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Key Points 

Question: Can machine learning algorithms predict internet gaming disorder (IGD) from resting-state 

neural patterns? 

Findings: This diagnostic study collected resting-state fMRI data from 402 subjects with diverse IGD 

severity. We found that machine learning models based on resting-state neural patterns yielded significant 

predictions of IGD severity. In addition, the topological neural features of precentral gyrus, which is a 

consensus highly weighted region, is significantly correlated with IGD severity.   

Meaning: The study found that IGD is a distinctive disorder and its dependence severity could be 

predicted by brain features. The precentral gyrus and its connection with other brain regions could be 

view as targets for potential IGD intervention, especially using brain modulation methods.  
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Abstract 

Importance: Finding the neural features that could predict internet gaming disorder severity is important 

in finding the targets for potential interventions using brain modulation methods. 

Objective: To determine whether resting-state neural patterns can predict individual variations of 

internet gaming disorder by applying machine learning method and further investigate brain regions 

strongly related to IGD severity.   

Design: The diagnostic study lasted from December 1, 2013, to November 20, 2019. The data were 

analyzed from December 31, 2019, to July 10, 2020. 

Setting: The resting-state fMRI data were collected at East China Normal University, Shanghai. 

Participants: A convenience sample consisting of 402 college students with diverse IGD severity  

Main Outcomes and Measures: The neural patterns were represented by regional homogeneity (ReHo) 

and the amplitude of low-frequency fluctuation (ALFF). Predictive model performance was assessed by 

Pearson correlation coefficient and standard mean squared error between the predicted and true IGD 

severity. The correlations between IGD severity and topological features (i.e., degree centrality (DC), 

betweenness centrality (BC), and nodal efficiency (NE)) of consensus highly weighted regions in predictive 

models were examined.  

Results: The final dataset consists of 402 college students (mean [SD] age, 21.43 [2.44] years; 239 [59.5%] 

male). The predictive models could significantly predict IGD severity (model based on ReHo: r = 0.11, p(r) 

= 0.030, SMSE = 3.73, p(SMSE) = 0.033; model based on ALFF: r=0.19, p(r) = 0.002, SMSE = 3.58, p(SMSE) 

= 0.002). The highly weighted brain regions that contributed to both predictive models were the right 

precentral gyrus and the left postcentral gyrus. Moreover, the topological properties of the right precentral 

gyrus were significantly correlated with IGD severity (DC: r = 0.16, p = 0.001; BC: r = 0.14, p = 0.005; NE: r 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.267989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.267989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

= 0.15, p = 0.003) whereas no significant result was found for the left postcentral gyrus (DC: r = 0.02, p = 

0.673; BC: r = 0.04, p = 0.432; NE: r = 0.02, p = 0.664). 

Conclusions and Relevance: The machine learning models could significantly predict IGD severity from 

resting-state neural patterns at the individual level. The predictions of IGD severity deepen our 

understanding of the neural mechanism of IGD and have implications for clinical diagnosis of IGD. In 

addition, we propose precentral gyrus as a potential target for physiological treatment interventions for 

IGD.   
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Introduction 

Internet gaming disorder (IGD) has been recognized as a serious mental health problem that is 

characterized by obsession with gaming, hypersensitivity to game cues and failure to resist the impulse to 

play games despite negative consequences 1-3. In recent decades, there has been a steady increase in IGD 

around the world, and an increased number of studies have focused on behavioral characteristics 

associated with IGD 4-6. In 2013, IGD was included in Section III of the DSM-5 (The Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition) as a condition requiring future research 7. In 2015, 

gaming disorder was officially listed in the new version of the International Classification of Diseases 

(https://www.who.int/news-room/q-a-detail/gaming-disorder). Despite widespread interest in IGD, less 

is known about the neural substrates underlying this disorder. 

