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Abstract 
 

Pre-stimulus EEG oscillations, especially in the alpha range (8-13 Hz), can affect the integra- 

tion of stimulus features into a coherent percept. The effects of alpha power are often ex- 

plained in terms of alpha’s inhibitory functions, whereas effects of alpha frequency have bol- 

stered theories of discrete perceptual cycles, where the length of a cycle, or window of inte- 

gration, is determined by alpha frequency. Such studies typically employ visual detection par- 

adigms with near-threshold or even illusory stimuli. It is unclear whether such results general- 

ize to above-threshold stimuli. Here, we recorded electroencephalography, while measuring 

temporal discrimination sensitivity in a temporal order judgement task using above-threshold 

auditory and visual stimuli. We tested whether pre-stimulus oscillations predict audio-visual 

temporal discrimination sensitivity on a trial-by-trial basis. By applying a jackknife procedure 

to link single-trial pre-stimulus oscillatory power and instantaneous frequency to psychomet- 

ric measures, we identified two highly overlapping clusters over posterior sites. One where 

lower alpha power was associated with higher temporal sensitivity of audiovisual discrimina- 

tion, and another where higher instantaneous alpha-frequency predicted higher temporal dis- 

crimination sensitivity. A follow-up analysis revealed that these effects were not independent, 

and that the effect of instantaneous frequency could be explained by power modulations in the 

lower alpha band. These results suggest that temporal sensitivity for above-threshold multi- 

sensory stimuli changes spontaneously from moment to moment and is likely related to fluc- 

tuations in cortical excitability. Moreover, our results caution against interpreting instantane- 

ous frequency effects as independent from power effects if these effects overlap in time and 

space. 
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Introduction 
 

A fundamental aspect of perception is the integration of sensory signals to form meaningful 

percepts within and across modalities. Whether two signals from different sensory modalities 

are integrated depends, among other factors, on their temporal proximity. The shorter the time 

between them, the higher the chance they will be integrated (Lewald & Guski, 2003; Meredith 

et al., 1987; Senkowski et al., 2007). 

Exactly how close in time these signals need to be for integration to occur depends on 

several factors. Accordingly, temporal sensitivity is highly variable both within and between 

individuals. For example, in people diagnosed with schizophrenia, autism or dyslexia, audio- 

visual temporal sensitivity appears to be reduced compared to healthy controls (De Boer- 

Schellekens et al., 2013; Foucher et al., 2007; Hairston et al., 2005; Martin et al., 2013; Ste- 

venson et al., 2012, 2014, 2017; Wallace & Stevenson, 2014). Even in the healthy population, 

the temporal sensitivity of integration differs markedly across individuals (Stevenson et al., 

2012). Within individuals, temporal sensitivity is modulated by factors such as stimulus com- 

plexity (Stevenson & Wallace, 2013), stimulus intensity (Fister et al., 2016) and spatial rela- 

tion (Lewald & Guski, 2003). Previous experience and training (Lee & Noppeney, 2011; Na- 

varra et al., 2005; Powers et al., 2009), attention (Donohue et al., 2015; Talsma et al., 2009) 

and cognitive load (Dean et al., 2017) also have an impact. 

In the search for the neural correlates of temporal sensitivity in multisensory integra- 

tion, most previous studies, including some of those discussed above, have focused on transi- 

ent, stimulus-related activity. Recently, however, it has been found that spontaneous oscillato- 

ry EEG activity reflecting momentary state can affect temporal discrimination sensitivity in 

unisensory auditory, tactile and visual perception (Baumgarten et al., 2016; Bernasconi et al., 

2011; Samaha & Postle, 2015). In the multisensory domain, the relationship between ongoing 

oscillatory brain activity and multisensory integration has increasingly been studied as well 
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(Cecere et al., 2015; Grabot et al., 2017; Ikumi et al., 2019; Keil & Senkowski, 2017; Leonar- 

delli et al., 2015; Ronconi et al., 2018; Yuan et al., 2016). 

For example, Cecere et al. (2015) used the sound-induced flash illusion in combination 

with EEG and transcranial alternating current stimulation to show that peak alpha-frequency 

around stimulus presentation causally determined the temporal window of audiovisual inte- 

gration. Their findings were corroborated by (Keil & Senkowski, 2017) based on an analysis 

of pre-stimulus alpha activity alone. These results are informative regarding the temporal 

characteristics of auditory influences on visual perception (sound-induced flash illusion), but 

the question remains whether they are representative of general multisensory perceptual pro- 

cesses. Not all participants report the associated illusion and whether they do so might depend 

on the power of their alpha oscillations (Cecere et al., 2015; Lange et al., 2013); however see 

Keil & Senkowski, 2017). Furthermore, the effect of alpha oscillations on the temporal sensi- 

tivity of perception may be so subtle that it only becomes apparent when the stimuli are 

around threshold or that it even relies on illusory perception (see Benwell et al., 2017; Iemi & 

Busch, 2018, for a link between pre-stimulus alpha activity and subjective rather than objec- 

tive measures of perception). 

To test more directly whether spontaneous pre-stimulus activity affects audiovisual 

temporal sensitivity, we asked participants to make temporal order judgements on supra- 

threshold audio-visual stimuli. We employed a “jackknife” procedure adapted for linking psy- 

chophysical data to single-trial EEG parameters (Benwell et al., 2018; Gluth & Meiran, 2019). 

This leave-one-out procedure allowed us to examine cross-trial co-variation of pre-stimulus 

oscillatory parameters in EEG with temporal discrimination sensitivity estimates obtained 

from psychometric curves. By these means, we tested whether the power of pre-stimulus os- 

cillations (2 to 45 Hz) was predictive of the temporal sensitivity of multisensory integration. 

Furthermore, to extend the results of Cecere et al. (2015) and (Keil & Senkowski, 2017), we 
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tested whether the instantaneous frequency of pre-stimulus oscillations in the alpha range was 

positively correlated with individuals’ audio-visual temporal sensitivity. 
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Method 
 

Participants 
 

Forty-three volunteers participated in this experiment for monetary compensation. Two partic- 

ipants were excluded due to their estimated sensitivity measure exceeding the maximum SOA 

of 350 ms. One participant was excluded due to not completing the experiment. Analyses 

were carried out on the data of the remaining 40 participants (30 female, 2 left handed, medi- 

an age: 23, age range: 18 – 32). Participants reported having normal audition and normal or 

corrected-to-normal vision and no history of neurological disorder or recent use of psycho- 

active substances. The experiment was approved by the Ethics Committee of Ghent Universi- 

ty. Participants gave informed consent prior to the start of the experiment and were financially 

compensated for their time. 

 
 

Apparatus and Stimuli 
 

Participants were seated in a dimly lit, sound-proof and electrically shielded chamber, with 

their head stabilized by a chinrest at 50 cm from a 24-inch LCD monitor (BenQ XL2411; 120 

Hz refresh rate). The task was an audiovisual temporal order judgement task (TOJ) in which 

participants were presented with a visual flash and an auditory beep, and then asked to judge 

which of the two had been presented first (See figure 1). The experiment had one within- 

participants factor which was the stimulus onset asynchrony (SOA) between the flash and the 

beep. The SOA had 12 levels (-350, -216, -133, -88, -50, -16, +16, +50, +88, +133, +216 and 

+350 ms) where negative SOAs indicate that the beep was presented first and positive SOAs 

that the flash was presented first. Each SOA was presented 70 times giving a total of 840 tri- 

als, divided over 35 blocks of 24 trials each. SOA was randomized per block with each condi- 

tion presented twice within each block. The task was implemented using the E-prime 1.2 

software package (Schneider et al., 2002) on an HP Compaq desktop computer running Mi- 
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crosoft Windows XP. This setup allowed for the timing of stimulus presentation to be at a 

resolution of <= 1 ms which was confirmed with an oscilloscope. The visual stimulus was a 

solid white circle (luminance of 270 cd/m²) subtending a visual angle of 1.95°. It was present- 

ed at 5° below a central fixation cross subtending 0.46° on a black background and for a dura- 

tion of 16.6 ms. The auditory stimulus was a 1850 Hz tone presented at 72 dB(A) with a dura- 

tion of 16 ms (plus 3 ms fade-in and 3 ms fade-out) delivered by two loudspeakers (Logic3 

Screenbeat ES20). The loudspeakers were placed to the left and right of the monitor. 

