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Abstract 

 

Predictive processing has been proposed as a fundamental cognitive mechanism to 

account for how the brain interacts with the external environment via its sensory 

modalities. The brain processes external information about the content (i.e. “what”) 

and timing (i.e., “when”) of environmental stimuli to update an internal generative 

model of the world around it. However, the interaction between “what” and “when” 

has received very little attention when focusing on vision. In this 

magnetoencephalography (MEG) study we investigate      how processing of feature 

specific information (i.e. “what”) is affected by temporal predictability (i.e. “when”). 

In line with previous findings, we observed a suppression of evoked neural responses 

in the visual cortex for predictable stimuli. Interestingly, we observed that temporal 

uncertainty enhances this expectation suppression effect. This suggests that in 

temporally uncertain scenarios the neurocognitive system relies more on internal 

representations and invests less resources integrating bottom-up information. 

Indeed, temporal decoding analysis indicated that visual features are encoded for a 

shorter time period by the neural system when temporal uncertainty is higher. This 

supports the fact that visual information is maintained active for less time for a 

stimulus whose time onset is unpredictable compared to when it is predictable. These 

findings highlight the higher reliance of the visual system on the internal 

expectations when the temporal dynamics of the external environment are less 

predictable.  
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Introduction 

Our interaction with the external environment is largely shaped by our internal 

expectations  (Clark, 2013; Mechelli et al., 2004; Mumford, 1992). Predictive 

processing theories propose that an internal model of the surrounding environment 

is used to generate inferences about the external causes of the environmental energy 

impacting our senses (Spratling, 2017). Supporting this view, predictable visual 

stimuli trigger reduced amplitude of visual responses and are processed with shorter 

latencies in the visual cortex when compared to unpredictable stimuli (Hogendoorn 

and Burkitt, 2018). It is worth to underscore that the perception is spatiotemporal in 

nature.  In primary sensory cortices, sensations are decomposed into their 

fundamental features (such as edges, orientation, colour, shape), as shown by studies 

that decoded such representational properties from neural signals (Carlson et al., 

2019; Pantazis et al., 2018). These features are the building blocks that determine 

the perceptual content of the stimulation, i.e. what it is. Importantly, in real life 

situations environmental stimuli are temporally dynamic. Suppose you see a car 

coming toward you on the road. Even after determining all the what information 

features available (e.g., it is a pink Cadillac), it is critical to estimate when you and 

the car will intersect to avoid a collision. While certain stimuli are temporally regular 

(and hence predictable), temporal uncertainty in the environment is very high.  

Studies on visual perception have paid relatively low attention to temporal 

predictability (when) compared to the study of the stimulus content predictability 

(what) (Demarchi et al., 2019; Kok et al., 2017)  .The role of timing for predictive 
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processing in vision has been mainly studied for the perception of objects in motion. 

These studies showed that the visual system requires a certain amount of time to 

process incoming sensory information (Blom et al., 2020; Maunsell and Gibson, 

1992). When considering the perception of moving objects, this amount of time 

could cause potential problems for the neurocognitive system as it  rapidly needs to 

extrapolate the object trajectory to then rapidly plan action. Predictive processing 

models propose a compensatory mechanism to solve this problem, based on the 

generation of predictions about incoming stimuli before perceptual processing. 

Research on the perception of moving objects thus underscores that what and when 

stimulus properties are strongly interwoven and shape human perception. Here we 

aim at evaluating how predictive processing of the “what properties” is affected by 

manipulation of the “when properties”. Specifically, we test if temporal uncertainty 

enhances predictive processing of stimulus content. Indeed, predictive processing is 

central to support perception of uncertain stimuli. 

In the present MEG study, participants were presented with a series of consecutive 

Gabor patches (referred henceforth to as entrainers) that were introduced prior to a 

target Gabor for which participants performed a spatial frequency judgment task. 

We here focused on visual responses to the entrainers whose sequence of 

orientations were either predictable or not, and whose time onset could be either 

fixed or jittered with respect to the other entrainers. Firstly, we expect the neural 

responses to the entrainers to gradually decrease in amplitude along the sequence if 

the orientation is predictable, an effect defined as “expectation suppression” (Grill-
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Spector et al., 2006). Secondly, if temporal uncertainty is handled by the cognitive 

system by enhancing reliance on internal expectations, expectation suppression 

should be higher for onset-jittered compared to onset-stable entrainers. Thirdly, we 

expect target orientation to be increasingly decodable (with multivariate pattern 

analysis, MVPA)  ( Pantazis et al., 2018;  King et al., 2016; Cichy et al., 2014)  along 

the entrainers’ sequence for orientation predictable conditions. Finally, higher 

reliance on internal expectations should trigger less detailed stimulus-related 

predictions and, consequently, less efficient decoding of predicted target orientation 

for time-jittered (compared to time-stable) entrainers. 
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Methods 

 
Participants 

From the initial set of twenty participants, we considered in this experiment sixteen 

participants (7 females; age range: 19–31; M = 24.8; SD = 3.6). Two participants 

were excluded from the study as they did not complete the whole experiment and 

two others were excluded from the study due excessive motion artifacts in the data. 

The ethical committee and the scientific committee of the Basque Center on 

Cognition, Brain and Language (BCBL) approved the experiment (following the 

principles of the Declaration of Helsinki). Participants gave written informed 

consent and were financially compensated. The participants were recruited from the 

BCBL Participa website (https://www.bcbl.eu/participa/). Participants were free 

from any neurological or psychological disorders, and had normal or corrected to 

normal vision. 