The behavioral model of IGD has been well developed thus far. Extreme reward-seeking 8, defective 

executive inhibition 9, and risky decision-making 10 are commonly recognized as core components of IGD 5, 

11. These findings provide a basis for clinical behavior therapy for IGD 12, 13. However, most of these 

cross-sectional studies revealed the static condition of IGD, which cannot explain the relationship between 

neural features and the degree of addiction. Thus, the exploration of neural substrates of IGD may advance 

our understanding of this mental disorder and provide new insights for diagnosis, intervention, and 

treatment. 

Resting-state functional magnetic resonance imaging (rs-fMRI) is an effective task-independent 

method used to investigate the neural substrates of IGD. Two metrics of rs-fMRI were developed to 

measure neural activities in the human brain: (i) regional homogeneity (ReHo) measures regional 

synchronization at the whole-brain level and spontaneous local neural activity 14, and (ii) the amplitude of 

low-frequency fluctuation (ALFF) measures regional intensity of spontaneous fluctuations in the BOLD 
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signal. These two neural indicators have been effectively used to explore the neural mechanism of IGD 15-17. 

For instance, ReHo alterations were found in regions related to sensory-motor coordination, audiovisual 

processing, and reward pathways in individuals with IGD compared with healthy controls 18. Additionally, 

studies that employed the ALFF method found abnormalities in the left medial orbitofrontal cortex, the left 

precuneus, the left supplementary motor area, the right parahippocampal gyrus, and the bilateral middle 

cingulate cortex among individuals with IGD 19, 20. Therefore, IGD has been widely proven to be related to 

abnormal brain activity, which leads to its addiction pattern 21-23. However, few studies have had a sample 

size large enough to ensure the reliability of their findings. More importantly, previous studies using 

conventional fMRI analyses were unable to effectively utilize massive fMRI data to delineate neural 

patterns and often focused on the differences between individuals with IGD and normal individuals at the 

group level. 

Multivoxel pattern analysis (MVPA), a powerful data-driven machine learning method, is widely used 

in decoding brain activities and providing useful neural information to improve mental disorder diagnosis 

and treatment 24, 25. MVPA has unique advantages (e.g., having an increased sensitivity to detect brain 

patterns, allowing the extraction of feature weights, and characterizing neural code at the individual level) 

compared with conventional fMRI analyses. This method has been implemented to characterize neural 

coding and information processing in psychiatric studies 26, 27 and could be useful in identifying the neural 

features of IGD. However, to date, only one study has explored the neurobiological mechanism of IGD by 

using MVPA 28, suggesting that MVPA provides a potential way to distinguish individuals with IGD from 

recreational game users by decoding brain patterns represented by ReHo values. However, whether 

multiple brain activities can predict the IGD features of an individual remains unknown. Thus, determining 

whether different measures can predict IGD features and how they work is important and necessary. 
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Studies have demonstrated that addiction is related not only to abnormal brain activities in a specific 

region but also to atypical interactions between brain regions and networks 22, 29. Altered functional 

connectivity was shown between regions involving reward, cognitive processing, and executive control 

function in subjects with IGD 30, 31. Although MVPA based on local neural features can characterize brain 

patterns, it cannot be used to explore the regional relationships involved in IGD. Thus, graph theory and 

Granger causality analysis (GCA) were applied to address this problem. Graph theory provides a powerful 

framework to describe the whole brain topologically and has been widely used in studies about addiction 

32. By constructing a network made up of nodes and edges, several topological metrics can be calculated to 

characterize regional properties and then reveal the potential significant position of the regions in the 

brain. Wang et al. 33 reported that subjects with IGD showed reduced node metrics in executive control and 

emotion-related regions, indicating the key roles these regions played in IGD. In addition, Granger 

causality analysis, which is a mathematical method used to build effective connectivity, can be applied to 

detect coupling among regions without assumptions about connections between them 34, 35. To date, two 

task fMRI studies have used GCA to explore the neural substrates of IGD. One study found that IGD severity 

was negatively correlated with connectivity from the middle frontal gyrus to the precuneus during a 

cue-carving task, and another study found abnormal effective connectivity within the salience network in 

adolescents with IGD 36, 37. 

