are properties of the JDFE alone, i.e., they a3
do not depend on the parameters of any specific population. In the concurrent mutations a2
regime, the expected rate of non-home fitness gain or loss and the associated variance are 4s
reasonably well predicted by the adjusted pleiotropy statistics r3(N, Uy) and D3y (N, Up). 42
Unlike 75 and Daqs, the adjusted statistics depend on the population size N and the rate s
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of beneficial mutations Us. 428

To quantitatively predict the rate or the probability of evolution of collateral drug s
resistance in practice would require the knowledge of both the JDFE for the focal bacterial 430
or cancer-cell population in the presence of the specific pair of drugs and its in vivo
population genetic parameters. Since estimating the latter parameters is very difficult, it 4
appears unlikely that we would be able to quantitatively predict the dynamics of collateral a3
effects, even if JDFEs were known. A more realistic application of our theory is that it a4
allows us to rank drug pairs according to the risk of collateral resistance even when the a3
population genetic parameters are unknown. Such robust ranking can be computed based 43
on the collateral risk statistic ¢ = 75 /v/Daa, a property of the JDFE but not of the evolving
population. Drug pairs with positive values of ¢ have a higher chance of eliciting collateral a3
resistance than collateral sensitivity and should be avoided; drug pairs with more negative 430
values of ¢ have a lower risk of collateral resistance evolution than those with less negative 40
values. aa1

What the most effective ways of measuring JDFEs are and whether it will be possible
to measure JDFE in vivo are open questions. We speculate that the answers will depend 3
on the shapes of the empirical JDFEs because some shapes may be more difficult to 4
estimate than others. For example, if empirical JDFEs resemble multivariate Gaussian s
distributions, then we can learn all relevant parameters of such JDFE by sampling a s
handful of random mutants and measuring their fitness in relevant environments. One can 4
also imagine more complex JDFEs where mutations beneficial in the home environment s
have a dramatically different distribution of non-home fitness effects than mutations that 40
are deleterious or neutral in the home environment. In this case, very large samples ss0
of random mutations would be necessary to correctly predict the pleiotropic outcomes s
of evolution, so that methods that preferentially sample beneficial mutations may be s
required. We have considered two such methods, which are experimentally feasible. We s3
have shown that both of them perform extremely well on Gaussian JDFEs in the sense s
that as few as 10 mutants per drug pair are sufficient to produce largely correct ranking sss
of hypothetical drug pairs. However, it may be difficult to apply these methods in vivo, 4s6
in which case JDFEs would have to be estimated in the lab, with selection pressures s
reproducing those in vivo as accurately as possible. 458

Our model relies on two important simplifications. It describes the evolution of an s
asexual population where all resistance alleles arise from de novo mutations. In reality, e
some resistance alleles in bacteria may be transferred horizontally (Sun et al., 2019). s
Understanding collateral resistance evolution in the presence of horizontal gene transfer
events would require incorporating JDFE into other evolutionary dynamics models (e.g., 463
Neher et al., 2010). Another major simplification is in the assumption that the JDFE s
stays constant as the population adapts. In reality the JDFE will change over time 4
because of the depletion of the pool of adaptive mutations and because of epistasis (Good s
et al., 2017; Venkataram et al.; 2020). How JDFEs vary among genetic backgrounds is e
currently unknown. In Appendix A, we have shown that our main results hold at least s
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in the presence of a simple form of global epistasis. Empirically measuring how JDFEs a6
vary across genotypes and theoretically understanding how such variation would affect 470
the evolution of pleiotropic outcomes are important open question. an1