 
 

Procedure 
 

The experiment started with the recording of 5 minutes of eyes-open resting state EEG and a 

seven-minute passive observation task with the sequential presentation of 50 instances of the 

visual stimulus and 50 instances of the auditory stimulus. Since the EEG data collected during 

this session are beyond the scope of the current project, they will not be reported here. The 

TOJ task then started after two practice blocks of 12 trials (one for each SOA, order random- 

ized) during which the experimenter was present to ensure participants understood the instruc- 

tions. Each trial started with the presentation of a central fixation cross. Participants were in- 

structed to fixate this cross throughout the task. After a random interval of 1000-1500 ms, the 

first stimulus (a flash or a beep, depending on the condition) was presented. After a random 

delay, chosen amongst the 12 possible SOAs, the second stimulus was presented. Participants 

were instructed to judge which stimulus (auditory or visual) had been presented first. The task 

was not speeded, and there was no time limit, but participants were instructed not to think 

about the answer for too long. Participants pressed the “z” key when they had perceived the 

auditory stimulus first, and the “m” key when they had perceived the visual stimulus first with 

the middle finger of their left and right hand, respectively. After the response, a black screen 

was presented for 500 ms after which the next trial started. In the practice session, participants 
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received feedback after each trial. During the experimental session no single-trial feedback 

was given, but after each block the mean accuracy for that block was presented. Between 

blocks, there was a self-paced break during which participants were encouraged to rest for a 

short moment. The total duration of the experiment was approximately 50 minutes. 

 
 

Electrophysiological recording and pre-processing 
 

The electroencephalogram (EEG) was recorded at 1024 Hz with a Biosemi ActiveTwo system 

(Biosemi, Amsterdam, Netherlands) with 64 Ag–AgCl scalp electrodes positioned according 

to the standard international 10–20 system. Additional electrodes were positioned at the outer 

canthi of both eyes and directly above and below the right eye to acquire horizontal and verti- 

cal electro-oculograms (EOG), respectively. Preprocessing was done with custom scripts in- 

corporating functions from the EEGLAB toolbox (Delorme & Makeig, 2004). Data was high- 

pass filtered using a Hamming windowed sinc FIR filter with the lower edge of the pass band 

at 0.5 Hz and a cutoff-frequency of 0.25 Hz. Data was low-pass filtered using a Hamming 

windowed sinc FIR filter with the upper edge of the pass band at 45 Hz and a cutoff- 

frequency of 50.6 Hz. In preparation for independent component analysis (ICA), data was 

then cut into 2-second epochs starting 1500 ms before and ending 500 ms after the first stimu- 

lus. The epoch mean was subtracted and trials containing unique or very large artefacts were 

manually discarded. Electrodes exhibiting excessive noise were removed and interpolated. In 

six participants, this was the case for one electrode and in two participants for two electrodes. 

Data was then re-referenced to the average of all electrodes (excluding external electrodes) 

and ICA was run with the EEGLAB “runica” function. Subsequently, the filtered continuous 

data was re-epoched in preparation for time-frequency analysis to 4-second-long epochs start- 

ing 2500 ms before until 1500 ms after the first stimulus onset (exceeding the -1500 to 

+500ms window of interest to avoid filter artifacts at the edges). As before, the epoch mean 
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was subtracted, bad electrodes were eliminated and the data was re-referenced to the average 

of all electrodes except the electro-oculogram and mastoid electrodes. Then, the previously 

obtained ICA weights were applied to this dataset and components reflecting eye movements, 

blinks or muscle artefacts were projected out of the data. The number of components that was 

removed per participant ranged from 1 to 10 with a median of 3. Next, eliminated electrodes 

were interpolated and trials containing artefacts were manually discarded. The percentage of 

trials that was discarded per participant ranged from 2% to 39%, with a median of 9%. Final- 

ly, in order to improve topographic localization, a Laplacian transform was applied through 

the use of Matlab script accompanying (Cohen, 2014). 

 
 

Behavioural analysis 
 

We were interested in the minimum amount of time between the auditory and visual stimuli 

that was needed in order for each participant to be able to correctly judge the order in which 

the stimuli had been presented in 75% of the trials. This psychophysical measure of temporal 

sensitivity is referred to as the “just noticeable difference” (JND) and was derived using the 

Palamedes toolbox for Matlab (Prins & Kingdom, 2018). First, a logistic function was fit to 

the proportion of “flash-first” responses as a function of SOA. Guess rate and lapse rate were 

fixed at 0.02 for each participant. The logistic function is given as: 

𝐹 (𝑥; α, β) = 
1

 
𝐿 1 + exp(−𝛽(𝑥 − 𝛼)) 

 
 

 

with 𝑥 denoting the SOA, α the value of 𝑥 at which the function evaluates to 0.5 and β the 

slope or steepness of the function. Second, the difference along the x-axis in milliseconds 

between 25% and 75% “flash first” responses on the y-axis was divided by two to obtain the 

JND in milliseconds: 
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𝐿 𝐿  

𝐿 

 

𝐹 −1(. 75) −  𝐹−1(. 25) 
𝐽𝑁𝐷 = 

2 
 
 
 

Lower JND values indicate higher temporal sensitivity, whereas higher JND values denote 

lower sensitivity. Since observations from multiple trials are required to fit a function and 

derive the JND, this metric is not definable on a single-trial basis. However, it was precisely 

our aim to investigate how moment-to-moment fluctuations in EEG parameters and temporal 

sensitivity co-varied across trials. We addressed this challenge by applying a method devel- 

oped by (Benwell, et al., 2018; see also Gluth & Meiran, 2019) which adapts a “jackknife” 

procedure (Quenouille, 1949; Richter et al., 2015; Stahl & Gibbons, 2004; Tukey, 1958) to 

link single‐trial variability in oscillatory activity to psychometric measures such as the JND 

(see an extended explanation of the jackknife analysis below). Another measure that can be 

derived from the logistic function is the point of subjective simultaneity (PSS). Although this 

measure is not pertinent to our research question and was not further analyzed in relation to 

the EEG, we derived it for each participant to offer a more complete description of the behav- 

ioural data. The PSS corresponds to the value of the SOA for which the function evaluates to 

0.5 and is interpreted as the SOA where the stimuli appear to the observer as arriving simulta- 

neously. The PSS is given as: 

 
 

𝑃𝑆𝑆  = 𝐹−1(. 5) 

 

 
Electrophysiological analyses: Trial-by-trial variations within participants 

 
EEG Power 

 
A time-frequency representation of the single-trial data was obtained by convolving the pre- 

processed data with a complex wavelet using the “mtmconvol” option of the “ft_freqanalysis” 
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function from the Fieldtrip toolbox (Oostenveld et al., 2011). A sliding window with a length 

of 500 ms was employed to segment the data. The window was shifted forward in steps of 20 

ms. Each segment was multiplied with a Hanning taper to avoid edge artefacts. The value of 

oscillatory power at each data point therefore included activity from 250 ms before and 250 

ms after that time point. Since we were expressly interested in ongoing, stimulus-unrelated 

activity, we restricted our power analysis to the time points ranging from 750 ms to 250 ms 

before the onset of the first stimulus to ensure that no stimulus related activity was included. 