In the present study, we aimed to combine MVPA and graph theory analysis with GCA to decode the 

specific neural patterns of IGD in a large sample. We first applied the MVPA method to identify highly 

weighted regions as core brain areas in predicting IGD. The subsequent analysis revealed how these 

crucial regions for IGD work and interact with other regions. Specifically, we used MVPA to examine 

whether ReHo and ALFF could predict individuals’ IGD severity and to identify relatively highly weight 
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brain regions that contributed to the model. Then, graph theory analysis was employed to further confirm 

the importance of selected regions in the IGD brain networks. Finally, GCA was implemented to explore 

how these regions interact with other brain regions in contributing to IGD. Based on previous studies, we 

hypothesized that (1) the predictive model based on ReHo and ALFF could significantly predict IGD 

severity; (2) regions related to reward processing, sensory-motor coordination, and executive control 

would be highly weighted in prediction models; (3) these highly weighted regions are crucial in the IGD 

brain network; and (4) IGD severity is related to effective connectivity between these regions and other 

regions in the whole brain. 
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Methods 

Participants 

Four hundred and two right-handed participants (239 males; 21.43 ± 2.44 years old) were recruited by 

advertisement from June 2013 to December 2019. All participants were free of any personal or family 

history of psychiatric disorders as assessed by an exhaustive structured psychiatric interview. Participants’ 

demographics and internet addiction test (IAT) scores are shown in Tab. 1. The study was conducted in 

accordance with the 1964 Helsinki Declaration and its later amendments and was approved by the Ethics 

Committee of Zhejiang Normal University. Written informed consent was obtained from all participants 

before participating in this research. 

----- Insert Table 1 about here ------ 

Measures 

Participants were assessed for IGD severity with Young’s online Internet Addiction Test (IAT) 38. The IAT 

consists of 20 items related to internet use and internet-related addictive behavior. Each item can be rated 

on a 5-point Likert scale (from 1-rarely to 5-always). Higher IAT scores indicate greater internet use and 

addiction. The reliability and validity of the scale have been well validated 39, 40. In addition to the IAT, the 

DSM-5, which is a nine-item IGD diagnostic measure, was also applied to assess IGD severity 2. Participants 

were asked to answer “yes” or “no” to nine criteria occurring over the past 12 months. People who met 

more than 5 criteria were clinically diagnosed with IGD. Because the DSM-5 was published in 2014, only 

part of our participants (N = 365) took the assessment. IAT scores and DSM-5 scores are highly correlated. 

MRI data acquisition 

Resting-state functional magnetic images were collected at East China Normal University using a 3T MRI 

system (Siemens Trio). The participants were simply instructed to keep their eyes closed and stay awake 
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without performing any cognitive exercises. Head motion was minimized using foam padding and 

restraint. The imaging parameters were as follows: repetition time (TR) = 2000 ms, interleaved 33 slices, 

echo time (TE) = 30 ms, thickness = 3.0 mm, flip angle = 90°, field of view = 220 ×220 mm, and matrix = 64 

× 64. Each fMRI scan lasted for 420 s and included 210 imaging volumes. 

Preprocessing 

Preprocessing was conducted with DPABI v3.0 (Data Processing & Analysis for Brain Imaging: 

http://rfmri.org/dpabi), which is a pipeline toolbox for fMRI analysis in MATLAB 41. For each participant, 

the first 10 volumes were discarded to minimize the (transient signal) instability of the initial signal and 

adapt participants to the scanning environment (effect of scanner calibration). Subsequent data 

preprocessing included slice timing correction, head motion correction, spatial normalization to the 

standard MNI space with an EPI template and resampling into 3 × 3 × 3 mm3 voxels. The data used in the 

present study met the criteria of head motion <2.5 mm or 2.5°. Nuisance signals, including 24 motion 

vectors (i.e., six 6 head motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items), the white matter signal, and the cerebrospinal fluid signal, were regressed 

out 42. Subsequently, the linear trends of time courses were removed, and the resulting images were 

temporally filtered with a bandpass filter (0.01-0.1 Hz) to reduce the effect of low frequency drift and 

high-frequency noise 43. Finally, the images were spatially smoothed using a Gaussian filter to decrease 

spatial noise (6 × 6 × 6 mm3 full width at half maximum). 