 

Experimental procedure  

A series of Gabor patches were presented with variable properties of orientation and 

spatial frequency – measured in cycles per degree of visual angle (CPD). Stimuli 

were back-projected on a screen placed 60 cm from the participants’ nasion. The 

Gabors were presented in the centre of the screen with a gray background. Each trial 

began with a fixation cross (black color) followed by four sequential Gabor patches 

(entrainers) presented for 200 ms. After a longer interstimulus interval, a fifth Gabor 
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(target) was presented for 200 ms and participants were required to respond if the 

target was of a higher or lower spatial frequency than the entrainers.  

The entrainers had an intermediate spatial frequency (40 CPD), while the target 

could have either a higher (60 CPD) or a lower (20 CPD) spatial frequency with 

respect to the entrainers. Four properties of these sequences were experimentally 

manipulated (Figure 1): a) the orientation of the target could be either horizontal or 

vertical; b) the target spatial frequency could be higher or lower compared to the 

spatial frequency of the entrainers; c) the orientation of the target could be either 

predictable based on the previous entrainers (i.e., scaled in fixed angle steps of 15 or 

30 degree) or unpredictable; d) the timing between the entrainers and the target could 

be predictable (i.e., fixed interstimulus interval of 200 ms for first three entrainers 

and 600 ms between entrainer 4 and target) or unpredictable (varying interstimulus 

intervals ranging between 70-330 ms for the first three entrainers and 450-770 ms 

between entrainer 4 and the target).  

The Participants’ task was to determine whether the target had a higher or a lower 

spatial frequency with respect to the entrainers. Participants responded by pressing 

a button with their left or right hand, where the hand pairing with the response was 

counterbalanced across participants. 

Depending on the timing and the orientation of the entrainers and the target, trials 

were divided into four conditions (Figure1): what + when, when, what and random. 

In the what + when condition, the entrainers had a predictable timing and the 

orientation of the target Gabor was also predictable based on the previous entrainers. 
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In the when condition the timing between the entrainers and target was predictable 

but the target orientation was unpredictable. In the what condition the target 

orientation was predictable but the timing between the entrainers and target was 

unpredictable. In the random condition both the target orientation and the timing 

between the entrainers and target were unpredictable. A total of 160 trials were 

presented for each condition (80 horizontal targets and 80 vertical targets & 

randomly assigned to 80 high and 80 low spatial frequency targets), leading to a total 

of 640 trials per participant. 80 localizer trials for horizontal and vertical targets were 

also acquired. For these stimuli the participants were asked to simply fixate at the 

centre of the screen. The participants were given a short optional break (the 

participants press the button to continue) every 12 trials, and a mandatory long time 

break every 60 trials (the MEG operator presses a button from the operating 

console).  
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Figure 1: Stimuli design. A) Predictable orientation and predictable timing (what + when 

information). B) Unpredictable orientation but predictable timing (when information). C) 

Predictable orientation but unpredictable timing (what information). D) Unpredictable 

orientation and unpredictable timing (random).  

 

** Abbreviations: E1 – Entrainer 1, E2 – Entrainer 2, E3 – Entrainer 3, E4 – Entrainer 4, 

ISI – Inter Stimulus Interval 

 

 

Data acquisition and preprocessing  

MEG data were acquired in a magnetically shielded room using the whole-scalp 

MEG system (Elekta-Neuromag, Helsinki, Finland) installed at the BCBL 

(http://www.bcbl.eu/bcbl-facilitiesresources/meg/). The system is equipped with 

102 sensor triplets (each comprising a magnetometer and two orthogonal planar 

gradiometers) uniformly distributed around the head of the participant. Head 

position inside the helmet was continuously monitored using four Head Position 

Indicator (HPI) coils. The location of each coil relative to the anatomical fiducials 
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(nasion, left and right preauricular points) was defined with a 3D digitizer (Fastrak 

Polhemus, Colchester, VA, USA). This procedure is critical for head movement 

compensation during the data recording session. Digitalization of the fiducials plus 

~300 additional points evenly distributed over the scalp of the participant were used 

during subsequent data analysis to spatially align the MEG sensor coordinates with 

T1 magnetic resonance brain images acquired on a 3T MRI scanner (Siemens 

Medical System, Erlangen, Germany). MEG recordings were acquired continuously 

with a bandpass filter of 0.01-330 Hz and a sampling rate of 1 kHz. Eye movements 

were monitored with two pairs of electrodes in a bipolar montage placed on the 

external chanti of each eye (horizontal electrooculogram (EOG)) and above and 

below right eye (vertical EOG). Similarly, electrocardiogram (ECG) was recorded 

using two electrodes, placed on the right side of the participant’s abdomen and below 

the left clavicle.  

Continuous MEG data were pre-processed off-line using the temporal Signal-Space-

Separation (tSSS) method (Taulu & Simola, 2006) which suppresses external 

electromagnetic interference. MEG data were also corrected for head movements, 

and bad channel time courses were reconstructed in the framework of tSSS. 

Subsequent analyses were performed using Matlab R2014b (Mathworks, Natick, 

MA, USA).  
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Behavioural data  

The accuracy of participant responses were calculated by comparing the response 

from each participant (higher / lower spatial frequency) and the true spatial 

frequency of the presented Gabor. The response time (RT) was calculated for all the 

four conditions (what + when, when, what and random). Trials with response times 

longer than 1500 ms were considered to be outliers and were removed from the 

analysis. The mean RT and standard deviation was computed for each experimental 

condition.  