While we were primarily motivated by the problem of evolution of collateral drug
resistance and sensitivity, our theory is applicable more broadly. The shape of JDFE must 4
play a crucial role in determining whether the population evolves towards a generalist or 47
diversifies into multiple specialist ecotypes. Previous literature has viewed this question s
primarily through the lense of two alternative hypotheses: antagonistic pleiotropy and 4
mutation accumulation (Visher and Boots, 2020). Antagonistic pleiotropy in its strictest a7
sense means that the population is at the Pareto front with respect to the home and s
non-home fitness, such that any mutation beneficial in the home environment reduces the 47
fitness in the non-home environment (Li et al.; 2019). The shape of the Pareto front then s
determines whether selection would favor spemahsts or generalists (Levins, 2020; Visher s
and Boots, 2020). Alternatively, a population can evolve to become a home- env1r0nment 182
specialist even in the absence of trade-offs, simply by accumulating mutations that are asss
neutral in the home environment but deleterious in the non-home environment ([Kawecki, s
1994). More recently, it has been recognized that antagonistic pleiotropy and mutation ass
accumulation are not discrete alternatives but rather extremes of a continuum of models s
(Bono et al.; 2020; Jerison et al.; 2014, 2020). The JDFE provides a mathematical way to s
describe thls continuum. For example, strict antagonistic pleiotropy can be modeled with ass
a JDFE with zero probability weight in the first quadrant and a bulk of probability in s
the fourth quadrant. A mutation accumulation scenario can be modeled with a “+7-like 490
JDFE where all mutations beneficial in the home environment are neutral in the non-home 401
environment (i.e., concentrated on the z-axis) and all or most mutations neutral in the 40
home environment (i.e., those on the y-axis) are deleterious in the non-home environment. 40
Our theory shows that in fact all JDFEs with negative ry lead to loss of fitness in the non- e
home environment and therefore can potentially promote specialization. While our theory s
provides this insight, further work is needed to understand how JDFEs govern adaptation s
to variable environments. This future theoretical work, together with empirical inquiries 407
into the shapes of JDFEs, will not only advance our ability to predict evolution in practical s
situations, such as drug resistance, but it will also help us better understand the origins a0
of ecological diversity. 500

Materials and Methods so1

Analysis of knock-out and deep mutational scanning data 502

Knock-out data. Chevereau et al. (2015) provide growth rate estimates for 3883 so3
gene knock-out mutants of F. coli in the presence of six antibiotics. Our goal is to so
identify those knock-out mutations that provide resistance against one drug and are also sos
collaterally resistant or collaterally sensitive to another drug. However, it is unclear sos
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from these original data alone which mutations have statistically significant beneficial sor
and deleterious effects because no measurement noise estimates are provided. To address s
this problem, we obtained replicate wildtype growth rate measurements in the presence s
of antibiotics from Guillaume Chevereau and Tobias Bollenbach (available at https: s
//github.com/ardellsarah/JDFE-project). In this additional data set, the wildtype su
E. coli strain is measured on average 476 times in the presence of each drug. We estimate s
the wildtype growth rate rwr as the mean of these measurements, and we obtain the s
selection coefficient for all knock-out mutants as s; = r; — rwrp. We also obtain the s
noise distribution P, (s) from the replicate wildtype measurements (shown in red in the s
diagonal panels in Figure 1). Modeling Pyyise(s) as normal distributions, we obtain the s
P-values for each mutation in the presence of each antibiotic. 517

We then call any knock-out mutant as resistant against a given drug if its selection s
coefficient in the presence of that drug exceeds a critical value st > 0. We choose sf sw
using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) so that the s
false discovery rate (FDR) among the identified resistant mutants is a ~ 0.25. We could sz
not find an s} for @ < 0.25 for trimethoprim (TMP) and chloramphenicol (CHL), i.e., s
there were not enough knock-out mutations with positive selection coefficients to reliably s
distinguish them from measurement errors. 524

We apply the same procedure to identify mutations that are collaterally resistant and s
collaterally sensitive against a second drug among all mutations that are resistant against s
the first drug, except we aim for FDR < 0.10. 527