MVPA 

ReHo and ALFF calculation 

The ReHo and ALFF map of each subject was calculated with DPABI to evaluate local spontaneous activity 

and brain functional synchronization in the resting state. The ReHo map of each subject was generated by 
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calculating Kendall’s coefficient of concordance between a single voxel and the 26 nearest neighbor voxels 

in a voxel-wise manner for the entire time series 14. Note that the ReHo calculation used rs-fMRI data that 

were not smoothed during preprocessing. The ALFF map of each subject was generated using the 

following steps. First, the imaging data were temporally bandpass filtered (0.01<f<0.08 Hz). Second, the 

time series of each voxel was transformed into the frequency domain to obtain the power spectrum, and 

the square root was calculated at each frequency of the power spectrum. Finally, the average square root 

was obtained across 0.01-0.08 Hz at each voxel and then taken as the ALFF value 44. 

Kernel ridge regression (KRR) 

Using the ReHo and ALFF maps, MVPA was implemented to predict IGD severity (i.e., IAT score) in the 

Pattern Recognition for Neuroimaging Toolbox (PRoNTo: http://www.mlnl.cs.ucl.ac.uk/pronto) 45. The 

KRR was utilized as the regression algorithm in the present study. KRR, which is a kernel-based approach, 

has very good generalization performance. The linear kernel method was used to map these implicit 

features into a high dimensional feature space 46. Then, ridge regression, a linear least square regression 

with Tikhonov regularization (regularization that penalizes the sum of squares of the weights) was 

applied to predict the IGD severity 47, 48. Here, the ReHo and ALFF maps were used as input data in the 

analyses. Each 3D image was transformed into a column vector of features, and each value corresponded 

to a single corresponding voxel intensity. Then, whole-brain models with features from images were 

constructed to investigate whether the ReHo/ALFF pattern could predict IGD severity. 

Cross-validation method 

To test the generalizability of the predictve models, leave-one-out cross-validation (LOOCV) was 

implemented. The method involved all subjects training the model, but one was left out to obtain an 

estimated model. The model was used to predict the behavior of the left-out subject. The above 
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procedures were repeated n times (n= total number of subjects) to obtain a relatively unbiased estimate of 

generalizability. The performance of the established model was evaluated by two metrics, Pearson’s 

correlation coefficient (r) and the standard mean squared error (SMSE) 49. The correlation coefficient 

refers to the strength of a linear relationship between two variables. A higher correlation indicates better 

predictions. The SMSE refers to the mean of the squared differences between the predicted and true scores 

divided by the targets’ variance. The significance of these predictions was assessed with a permutation 

test of 1,000 permutations. That is, the same cross-validation procedure mentioned above was performed 

1000 times with the label permuted across all the participants. The number of permutations that showed 

better performance (i.e., higher r or lower SMSE than the value obtained with the true target) was 

calculated. The p-value was computed by dividing the number by the total number of permutations (i.e., 

1,000). The workflow for the MVPA is presented in Fig. 1. 

----- Insert Figure 1 about here ------ 

Region of interest (ROI) selection 

A weighted image can be calculated by PRoNTo voxel-wise and ROI-wise for each model. To find the most 

weighted region in the whole brain, the Dosenbach 160-node atlas was applied to define the brain regions 

45, 50. The ROI contributions to the predictive model were ranked in descending order, and regions that 

were 5% of the maximum (i.e., top 8) weighted were listed from predictive models that was based on the 

ReHo and ALFF patterns respectively. Regions that were presented in both top 8 lists were selected as ROIs 

in the current study. 