 

Sensor level ERFs 

MEG trials were corrected for jump and muscle artifacts with an standard automated 

scripts published on the fieldtrip software website . Heartbeat and EOG artifacts 

were identified using Independent Component Analysis (ICA) and linearly 

subtracted from the MEG recordings. The ICA decomposition (30 components 

extracted per participant) was performed using the FastICA algorithm implemented 

in the Fieldtrip toolbox (Oostenveld et al., 2011). ICA components having maximum 

correlation with the EOG and ECG were automatically removed using a coherence 

threshold of 40 % with the MEG signals . On average two components were removed 

per participant. The artifact-free data were bandpass filtered between 0.5 and 45 Hz. 

Trials were extracted time-locked to each of the entrainers (entrainer 1, 2, 3 and 4) 

and the target, from xx to xx ms. The trial segments were grouped together for each 

entrainer and target, and then averaged to compute the ERFs. For each planar 
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gradiometer pair, ERFs were quantified at every time point as the Euclidean norm 

of the two gradiometer signals. Baseline correction was also applied to the evoked 

data based on the 400 ms of data prior to the onset of the fixation cross presented at 

the beginning of each trial. 

Sensor-level statistics first relied on an ANOVA employed to explore the influence 

of our experimental factors on the ERFs. To this aim we extracted ERF amplitudes 

in a set of five occipital sensors in a time window classically associated with the 

initial visual evoked response (85-135 ms post-stimulus). A three-way repeated 

measures ANOVA was computed in JASP (Team, 2020) with these amplitude 

values as dependent variables and the following factors: entrainer (four levels, 

corresponding to each entrainer), what (two levels: predictable/unpredictable 

orientation of the target), and when (two levels: predictable/unpredictable timing of 

the entrainers and target). Significant main effects and interactions were further 

investigated with pairwise t-tests. 

To evaluate a possible differential distribution of the experimental effects across 

sensors that could not be accounted for by the ANOVA, pairwise comparisons 

between conditions were performed using a cluster-based permutation test (Maris & 

Oostenveld, 2007). Four different comparisons were carried out. In the first 

comparison, we contrasted the ERFs for the when and the what + when conditions. 

This comparison evaluated the effect of orientation predictability when the timing 

of the entrainers and the target were predictable. In the second comparison, we 

compared the ERFs for the random and the what conditions. This comparison 
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evaluated the effect of orientation predictability with temporal uncertainty between 

entrainers and the target. These two comparisons mainly focused on the orientation 

predictability, i.e., on the what manipulation and  highlight the main effect of 

expectation suppression. We then compared the ERFs for the what + when and the 

what conditions. Here we directly contrasted the two orientation predictable 

conditions to evaluate the effect of temporal predictability on stimulus predictability. 

The last comparison contrasted the ERFs of the when and the random conditions. 

This comparison was performed to analyse the effect of temporal predictability in 

absence of orientation predictability. In all cases, differences between conditions 

were analysed using cluster-based permutation testing (Maris & Oostenveld, 2007). 

A randomization distribution of cluster statistics was constructed for each subject 

over time and sensors and used to evaluate whether conditions statistically differ 

over participants. In particular, t-values were computed for each sensor (combined 

gradiometers) and time point during the 0-270 ms time window, and were clustered 

based on t-values that exceeded a t-value corresponding to the 99.5th percentile of 

Students t-distribution, i.e. a two-tailed t-test at an alpha of 0.01, and were both 

spatially and temporally adjacent. Cluster members were required to have at least 

two neighboring channels that also exceeded the threshold to be considered a cluster. 

The sum of the t-statistics in a sensor cluster was then used as the cluster-level 

statistic, which was then tested by permuting the condition labels 1000 times. 
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Source level ERF 

MEG-MRI co-registration was performed using MRIlab (Elekta Neuromag Oy, 

version 1.7.25). Individual T1-weighted MRI images were segmented into scalp, 

skull, and brain components using the segmentation algorithms implemented in 

Freesurfer (Martinos Center of Biomedical Imaging, MQ) (Dale et al., 1999). The 

source space was defined as a regular 3D grid with a 5 mm resolution and the lead 

fields were computed using a single-sphere model for 3 orthogonal source 

orientations. The lead fields at each grid point was reduced to its two first principal 

components. Whole brain source activity was estimated using a linearly constrained 

minimum variance (LCMV) beamformer approach (Veen et al., 1997). Both planar 

gradiometers and magnetometers were used for inverse modelling. The covariance 

matrix used to derive LCMV beamformer weights was estimated from the pre- and 

post-stimulus data in the pre-stimulus (from 400 ms prior to fixation cross onset to 

400 ms after the presentation of the target). 

For each condition and entrainer, the LCMV beamformer was applied to the evoked 

data (with baseline correction) in the time period 85–125 ms post-stimulus and in 

the pre-stimulus interval. This post-stimulus interval was chosen because it is the 

time period containing the ERF peak amplitude across participants at the sensor 

level. Brain maps containing source activity were transformed from the individual 

MRIs to the standard Montreal Neurological Institute (MNI). For that, we applied a 

non-linear transformation using the spatial-normalization algorithm implemented in 
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Statistical Parametric Mapping (SPM8) (Friston et al., 1994). Transformed maps 

were further averaged across participants. Freesurfer’s tksurfer tool was used to 

visualize the brain maps in MNI space. For each condition and entrainer, we obtained 

the source value and the MNI coordinates of local maxima (sets of contiguous voxels 

displaying higher source activation than all other neighboring voxels (Bourguignon 

et al., 2018). 