Deep mutational scanning data.  Stiffler et al. (2015) provide estimates of relative s
fitness for 4997 point mutations in the TEM-1 S-lactamase gene in the presence of ce- s
fotaxime (CEF) and four concentrations of ampicillin (AMP). They report two replicate s
measurements per mutant in each concentration of AMP but unfortunately only a single s
measurement per mutant in the presence of CEF. We chose CEF as the home environment s3
and call all mutations with positive measured fitness effects as resistant against CEF. For s
each such mutation, we use two replicate measurements in each concentration of AMP to s
estimate its mean fitness effect and the 90% confidence interval around the mean, based sz
on the normal distribution. We call any CEF-resistant mutation with the entire confi- s
dence interval above (below) zero as collaterally resistant (sensitive) against AMP at that s

concentration. All remaining CEF-resistant mutations are called collaterally neutral. 538
Theory 539
Successional mutations regime. We assume that an asexual population evolves s

according the Wright-Fisher model in the strong selection weak mutation (SSWM) limit = sa
(Orr, 2000; Kryazhimskiy et al.; 2009; Good and Desai, 2015), also known as the “suc- s«
cessional mutations” regime (Desai and Fisher, 2007). In this regime, the population s
remains monomorphic until the arrival of a new mutation that is destined to fix. The s
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waiting time for such new mutation is assumed to be much longer than the time it takes s
for the mutation to fix, i.e., fixation happens almost instantaneously on this time scale, s
after which point the population is again monomorphic. If the per genome per generation s
rate of beneficial mutations is Uy, their typical effect is s and the population size is N, ss
the SSWM approximation holds when NU, < 1/1In (Ns) (Desai and Fisher, 2007). 549

We describe our population by a two-dimensional vector of random variables (X;,Y;), ss
where X; and Y; are the population’s fitness (growth rate or the Malthusian param- ss
eter) in the home and non-home environments at generation ¢, respectively. We as- ss
sume that the fitness vector of the population at the initial time point is known and is sss
(x0,Y0). We are interested in characterizing the joint probability density p(x,y,t) dzdy = ss
Pr{X; €[z, z+dz),Y; € [y,y+dy)}. 555

We assume that all genotypes have the same JDFE ® (Az, Ay), i.e., there is no epis- ss
tasis. In the exponential growth model, the selection coefficient of a mutation is the ssr
difference between the mutant and the ancestor growth rates in the home environment, sss
i.e., Ax. The probability of fixation of the mutant is given by Kimura’s formula, which ss
we approximate by 2Az for Az > 0 and zero otherwise (Crow and Kimura, 1972). 560

If the total rate of mutations (per genome per generation) is U, the rate of mutations se
beneficial in the home environment is given by U, = U f, where f, = [*_dn [ dE ®(£,n) se
is the fraction of mutations beneficial in the home environment. Once such a mutation ses
arises, its selection coefficients in the home and non-home environments are drawn from se
the JDFE of mutations beneficial in the home environment ®,(Axz, Ay) = ®(Ax, Ay)/fp. ses
Then, in the SSWM limit, our population is described by a two-dimensional continuous- ses
time continuous-space Markov chain with the transition rate from state (z,y) to state ser
(', y') given by 568

2NU, (2/ — ) Oy (2 — 2,y —y) if 2/ >z, (3)

ro o
2NV, Qs y |z, y) = { 0 otherwise.
The probability distribution p(z,y, t) satisfies the integro-differential forward Kolmogorov se

equation (Van Kampen, 1992) 570
1 Op
— o (z,y,t
= 2 / dn/ dé(p(&mt) Q(z, yl¢,m) —p(x,y,t)Q(f,n!x,y)) (4)
with the initial condition 571
p(z,y,0) = d(z — x0) 6(y — vo)- (5)
When beneficial mutations with large effects are sufficiently rare, equation (4) can be s
approximated by the Fokker-Planck equation (Van Kampen, 1992) 573
1 dp op dp | D1 &%p >p Dyy O%p
et el o it A Tt Sl — £ 2l 6
NG, ot Mar Moy T 2 a2 TP ozay T 2 02 (6)
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Where 574
S / dn /0 de €2 By(.m), (7)
vy - 2/_ dn/o d 1€ By(E,m) (8)

are the expected fitness effects in the home and non-home environments for a mutation s

fixed in the home environment, and 576
Du =2 [ an[ asemcn. (9
Da = 2 [ an [ acnewen) (10)
Du = 2 [ an [ asieanen) (1)

are the second moments of the distribution of the fitness effects of mutations fixed in s
the home environment. The solution to equation (6) with the initial condition (5) is a s
multi-variate normal distribution with the mean vector m(t) and the variance-covariance s
matrix o%(t) given by equations (1), (2). 580