Graph theory measures 

To test the significance of these ROIs in IGD severity across the brain network, graph theory was employed 

to characterize the topological properties of the ROIs. In graph theory, a topological brain network can be 
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constructed by nodes and edges. Nodes refer to brain regions predefined by an atlas, and edges are 

defined as functional connectivity between two regions using Pearson’s correlation coefficient. Here, three 

nodal properties were computed to describe ROIs we selected in the predictive model. The degree 

centrality (DC) is the number of edges connected to a given node; it quantifies the information 

communication ability of nodes in the network 51. The betweenness centrality (BC) is the number of 

shortest paths passing through a given node and describes the effect of the node on the information 

transmission of other nodes 52. The nodal efficiency (NE) is the average inverse shortest path length 

between the given node and every other node, and it characterizes the efficiency of parallel information 

transfer by the node 53. 

The nodes were defined using Dosenbach’s 160-node atlas, which was employed in the MVPA above. 

The edges were the functional connectivity between each pair of nodes, computed as Pearson’s correlation 

between the time courses of each pair of ROIs. First, the preprocessed data were entered to calculate 

correlation coefficients between each pair of ROIs, and subsequent correlation coefficients were 

normalized to Z ‐scores with Fisher's r‐to‐z transformation. Thus, a weighted undirected functional 

connectivity matrix was generated, and it was converted to a graph network by considering a threshold T 

(set as 0.25 in the present study) to ensure that the stronger edges, in descending order, can enter the 

network construction 54. Then, the weighted network was binarized, so that DC, BC, and NE could be 

calculated for every node in the setting threshold. Finally, correlation analysis was conducted between 

these topological metrics of the ROIs and IGD severity. The procedures mentioned above were 

implemented in the GRaph thEoreTical Network Analysis toolbox (GRETNA: 

http://www.nitrc.org/projects/gretna/) 55. 

Granger Causality Analysis 
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Although GCA was originally developed in the field of economics to find the causal relationship between 

two time-courses, it has also been widely applied in neuroscience studies. Here, voxel-wise GCA was 

employed to evaluate effective connectivity related to selected ROIs. DynamicBC, a MATLAB toolbox, 

allows performance of GCA for rest-state fMRI data 56. The preprocessed 4D rest-state fMRI image was 

entered to calculate effective connectivity between ROIs and voxels within the whole brain. Thus, IN (i.e., 

information transmitted from other voxels to a given ROI) and OUT (i.e., information transmitted from a 

given ROI to other voxels) effective connectivity brain maps were generated separately for selected ROIs in 

each subject. Correlation analyses were conducted using IGD severity to determine how information flow 

through selected ROIs was influenced by IGD severity.  
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Results 

MVPA results 

The two predictive models (ReHo and ALFF) yielded similar and significant predictions of IGD severity 

(model based on ReHo: r=0.11, p(r)=0.030, SMSE=3.73, p(SMSE)=0.033; model based on ALFF: r=0.19, 

p(r)=0.002, SMSE=3.58, p(SMSE)=0.002). 

----- Insert Figure 2 about here ------ 

For each model, the region weights were ranked in descending order. We found two regions, namely, 

the right precentral gyrus (60, 8, 34, x, y, z) and left postcentral gyrus (-54, -9, 23, x, y, z), were shown in 

the top 8 predictor lists of the two models and were therefore chosen as our ROIs. 