Source activity was compared between conditions (e.g., when vs. what + when, 

random vs. what, what vs. what + when and when vs. random ) by extracting a peak 

value within a 5mm sphere around the local maxima in the source space. This was 

performed for every participant and the group comparison were made using t-tests.  

 

MVPA  

Time-resolved within-subjects multivariate pattern analysis was performed to 

decode the features (i.e., the orientation and spatial frequency) of all the Gabors (i.e., 

E1, E2, E3, E4 and T) from the MEG data. This within-subject classification has an 

advantage over other methods: the classification algorithm may leverage individual 

subject specific characteristics in neural patterns since the classifiers do not need to 

generalize across different subjects. For E1, E2 and E3, data were segmented from 

50 ms prior to 250 ms after the onset of the entrainers. The time interval between E4 

and the target was longer than the time interval between the rest of the entrainers. 

For this reason, for E4, the data was segmented from 50 ms prior to 600 ms after the 

onset of the entrainer. For the target, the data was segmented from -400 ms to 550 
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ms. The data were classified separately for both orientation and spatial frequency of 

the Gabor using a linear support vector machine (SVM) classifier with L2 

regularization and a box constraint of 1. The classifiers were implemented in Matlab 

using the LibLinear package (Fan et al., 2008) and the Statistics and Machine 

Learning Toolbox (Mathworks, Inc.). We performed a binary classification of the 

orientation of each Gabor depending on the orientation and the spatial frequency of 

the subsequent target. In other words, the class labels (i.e., horizontal vs. vertical, 

higher vs. lower spatial frequency) were derived from the target orientation: if the 

target orientation was horizontal then all the preceding Gabor orientations in the 

corresponding condition were labelled as horizontal and vice-versa. The same for 

higher vs. lower spatial frequency of the target. The data were down sampled to 200 

Hz prior to the classification. Pseudo-trials were generated to improve the SNR by 

averaging trials over bins of 10, without overlap (Dima and Singh, 2018) . This 

pseudo-trial generation was repeated 100 times based on random ordering of the data 

to generate trials with a higher signal to noise ratio. The data were then randomly 

partitioned using 5-fold cross-validation. The classifier was trained on 4 folds and 

tested on the remaining fold, with this process repeated until each fold had been left 

out of the training once. The procedure of generating pseudo-trials, dividing the data 

into 5 folds, and training and testing classifiers at every time point was repeated 25 

times; classification accuracies were then averaged over all these instances to yield 

more stable estimates. To improve classification, we also performed multivariate 

noise normalization (Guggenmos et al., 2018). The time-resolved error covariance 
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between sensors was calculated based on the covariance matrix of the training set 

and used to normalize both the training and test sets in order to down-weight MEG 

channels with higher noise levels. Cluster corrected sign permutation tests (one-

tailed) (Dima et al., 2018) were applied to the accuracy values obtained from the 

classifier with cluster-defining threshold p < 0.05, corrected significance level i.e., 

cluster-alpha p < 0.01 .  

Results 

Behavioural results 

Table 1:  Accuracy and reaction time (RTs) of all the four conditions. 

 what + when when  what random 

Accuracy  
(Mean ± SD %) 

 96.56 ± 3.49  96.00  ± 3.80 95.89 ± 4.71  96.56 ± 3.33 

Reaction Time 
(Mean ± SD ms ) 

727.5 ± 204   741.4 ± 204  737.4 ± 203 752 ± 207 ms 

 

Table 1 presents the accuracy and reaction time (RTs) of all the four conditions.We 

found no significant differences in behavioural accuracy. For the RTs, the what + 

when condition showed faster responses while random condition responses were 

numerically slower. The data from table 1 indicate that temporal predictability elicits 

faster responses (what + when > what | when > random). We fit a Linear mixed 

model (lmer: R function) considering participants and observations as random 

effects, with the fixed effects of what (orientation: predictable or not), when (timing: 
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predictable or not) and their interaction. We observed an effect of when (t = -2.794, 

p < 0.05). 

 

Sensor-level MEG results 

We first analysed the amplitude of the initial visual evoked response for 5 occipital 

sensors in an approach considering our whole experimental design. In this ANOVA 

(Table 1) we observed a significant main effect of entrainer (p <  0.001) on the peak 

amplitudes of the ERFs. Interestingly, this factor interacted with the factor what (p 

< 0.001). We also observed a main effect of what(p < 0.001). Importantly, the 

interaction between the three factors, i.e., entrainer, what and when was significant 

(p < 0.01).  

 

 
Table 2: Repeated measure ANOVA considering the factors Entrainer (four levels, one 

for each entrainer), what (two levels: orientation: predictable or not) and when (two 

levels: timing: predictable or not). 
 