Single-trial oscillatory power was thus obtained at 25 time points in 20 ms steps and 21 fre- 

quencies ranging from 2 to 45 Hz in 2 Hz steps for all 64 electrodes. Finally, the resulting 

power values were converted to decibels. 

 
 

Instantaneous alpha-frequency 
 

The instantaneous alpha-frequency was extracted for each data point during a one-second 

period preceding the onset of the first stimulus using the method described by Cohen (2014). 

First, one-second long epochs were created immediately preceding the onset of the first stimu- 

lus. To avoid edge artefacts, each epoch was reflected on both sides; it was flipped horizontal- 

ly and concatenated to the beginning and end of the original epoch. The data was filtered in 

the time domain using a plateau-shaped 8-to-13 Hz band-pass filter with 15 % transition  

zones and a filter order of 896 points. The analytic signal was computed using the Hilbert 

transform. The phase-angle time series was then unwrapped and its first temporal derivative 

multiplied by the sampling rate and divided by 2 pi in order to obtain instantaneous frequency 

in Hz. Noise in the data can cause small jumps in the phase-angle time series (“phase slips”) 

which in turn produce large artefactual peaks and troughs in instantaneous frequency. To at- 

tenuate these, the instantaneous-frequency time-series was median-filtered ten times using ten 

filter orders ranging from 10 to 400 ms in length, before averaging the ten filtered time series. 
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Finally, the one-second long time series was divided into 32 time points consisting of 32 sam- 

ples each (a total of 1024 samples per second). For each trial the average instantaneous fre- 

quency over these samples was calculated for each time point. Hence, single-trial instantane- 

ous alpha frequency at 32 time segments and 64 electrodes was entered into the subsequent 

analysis. 

 
 

Jackknife analysis of the relationships between temporal sensitivity and pre-stimulus 

EEG power and instantaneous alpha frequency 

In order to test whether moment-to-moment fluctuations in pre-stimulus EEG characteristics 

co-varied with moment-to-moment fluctuations in temporal sensitivity, we implemented a 

two-level analysis. At the participant level, a single-trial analysis was performed, in which we 

computed a jackknife Spearman correlation across trials between (i) the JND and EEG power 

at all time points, frequencies and electrodes and between (ii) the JND and instantaneous al- 

pha frequency at all time points and electrodes. At the group level, these results were subject- 

ed to cluster-based permutation tests, to test whether any clusters of data points showed a sys- 

tematic relationship (i.e. positive or negative correlation) across participants. 

 
 

Single-trial jackknife correlations at the participant level 

 

Since our measure of temporal sensitivity, the JND, is an ensemble metric which cannot be 

obtained at the single-trial level, the application of jackknife correlations was required. In 

jackknife correlations, the metrics of interest (EEG parameters and the JND in our case) are 

computed iteratively over all trials while one trial is left out on each iteration (and reinserted 

at the next). This results in variables which contain as many values for the statistic as there are 

trials. Since the resulting statistic at each trial reflects the effect of that trial being left out, the 

direction of variance is inverted. Therefore, any correlation of a variable with its jackknife 
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counterpart is -1. Additionally, since the effect is scaled by the number of trials, the variance 

is compressed. This inversion and compression of variance resulting from the jackknife pro- 

cedure is illustrated in supplementary figure S1. Please note that because both the behavioural 

data (the JND) and the electrophysiological data (power and instantaneous alpha frequency) 

were subjected to the jackknife procedure, the correct sign of the resulting correlations was 

restored. This method enabled us to test the relationship between fluctuations in EEG parame- 

ters and temporal sensitivity on a short, trial-to-trial time scale. For the mathematical proof of 

the equivalence of the conventional and jackknife correlations we refer to Richter et al. 

(2015). For a detailed explanation of how to apply this procedure to link psychophysical data 

with EEG data, see (Benwell, et al., 2018). We used Spearman’s rho (rs) to correlate both 

EEG power and instantaneous alpha frequency with the JND across trials. For EEG power, 

this procedure was repeated at all electrodes, frequencies and time points resulting in a 64 x 

23 x 25 matrix of rs’s per participant. For instantaneous alpha frequency, we repeated the pro- 

cedure for all time points and electrodes resulting in a matrix of 64 x 32 rs’s per participant. 

Importantly, we controlled for possible non-stationarities in power and frequency over the 

course of the experiment by partializing out trial order (Pearson, 1915). This precluded the 

possibility that a spurious correlation would arise due to co-occurring but unrelated EEG and 

behavioural non-stationarities over the course of the experiment (Benwell et al., 2019). 

 
 

Group-level analysis 

 

Subsequently, we tested whether any of the correlations obtained at the participant level 

showed a systematic deviation from zero across participants. Dependent sample t-tests against 

0 were performed on the Spearman rs’s at each data point across participants. To control for 

multiple comparisons, a cluster-based permutation-testing routine developed by Maris and 

Oostenveld (2007) was implemented. This was done separately for correlations of behaviour 
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with EEG power and instantaneous alpha frequency. All data points were selected for which 

the t-value had a probability lower than 5% of having occurred by chance. These were then 

clustered based on adjacency (at least one channel adjacent to a significant data point had to 

be significant for cluster inclusion) in the temporal, spectral or spatial domain for EEG power 

and in the temporal and spatial domain for instantaneous alpha frequency. For the EEG power 

analysis, this procedure was done separately for positive and for negative t-values (two-tailed 

test). For the instantaneous alpha frequency analysis, a one-tailed test was employed and only 

negative t-values were clustered (we hypothesized that higher instantaneous alpha frequency 

would be associated with a smaller JND based on Cecere et al. (2015) and Keil and Senkow- 

ski (2017). For each cluster, the sum of t-values was then calculated and the maximum of 

these cluster-level statistics was taken. To create a reference distribution against which to test 

the value of this cluster-level statistic, 1000 permutations of the data were conducted using the 

“ft_statistics_montecarlo” function from the fieldtrip toolbox (Oostenveld et al., 2011). Each 

iteration yielded a maximum cluster level statistic and over iterations a null distribution of 

maximum cluster level values was constructed. The P-value of the effect was then estimated 

as the proportion of elements in the null distribution exceeding the observed maximum clus- 

ter-level test statistic. 

 
 

Electrophysiological analyses of individual differences: Co-variations of 

JND and pre-stimulus EEG across participants 

To test whether individual-peak alpha-frequency and individual alpha power could predict 

temporal sensitivity across individuals, we calculated individual-peak alpha-frequency during 

the pre-stimulus period for each participant. Then, we calculated alpha power at each partici- 

pant’s individual-peak alpha-frequency. Both these measures were then correlated with the 

JND across participants using a Spearman correlation. We corrected for multiple comparisons 
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with a Bonferroni correction. Seven participants who did not exhibit a clear alpha peak were 

excluded from this analysis (see below for details). 

For each participant, the presence of an individual alpha peak was estimated from the follow- 

ing posterior electrodes; TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P9, P7, P5, P3, P1, 

Pz, P2, P4, P6, P8, P10, PO7, PO3, POz, PO4, PO8, O1, Oz, O2, Iz. The frequency range of 

interest was 8-13 Hz. The same data epochs as for the within participant analysis described 

above were included. Each segment was multiplied with a Hanning window and the data were 

zero padded to obtain a frequency resolution of 0.25 Hz. In order to determine individual- 

peak alpha-frequency, an automated estimation routine was utilized developed by Corcoran et 

al. (2018). This provided us with an objective and replicable method to pick the electrode 

from which the individual-peak alpha-frequency was inferred, and to include only participants 

who exhibited a clear alpha peak. The method is described in detail in Corcoran et al. (2018). 