Graph theory analysis results 

Graph theory analysis was applied to identify the important role of these highly weighted ROIs in IGD 

brain networks. Significant positive associations were found between IGD severity and all three graph 

theory metrics (i.e., DC, BC, and ND) of the right precentral gyrus (DC: r = 0.16, p = 0.001; BC: r = 0.14, p = 

0.005; NE: r = 0.15, p = 0.003), whereas no significant result was found for the left postcentral gyrus (DC: r 

= 0.02, p = 0.673; BC: r = 0.04, p = 0.432; NE: r = 0.02, p = 0.664) (Fig. 3). These results indicated that the 

precentral gyrus may play a significant role in the whole-brain network. We reasoned that the precentral 

gyrus works as an information intermediary responsible for transmitting and integrating information in 

an IGD brain. To define these potential pathways, GCA was implemented using the precentral gyrus as our 

seed region. 

----- Insert Figure 3 about here ------ 

GCA results 

Finally, GCA was applied to investigate the interactions between the right precentral gyrus and the whole 
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brain. When correlating IGD severity (IAT score) with the effective connectivity results (input/output from 

right precentral gyrus), two effective connectivity that output from the right precentral gyrus to the left 

precentral gyrus (cluster size: 99 voxels; MNI coordinates: 33, -9, 57, x, y, z) and dACC (cluster size: 63 

voxels; MNI coordinates: -9, 12, 45, x, y, z) were positively correlated with IAT score (p <0.005, GRF 

corrected) (Fig. 4). 

----- Insert Figure 4 about here ------ 

 

We reported the results using IAT score in selecting IGD, the results are of similar when using DSM-5 

scores in selecting IGD. All results using DSM-5 scores were put into the supplementary materials. 
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Discussion 

In the present study, we combined machine learning techniques with rs-fMRI to identify distinct neural 

patterns in predicting IGD severity. The results showed that neural models represented by both ReHo and 

ALFF could significantly predict IGD severity at the individual level. In particular, the right precentral gyrus 

and left postcentral gyrus were highly weighted in both prediction models. Furthermore, graph theory 

analysis implied that the right precentral gyrus is an important node in the IGD brain network. Finally, GCA 

revealed that the effective connectivity between the right precentral gyrus and the left precentral gyrus 

and dACC was related to IGD severity. 

Neural patterns detected by MVPA can predict IGD severity 

Previous studies have demonstrated that the resting-state neural patterns underlying IGD fit with its 

diverse behavioral characteristics. For example, subjects with IGD showed increased ReHo in brain regions 

involved in sensory-motor coordination 18. Furthermore, altered fALFF was observed in the cerebellum 

posterior lobe and superior temporal gyrus, which may be related to cognitive function and movement 57. 

Additionally, a recent meta-analysis found that abnormalities existed in several brain networks, including 

the default mode network, frontoparietal network, and attention network, in patients with IGD 58. 

Although these findings advance the understanding of the neural mechanism of IGD, the stability and 

reproducibility of these results still need to be evaluated with caution. The machine learning approach 

could decode complex brain patterns of mental disorders voxel-wise, which is more reliable than 

conventional fMRI analyses 24, 59. Here, we applied the MVPA method with two rs-fMRI metrics-ReHo and 

AlFF-to predict IGD severity. We found that both ReHo and ALFF can significantly predict addiction 

severity at the individual level. The results suggested that resting-state brain activities can be used to 

predict IGD severity effectively and imply the distinctive neural patterns underlying IGD. The brain 
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activities in the informative brain regions of the predictive models were accompanied by changes in the 

severity of IGD, and these regions may play a key and distinct role in IGD. Moreover, consensus highly 

weighted brain regions were revealed by two predictive models, indicating that the results of MVPA are 

relatively robust and that neural signatures that can be detected by machine learning methods stably exist 

in IGD brains. 