Concurrent mutations regime. The theory we developed so far for the successional se
mutations regime breaks down in the concurrent mutations regime, i.e., when multiple ss
adaptive mutations segregate in the population simultaneously (Desai and Fisher, 2007).  sss
The main effect of competition between segregating adaptive lineages is that many new sss
beneficial mutations arise in relatively low-fitness genetic backgrounds and have almost no  sss
chance of surviving competition (Desai and Fisher, 2007; Schiffels et al., 2011; Good et al.; sss
2012). As a result, the fixation probability of a beneficial mutation with selective effect ser
Ax in the home environment is no longer 2Ax. Instead, beneficial mutations that provide sss
fitness benefits below a certain threshold . behave as if they are effectively neutral (i.e., se
their fixation probability is close to zero), and most adaptation is driven by mutations se
with benefits above ., where x. depends on the population genetic parameters N and su
U, as well as the shape of the distribution of fitness effects of beneficial mutations. Good  se
et al. (2012) derived equations that allow us to calculate the effective fixation probability ses
7*(Ax; N, U,) of a beneficial mutation with the fitness benefit Az in the home environment  sos
in the concurrent mutation regime. Thus, to predict the average rate of non-home fitness sos
change, we replace the SSWM fixation probability 2§ in equation (8) with 7*(&; N, Up)  ses
and obtain the adjusted expected pleiotropic effect 507

r3(N, Uy) = / an /0 4 07 (&5 N, Uy) Bp(E.m). (12)
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We similarly obtain the adjusted pleiotropic variance statistic 508

Dy (N, Uy) = / an / 4 n 7 (€ N, Uy) By(E, ), (13)

although, as discussed in Section “The population genetics of pleiotropy”, we do not se
expect D3, to capture all of the variation in non-home fitness trajectories. 600

To calculate 7*(Ax; N, Uy) for the Gaussian JDFEs shown in Figure 2, we first sub- en
stitute equation (20) in Good et al. (2012) with § = 2 into equations (18), (19) in Good e
et al. (2012) and then numerically solve these equations for z, and v using the Find- o
Root numerical method in Mathematica. Note that all our Guassian JDFEs share the oo
same mean and variance in the home environment, so we need to solve these equations eos
only once for each pair of N and U, values. We then substitute the obtained values eos
of z. and v into equations (4) and (9) in Good et al. (2012) and calculate 7 by a eor
numerical integration of equation (6) in Good et al. (2012) in R (available at https: eos
//github.com/ardellsarah/JDFE-project). 609

Ranking of drug pairs 610

According to equations (1), (2), both the expected non-home fitness and its variance eu
change linearly with time, so that at time ¢ the mean is Z = ¢\/NU, t standard deviations e
above yg (if 75 > 0) or below yq (if 72 < 0), where ¢ = r3/y/Day. In other words, if ry > 0, &3
the bulk of the non-home fitness distribution eventually shifts above yg, and if ry < 0, it e
shifts below yo. All else being equal, a larger value of |c| implies faster rate of this shift. e

The interpretation of these observations in terms of collateral resistance/sensitivity is e
that adaptation in the presence of the first drug will eventually lead to collateral resistance e
against the second drug if 7, > 0 and to collateral sensitivity if ro < 0. Furthermore, all es
else being equal, collateral sensitivity evolves faster and the chance of evolving collateral e
resistance is smaller for drug pairs with more negative ¢ (i.e., larger |c|). Thus, we use ¢ e
to order drug pairs from the most preferred (those with the most negative values of ¢) to ez
least preferred (those with least negative or positive values of c). 622