   Sum of Squares  df  Mean Square  F  p  

Entrainer   2.607e -22   3   8.691e -23   42.299   < .001   
what   3.430e -23   1   3.430e -23   65.203   < .001   
when   2.969e -24   1   2.969e -24   2.376   0.144   
Entrainer � what   2.572e -23   3   8.572e -24   18.503   < .001   
Entrainer � when   8.851e -25   3   2.950e -25   0.860   0.469   
what � when   3.032e -25   1   3.032e -25   0.833   0.376   
Entrainer � what � when   2.277e -24   3   7.589e -25   5.073   0.004   
Note.  Type III Sum of Squares  
 

Figure 2 shows the sensor-level ERFs time-locked to the onset of each entrainer (E1, 

E2, E3 and E4) and target (T) for the when and the what + when conditions. The 
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amplitude of the ERFs was significantly higher (p < 0.01, cluster based permutation 

test) for the when compared to the what + when condition for E2, E3 and E4, but not 

for E1 and the target. The amplitude enhancement for the when compared to the what 

+ when condition emerged in the 95–105 ms, 96–110 ms and 97–121 ms time 

interval for the E2, E3 and E4 respectively. These clusters were located in occipital 

sensors for all the entrainers. 

Figure 3 shows the sensor-level ERFs for the random versus the what conditions. 

The amplitude of the ERFs was significantly higher (p < 0.01) for the random 

compared to the what condition for E2, E3 and E4, but not for E1 or the target. The 

amplitude enhancement for the random compared to the what condition emerged 

within the 95–119 ms, 94–123 ms and 96–127 ms time interval for the E2, E3 and 

E4 respectively. These clusters were also clearly distinguishable in occipital sensors 

for all the entrainers.  

Since both the comparisons are significant from entrainer 2 onward, we compared 

the two orientation predictable conditions with (what + when ) and without (what) 

temporal predictability. Figure 4 shows that the initial early evoked activity (0–75 

ms) at E1 is similar for both conditions. As we move across entrainers such early 

differences increase and reach statistical significance (p <0.001) but these effects 

vanish at the target. It thus seems that differential pre-stimulus activity distinguishes 

the two orientation predictable conditions depending on temporal predictability. 

Here, it is worth noting that the baseline time period for all the entrainers (E1 – E4) 

and T was the same (400 ms before the cross fixation at the beginning of the trial). 
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Since our focus in this analysis is on the early evoked response to the visual stimulus 

that showed robust expectation suppression effects, the time window for statistical 

comparison was selected from 75 to 135 ms, corresponding to the initial ERF peak 

reflecting early visual processing. The amplitude enhancement for the what 

compared to the what + when condition was identified in a cluster spanning the 106–

124 ms time interval at E4. This cluster was located in occipital sensors. Figure 5 

shows the sensor level comparison of the ERFs for the when and the random 

conditions.  

A difference in the initial activity time-locked to the Gabor patch is evident at E2, 

E3 and E4 within a time range of 0–75 ms (Figures 4 and 5). This difference is not 

evident at E1 and T. It is worth noting that all the entrainers (E1, E2, E3 & E4) and 

the T were baseline corrected using the same data extracted before the fixation cross 

at the beginning of the trial. It is worth noticing that this early effect might arise 

because of the temporal predictability affecting ongoing brain activity before the 

initial visual response to each Gabor. However, to address the questions asked in this 

study, we focussed on the effect of temporal predictability on only the initial evoked 

response. Thus, we predefined our time window for statistical comparison in the 

range of 75–135 ms, and we do not report statistical comparisons outside of this time 

window. Of notice, the 0–75 ms effect was not different between orientation 

predictable (Figure 4) and orientation unpredictable (Figure 5) conditions.  
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Figure 2: Sensor level ERFs for the when and the what + when conditions. A) For each 

condition (red, when; blue, what + when) and stimuli (Entrainer 1 (E1), E2, E3, E4 and Target 

(T)), we show the average of the event related fields (ERFs) in representative channels 

located above occipital regions (MEG02042/3, MEG2032/3, MEG2342/3, MEG2122/3 and 

MEG1922/3). Also shown are the ERF difference between the when and the what + when 

(black line). Grey boxes represent time points where the amplitude of the ERFs was higher 

(p < 0.01, cluster-based permutation test) for the when compared to the what + when 

condition. B) Sensor maps of the ERF difference between the when and the what + when 

conditions in temporal windows ([90 – 100], [100 – 110], [110 – 120] and [120 – 130] ms) 

around the amplitude peak value. Sensors showing significant differences (p < 0.01, cluster-

based permutation test) are highlighted. 
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Figure 3: Sensor level ERFs for the what and the random conditions.  For each condition 

(orange, what; green, random ) and stimuli  (E1), E2, E3, E4 and Target (T)), we showed the 

average of the Event Related Fields (ERFs) Grey boxes represent time points where the 

amplitude of the ERFs was higher (p < 0.01, cluster-based permutation test) for the random 

compared to the what condition. B) Sensor maps of the ERF difference between the when 

compared to the what + when condition in temporal windows ([90 – 100], [100 – 110], [110 – 

120] and [120 – 130] ms ) around the amplitude peak value. Sensors showing significant 

differences (p < 0.01, cluster-based permutation test) are highlighted. 
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Figure 4: Sensor level ERFs for the what + when and the what conditions. A) For each 

condition (orange, what; blue, what + when) and stimuli (Entrainer 1 (E1), E2, E3, E4 and 

Target (T)). Grey boxes represent time points where the amplitude of the ERFs was higher 

(p < 0.05, cluster-based permutation test) for the what + when compared to the what 
condition. B) Sensor maps of the ERF difference between the what + when compared to the 

what condition in temporal windows ([90 – 100], [100 – 110], [110 – 120] and [120 – 130] ms 

) around the amplitude peak value. Sensors showing significant differences (p < 0.01, cluster-

based permutation test) are highlighted. 
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Figure 5: Sensor level ERFs for the when and the random conditions. A) For each condition 

(red, when; green, random ) and stimuli (E1), E2, E3, E4 and Target (T).  

