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 36 

Summary 37 

In vivo calcium imaging enables simultaneous recording of large neuronal ensembles 38 

while engaged in operations such as learning and memory.  However, such in vivo optical 39 

recordings are typically subject to motion artifact and background contamination from neurons 40 

and blood vessels.  Further, population cell tracking across multiple recordings is complicated by 41 

non-rigid transformation induced by cell movements and field shifts. We introduce the novel 42 

method SCOUT for Single-Cell SpatiOtemporal LongitUdinal Tracking, consisting of two crucial 43 

parts: (1) imposition of spatial constraints on neuronal footprints extracted from individual optical 44 

recordings to improve ROI selection and eliminate false discoveries, and (2) application of a 45 

predictor-corrector, using spatiotemporal correlation of extracted neurons across sessions, for 46 

population cell tracking across multiple sessions. SCOUT empirically outperforms current 47 

methods for cell extraction and tracking in long-term multi-session imaging experiments across 48 

multiple brain regions.  Application of this method allows for robust longitudinal analysis of 49 

contextual discrimination associated neural ensemble dynamics in the hippocampus up to 60 50 

days. 51 

 52 

 53 
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 62 

Introduction 63 

Extracting longitudinal activity of large-scale neuronal ensembles is a fundamental first 64 

step to the analysis of neural circuit responses. Ca++ imaging of population neurons allows the 65 

recording of larger neural ensembles than can be recorded electrically. In vivo calcium imaging 66 

using microendoscopic lenses enables imaging of previously inaccessible large ensembles of 67 

neuronal populations at single-cell level in freely moving mice as they experience environmental 68 

stimuli, and perform neural transformations that underlie behavioral responses over both short 69 

and long timescales ([Flusberg et al., 2008], [Ghosh et al., 2011], [Ziv and Ghosh, 2015]).  70 

Microendoscopic in vivo brain imaging via head-mounted fluorescent miniature microscopes 71 

(“miniscopes”) have been used to study a diverse set of neural circuits in the hippocampus ([Cai 72 

et al., 2016], [Ziv et al., 2013], [Jimenez et al., 2016], [Rubin et al., 2015], [Sun et al., 2019]), 73 

entorhinal cortex ([Kitamura et al., 2015], [Sun et al., 2015]), striatum ([Barbera et al., 2016], 74 

[Klaus et al., 2017]) and amygdala [Yu et al, 2017], among other regions.  This powerful technique 75 

promises to open the “black box” of critical neural transformations in higher level brain areas that 76 

occur between sensory inputs and motor outputs. 77 

New advances in 1-photon (1p) miniscope imaging data analysis increase our capability 78 

to study neural ensembles, but require the extraction of neural activity from recordings, which 79 

consists of the isolation of temporal signals (fluorescence traces), and spatial footprints (pixel 80 

intensity values) corresponding to the individual neurons in the recording. Isolating such signals 81 

from the recording is difficult due to spatial overlaps between neurons, and complicated 82 

background effects that interfere with the neuronal temporal signal.  83 

Several methods have been developed to extract neural activity recorded as optical 84 

imaging signals ([Apthorpe et al., 2016], [Mukamel et al., 2009], [Pnevmatikakis et al., 2016], 85 
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[Zhou et al., 2018], [Giovannucci et al., 2019], [Pnevmatikakis, 2019]). Briefly, such methods can 86 

be divided into those which estimate regions of interest (ROIs) for each neuron, followed by 87 

extraction of the temporal signal, and methods which iteratively update both temporal and spatial 88 

components of the individual neurons. Recently, nonnegative matrix factorization methods such 89 

as CNMF and its 1-photon variant CNMF-E ([Pnevmatikakis et al., 2016; Zhou et al., 2018]), 90 

members of the latter category, have been extensively used for neural signal extraction from 91 

optical recordings ([Trevathan et al., 2018], [Gonzalez et al., 2019]) (see Materials and Methods 92 

and [Pnevmatikakis, 2019] for additional details). 93 

One major issue for current extraction methods is the prevalence of false discoveries, 94 

which consist of extracted footprints and temporal traces that do not correspond to ground truth 95 

neurons in the recording (Supplementary Fig. 1). These false discoveries can be caused by 96 

background noise, inaccurate initialization of neuron footprints, or errors in the estimation of 97 

footprints and corresponding temporal traces. For in vivo recordings, depending on recording 98 

quality and initialization parameter, false discovery rates may reach 45% of detected neurons. 99 

Some approaches have been suggested to address this issue, such as manual false 100 

discovery identification [Zhou et al. 2018], and convolutional neural network classification 101 