Generation of JDFEs 623

Gaussian JDFEs. The JDFEs in Figure 2 have the following parameters. Mean in the e
home environment: —0.05. Standard deviation in both home and non-home environments: s
0.1. Means in the non-home environment: 0.08, 0.145, 0, —0.145, —0.08 in panels A e
through E, respectively. 627

The JDFEs in Figure 3 have the following parameters. Mean and standard deviation e
in the home environment: —0.001 and 0.01, respectively. The non-home mean varies e
between 0.0001 and 0.01. The non-home standard deviation varies between 0.0001 and 30
0.01. The correlation between home and non-home fitness varies between —0.9 and 0.9, ex
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for a total of 125 JDFEs. All parameter values and the resulting pleiotropy statistics for ez
these JDFEs are given in the Supplementary Table S3. 633

JDFEs with equal probabilities of pleiotropically beneficial and deleterious e
mutations.  All JDFEs in Figure S2 are mixtures of two two-dimensional uncorrelated 3
Gaussian distributions, which have the following parameters. Mean in the home environ- e
ment: 0.4. Standard deviation in both home and non-home environments: 0.1. Means in e
the non-home environment: 0.1 and —0.1 in panel A, 0.5 and —0.5 in panel B, 0.17 and e
—0.5 in panel C, and 0.5 and —0.17 in panel D. 639

Simulations 640

We carried out two types of simulations, SSWM model simulations and full Wright-Fisher ex
model simulations. 642

Strong selection weak mutation. = The SSWM simulations were carried out using e
the Gillespie algorithm (Gillespie, 1976), as follows. We initiate the populations with e
home and non-home fitness values zo = 0 and yo = 0. At each iteration, we draw the s
waiting time until the appearance of the next beneficial mutation from the exponential s
distribution with the rate parameter NU, and advance the time by this amount. Then, e
we draw the selection coefficients Az and Ay of this mutation in the home- and non- s
home environment, respectively, from the JDFE (a multivariate normal distribution). e«
With probability 2Ax, the mutation fixes in the population. If it does, the fitness of the s
population is updated accordingly. 651

Wright-Fisher model. We simulate evolution in the home environment according es
to the Wright-Fisher model with population size N as follows. We initiate the whole es3
population with a single genotype with fitness xyp = 0 and y9 = 0 in the home and non- s
home environments. Suppose that at generation ¢, there are K (t) genotypes, such that ess
genotype ¢ has home- and non-home fitness X; and Y, respectively, and it is present at es
frequency f;(t) > 0 in the population. We generate the genotype frequencies at generation s
t + 1 in three steps. In the reproduction step, we draw random numbers Bi(t + 1), oss
i =1,..., K(t) from the multinomial distribution with the number of trials N and success sso
probabilities p;(t) = f;(t) + f;(t) (X;(t) — X (t)) , where X(t) = SOEW X () fi(t) s the s
mean fitness of the population in the home environment at generation ¢. In the mutation e
step, we draw a random number M of new mutants from the Poisson distribution with e
parameter NU, where U is the total per individual per generation mutation rate. We 663
randomly determine the “parent” genotypes in which each mutation occurs and turn the ess
appropriate numbers of parent individuals into new mutants. We assume that each new ees
mutation creates a new genotype and has fitness effects Az and Ay in the home and ees
non-home environments. Az and Ay are drawn randomly from the JDFE ®(Az, Ay). s

S

7
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We obtain each mutants fitness by adding these values to the parent genotype’s home ees
and non-home fitness values. In the final step, all genotypes that are represented by zero eeo
individuals are removed and we are left with K (¢ + 1) genotypes with B;(t +1) > 0, en
i=1,...,K(t+1) individuals. Then we set f;(t+ 1) = B;(t+ 1)/N. 671