B) Sensor maps of the ERF difference between the when compared to the random condition 

in temporal windows ([90 – 100], [100 – 110], [110 – 120] and [120 – 130] ms ) around the 

amplitude peak value. Sensors showing significant differences (p < 0.01, cluster-based 

permutation test) are highlighted. 
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Source level ERFs 

We next identified the brain regions underlying the significant differences between 

conditions at the sensor level. Source activity was estimated around the peak 

amplitude of the ERFs that we observed at the sensor level ERFs, i.e., in the 85–125 

ms interval. Whole-brain maps of source activity were created for each condition 

(what + when, when, what and random) and Entrainer (E1, E2, E3, E4) (Figure 6). 

Strongest source activity was observed in bilateral occipital regions for all conditions 

and entrainers compared to baseline at the group level. The first local maxima 

emerged in visual association areas (Brodmann Area 18: BA 18) of the left occipital 

cortex in all conditions and entrainers.  The mean value of all the local maxima was 

[–3 –76 –2]. All the individual local maxima are reported in supplementary table 1.  

 

 

 

Figure 6: Source level ERFs for all conditions. Brain maps representing source activity  

values for each condition (what + when, when, what and random) and Entrainer (E1, E2, E3 

and E4). We included a view of the medial surface and the occipital lobe of the left (LH) and 

the right (RH) hemisphere.  
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Figure 7 shows source amplitude around the mean location of the participants’ peak 

values ([–3 –76 –2] mm)for each condition and entrainer. Source amplitude was 

significantly higher for the when compared to the what + when condition in E3 and 

E4 (t=2.45, t=4.16 respectively p < 0.05), andr for the random compared to the what 

condition in E3 and E4 (t=2.64, t=5.20 respectively, p < 0.05). Crucially, these 

values were higher for the what + when compared to the what conditions at E3 and 

E4 (t=2.30, t=2.38  respectively, p < 0.05), and for the when compared to the random 

condition in E2 and E3 (t=2.65, t=2.55 respectively, p < 0.05). Overall, the present 

results confirm the effects observed at the sensor-level, providing a candidate 

location for the generation of the expectation suppression effects reported. 
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Figure 7: Local maxima activity values for all the conditions. Mean and standard values 

across participants of the source activation at the first local maxima for each condition 

(when, what + when, random and what) and Entrainer (E1, E3, E3 and E4). The asterisks 

indicate the comparisons that were statistically significant. 

 

 

MVPA results 

MVPA analyses show that only the conditions having predictable orientation (what 

+ when and what) revealed above-chance and statistically significant decoding 

accuracy values. The decoding accuracy of horizontal versus vertical targets in 

paired conditions (i.e., what + when vs. when and what vs. random) is available in 
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the Supplementary materials (supplementary Figure 1 and 2 respectively). Figure 8 

shows the horizontal versus vertical decoding accuracy of the predictable orientation 

with (what + when ) and without (what) temporal predictability.  

At E1, we found significantly above chance (50%) decoding starting at 135 ms post 

stimulus onset and peaking with 56.82 % accuracy at 140 ms (in a significant cluster 

spanning the 135–150 ms interval) in the what + when condition. In the what 

condition, decoding accuracy was significantly above chance from 140 ms, peaking 

with 56.88 % accuracy at 165 ms (significant cluster: 140–165 ms). These effects 

are short-lived in time and slightly above chance. For this reason we do not consider 

this a robust finding. It is worth noticing that in conditions lacking the predictable 

orientation (i.e., when and random) there were no significant clusters at E1, likely 

because these conditions are starting from random orientation angles of the Gabor 

patch.  

At E2, we observed significantly above chance decoding clusters in the what + when 

condition. The cluster emerged from –20 ms to –10 ms before the presentation of 

the second entrainer. This cluster was very small in size and peaking with 57.41% 

accuracy at –15 ms. This effect probably corresponds to a false positive. 

At E3, the first cluster in the what + when condition started at 100 ms, and peaked 

with 63.07 % accuracy at 120 ms (significant cluster: 100–125 ms). In the what 

condition, decoding accuracy was significant from 125 ms, peaking at 60.20% at 

135 ms (significant cluster: 125–160 ms). Accuracy of these effects is higher and 

could reflect increasing expectations concerning the target orientation.  
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At E4, the condition what + when showed one cluster starting at 95 ms, peaking with 

70.46 % accuracy at 145 ms (significant cluster 95–215 ms). In the what condition, 

results showed three subsequent significant clusters, the first of them starting at 100 

ms peaking with 68.32 % accuracy at 140 ms (significant cluster 100–170 ms). 

These clusters are robust in both accuracy and duration reflecting the expectation for 

the orientation of the target gabor.  

At the target, the what + when condition showed the earliest cluster in the time range 

95–450 ms peaking with 78.95% accuracy at 105 ms. For the what condition, three 

significant clusters emerged, the first of them in the time range 95–275 ms peaking 

with 75.29% accuracy at 105 ms.  