First, the power spectrum is smoothed using a Savitzky-Golay filter. This is a least-squares 

polynomial curve-fitting procedure originally developed in chemistry to detect spectral peaks 

amidst noisy conditions (Savitzky & Golay, 1964). The first- and second-order derivatives of 

the fitted function are then analyzed for evidence of a peak in the alpha band (8-13 Hz). A 

peak was considered to be valid when the highest power value was at least 1 standard devia- 

tion from the mean and was at least 20 % higher than other peaks in the same spectrum. As a 

measure of the quality of each peak, the area under the peak was defined and divided by its 

frequency span. Only those participants for whom at least three electrodes yielded a peak 

were retained in order to exclude those where the detected alpha peak may be spurious. Thir- 

ty-three participants satisfied this condition. The electrode with the largest value was chosen 

to provide the individual-peak alpha-frequency estimate for that participant. Individual alpha 

power was determined as power at this individual-peak alpha-frequency. 
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Peaks were detected at the following electrodes (1 per participant; see figure 5A); 1xP3, 1xP5, 

5xPO7, 2xPO3, 1xO1, 3xOz, 8xPOz, 1xPz, 1xCPz, 1xP6, 3xPO8, 4xPO4, 2xO2. 

 
 

Follow-up analysis of EEG alpha power and instantaneous alpha fre- 

quency 

To tease apart the power- and instantaneous alpha-frequency effects in the time-frequency 

analysis (see results section), we conducted a follow-up analysis of activity in the alpha band 

exclusively. First, we tested whether there was a differential contribution of upper versus low- 

er band alpha-power to the power effect. Then, we tested whether such an asymmetry could 

explain our instantaneous alpha frequency findings. Additionally, we correlated the power 

effect with the instantaneous alpha frequency effect across participants. Finally, we correlated 

the magnitude of the asymmetry of the power effect, with the instantaneous alpha frequency 

effect across participants. 

 
 

Time-Frequency analysis (alpha band) centered on individual peak alpha frequency 

In order to examine contributions of the lower- versus upper alpha bands separately, we ac- 

counted for individual differences in alpha peak frequency and aligned participant´s spectra 

on their individual alpha peak frequency as follows. Power was obtained as described above 

for the time-frequency analysis, but with a higher frequency resolution of 1 Hz. Single-trial 

oscillatory power was obtained at 25 time points, from -750 ms to -250 ms in 20 ms steps and 

across 10 frequencies ranging from 6 to 15 Hz for all 64 electrodes. Average spectra were 

then calculated for each participant over the electrodes that were present in both the power 

and instantaneous alpha frequency clusters (CP3, P3, PO7, O1, POz, O2, PO4, P4; see results 

section, figures 3B, 4B, 7D). The individual alpha peak was determined for this analysis as 

the frequency with maximum power averaged over time-points in the range from 8 to 13 Hz, 
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with the condition that the spectrum (from 6 to 15 Hz) did not decrease monotonically (which 

was the case in 38 out of 40 participants). Two participants had spectra that decreased mono- 

tonically and were hence excluded from this follow-up analysis. For each individual we con- 

structed the alpha power spectrum by taking their individual alpha peak and including the 

frequencies up to two Hz above and below it. This resulted in a time-frequency spectrum of 5 

frequency points x 25 time points for each of the 8 electrodes. Then, as we did in the original 

time-frequency analysis, we correlated power with the JND across trials for each channel and 

time-frequency point, while controlling for trial order. Since the data points we chose for this 

follow-up analysis were based on inclusion in a significant cluster, we did not perform the 

cluster-based permutation test again, to avoid double-dipping (Kriegeskorte et al., 2009). We 

report whether the uncorrected P-value at each channel-time-frequency point was below 0.05 

for illustrative purposes. 

 
 

Instantaneous alpha frequency contribution to JND: Controlling for alpha-power 
 

Next, we tested whether instantaneous alpha frequency had any independent predictive value 

with regard to the JND. In order to relate the instantaneous alpha frequency results with the 

power results, since our power analysis only included data from 750 to 250 ms pre-stimulus, 

we cut the instantaneous frequency data to match this time window and time points. Then, as 

we did in the original time-frequency analysis described above, we calculated Spearman’s ϱ 

between instantaneous alpha frequency and the JND across trials for each time point over the 

electrodes that were present in both the power and instantaneous alpha frequency clusters 

(CP3, P3, PO7, O1, POz, O2, PO4, P4; see results section, figures 3B, 4B, 7D). Subsequently, 

we repeated the analysis five more times, each time controlling for alpha power at each one of 

the five individualized alpha frequencies (peak alpha - 2 Hz, peak alpha - 1 Hz, peak alpha, 

peak alpha + 1 Hz, peak alpha +2 Hz). We controlled for alpha power by computing partial 
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correlations (Pearson, 1915) between the JND and instantaneous alpha frequency, while par- 

tializing out alpha power (and trial order, as we did in all analyses). As with the alpha-power 

analysis described above, the two participants for whom the alpha spectra decreased monoton- 

ically were excluded from this analysis. Again, we did not perform the cluster-based permuta- 

tion test, but report whether the uncorrected P-value at each channel-time-frequency point 

was below 0.05. 

 
 

Correlation analysis across participants 
 

If the power- and instantaneous alpha frequency effects are related within participants, then 

we might expect them to be related across participants as well. First, we tested whether the 

effects we found in the original analyses were related across participants. For each participant 

we took the correlations between EEG power and the JND and averaged them over all data 

points in the significant cluster (as presented in fig. 3C). We did the same for the correlations 

between instantaneous alpha-frequency and the JND (as presented in fig. 4C). Then, using a 

Spearman correlation, we correlated these ϱ values across participants. Second, we turned to 

the results from the follow-up analysis, involving all time-points from 750 to 250 ms before 

stimulus presentation, and used only those eight electrodes that were present in both the pow- 

er and instantaneous alpha frequency clusters from the original analyses. We tested whether it 

might be the upper/lower band asymmetry of the alpha power – JND relation that predicted 

the instantaneous alpha frequency – JND relation. We quantified this asymmetry by averaging 

the correlation coefficients of the alpha power – JND relation over the upper alpha band (in- 

dividual-peak alpha-frequency + 1Hz and individual-peak alpha-frequency + 2Hz) and over 

the lower alpha band (individual-peak alpha-frequency - 1Hz and individual-peak alpha- 

frequency - 2Hz) separately and subtracting the average of the upper alpha band from the av- 

erage for the lower alpha band. Then, using a Spearman correlation, we correlated this alpha 
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asymmetry with the instantaneous alpha frequency – JND relation (uncontrolled for alpha 

power) across participants. 
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Results 
 

Behavioural results 
 

Participants completed an audio-visual TOJ task. They were presented with a beep and a flash 

at varying SOAs, and were asked to indicate which stimulus had been presented first (Figure 

1). A psychometric function was then fitted to the proportion of “flash-first” responses. Figure 

2A shows the fitted functions for each participant as well as a function fit to the average data 

of all participants (in black). As an index of temporal audio-visual discrimination sensitivity, - 

our primary measure of interest, - we derived the JND from this function. Across all partici- 

pants the mean JND was 110 ms (st. dev. of 64 ms), which is typical of the large individual 

differences previously observed in such paradigms (e.g. Stevenson et al., 2012; see figure 

2B). Additionally, we derived the point of subjective simultaneity (PSS). On average the PSS 

was -21 ms (audio-leading). However, this deviation from 0 was not statistically significant 

(the 95% confidence interval ranged from -44.41 ms to 3.11 ms). See Figure 2B and C for 

individual data points. 