[Giovannucci et al., 2019], performed at intermediate stages of the extraction. However, for 102 

experiments involving large numbers of recordings, manual identification of false discoveries 103 

becomes untenable. Convolutional neural networks have been used to detect false discoveries, 104 

but they lack interpretability, and struggle to generalize to neurons with different footprint profiles 105 

than those in the training set (see Materials and Methods for additional discussion). 106 

False discoveries in individual recordings introduce difficulties in studying the evolution of 107 

neural dynamics over time, as cells must be identified across multiple recording sessions, and 108 

false discoveries can interfere with the identification of cells across recordings. Assuming 109 

accurate individual recording extractions, attempts to extract the activity of neurons over long term  110 

 111 
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Figure 1: Schematic overview of 112 

SCOUT. A: Workflow for extracting 113 

fluorescence traces and spatial 114 

footprints from multiple sessions 115 

include spatial patch methods 116 

(bottom track), concatenation 117 

(center track) and temporal batch 118 

methods (top track). Our method, 119 

SCOUT, is a modified temporal 120 

batch method. B: Application of 121 

spatial constraints allows us to 122 

detect significant deviation from 123 

proposed footprint shapes. An 124 

individual neuron (top) is 125 

thresholded (bottom left) based on 126 

pixel intensity. The individual 127 

components are compared with 128 

baselines from a parameterized 129 

family of distributions (bottom right). 130 

JS divergence measures 131 

information loss in estimating 132 

extracted shape (bottom left). with 133 

proposed shapes (bottom right), 134 

showing increased information loss 135 

in estimating the footprint of the bottom right neuron. The bottom right footprint was created by cropping a true footprint, so the increase 136 

in JS divergence indicates correctly that the neuron should be removed from consideration. C: Connecting recordings (orange; middle) 137 

are created from selecting a subset of frames from subsequent recordings (red, blue, green, purple; middle). Fluorescence traces 138 

from connecting recordings (top) are used to identify fluorescence traces throughout the whole recording that correspond to a single 139 

neuron (bottom). Boxed regions of the full fluorescence trace (lower) indicate areas of comparison with connecting recordings. D: 140 

Illustration of cell tracking portion of SCOUT: (1) From the spatial footprints (colored ovals) of extracted neurons from an initial 141 

recording (top left), targeted neurons for tracking across sessions is selected (blue), and their surrounding neighbors determined 142 

(green). In the secondary recording (top right), we identify possible choices for tracking between sessions (green) using a maximal 143 

distance between centroids in the proposed choices in the secondary recording, and that of the neurons targeted for tracking. Weighted 144 

similarities (histogram) between all possible neighboring pairs of neurons between sessions are calculated. The x-axis indicates the 145 

weighted probabilities of possible neighbors, and the y-axis indicates normalized counts of probabilities between possible neighbors. 146 
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The colored curves indicate possible functions for assigning tracking probabilities to associated pairs of neurons. Methods of 147 

probability assignment include percentile, soft K-means, and Gaussian Mixture Models. (2) top: We zoom in on one initial neuron (I1), 148 

and its possible identifications in the secondary recording. bottom: Possible neuron chains are constructed, and chain probabilities 149 

calculated for each. (3): top: Duplicate neurons in the first entry of each chain are eliminated based on the chain probability. bottom: 150 

The remaining neuron chain indicates that S1 is the most probable identification for I1 in the secondary recording. 151 

 152 

experiments have taken one of three forms (Fig. 1A).  (1) Initial concatenation of registered 153 

recordings followed by extraction of fluorescence traces and spatial footprints from the 154 

concatenated recording [Sun et al, 2019].   (2) Spatial patch methods [Zhou, et al. 2018] in which 155 

registered recordings are concatenated, and the spatial dimension is split into overlapping 156 

patches.  Extraction is performed on each patch separately, and neurons are merged across the 157 

patches, giving extracted footprints and traces for the entire recording.  (3) Temporal batch 158 

methods such as cellReg [Sheintuch et al., 2017], in which footprint and fluorescence traces are 159 

extracted and cells are tracked across multiple recordings using spatial similarity.  160 

 Concatenation and patch methods can be resource intensive in terms of both 161 

computational power and time requirements. In terms of scalability, temporal batch methods (cell 162 

tracking methods) may provide the best option for long-term neural ensemble analysis, but 163 

existing methods do not track many available neurons due to exclusive use of spatial metrics for 164 

determining inter-recording neuron similarity. 165 

 To address these issues, we present SCOUT (Single-Cell SpatiOtemporal LongitUdinal 166 