Sampling beneficial mutants from JDFEs and estimating the ¢
statistic 673

We model the LD sampling method by randomly drawing mutants from the JDFE until e
the desired number K of mutants whose home fitness exceeds the focal threshold are s
sampled. We estimate the ¢ statistic from the pairs of home and non-home fitness effects e
X; and Y; of these + = 1, ..., K sampled mutants. To do so, we first estimate ro and Dqy 677
as 7 = 1/K Zfil X,;Y; and Doy = 1/K Zfil X; Y2 We then calculate ¢ = 7/v/ Das. 678

For the BLT sampling method, we simulate the Wright-Fisher model as described 67
above for N = 10% and U = 10~* for 250 generations. At generation 250, we randomly s
sample existing beneficial mutants proportional to their frequency in the population with- s
out replacement (i.e., the same beneficial mutation is sampled at most once). Sampling s
more than ~ 50 distinct beneficial mutants from a single population becomes difficult ess
because there may simply be not enough such mutants or some of them may be at very ess
low frequencies. Therefore, if the desired number of mutants to sample exceeds 50, we run ess
multiple replicate simulations and sample a maximum of 100 distinct beneficial mutants ess
per replicate until the desired number of mutants is reached. We then estimate the ¢ s

statistics as with the LD method. 688
Code availability 669
All scripts are available at https://github.com/ardellsarah/JDFE-project. 690
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913

39 ug/mL 156 pg/mL 625 ug/mL 2500 pg/mL

o
2 > 4 Y RV CY NN sl oo & “. y vy S
<C 0 — L - - U Prowe v 4
5 : ode ©
3 .
% -2 .
8 »
£ 1559 1361 1144 428
w4 814 1097 1357 2257

0 i 0 i 0 i 0 1

Fitness effect in CEF
Collateral effects: « resistance e neutrality o sensitivity

Supplementary Figure S1. Fitness effects of single point mutations in the TEM-1
p-lactamase gene in E. coli in the presence of cefotaxime and ampicillin. Data from
Stiffler et al. (2015). Panels show data for different concentrations of ampicillin, as indicated.
Fitness is measured as the change in the log ratio of the mutant to wildtype frequency during
growth in the presence of the drug. Cefotaxime (CEF) is chosen as the home environment
(see Materials and Methods for details). Each point represents a single point mutation and is
colored by its (collateral) fitness effect in the presence of ampicillin, as indicated in the legend.
The numbers of mutations with positive fitness in the presence of cefotaxime with different
collateral effects are shown in the lower right corner of each panel.
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Supplementary Figure S2. Same as Figure 2, but for JDFEs with equal probability weights
in the first and fourth quadrants. See Materials and Methods for details.
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Supplementary Figure S3. Same as Figure 3C—H, but with r5 and Dy shown on the x-axis.
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Supplementary Figure S4. Same as Figure 5A, but with different thresholds for sampling
mutations, as indicated above each panel (o is the standard deviation of the JDFE in the home
environment). See Materials and Methods for details.
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Supplementary Tables o1s

Supplementary Table S1. P-values and calls of collateral effects of beneficial knock-out
mutations in the Chevercau et al. (2015) data (see Materials and Methods for details).

Supplementary Table S2. Calls of collateral effects of mutations beneficial in CEF in the
Stiffler et al. (2015) data (see Materials and Methods for details).

Supplementary Table S3. Parameters and summary statistics of simulation results for all
Gaussian JDFEs used in Figure 3.
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Appendix A JDFE with global epistasis ors

Results in the main text were derived under the assumption that all genotypes have the o
same JDFE, i.e., in the absence of epistasis. In reality, JDFEs probably vary from one oy
genotype to another, but how they vary is not yet well characterized. Recent studies as
have found that the fitness effects of many mutations available to a genotype in a given oo
environment depend primarily on the fitness of that genotype in that environment ([han oo
et al., 2011; Chou et al., 2011; Wiser et al., 2013; Kryazhimskiy et al., 2014; Johnson et al., oz
2019; Wang et al., 2016; Aggeli et al., 2020; Lukacisinova et al., 2020). This dependence o2
is sometimes referred to as global or fitness-dependent epistasis (Kryazhimskiy et al., o3
2009, 2014; Reddy and Desai, 2020; Husain and Murugan, 2020). Here, we ask whether o
our main results would hold if the pathogen population evolves on a JDFE with global os
epistasis. 926