 
 

EEG results 
 

Pre-stimulus alpha power predicts temporal sensitivity 
 

We tested if the power of spontaneous fluctuations during the pre-stimulus interval predicted 

the temporal sensitivity of audio-visual perception on a trial-by-trial basis. Figure 3A shows 

the strength and direction of the relationship between EEG power and the JND in time- 

frequency space. One significant positive cluster (P = .018) was present in the alpha frequen- 

cy range from 650 to 250 ms preceding stimulus onset. The significant cluster was restricted 

to posterior electrodes (see figure 3B). The results indicate that higher pre-stimulus power  

was associated with higher JND values and hence lower sensitivity. Figure 3C shows for each 

participant the correlation between power and the JND averaged over the points in the cluster. 
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For 33 out of 40 participants (82.5%), higher power was accompanied by worse temporal sen- 

sitivity. This was not a spurious finding caused by coexisting, but independent, changes in 

alpha power and JND over the course of the experiment (due to fatigue, boredom and/or de- 

creased motivation; see Benwell et al., 2019), as the analysis controlled for trial order. There- 

fore, these data suggest a functional role of ongoing alpha oscillatory power in the temporal 

sensitivity of audio-visual perception on a short, trial-to-trial time scale. 

 
 

Pre-stimulus   instantaneous   alpha   frequency   predicts    temporal    sensitivity  

We also tested whether instantaneous frequency of alpha oscillations in the pre-stimulus peri- 

od (1000 ms window) co-varied with temporal sensitivity of audio-visual perception on a tri- 

al-by-trial basis. Based on previous findings (Cecere et al., 2015; Keil & Senkowski, 2017; 

Samaha & Postle, 2015; Wutz et al., 2018), we expected higher instantaneous alpha frequency 

to predict higher temporal resolution, and hence a negative relationship with JND (higher fre- 

quency – smaller JND). Figure 4A shows the strength of the relationship between alpha in- 

stantaneous frequency and the JND over the pre-stimulus interval in the only significant (neg- 

ative) cluster. The time segment where higher alpha instantaneous frequency significantly 

predicted a lower JND (and thus better temporal sensitivity) is marked with a grey box (P = 

.024). This cluster was present from 387 ms to 97 ms before stimulus onset. Only posterior 

electrodes were included in this cluster (see Fig. 4B). The cluster strongly overlapped in time 

and space with the pre-stimulus power cluster (cf. Fig 3B). Figure 4C shows for each partici- 

pant the correlation between alpha instantaneous frequency and the JND averaged over the 

points in the cluster. For 31 out of 40 participants (77.5%), higher instantaneous alpha fre- 

quency was accompanied by better temporal sensitivity. Therefore, these data are also in line 

with the existence of a functional role of alpha oscillatory frequency in the temporal sensitivi- 

ty of audio-visual perception on a short, trial-by-trial time-scale. 
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Neither individual peak-alpha frequency nor individual peak-alpha power predicts in- 

dividual differences in temporal sensitivity 

So far, we found that trial-by-trial variations in both alpha power and instantaneous alpha fre- 

quency predict the temporal sensitivity of multisensory perception at the group level. Next, 

we tested whether alpha power and frequency could also predict performance across individu- 

als, and thereby help explain the large inter-individual variability in JND’s typically found in 

such paradigms (e.g. Stevenson et al., 2012). We calculated individual peak alpha frequency 

during the pre-stimulus period averaged over all trials for each participant. We then calculated 

mean alpha power at this frequency (individual-peak alpha-power) and correlated both 

measures with the individual JNDs across participants using a Spearman correlation. The re- 

sults did not reveal any significant correlation across participants, even when we only includ- 

ed participants with a clear alpha peak (n = 33) based on a conservative peak-finding algo- 

rithm (see methods). Figure 5 shows that neither individual peak-alpha frequency (Fig. 5B; rs 

31 = -0.21, P = 0.12, one-tailed) nor individual peak-alpha power (Fig. 5C; rs 31 = 0.03, P = 

0.85, two-tailed) were predictive of an individual’s JND. 

 
Alpha frequency and power effects on temporal sensitivity appear to be driven by the 

same process 

A question that arises is whether the power and frequency effects on JND reflect independent 

predictors of temporal sensitivity or alternatively are connected, and if so, how? When meas- 

uring the instantaneous (alpha) frequency of a scalp-level signal such as the EEG, it is im- 

portant to keep in mind that it likely includes contributions from multiple oscillatory sources, 

even when it is bandpass filtered around the frequency band of interest (Benwell et al., 2019; 

Clayton et al., 2017). Hence, power and frequency predictors of perception in the alpha band 

may originate from different processes, even if recorded from overlapping sites. On the other 
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hand, the instantaneous frequency and power of a signal are not independent in many instanc- 

es (Nelli et al., 2017) as a result of which the links of power and frequency to JND may be 

connected. One scenario in which these effects may result from the same underlying process 

is if the driving force of both effects were an asymmetric power variation in the alpha band 

(see figure 6). More specifically, a selective variation (increase or decrease) in lower alpha 

power would result in an opposite variation (decrease or increase) in instantaneous alpha fre- 

quency (see figure 6), because the instantaneous frequency of the summated scalp signal will 

gravitate towards the frequency of the oscillatory source with the highest power. This pattern 

would be in line with our results; the instantaneous alpha frequency relationship with the JND 

is negative, whereas the relationship of power with the JND is positive. However, if the power 

effect in our data were mostly driven by upper rather than lower band alpha signals, then this 

could not explain the negative relation we found between instantaneous alpha frequency and 

the JND, nor could an effect of power at peak alpha frequency. 

A reanalysis of our data centered on the alpha band was in support of the power and frequen- 

cy effects resulting from the same process, as the strongest effect of power was observed in 

the lower alpha band (figure 7). Power at individual alpha - 1 Hz showed the most pro- 

nounced relationship with the JND, as reflected in higher average t-values and a greater num- 

ber of electrodes and data points showing an uncorrected P-value below .05 (see figure 7A). It 

is of course still possible that the instantaneous frequency effect is only partially due to fluc- 

tuations in lower-alpha power, and that instantaneous alpha frequency also has an independent 

relation with the JND. To test this, we correlated instantaneous alpha frequency and the JND 

across trials again. Crucially, we now controlled for alpha power. For comparison, figure 7B 

shows the t-values averaged over all 8 electrodes, for the instantaneous alpha frequency – 

JND relation without controlling for alpha power. Figure 7C shows the t-values averaged over 

all 8 electrodes, for the instantaneous alpha frequency – JND relation with each row repre- 
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senting the results when controlling for alpha power at each one of the five individualized 

alpha frequencies. The t-values reflecting the relationship between instantaneous alpha fre- 

quency and the JND, as well as the number of electrodes and data points showing an uncor- 

rected P-value below .05, were markedly reduced when controlling for power at individual 

alpha – 1 Hz and – 2 Hz, with the strongest reduction at -1 Hz, where the strongest effect for 

alpha power was found. The inverse was true when controlling for power at individual alpha 

+ 1 Hz and + 2 Hz; here the t-values reflecting the relationship between instantaneous alpha 

frequency and the JND, as well as the number of electrodes and data points showing an uncor- 

rected P-value below 0.05 were increased. This pattern of results is consistent with the idea 

that the analyses of power and instantaneous alpha frequency in relation to the JND reveal the 

same process. When power is higher at lower frequencies, the resulting measure of instanta- 

neous alpha frequency will be lower. Both higher power and lower instantaneous frequency 

are related to a higher JND. Controlling for power in the lower frequencies (individual alpha – 