Tracking), an end-to-end modular system for accurate extraction and tracking of individual 167 

neurons in long-term experiments.  We demonstrate the effectiveness of SCOUT on both 168 

simulated and experimental data from multiple brain regions including the hippocampus, the 169 

visual cortex, and the prefrontal cortex within individual sessions and across multiple sessions. 170 

Moreover, we track single cell populations through long-term contextual discrimination 171 

experiments in mouse hippocampal CA1 up to 60 days with in vivo GCaMP6-based calcium 172 

imaging in freely moving animals. This enables us to analyze the evolution of context dependent 173 
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neural ensembles through learning, extinction, and relearning phases of a contextual 174 

discrimination experiment with better performance than previously available methods. 175 

 176 

Results 177 

SCOUT overview 178 

Long-term experiments require both the detection of neurons from individual recordings, 179 

and cell tracking, in which neurons are tracked through each recording. SCOUT consists of two 180 

major modules: individual recording extraction, and cell tracking to identify the same neurons 181 

across multiple sessions.  182 

An initial preprocessing step starts with motion correction preprocessing of recordings 183 

using NoRMCorre [Pnevmatikakis and Giovannucci, 2017], followed by registration of recording 184 

sessions. SCOUT provides several methods for template extraction and image registration, as 185 

well as an interface for manual interventions, if initial automatic results are unsatisfactory.  186 

 187 

SCOUT: individual recording extraction 188 

The individual recording extraction module of SCOUT consists of a neural signal extraction 189 

algorithm (such as CNMF-E), to which we have added a binary classifier for identifying false 190 

discoveries. Motivated by our previous success of using approximate matched filters for 191 

automatically detecting and extracting neural synaptic inputs [Shi et al., 2010], we introduce a 192 

spatial template filter, which eliminates false discoveries and improves fluorescence trace quality 193 

via imposition of spatial constraints based on a proposed baseline (Fig. 1B; Supplementary Fig. 194 

1). We assume (normalized) spatial footprints for detected neurons are members of a family of 195 

two-dimensional probability distributions, and compute a metric indicating the similarity between 196 

proposed spatial footprints, and the closest neighbor in the family of distributions. Neurons with 197 

large divergence from the family of distributions are deleted, and the proposed footprints of 198 

retained neurons may be updated via multiplication with the binary mask of the compared 199 
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distribution (Algorithm 1, Supplementary Video 1). Similarity between distributions is calculated 200 

using Jensen-Shannon divergence. 201 

In practice, we suggest running the filter at each iteration after spatial components are 202 

updated, but before the temporal components are updated, to maximize signal extraction 203 

accuracy (Supplementary Fig. 1G). The spatial filter may also be used as a post-processing 204 

step after neuron extraction, allowing for easy inclusion in any pipeline. 205 

Regarding appropriate families of distributions for 1-photon data, we have considered a 206 

Gaussian model, in which the centroid and covariance is extracted from the proposed footprint, 207 

to construct a similar bivariate normal distribution, and an elliptical model, in which the centroid, 208 

major axis length, minor axis length, and orientation are used to construct an elliptical footprint, 209 

with pixel intensity values modeled using the rate of intensity decrease from centroid to boundary 210 

of the proposed neuron. Experimentally, the elliptic model seems to provide a better baseline for 211 

false discovery identification (see Materials and Methods, Supplementary Fig. 1F). Possible 212 

future extensions include a ring model for 2-photon data. 213 

 214 

SCOUT: cell tracking  215 

The second module of SCOUT deals with accurate single cell tracking across multiple 216 

sessions (see Algorithm 2, Supplementary Video 2). SCOUT uses the combination of spatial 217 

footprint location with extracted fluorescence traces to track neurons, via the construction of 218 

connecting segments between recordings (Fig. 1C). This allows for both spatial and temporal 219 

criteria to be used for neuron identification.  220 

This module consists of three steps: (1) similarity probabilities are calculated between 221 

each session, (2) neurons are tracked through the full set of recordings, (3) a correction phase in 222 

which duplicate neurons are removed. The first two steps constitute a predictor, while the last 223 

step constitutes a corrector. 224 
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 225 

For each pair of consecutive recordings, a connecting recording is constructed, and 226 

spatiotemporal similarity scores (centroid distance, JS divergence, temporal correlation on 227 

overlap, signal-to-noise ratio, etc.) are calculated for neurons across the recording. Next, similarity 228 

scores are weighted to produce a single score for each pair of neurons from consecutive sessions 229 

(producing a weighted ensemble of predictors), and neuron identification probabilities between  230 
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sessions are estimated using probabilistic models (Fig. 1D panel 1, Supplementary Fig. 1B, 231 

Materials and Methods). Methods of probability assignment (percentile, soft K-means, Gaussian 232 