Neural features in the precentral gyrus play a key role in predicting IGD severity 

In both predictive models, the precentral gyrus and postcentral gyrus were reported as informative 

seeds for predicting IAT scores. The precentral gyrus and postcentral gyrus are the key regions of 

sensorimotor networks associated with integrating sensorimotor information and coordinating physical 

movement 60, 61. Atypical brain activities related to sensorimotor networks have been consistently 

indicated in IGD individuals previously 20. For example, IGD subjects showed enhanced ReHo values in 

brain regions associated with motor-sensory coordination ability and altered functional connectivity in 

sensory-motor related networks 18, 33. In line with these findings, the precentral gyrus and postcentral 

gyrus play a key role in motor functions, especially in coordinating hand movements, which is very 

important for internet game playing. The results of graph theory analysis further revealed the special role 

of the right precentral gyrus in IGD whole-brain networks. Elevated DC, BC, and NE of the right precentral 

gyrus were associated with greater IGD severity, indicating that the precentral gyrus may become a 

functional hub of the brain network that is responsible for information propagation, integration, and 

processing with increasing IGD severity 62, 63. Moreover, frequent computer game usage improves 

motor-visual coordination and perceptual-motor competencies 64, 65. Therefore, frequent internet game 

use, which is one of the features of IGD, may enhance interactions between the precentral gyrus and other 

regions to proficiently complete operations required by computer games33. 
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Effective connectivity between the precentral gyrus and dACC related to IGD severity 

Furthermore, we found that effective connectivity from the right precentral gyrus to the left 

precentral gyrus and the dACC was positively correlated with IGD severity. The effective connectivity from 

the right precentral gyrus to the left precentral gyrus may be related to the coordination of sensorimotor 

information between the left and right brain. Here, the increased effective connectivity between the left 

and the right precentral gyrus may indicate advanced game skills in individuals with IGD 66. Moreover, we 

found increased effective connectivity between the right precentral gyrus and the dACC, which is a node of 

salience networks in elevated IGD participants. The ACC is primarily associated with response selection 67, 

motivation 68, and reward assessment 69. The dorsal part of this region (i.e., the dACC) has been especially 

indicated, by an increasing body of research, to be dysfunctional among individuals with IGD 70-72. The 

dysfunction of the dACC may contribute to disadvantageous decision-making and cue-induced carving in 

addiction behaviors 73, 74. In the current study, we speculated that the pathway from the right precentral 

gyrus to the dACC may be responsible for transmitting and then integrating sensorimotor information into 

decision-making and reward evaluation. The enhancement of this pathway among individuals with IGD 

suggests more frequent communication between the right precentral gyrus and the dACC, leading to rapid 

reward assessment and risky decision-making 75. When subjects with IGD are exposed to game cues, they 

are strongly motivated to be involved in games and quickly respond to these cues, leading to their 

addiction and risky behavior. The effective connectivity results may reveal a neural circuit existing in the 

IGD brain. The enhancement of the circuit fits symptoms of IGD, i.e., that individuals are proficient in 

operating computer games that require extensive sensorimotor coordination and that they exhibit 

increased reward craving and strong motivation to play internet games 7, 33. 

Limitations: 
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There were some limitations in this study. First, because this study was limited to a population of 

college students, most of whom are adults, it is difficult to determine whether the results would be the 

same in teenager samples. Future studies should examine the results in wider sample types. Second, we 

did not examine other highly weighted regions in the predictive model. Although some regions have a high 

weight only in a single model, they still have neurophysiological significance for IGD. How these regions’ 

neural activity is related to IGD severity needs full consideration and exploration. 

Conclusions 

The current study demonstrated that resting-state neural activity could predict IGD severity at the 

individual level. As such, the findings may provide evidence to support the view that IGD has specific 

neural patterns and provide new insight into IGD. In addition, we discovered and verified the critical role 

of the precentral gyrus in IGD brain networks. The current study deepened our understanding of the 

neural mechanism of IGD and provides a potential target for physiological treatment interventions for IGD. 
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Figure Legends 

Figure 1. Workflow of multi-voxel pattern analysis.  

The ReHo and ALFF map were calculated based on rs-fMRI data and then were entered into predictive 

model as features to predict IGD severity. The KRR algorithm was applied to make prediction using 

cross-validated approach. The model performance was assessed by permutation test. IAT: Internet 

addiction test. 
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Figure 2. Performance of the model in predicting IAT score.  