1 Hz and – 2 Hz) when correlating instantaneous alpha frequency with the JND will therefore 

weaken the correlation coefficient. Conversely, when power is higher at higher frequencies, 

the resulting measure of instantaneous alpha frequency will also be higher. Whereas higher 

power is related to a higher JND, higher instantaneous alpha frequency is related to a lower 

JND. Therefore, controlling for power in the higher frequencies (individual alpha + 1 Hz and 

+ 2 Hz) when correlating instantaneous alpha frequency with the JND will strengthen the cor- 

relation coefficient. Finally, we tested whether we could find a similar overlap between the 

alpha power – JND relationship and the alpha instantaneous frequency – JND relationship 

across participants. The relationship between the average magnitude of the alpha power – 

JND correlation shown in fig. 3C, and the instantaneous alpha frequency - JND correlation 

shown in fig. 4C across participants was not significant (rs 38 = -.18, p = .27; see fig. 7E). We 

also tested whether  it might be the  upper/lower band asymmetry of the  alpha power   –  JND 
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relation that predicted the instantaneous alpha frequency – JND relation across participants. 

This asymmetry was calculated by averaging the correlation coefficients of the alpha power – 

JND relation over the upper alpha band (individual alpha + 1 Hz and + 2 Hz) and over the 

lower alpha band (individual alpha – 1 Hz and – 2 Hz) separately and then subtracting the 

average of the upper alpha band from the average for the lower alpha band. The magnitude of 

the asymmetry of the alpha power – JND relation was highly predictive of the correlation be- 

tween instantaneous alpha frequency and the JND (rs 36 = -.79, P = .000000013; see fig. 7F). 

In other words, a stronger correlation between alpha power per sé and the JND did not predict 

the correlation between instantaneous alpha frequency and the JND, but the asymmetry of the 

correlation between high and low alpha power and the JND did. The results of this follow-up 

analysis suggest that a modulation of power in the lower-alpha band predicts the temporal 

resolution of audiovisual integration in our paradigm and that this effect is reflected in corre- 

lations (of opposite sign) between both alpha power and instantaneous alpha frequency and 

the JND. 

 

 
Discussion 

 

We used a temporal order judgement (TOJ) task to examine the role of spontaneous, ongoing 

EEG oscillations in the temporal sensitivity of audiovisual integration. Pre-stimulus power at 

a wide range of frequencies was tested, and we found that alpha power predicted performance 

at the single-trial level. Lower power in this frequency band (8-13 Hz) predicted better tem- 

poral sensitivity. The single-trial instantaneous alpha frequency was also measured and higher 

instantaneous alpha frequency was found to predict better temporal sensitivity. At first glance, 

the latter result seemed to support an account of audiovisual temporal integration in terms of 

the theory of perceptual cycles (VanRullen, 2016). A follow-up analysis revealed, however, 
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that the correlation between instantaneous alpha frequency and the JND could be explained by 

power modulations in the lower alpha band (below individual alpha peak). 

These results provide novel insights into the neural basis of the temporal resolution of multi- 

sensory integration. We show that not only task conditions (Stevenson & Wallace, 2013; van 

Eijk et al., 2008) and individual differences (Stevenson et al., 2012; Wallace & Stevenson, 

2014) affect the temporal sensitivity of audiovisual integration, but that spontaneous alpha 

oscillations do so as well. In showing this, we extend existing evidence that higher alpha 

power is indicative of a tendency towards temporal integration (Bastiaansen et al., 2020; 

Baumgarten et al., 2016; Leonardelli et al., 2015; Peterson & Voytek, 2018). Furthermore, our 

pattern of results highlights the need for caution when interpreting analyses involving instan- 

taneous alpha frequency, since asymmetric variations of power in the upper/lower alpha band, 

such as we observed here, can also be reflected in a (possibly epiphenomenal) relationship 

between instantaneous alpha frequency and behaviour. Such asymmetric power shifts may 

turn out to be common, as evidence for the existence of multiple, variable alpha rhythms is 

mounting. These rhythms are believed to originate from both cortical and sub-cortical sources 

that together give rise to the rhythm measured at the scalp (Benwell et al., 2019; Clayton et 

al., 2017; Klimesch et al., 1996). 

 
 

Decreased alpha power predicts increased temporal sensitivity 
 

We found that lower alpha power predicted better temporal sensitivity in an audiovisual TOJ. 

This effect was driven mostly by power in the lower-alpha band as compared to power in the 

mid- or upper-alpha band and the effect was most pronounced over occipito-parietal elec- 

trodes. There is some evidence that activity in the lower- and mid-alpha band reflects expec- 

tancy and alertness, with power decreasing as alertness increases, and that upper alpha band 

activity reflects cognitive performance in certain tasks, with alpha power rising as perfor- 
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mance improves (Klimesch et al., 1998). Even though this evidence is limited and comes 

mostly from studies into memory maintenance, the idea that alpha band activity reflects ex- 

pectancy and alertness fits well with evidence that pre-stimulus alpha oscillations index excit- 

ability of the cortex, with higher alpha power indicating lower excitability (Romei et al.,  

2008; Sauseng et al., 2009). In studies where participants are asked to detect a weak stimulus, 

lower pre-stimulus alpha power commonly leads to higher detection rates (as reviewed in Ie- 

mi et al., 2017). Notably, this is the case whether the stimulus is real or illusory. Thus, lower 

pre-stimulus alpha power does not necessarily lead to more accurate perception (e.g. Benwell, 

et al., 2018; Lange et al., 2013). Iemi et al. (2017) addressed this issue with signal detection 

theory. They hypothesized that if decreased alpha power indicates increased baseline excita- 

bility, not only the signal but also the noise would elicit a larger response. This would lead to 

more hits, but also to more false alarms, thereby shifting the criterion towards the more liberal 

side, but leaving sensitivity unchanged. Indeed, they found that in a near-threshold visual 

stimulus detection task, decreased alpha power made observers more likely to report the pres- 

ence of a stimulus, whether the stimulus was present or not. In a discrimination task, they 

found that alpha power did not affect performance, in accordance with the idea that perceptual 

bias, but not sensitivity is affected by alpha oscillations. Other studies on visual perceptual 

discrimination sensitivity have also shown this measure to be unaffected by alpha power shifts 

(Bays et al., 2015; Benwell et al., 2017, 2018; Lou et al., 2014; Wutz et al., 2014). Our data  

do not mirror these results. We found that pre-stimulus alpha power did predict discrimination 

sensitivity. Similar results have been reported by Leonardelli et al. (2015) who presented par- 

ticipants with an audio-tactile pair of above-threshold stimuli with variable SOA’s while re- 

cording the magneto-encephalogram. When comparing brain activity between identically 

timed pairs with different perceptual outcomes they found that on trials where participants 

perceived one integrated audio-tactile stimulus, pre-stimulus alpha power had been higher 
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compared to trials where participants perceived the stimuli as separate. On a comparable note, 

(Baumgarten et al., 2016) presented participants with one or two short, above-threshold tactile 

stimuli. When the time between the stimuli was such that the percept varied from 1 to 2 on a 

trial-by-trial basis, decreased pre-stimulus alpha power predicted veridical perception of 2 

stimuli. In other words, in a tactile temporal discrimination task (Baumgarten et al., 2016), in 

an audio-tactile temporal discrimination task (Leonardelli et al., 2015), and in our audiovisual 

temporal discrimination task, lower alpha power predicted higher temporal sensitivity and 

segregated perception, while higher alpha power predicted lower temporal sensitivity and 

integrated perception. These studies differ in at least three characteristics from the visual dis- 

crimination tasks where alpha power did not affect perceptual sensitivity (Bays et al., 2015; 