Mixture Model) have various properties. Percentile and soft K-means assignment have 233 

wide parameter ranges on which they give non-negligible probabilities, while GMM 234 

typically gives a sharper boundary. GMM typically produces few false discoveries but can restrict 235 

the number of detected neurons. We suggest using soft K-means in many instances as 236 

identification errors are corrected via the weighted ensemble of predictors, and the correction 237 

phase ([Everitt, 2014], [Dunn, 1973]). 238 

 Neurons are tracked throughout the full set of recordings using the estimated 239 

probabilities, creating “chains” of neurons, where each chain contains at most one neuron 240 

extracted from each recording. Chain probabilities are calculated as the number of identified 241 

neurons in each chain (i.e. that exceed a certain similarity probability threshold), divided by the 242 

total number of possible pairs in the chain. 243 

Chain probability estimation is followed by a correction phase in which a neuron extracted 244 

from a given recording is constrained to appear in at most one chain, by removing duplicate 245 

neurons from chains based on their identification probabilities (see Fig. 1D panel 3, 246 

Supplementary Fig. 2C, Materials and Methods). The finalized neuron chains are assembled 247 

into a cell register, a matrix in which each row contains the associated session identification 248 

numbers for a neuron chain. Because of the correction phase, columns of the cell register do not 249 

contain duplicate ids. The cell register is used to construct concatenated temporal signals 250 

corresponding to each tracked neuron; the cell register and the associated concatenated neural 251 

signals are the final output. 252 

SCOUT differs from alternative cell tracking software in several ways. First, SCOUT 253 

incorporates temporal correlation similarity across an overlapping portion of each consecutive 254 

session. Second, SCOUT can incorporate an arbitrary number of similarity metrics into its 255 
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calculations for neuron identification. Finally, exclusivity, a requirement that individual neurons 256 

appear in exactly one chain, is guaranteed by the correction phase of SCOUT.   257 

 258 

 259 

Comparisons of SCOUT with CNMF-E on simulated single session recordings  260 

We tested the individual recording extraction portion of SCOUT on two different datasets: 261 

first, a set of 14 simulated recordings with 2000-10000 frames, consisting of between 50 and 200 262 

neurons with Gaussian spatial footprints, plus simulated low-level noise and a simulated blood 263 

vessel; second, a dataset consisting of 40 recordings with 2000-8000 frames, in which initial 264 

Gaussian footprints were simulated, then altered via randomly generated non-rigid 265 

transformations, to simulate possible spatial distortions.  In the second dataset, noise levels were 266 

higher compared with the true signal and blood vessel signal (see Materials and Methods for full 267 

simulation details). Hereafter, the first simulated dataset will be referred to as the Gaussian 268 

dataset, while the second simulated dataset will be referred to as the Non-rigid dataset. (Fig. 2, 269 

Materials and Methods). 270 

We examined two extraction conditions for each dataset, one with restricted 271 

initializations, in which the threshold for neuron initialization was set sufficiently high to exclude 272 

most spurious initialization points (which can exist either due to random fluctuations in 273 

background noise, or incomplete subtraction of discovered neurons during the initialization 274 

procedure), and the other in which thresholds for neuron initialization were low. Neuron 275 

initialization is primarily based on local correlation and signal intensity (see Materials and 276 

Methods, Supplementary Fig. 1B-D for full details). Extractions with unrestricted initializations 277 

had many false discoveries, which allows us to demonstrate the robustness of SCOUT. We 278 

term these extractions as restricted and unrestricted through the remainder of this section.   279 

We performed 6 extractions on each dataset (Gaussian, Non-rigid), for each 280 

initialization condition (restricted, unrestricted), 5 extractions in which we varied JS divergence 281 
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thresholds for the spatial constraints (JS constraint values [0.03, 0.06, 0.09, 0.12, 0.15]), and a 282 

CNMF-E extraction.  We found little significant increase in the number of detected neurons for 283 

thresholds exceeding 0.09, and a sharp drop off in detected neurons for thresholds lower than 284 

0.06, so we report statistics from the extractions with these two parameters (see Fig. 2A-D, 285 

Table 1). Larger thresholds may be required on in vivo data, particularly in cell tracking 286 

applications, as false positives have a smaller effect on the result.   287 

Pearson correlation was calculated between extracted fluorescence traces and ground 288 

truth neurons. An extracted neuron was labeled as a false discovery if the maximum correlation 289 

value between its fluorescence trace and any ground truth neuron was smaller than 0.8.  A ground 290 

truth neuron was counted as detected if the maximum correlation between its trace and that of an 291 

extracted neuron was at least 0.8. Statistical results were similar for higher thresholds. 292 