Permutation distribution of the correlation coefficient (r) and standard mean squared error (SMSE) for 

the prediction analysis. The value obtained using the real scores are indicated by the red dash line. Higher 

r value and lower SMSE value indicate better performance of predictive models for ReHo and ALFF. 

*p<0.05.  
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Figure 3. Two selected ROIs and results of graph theory analysis.  

The threshold T of network construction was set as 0.25. (a) Two highly weighted ROIs in both predictive 

models. (b) For the node of right precentral gyrus, the DC, BC, and NE are significantly related to IAT score. 

(c) For the node of left postcentral gyrus, the DC, BC, and NE are not associated with IAT score. IAT: 

Internet addiction test; DC: degree centrality; BC: betweenness centrality; NE: nodal efficiency. 
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Figure 4. Result of Granger causality analysis.  

(a) Two effective connectivity were associated to IAT score. (b) Scatter plot shows the positive correlation 

between IAT score and the connectivity from right precentral gyrus to left precentral gyrus (r=0.160, 

p<0.005, GRF corrected). Each dot represents one subject. Semi-area represents 95% confidence interval 

for best-fit line. (c) Scatter plot shows the positive correlation between IAT score and the connectivity 

from right precentral gyrus to dACC (r = 0.158, p<0.005, GRF corrected). Each dot represents one subject. 

Semi-area represents 95% confidence interval for best-fit line. IAT: Internet addiction test; dACC: dorsal 

anterior cingulate cortex. 
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Table Legends 

Table 1. Participants demographics and IAT scores (N=402).  

 Male  

(N=239) 

Female  

(N=163) 

 Mean SD Mean SD 

Age (years) 21.78 2.67 21.07 1.98 

Education (years) 14.67 1.40 14.48 1.09 

Gaming history (years) 3.80 0.56 3.61 0.74 

Gaming playing per weak(hours) 6.94 3.00 7.08 3.59 

IAT score 49.57 16.55 51.44 14.85 

SD: standard deviation; IAT: Internet addiction test. 
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Table 2. Top 8 predictors for IGD severity and their relative weights in predictive power 

(percentage of the total weights) for predictive models based on ReHo and ALFF. 

 Serial 

number a 

Anatomical  

region b 
MNI coordinates Weight (%) 

Size 

(voxels) 
Hemi 

   x y z    

ReHo 

model 
52 Postcentral gyrus -54 -9 23 1.67 19 L 

 
75 Postcentral gyrus -38 -27 60 1.57 19 L 

 
35 Precentral gyrus 60 8 34 1.46 17 R 

 
137 

Lateral occipital 

cortex 
45 -72 29 1.25 19 R 

 
77 Postcentral gyrus -24 -30 64 1.17 19 L 

 
62 Precentral gyrus -38 -15 59 1.15 19 L 

 
87 

Middle cingulate 

cortex 
8 -40 50 1.12 19 R 

 
132 Precuneus 11 -68 42 1.12 19 R 

ALFF 

Model 
133 Calcarine 17 -68 20 1.82 19 R 

 
35 Precentral gyrus 60 8 34 1.63 17 R 

 
147 Calcarine 9 -76 14 1.56 19 R 

 
52 Postcentral gyrus -54 -9 23 1.44 19 L 

 
148 Cuneus 15 -77 32 1.35 19 R 

 
86 Postcentral gyrus 34 -39 65 1.33 19 R 

 
67 

Supramarginal 

gyrus 
-54 -22 22 1.23 19 L 

 
23 

Inferior frontal 

gyrus 
-52 28 17 1.22 19 L 

a: The serial numbers are taken from Dosenbach 160-node atlas.  

b: The anatomical regions were defined based on Automated Anatomical Labeling (AAL) atlas. 
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