Hanslmayr et al., 2007; Wutz et al., 2014; Benwell et al., 2017, 2018). First, they are not 

unisensory visual tasks, but either multisensory (our study and Leonardelli et al., 2015) or do 

not involve the visual modality at all (Baumgarten et al., 2016). Second, above-threshold 

stimuli were presented instead of near-threshold stimuli. And third, they involve temporal 

discrimination, whereas the mentioned visual tasks involve discrimination based on visual 

features such as orientation (Bays et al., 2015), identity (Hanslmayr et al., 2007) or numerosi- 

ty (Wutz et al., 2014). Temporal discrimination differs in a fundamental manner from these 

visual feature criteria in that it requires perception to be updated on a short time-scale. There 

is evidence that alpha power actually promotes stability as opposed to the flexibility required 

for this fast updating. For example, when viewing a Necker cube, perception spontaneously 

alternates between two rivalling perceptual interpretations (Necker, 1832). In this paradigm, 

higher alpha power correlates with a longer duration of each of the rivalling percepts and thus 

higher perceptual stability (Piantoni et al., 2017) and reductions in alpha power predict an 

impending switch from one percept to the other (Strüber & Herrmann, 2002). Based on these 

studies, (Piantoni et al., 2017) proposed that alpha oscillations do not purely inhibit cortical 
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activity but stabilize the current configuration of neuronal activity and its corresponding per- 

ceptual interpretation. Despite the lack of spatial specificity of the EEG, it is interesting to 

note that the relation between alpha power and temporal sensitivity in our experiment is most 

pronounced over occipito-parietal areas, which mirrors the topographies of the relationship 

between alpha power and perceptual stability in Piantoni et al.'s (2017) study. In temporal 

discrimination tasks such as ours, higher excitability would lead to an improvement of sensi- 

tivity due to a greater perceptual flexibility to adapt to new information on short time-scales. 

Studies using other temporal discrimination paradigms have produced results that are 

in line with ours. For example, (van Viegen et al., 2017) presented participants with a tone 

and then after 1 or 1.5 seconds a flash. They found that the tone always elicited alpha and beta 

suppression over parietal and occipital electrodes, but that the long intervals were more likely 

to be incorrectly perceived as short intervals when alpha and beta power were less suppressed. 

They concluded that higher alpha and beta power led to a subjective compression of time, 

which can also be interpreted as stronger integration over time. And in a multisensory time- 

estimation task, (van Driel et al., 2014) tested how phase coupling between auditory and visu- 

al sensory regions was related to interference effects from one modality to the other. They 

found that when participants had to judge the duration of a visual target, the duration of an 

auditory distractor interfered more in those participants with stronger alpha phase coupling 

between auditory and visually responsive electrodes. As in our study, stronger alpha synchro- 

nization was indicative of cross-modal temporal integration. Taken together, the evidence 

suggests that when excitability is low, and alpha synchronization is high, the cortex leans to- 

wards temporally integrated perception, and that when excitability is high, and alpha synchro- 

nization is low, the cortex leans towards temporally segregated perception. 
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Increased alpha frequency does not independently predict increased 

temporal sensitivity 

Previous studies suggest that the length of the cycle of alpha oscillations determines the  

length of time over which stimuli are integrated (Cecere et al., 2015; Keil & Senkowski,  

2017; Ronconi et al., 2018; Samaha & Postle, 2015). These findings support the idea of dis- 

crete windows of perception or perceptual cycles (VanRullen, 2016). In this study, we at- 

tempted to replicate such results using multisensory, supra-threshold stimuli. Although we 

found the expected pattern, with higher alpha frequency predicting better temporal sensitivity 

on a trial-by-trial basis, a follow-up analysis revealed that this effect was linked to an asym- 

metry in alpha-power modulations, as described above. There seems to be a single process, 

expressing itself in both power and instantaneous frequency, that has functional significance 

for the temporal resolution of integration. One possibility could be that it is the size of the cell 

assemblies involved in perceiving the stimuli that affects the temporal resolution of percep- 

tion. A larger cell assembly synchronizing across a larger range oscillates slower and has 

more power than a smaller, more localized cell assembly (Nunez, 2000; von Stein & Sarnthe- 

in, 2000). Multimodal perception requires synchronization across a larger range of the cortex, 

between sensory cortices, than unimodal perception, which only requires synchronization 

within sensory cortices (e.g. (van Driel et al., 2014; Von Stein et al., 1999). It follows that on 

trials where integration occurs (and the temporal order of the stimuli cannot be resolved) we 

would observe both higher power and lower frequency oscillations. Instead of discrete percep- 

tual cycles, with the length of the cycle being determined by alpha frequency, the instantane- 

ous frequency – JND relation could reflect that larger cell assemblies are indicative of integra- 

tion across a larger cortical area and produce both higher frequency oscillations and higher 

power. Therefore, despite our initial positive finding, with results in line with those of Ron- 

coni et al., (2018) and Samaha & Postle (2015), we cannot conclude that the length of the 
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cycle of alpha oscillations determines the length of time over which multisensory, above- 

threshold stimuli are integrated. One reason for our differing pattern of results could be that 

whereas the integration of uni-sensory veridical and illusory stimuli occurs mostly in the sen- 

sory cortices themselves, activity relevant to the TOJ task occurs at least partially in higher 

association areas (Binder, 2015; Love et al., 2018; Watkins et al., 2006). Another possibility  

is that, if Ronconi et al. (2018) and Samaha & Postle (2015) also controlled for alpha power in 

their analyses, they would find similar results to ours. 

Our pattern of results stresses the need to account for individual differences in peak alpha 

frequency, as well as systematic shifts in both alpha frequency and power over the course of 

an experiment. Importantly, in light of the increasing popularity of instantaneous frequency as 

a measure in EEG research (e.g. Babu Henry Samuel et al., 2018; Samaha & Postle, 2015; 

Shen et al., 2018; Wutz et al., 2018), our results caution against an interpretation of such ef- 

fects in terms of genuine frequency shifts involving one oscillator, without controlling for the 

possibility of asymmetric power shifts over multiple oscillators. 

 
 

Neither individual peak alpha frequency nor power predicts individual dif- 

ferences in temporal sensitivity 

Even though alpha power predicted performance on a trial-by-trial basis, we did not find any 

relationship between alpha power and temporal sensitivity across participants. Nor did we 

find a relationship between alpha frequency and temporal sensitivity across participants. This 

is in contrast to findings from Cecere et al. (2015), Samaha & Postle (2015), and Keil & Sen- 

kowski (2017) who found a positive correlation between alpha frequency and temporal sensi- 

tivity across participants. Again, an important difference between their tasks and ours is that 

they both involve some form of visual detection with an implicit temporal factor. In our task, 

the temporal factor is explicitly probed and a discriminatory response is required. Similar to 
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our results, in the same tactile temporal discrimination task as described above (Baumgarten 

et al., 2016), this relationship was absent across participants (Baumgarten et al., 2017) despite 

a within-participant relationship between alpha frequency and temporal sensitivity (Baum- 

garten et al., 2016). One reason this relationship was absent in our data could be that the TOJ 

task is a much harder and cognitively demanding task than the sound-induced flash illusion 

used by Cecere et al. (2015) and Keil & Senkowski (2017). At an individual level, many more 

factors affect the JND than just the speed and power of oscillations, and might do so more 

strongly. This is readily apparent when looking at the sizes of the JND exhibited by our par- 

ticipants which ranged from 28 to 316 ms (see fig. 3). It is unlikely that the main factor under- 

lying such a broad range of JND’s could be found in the subtle differences in peak frequency 

between participants. It might be the case that peak frequency and/or power do matter, but 

that factors such as task engagement or decision-related processes play a much bigger role, 

drowning out smaller effects. When conducting analyses within participants, these factors are 

neutralized, enabling the subtler influence of oscillatory characteristics to come to light. 