For each dataset and initialization condition, we computed the false discovery rate (FDR), 293 

defined as the percentage of false discoveries out of the detected neurons, and percent detected 294 

rate (PDR), defined as the percentage of ground truth neurons detected in a simulated recording 295 

for the extractions given by CNMF-E, SCOUT (JS: 0.06), and SCOUT (JS: 0.09). Statistics were 296 

calculated based on PDR and FDR calculated on each recording in each dataset. Results are 297 

reported in the form mean ±standard error. Statistical tests were two sided, and Welch’s paired t-298 

test and one-way ANOVA were used where stated.  299 

 Applying one-way ANOVA to the results from each dataset and initialization condition 300 

separately, we identified significant difference of average FDR using CNMF-E, and SCOUT with 301 

constraints 0.06 and 0.09 (p < 7.4 x 10-18, taken over all datasets and initialization conditions). 302 

Pairwise comparisons between CNMF-E and SCOUT showed SCOUT detected fewer false 303 

discoveries on average at both constraint levels across all datasets and conditions (t-test p < 1.3 304 

x 10-7). Average FDR exceeded 40% on the unrestricted extractions, and 16% on restricted 305 

extractions, across datasets. SCOUT reduced the number of false discoveries by at least half, 306 

 307 
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 308 

Figure 2.  A cell-shape based spatial constraint improves extraction performance by controlling false discovery 

detection and improving neural extraction quality. 

A: Spatial footprint extraction quality shows improvement using SCOUT over CNMF-E on a simulated video recording (6000 

frames). (1) maximum projection of a 70 pixel x 100 pixel section of a recording, (2) spatial footprint extraction results of CNMF-

E applied to recording, showing multiple false discoveries (3) spatial footprint extraction results of SCOUT applied to recording, 

retaining all ground truth neurons with no false discoveries, (4) ground truth spatial footprints. B: False discovery rates across the 

Gaussian and Non-rigid datasets, displaying CNMF-E and SCOUT extraction results. (1) The results for extractions with restricted 

initialization, (2) results for unrestricted initialization. SCOUT has significantly fewer false discoveries than CNMF-E in both 

contexts, while maintaining comparable percent detected rates.  C: Applying the SCOUT spatial filter after neuron initialization 

allows us to test its efficacy as a binary classifier, labeling neurons as true or false discoveries. Varying the spatial threshold, we 

plot the ROC curves and calculate the GINI index (defined as 2 x AUC -1, where AUC denotes the area under the curve for a 

given ROC curve) as a qualitative measurement of classifier efficiency. (1) The results on a set of 10 recordings from the Gaussian  
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 310 

and up to 85%, while retaining the percent detected rate within 1-2 percentage points of CNMF-311 

E. Total reported average PDR generally exceeded 97%, depending on the dataset, initialization, 312 

and extraction method. As expected, more false negatives were assigned by SCOUT in the Non-313 

rigid dataset, requiring a higher JS threshold (0.09) to retain at least 97% of true neurons (see 314 

Fig 2B, Table 1).  315 

To further investigate the efficacy of SCOUT as a classifier, we considered 10 316 

recordings randomly taken from each dataset and condition, and constructed receiver 317 

operating characteristic curves, by applying the spatial constraint after neuron initialization (Fig. 318 

2C). The resulting average GINI coefficients, defined as 2 x AUC - 1 (where AUC represents 319 

area under the ROC curve), were 0.75 ± 0.04 and 0.63 ± 0.04 for Gaussian and Non-rigid data 320 

sets, respectively, with the restricted extraction. Average GINI coefficients with the unrestricted 321 

extraction were higher, with the respective coefficients being 0.87 ± 0.02 and 0.82 ± 0.02 for 322 

dataset, (2) a set of 10 recordings from the Non-rigid dataset. The high GINI indices indicate a robust classifier.  D: Extracted 

spatial footprints from sample recordings in the Gaussian (1) and Non-rigid (2) datasets demonstrate the difference in false 

discoveries using SCOUT over CNMF-E. Neuron footprints are normalized to have the same maximal intensity for comparison 

purposes. Neurons are colored by which methods detected each extracted neuron, with SCOUT: green, CNMF-E: red, Ground 

Truth: Blue. CNMF-E detects background sources and blood vessels that do not correspond to ground truth neurons.  E: 

Examples of extracted footprints from recordings of CA1 layer of the mouse hippocampus, conducted using CNMF-E (1), and 