Global epistasis can be modeled in our framework by assuming that the JDFE &, of o
genotype ¢g depends only the fitness of this genotype in the home and non-home envi- os
ronments, x(g), y(g), i.e. Oy (Az,Ay) = Py(g).y(9) (Az, Ay), which is a two-dimensional oo
extension of the model considered by Kryazhimskiy et al. (2009). Thus, in the SSWM o3
regime, the population can still be fully described by its current pair of fitness values in o
the home and non-home environments (X;,Y;). The dynamics of the probability density oz
p(z,y,t) are governed by the same Kolmogorov equation as in the non-epistatic case, o3
which can still be approximated by a diffusion equation (6). However, while in the non- o
epistatic case the drift and diffusion coefficients of this equation, ry, r9, D11, D12 and o3
Dy are constants, in the presence of global epistasis, they become functions of x and
y. Although this equation cannot be solved analytically in the general case, it can be o3
solved numerically, provided that the functions r(z,y), ro(z,vy), Di1(x,y), Di2(z,y) and o3
Dos(z,y) are known. Thus, in principle, our theory can predict the trajectories of non- o
home fitness in the presence of global epistasis. 940

To explore the implications of global epistasis for collateral drug resistance evolution, o
we consider the simplest scenario where the functional form of global epistasis (i.e., how o
®, , depends on x and y) is the same across different drugs. In this case, we would expect o
that the ranking of drug pairs according to the risk of collateral resistance would be the o
same for all genotypes. In particular, the drug pair whose risk of collateral resistance risk s
is the lowest for the wildtype should also be the pair with the lowest risk for the evolved o
genotypes. 947

To test this prediction, we model resistance evolution on Gaussian JDFEs whose mean s
vector and the correlation coefficient are fixed while the standard deviations oy,(x) and o
onn(y) in the home and non-home environments decrease linearly with the fitness in the o5
respective environment, o, (z) = max {0, 0n0 — 2} and opp(y) = max {0, 0pno — Yan Y} o
Appendix 1 Figure 1A shows how one such JDFE changes along an expected evolutionary os
trajectory. The corresponding expected home and non-home fitness trajectories and their oss
variance are shown in Appendix 1 Figure 1B. Appendix 1 Figure 1C shows how the os
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Appendix 1 Figure 1. Evolution on JDFEs with global epistasis and the risk of
collateral resistance. A. Gaussian JDFE with global epistasis as it changes along the expected
evolutionary trajectory shown in panel B. Parameters of the initial JDFE at x = y = 0 are the
same as for the rank 1 JDFE in Figure 4A; 4, = yu,n = 0.5. B. Home and non-home fitness
trajectories for the JDFE with global epistasis shown in panel A. Thick lines show the mean,
ribbons show +1 standard deviation estimated from 500 replicate simulations. Population size
N = 10%, mutation rate U = 10~%. Dashed vertical lines indicate the time points at which
the JDFE snapshots in panel A are shown. C. Probability of collateral resistance over time for
four Gaussian JDFE with global epistasis. Parameters of the initial JDFEs at x = y = 0 are
the same as for the four JDFE in Figure 4A, and 4, = vy, = 0.5 for all of them. N = 10%,
mutation rate U = 1074, 1500 replicate simulation runs per JDFE. Colored numbers indicate
the predicted c-rank of the initial JDFEs (same as in Figure 4A).
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probability (risk) of collateral resistance changes over time on four different JDFEs with oss
global epistasis. For the ancestral strain (whose fitness we set by convention to x = y = 0), o5
these four JDFEs are identical to those shown in Figure 4A; as the populations evolve, os
JDFEs change as specified above with v, = 7., = 0.5. As expected, the ranking of these o
epistatic JDFEs according to the risk of collateral resistance stays constant over time and oso
can be predicted from estimates of the ¢ parameters for the ancestral strain. 960
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