The MVPA results also highlighted that the spatial frequency was decoded at a 

chance level or all the four conditions i.e., what + when, when, what and random at 

the four entrainers (E1, E2, E3 and E4). At the target, results showed that there is a 

significant cluster (p < 0.001) in time range 80 to 550 ms peaking with 97.73 % 

accuracy at 150 ms for the what + when condition. For the what condition there is a 

significant (p < 0.001) cluster in time range 85 to 550ms peaking with 97.19 % 

accuracy at 150 ms.  
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Figure 8: Time-resolved decoding accuracy for the what + when condition (blue line) and 
what condition (orange line) time-locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The 
coloured dots under the curves indicate statistical significance of decoding accuracy. 
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Discussion 

In the present study we elicited robust expectation suppression effects for the 

processing of visual Gabors. Across a series of four entrainers we observed 

increasingly large suppression of the visual evoked responses when Gabor 

orientation was predictable, which was accompanied by increasingly large 

decodability of the target Gabor orientation. Importantly, these effects were 

modulated by temporal predictability: expectation suppression of the evoked 

responses was larger when timing of the entrainers was random and decodability of 

the visual response was less sustained in time for random timings. These findings 

indicate that the neurocognitive system invested less resources in visual analysis in 

temporally uncertain scenarios, possibly due to higher reliance on internal 

predictions. 

 

Expectation suppression effects 

The goal of our study was to establish how temporal uncertainty modulates 

predictions in the visual domain. Evidence for predictive processing mainly comes 

from three basic phenomena (Walsh et al., 2020): omission effects (neural response 

to the omission of an expected stimulus), repetition suppression (neural response to 

the same repeated stimuli), and expectation suppression (reduced neural response to 

a stimulus due to expectations generated by a prior cue). Expectation suppression 

has been studied - in both the visual and auditory domains - using experimental 

paradigms which generate expectations through predictive cues, predictable 
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stimulus sequences, and paired associations. The predictability of a stimulus has 

been usually generated by varying the probability of encountering a 

matching/mismatching stimulus based on a previous cue (Auksztulewicz et al., 

2018; Utzerath et al., 2017). These kinds of manipulations are used in most of the 

experimental designs which aim to study the prediction errors elicited by a 

mismatching stimulus based on a previous cue. In our experimental design, we did 

not induce contextual expectations based on probability manipulations since our four 

experimental conditions had equal probability. Importantly, we did not employ 

“mismatching stimuli” in order to maximize the efficiency of the predictive 

mechanisms (in other words, enhancing precision weight).  

Experiments focusing on expectation suppression trigger stimulus expectations 

using various methods: exposure, multi-day training, manipulating baseline 

probabilities, active or passive viewing, engaging or excluding attention (Walsh et 

al., 2020). Some of these studies inform participants about their contextual 

manipulations. In contrast, in our experiment we made sure participants were not 

aware of the experimental manipulations present in the study. Given the debated 

interaction between attention and predictive processing (Kok et al., 2012) we 

developed an experimental design which aimed to balance across conditions 

strategic effects on the processing of the Gabor orientation. While the orientation 

manipulation was noticeable, it is important to underscore that our participants did 

not report having noted the temporal jitter of the visual stimuli in the temporally 

unpredictable conditions.  
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There are several studies in which reduced neural responses for predictable stimuli 

have been found during passive viewing (Alink et al., 2010), as well as when stimuli 

are fully task irrelevant (Den Ouden et al., 2009), supporting the idea that 

expectation suppression may not vary based on task engagement. In contrast to this 

notion, however, other authors found no effect of expectation suppression on sensory 

activity when stimuli were unattended (Larsson and Smith, 2012)  suggesting that 

contextually predictable stimuli may not result in the suppression of early visual 

neural responses (John-Saaltink et al., 2015). In the present experimental design, we 

observed expectation suppression effects when the orientation of the entrainers was 

predictable. This was the strongest main effect that we observed that also interacted 

with the position of entrainers along the sequence, increasing in size. We interpret 

this effect as increasing expectation developing in the visual circuitry for the 

orientation of the target Gabor: the stronger the expectation for the target orientation 

the larger the suppression of the visual response. This effect was significant at both 

E3 and E4 (Figure 7: top left and top right) and was present in both comparisons 

(with and without temporal predictability).  

This peak effect possibly originated in visual area 2 (V2) which showed reduced 

activity for predictable stimuli compared to unpredictable stimuli. The source 

location of the present effect could reflect some sort of top-down activity generated 

in an extrastriate region projecting to primary visual cortex (V1). This possibility 

however should be further validated (possibly employing direct brain recordings in 

non-human primates) with additional connectivity analyses to investigate the 
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bidirectional interaction between V1 and V2 and determine if the flow of 

information in the top-down direction is enhanced for the content predictable 

conditions. The small spatial separation between V1 and V2 makes this comparison 

infeasible based on MEG recordings. 

It is worth noting that this incremental effect was not mirrored in the behavioural 

responses, that probably reflect later decision processes. In addition, expectation 

suppression effects evident during the entrainer sequence vanish at the presentation 

of the target Gabor (where participants had to perform the task). At the target it is 

possible that resources invested for processing the task-relevant spatial frequency 

difference of the target Gabor from the entrainers interacted with the on-going neural 

expectation effects observable at the entrainers, thus washing out the stimulus 

predictability effects. It would be interesting in future studies to evaluate the 

processing of the different features of the target gabor (i.e., orientation and spatial 

frequency) by using a delayed cueing task in which participants are randomly cued 

after target presentation as to which taks they must perform (orientation or spatial 

frequency discrimination). Another possibility would be to avoid the use of any task, 

i.e. passive viewing, to determine if the expectation suppression effect is always 

preserved under such conditions. 