SCOUT (2), (7178 frames sampled at 15 Hz).  (1) top: The correlation image of the recording, with circled neurons corresponding 

to those detected by CNMF-E. bottom: The extracted spatial footprints detected by CNMF-E, normalized to have the same 

maximum pixel intensity. (2) top: The correlation image of the recording, with circled neuron corresponding to those detected by 

SCOUT. bottom: The extracted spatial footprints detected by SCOUT. CNMF-E produced an increased false discovery rate and 

gives an unclear segmentation of neurons from the recording. Using the three criteria discussed in the main body, 28% of 

extracted neurons were labeled as false discoveries in the CNMF-E extraction, while only 9% were labeled as false discoveries 

in the SCOUT extraction, demonstrating improved performance. Spatial footprints extracted via SCOUT were smoothed during 

the final spatial template application. 
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Gaussian and Non-rigid data sets.  These quantitative metrics demonstrate that SCOUT is a 323 

robust classifier across different datasets (Fig. 2C). 324 

 325 

Comparisons of SCOUT with CNMF-E on in vivo single session recordings 326 

After verifying the effectiveness of SCOUT on simulated data, we continued to examine 327 

the effects of introducing spatial constraints to neuron extraction in experimental in vivo 328 

recordings from hippocampal CA1, obtained from three separate mice (see Materials and 329 

Methods).  Each recording consisted of approximately 7000 frames each and was extracted 330 

using both CNMF-E and SCOUT. While ground truth data was not available for these 331 

recordings, we developed a set of three criteria for classifying neurons as true discoveries. 332 

First, the spatial footprint was examined visually. Neurons with abnormal footprints were 333 

removed from consideration. Next, the fluorescence trace corresponding to each neuron was 334 

examined for irregularities, such as traces with non-zero baselines, or traces that exhibited 335 

localized activity that may be attributable to recording noise, or poor extraction quality. Finally, 336 

the remaining neurons were plotted on the correlation image (which shows local correlation 337 

between neighboring pixels, Supplementary Fig. 1C, Fig 2E (1,2) top subpanels), and 338 

neurons that appear to encompass spatially distinct regions of the correlation image were 339 

removed as false discoveries. Across all three recordings, an average of 24.3 ± 2.3% of 340 

neurons discovered by CNMF-E, were classified as false discoveries, while 9.0 ±2.1% of 341 

neurons discovered by SCOUT were classified as false discoveries (Fig. 2E).  342 

Table 1:  Average PDR and FDR reported with restricted and unrestricted extraction methods applied in Gaussian versus Non-

Rigid datasets. Highlighted in bold is the outcome that maximizes PDR/(1+FDR). Reported as mean ± standard error. 
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We also tested SCOUT on three additional recordings, one each from the visual cortex, 343 

the hippocampal CA1, and the prefrontal cortex, having 4000-8000 frames each. CNMF-E 344 

detected an average of 15% more neurons than SCOUT, although after false discovery 345 

removal. The number of detected true discoveries was, on average, larger with SCOUT than 346 

with CNMF-E.  In these additional datasets, we found an average of 24.4 ± 7.9% of neurons 347 

detected by CNMF-E were classified as false discoveries, while 8.1 ± 0.7% of neurons detected 348 

by SCOUT were classified as false discoveries.  349 

 350 

Comparisons of SCOUT and cellReg on simulated multi-session recordings  351 

We next compare SCOUT with cellReg on multi-session simulated recordings, to 352 

empirically demonstrate that SCOUT tracks significantly more neurons than cellReg, with 353 

comparative or lower false discovery rates. Both methods were tested on three sets of 354 

simulated data: (1) a subset of 11 of the Gaussian recordings discussed earlier (splitting 355 

sessions every 2000 frames to obtain multi-session sets of sub-recordings for cell tracking) 356 

referred to as the Fixed dataset, (2) a set of 39 recordings consisting of 8000 frames each, split 357 

into 4 sub-recordings of 2000 frames, in which random non-rigid transformations are applied 358 

to each spatial footprint in each sub-recording, referred to as the Non-Rigid dataset, and (3) a 359 

simulated dataset in which no background noise was included, with each recording having 360 

6000 frames with Gaussian simulated neuron footprints individually shifted every 3000 frames, 361 

creating two sub-recordings for each recording (shift for each footprint was independent and 362 

less than 30% average neuron width, recordings split every 3000 frames for cell tracking), 363 

referred to as the Shifted dataset (Fig. 3, Supplementary Fig. 2, Materials and Methods).  364 

Cell tracking for recordings in the Fixed dataset is a simple task, as no transformations 365 

are present between sessions. The Non-Rigid dataset simulates non-rigid spatial  366 
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 367 

transformations that take place between sessions and is the most representative of true in vivo 368 

conditions. The Shifted dataset includes significant spatial translation between sessions, but 369 
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  Figure 3. SCOUT enhances 

neuronal detection in 

multiple session recordings. 