 
 

Conclusion 
 

In this study we tested whether spontaneous, pre-stimulus EEG activity predicts behavioural 

performance on an audio-visual temporal order judgement task. We found that lower pre- 

stimulus alpha power predicted higher temporal sensitivity on a trial-by-trial basis. Higher 

pre-stimulus alpha frequency also seemed to predict higher temporal sensitivity, but this effect 

could be attributed to an upper/lower band asymmetry in the effect of alpha power. This pat- 

tern of results encourages careful consideration of asymmetric power effects and individual 

differences in alpha frequency when interpreting results of instantaneous alpha frequency 

analyses. We did not find any systematic relationship between individual alpha frequency or 

individual alpha power and temporal sensitivity across participants. Taken together with pre- 
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vious work, our findings suggest that modulations in alpha power index the brain´s tendency 

for temporal integration vs. segregation on a trial-by-trial basis. 
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EEG – electroencephalogram 

FIR – finite impulse response 

ICA – independent component analysis 
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JND – just noticeable difference 

 

PSS – point of subjective simultaneity 

SOA – stimulus onset asynchrony 

TOJ – temporal order judgement 
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Figure captions 
 
 

 

Figure 1. Schematic representation of one experimental trial. After an inter-trial interval of 

500 ms, a fixation cross appeared on the screen for a random duration between 1000 ms and 

1500 ms. Then the first stimulus (in this case a flash) was presented, followed by the second 

stimulus (in this case a beep) at one of 12 possible delays (SOAs). The fixation cross re- 

mained on the screen until participants had responded which of the two events they had per- 

ceived first. 

 
 

Figure 2. Behavioural results. (A) Psychometric functions fit to each participant’s data are 

displayed in grey (n=40). The psychometric function fit to the group averaged data is dis- 

played in black. (B) The JND’s derived from the psychometric function of each participant 

are displayed in blue. The average JND is displayed in black. (C) The PSS’s derived from the 

psychometric function of each participant are displayed in blue. The average PSS is displayed 

in black. 

 
 

Figure 3. EEG oscillatory power predicts the temporal sensitivity of audio-visual perception. 

 

(A) Time-frequency representation of t-values averaged over all electrodes included in the 

significant cluster. Onset of the first stimulus (auditory or visual) is at 0 seconds. One positive 

cluster survived multiple comparison correction and is outlined in black. The positive t-values 

(in red) indicate that higher power was accompanied by a higher JND (worse temporal sensi- 

tivity). No negative clusters were observed. (B) Topographical representation of the t-values 

averaged over all time-frequency points included in the significant cluster. Electrodes that 

were included in the significant cluster are highlighted in white. (C) Average correlation coef- 

ficients for each participant between EEG power in the cluster and the JND. Each blue dot 
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represents one participant. The black dot indicates the group mean, and the black dotted line 

indicates a correlation of 0. 

 
 

Figure 4. EEG instantaneous alpha frequency predicts the temporal sensitivity of audio-visual 

perception. (A) t-values over time, averaged over all electrodes included in the cluster. Onset 

of the first stimulus (auditory or visual) is at 0 seconds. Negative t-values indicate that higher 

instantaneous frequency is accompanied by a lower JND (higher temporal sensitivity). One 

negative cluster survived multiple comparison correction and is marked with a grey box. (B) 

Topographical representation of the t-values averaged over all time points included in the 

cluster. Electrodes that were included in the cluster are highlighted in white. (C) Average cor- 

relation coefficients for each participant between instantaneous alpha frequency in the cluster 

and the JND. Each blue dot represents one participant. The black dot indicates the group mean 

and the dotted line indicates a correlation of 0. 

 
 

Figure 5. Individual alpha power and individual alpha frequency did not predict temporal 

sensitivity of audio-visual perception across participants. (A) Heat map showing the number 

of participants for which each electrode was selected to measure individual-peak alpha- 

frequency and individual-peak alpha-power. The electrodes that were entered into the peak- 

identification algorithm are marked in white. (B) No systematic relationship was found be- 

tween individual-peak alpha-power and JND. (C) No systematic relationship was found be- 

tween individual-peak alpha-frequency and JND. 

 
 

Figure 6. Toy model depicting the scenario where a variation of lower-band alpha power 

could lead to a concurrent modulation of instantaneous alpha frequency. The power spectrum 

in yellow shows an increase in mostly lower-alpha power compared to the blue spectrum. 
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This increase in lower-alpha power pulls the instantaneous alpha frequency measurement of 

the signal towards the lower alpha range, where more power is now present. Conversely, a 

selective decrease in lower-band alpha power would pull the alpha frequency towards the 

higher alpha range (not shown). 

 
 

Figure 7. The predictive value of instantaneous alpha frequency for the temporal sensitivity 

of audio-visual perception is linked to fluctuations in lower-alpha power. (A) Time-frequency 

representation of t-values centred on the individual alpha peak frequency for the relationship 

between alpha power and the JND, averaged over all electrodes included in both the power 

and instantaneous alpha frequency clusters depicted in figures 3B and 4B (see panel D). Posi- 

tive t-values (in red) indicate that higher power is accompanied by a higher JND (worse tem- 

poral sensitivity). The size of the dots indicates the number of electrodes out of 8 with an un- 

corrected p-value < .05 at that time point. (B) Time-frequency representation of t-values for 

the relationship between instantaneous alpha frequency and the JND, uncontrolled for alpha 

power, averaged over all electrodes included in both the power and instantaneous alpha fre- 

quency clusters depicted in figures 3B and 4B (see panel D). Negative t-values (in blue) indi- 

cate that higher instantaneous frequency is accompanied by a lower JND (higher temporal 

sensitivity). The size of the dots indicates the number of electrodes out of 8 with an uncorrect- 

ed p-value < .05 at that time point. (C) Time-frequency representation of t-values for the rela- 

tionship between instantaneous alpha frequency and the JND, controlled for alpha power, 

averaged over all electrodes included in both the power and instantaneous alpha frequency 

clusters depicted in figures 3B and 4B (see panel D). Each row represents one of 5 individual- 

ized alpha frequencies being controlled for. Negative t-values (in blue) indicate that higher 

instantaneous frequency is accompanied by a lower JND (higher temporal sensitivity). The 

size of the dots indicates the number of electrodes out of 8 with an uncorrected p-value < .05 
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at that time point. (D) The electrodes on which the analyses in panels A,B,C and F were based 

(marked in white). (E) Spearman correlation between the average magnitude of the alpha 

power – JND correlation shown in fig. 3C, and the instantaneous alpha frequency - JND cor- 

relation shown in fig. 4C across participants (F) Spearman correlation between the magnitude 

of the upper/lower band asymmetry of the alpha power – JND relationship shown in fig. 7A, 

and the instantaneous alpha frequency - JND correlation shown in fig. 7B. 

 
 

Figure S1A shows a random variable with 10 values and that same variable after calculating a 

jackknife statistic (for this example the mean was used). It is apparent that the jackknife vari- 

able mirrors the original variable and is scaled down by the number of trials. Figure S1B 

shows that the original and jackknife variable are perfectly correlated, but that the sign of the 

correlation is negative. 
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