 

The interaction between stimulus features and temporal predictability  

In previous studies, similar experimental manipulations have been designed for 

testing the interaction between content and temporal predictability in the auditory 
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domain (Auksztulewicz and Friston, 2016; Todorovic and de Lange, 2012). In these 

experiments, expectation suppression effects have been observed at later latencies 

(100-200 ms). In the visual domain we observed a repetition suppression effect in 

an earlier time interval, i.e., at 85–125 ms. Given the different nature of the 

perceptual modality and due to the multiple differences between the experimental 

paradigms involved it is hard to directly compare these different results. More 

importantly, the analysis of the amplitude of this initial evoked response showed that 

there was a significant interaction between the what and when dimensions of visual 

stimuli. This interaction was mainly driven by the higher neural response to 

temporally predictable stimuli. Hence, tt seems that the perceptual system generates 

a greater response to an incoming stimulus whose onset is predictable compared to 

a stimulus that is not. It could be argued that the visual system is not “capable of 

preparing” for a temporally unpredictable stimulus. In fact, the effects observed in 

the initial evoked responses are preceded by a large difference between temporally 

predictable and unpredictable conditions in the evoked activity (Figures 4 and 5). 

This difference may be due that brain is differently preparing for the incoming 

stimuli depending on their temporal predictability. 

However, it is worth noticing that at around 100 ms, when the initial visual peak is 

evident, there is a difference for the temporal contrast of the two content predictable 

conditions (what + when vs. what, Figure 4, sensor-level results) and not for the 

unpredictable ones (when vs. random, Figure 5, sensor-level results). If this effect 

would have been driven only by the inability of the visual system to prepare for a 
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visual stimulus (independently from its visual properties), one would expect a 

similarly larger visual response for both cases. One potential explanation for the 

larger suppression of the early evoked response in the temporally unpredictable 

condition (what condition) is that the visual system relies more on the internal 

prediction and less on the external evidence, when temporal uncertainty is higher 

(and if predictions have been developed). This evidence would support theoretical 

claims suggesting that predictive mechanisms are central for reducing the 

uncertainty of the external environment (Clark, 2013). 

 

Stimulus specific neural activity 

Since evoked responses did not speak for stimulus specificity in the present study, 

we used time-resolved multivariate pattern analysis to measure stimulus information 

that could be decoded from the neural activity. Our results show that the decoding 

of the Gabor orientation is increasing in magnitude (peak decoding accuracy) across 

entrainers when the target orientation is predictable. This indicates that stimulus 

predictability is a crucial factor to enhance the decodability of orientation during the 

presentation of the entrainers. In fact, when the stimulus is not predictable, 

decodability is at chance level. 

Small but significant time differences emerged based on temporal predictability, 

with the effect at E4 showing an effect more sustained in time for temporally 

predictable (what + when) compared to the temporal unpredictable (what) 

conditions. It is possible that such difference could be ascribed to prolonged 
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processing by the visual system that invests more resources to analyse the stimulus 

features when the onset of the visual stimulus is predictable. The most robust effect 

observed for temporally predictable stimuli indicates that the visual system 

processes visual information of the orientation of the expected Gabor for a longer 

time period compared to when it is less temporally predictable. In temporally 

uncertain conditions the orientation information of the Gabor may be maintained 

active for less time. This difference mirrors the evoked effects, where we observed 

higher visual response for the temporally predictable, compared to the temporally 

unpredictable conditions. Decoding results thus reinforce our hypothesis that 

stimulus-specific neural processes are recruited more for the processing of the 

expected/temporally predictable visual stimuli, compared to expected/temporally 

uncertain visual stimuli.  

A side note concerns the decoding of the spatial frequency. This feature was constant 

across entrainers and conditions thus leading to chance level decoding for all four 

entrainers. At the target, however, spatial frequency showed very high decoding 

(around 97–98 %), even higher than orientation decoding. Spatial frequency effects 

were also evident earlier and lasted longer than the orientation effects. Since our task 

focused on the difference in spatial frequency between the entrainers and target, the 

neural system likely maintains active for a longer interval the spatial frequency 

information of the target compared to the orientation of the target thus obscuring or 

interfering with the on-going expectation suppression effects due to Gabor 

orientation.  
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Conclusions 

In the present study we investigated the effect of temporal predictability on visual 

predictive processing. Our results show that temporal predictability modulates 

processing of expected visual features. Lack of temporal predictability suppresses 

visual evoked responses at a large extent compared to temporally predictable visual 

stimuli, perhaps due to the fact that the brain increases reliance on internal prediction 

models.  
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Supplementary figures:  

 
 
Sup. Figure 1: Time resolved decoding of what + when and what trials timelocked to 
Entrainer 1(E1), Entrainer 2 (E2), Entrainer 3 (E3), Entrainer 4 (E4) and Target (T). The 
coloured dots represents the statistical significance of accuracy. 
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Sup. Figure 2 : Time resolved decoding of what only and random trials time-locked to 
Entrainer 1(E1), Entrainer 2 (E2), Entrainer 3 (E3), Entrainer 4 (E4) and Target (T). The 
coloured dots represents the statistical significance of accu 
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Sup Table 1: Location of the local maxima expressed in MNI coordinates (x, y, z mm) for 
each condition and Entrainer. 
 
 

 E1 E2 E3 E4 

what + when –2 –76 –1 –3 –74 –3 –4 –75 –5 –4 –75 –1 

when –3 –76 1  –3 –76 –5 –5 –77 –4 –4 –76 –1 

what –3 –77 0 –2 –76 –3 –3 –76 –3 –3 –75 –1 

random –3 –77 –1 –3 –77 –4 –4 –77 –3 –4 –77 –2 
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