A: We compare average 

percent detected rates of cell 

tracking using cellReg, 

SCOUT, and SCOUT spatial 

(which only uses spatial 

criterion), based on SCOUT 

extractions of each recording. 

This is calculated as the 

percentage of neurons tracked 

through an entire recording, 

divided by the total number of 

neurons that were extracted in 

each sub-recording. Asterisks 

indicate statistical significance 

calculated via t-test. Note that 

SCOUT tracks significantly 

more neurons on average than 

cellReg on each dataset. On 

the Non-rigid dataset, we see  

 the importance of including temporal correlation.  B: On the Non-rigid dataset with CNMF-E extractions, the PDR for cellReg is 

significantly less than the PDR for SCOUT when using session registration prior to cell tracking (Registered), compared with cell tracking 

without session registration (Stationary). C: Comparison of cell tracking methods on recordings taken from three distinct regions of the 

brain: the visual cortex, prefrontal cortex, and hippocampus. All three regions show increase in the number of neurons tracked by 

SCOUT over cellReg. For each region, 6-7 recordings were taken, each consisting of 4000-13000 frames. Sessions were extracted 

individually (including connecting sessions for SCOUT), with consequent cell tracking using both methods. Comparisons of tracked 

neurons from SCOUT (2nd column) and cellReg (3rd column) show high spatial fidelity with those visually identifiable in the template 

(obtained via maximum projection of the recording, 1st column). SCOUT identified significantly more neurons in both the visual cortex 

and the hippocampus.  
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with no non-rigid warping of spatial footprints. Cell tracking over this dataset is the most 370 

challenging task. No registration was performed prior to recording extraction. Connecting 371 

recordings were constructed using 1000-2950 frames from each consecutive pair of sub-372 

recordings.   373 

Simulated neurons in sub-recordings and connecting recordings were extracted via 374 

SCOUT and CNMF-E (except for the Shifted dataset in which the sub-recording extractions 375 

were virtually the same due to the lack of background signal), and cell tracking performance 376 

was compared between SCOUT, SCOUT: spatial (a version of scout using only spatial 377 

similarity measures), and cellReg with each dataset and extraction method. For a given 378 

recording, the output of cell tracking is a proposed chain of neurons, one from each sub-379 

recording, and the associated concatenated neural signal, which should match one of the 380 

ground truth neurons.  381 

As SCOUT requires both base recordings and connecting recordings, we cannot use 382 

the ground truth cell register. Instead, we used the sub-recording extractions to construct a cell 383 

register as follows: on each sub-recording, if a neuron extracted from that sub-recording had 384 

spatial correlation greater than 0.65, and temporal correlation greater than 0.8, with a ground 385 

truth neuron, the extracted neuron was identified with the ground truth neuron. Ground truth 386 

neurons identified in all sub-recordings were considered available. Statistics for cell tracking 387 

were then relayed in terms of PDR (the percentage of available neuron chains detected by the 388 

cell tracking method) and FDR (the percentage of detected neurons not corresponding to an 389 

available neuron). Here, we are distinguishing only between completely correct neuron chains, 390 

and all other detected neuron  chains.  391 

For each dataset and extraction method, we performed multiple cell tracking analyses 392 

with SCOUT, SCOUT: spatial, and cellReg, by varying parameters such as registration method 393 

and maximal distance between neighboring neurons (see Materials and Methods for 394 

parameter details).  Presented results were obtained by choosing the cell tracking result that 395 
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optimized the metric PDR/(1+FDR), a metric which penalizes high FDR, and rewards high 396 

PDR. Thus, presented results may be considered best case scenarios for each method. We 397 

found significant differentiation when comparing average PDR on all simulated datasets except 398 

the Fixed dataset (ANOVA Non-rigid: p = 1.1 x 10-14 (SCOUT extraction) p = 6.7 x 10-8 (CNMF-399 

E extraction), Shifted: p = .015). Comparable FDR (i.e. lacking sufficient average difference to 400 

reject the null hypothesis) were detected across each dataset and method, except on the Non-401 

rigid dataset, (ANOVA p < 3.1 x 10-4, for both CNMF-E and SCOUT extractions). 402 

Investigating pairwise differences between SCOUT and cellReg, we find SCOUT 403 

detects significantly more neurons on the Non-Rigid and Shifted datasets (t-test Non-rigid: p < 404 

1.3 x 10-5, Shifted: p = 1.7 x 10-3). SCOUT had comparable false discovery rates with cellReg 405 

(i.e. statistical comparisons did not reject the null hypothesis) on all datasets except Non-rigid, 406 

where SCOUT did significantly better (p = 2.7 x 10-9, SCOUT extraction only). 407 

Comparing SCOUT and SCOUT: spatial yields significant differentiation in PDR only 408 

with the Non-rigid dataset (PDR: p < 3.3 x 10-11, FDR: p < 1.2 x 10-8). This is expected, as with 409 

the Fixed dataset, virtually all cells were found using both versions of SCOUT, and with the 410 

Shifted dataset, distances between identified cells were significant enough that extracted single 411 

neurons in connecting recordings failed to accurately account for signals on the overlap (Fig 412 

3A, Supplementary Fig 2A, Table 2). 413 

One important caveat of using cellReg’s built-in session-registration methods appear to 414 

be significantly affected by false discoveries in the sub-recording extractions (Fig 3B). This is 415 

particularly relevant to the CNMF-E extractions, as average PDR of cellReg with its built-in 416 

registration was 82.1%. In comparison, without cell eg’s session-registration, the average 417 

PDR was significantly higher at 92.1% (p = 3.5 x 10-11), with significantly lower false discovery 418 

rates (p =.1.2 x 10-5).  SCOUT did not result in such a decrease in PDR (94.5% vs 94.7%, 419 

registered vs stationary). The version of cellReg used by the authors did not include an option 420 

not to register sessions. The authors edited the code base to obtain the above results. 421 
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 422 

 423 

Comparisons of SCOUT and cellReg on in vivo multi-session recordings  424 

We continued to compare the results of SCOUT and cellReg on several in vivo 425 

recordings from the visual cortex, prefrontal cortex, and hippocampus of mice (Fig. 3C).  We 426 

used 6-7 recordings (4000 –8500 frames each) from each region and compared the results of 427 

neuron tracking using SCOUT and cellReg. For both methods, parameters were varied to 428 

produce the maximal number of identified neurons. Connecting recordings consisted of 8000 429 

frames (4000 from each pair of consecutive recordings). Visual identifications were used to 430 

eliminate probable false identifications between sessions (Supp. Video 2). On average, 11.7 431 

± 3.5% of neurons detected by cellReg were classified as false discoveries, while 4.6 ± 2.6% 432 

of neurons detected by SCOUT were identified as false discoveries. After false discovery 433 

removal, cellReg identified 62.0 ± 10.1 neurons in each set of recordings, while SCOUT 434 

identified 100 ± 9.5 neurons, consistently identifying more neurons than cellReg in each 435 

session.   436 

Taken above together, SCOUT shows significant improvements over earlier methods 437 

including CNMF-E and cellReg in identifying neurons across sessions. Overall, SCOUT 438 

exhibited comparable or fewer false discoveries than cellReg, while consistently detecting more 439 

neurons, across simulated and in vivo recordings. 440 

 441 

Table 2: Comparison of PDR and FDR across cellReg, and cell tracking with SCOUT, and SCOUT: spatial. The outcome 
maximizing PDR/(1+FDR) is highlighted in bold. Reported as mean ± standard error. 
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Longitudinal analysis of contextual discrimination associated ensemble neuronal 442 

dynamics 443 

Using SCOUT, we obtain improved population cell tracking of behavior-associated 444 

hippocampal neural ensemble dynamics at single-cell resolution for longitudinal analysis. We 445 

applied SCOUT to miniscope imaging data analysis of long-term contextual discrimination 446 

acquisition, extinction, and reinstatement (Fig. 4, Supplementary Fig. 1A). Mice were trained 447 

to acquire a context-specific fear response in one context (the stimulus context), which was 448 

paired with a mild footshock (0.25-0.5 mA), but not in a similar though visually distinguishable 449 

context (the control context) in which no footshock was administered. We collected both 450 

imaging and mouse behavioral data from the two contexts during learning, extinction, and 451 

relearning (reinstatement) stages of the experiment (Fig. 4A-E). In total, we tracked an average 452 

of 135 ± 21 neurons extracted per mouse across 5 mice, throughout the contextual 453 

discrimination experiment that lasted approximately two months, with between 36 and 44 454 

recording sessions. Comparatively, cellReg detected an average of 77 ± 10 neurons, not 455 

including two mice for which cellReg returned no tracked neurons. 456 

Context-dependent neural activity at the global level (calculated as the average area-457 

under-curve (AUC) value across all neurons for each recording session) was exhibited in three 458 

of the mice (Fig. 4F). Two mice exhibited higher daily average neural activity in the stimulus 459 

context (not including footshock), compared to the control context, and one mouse exhibited 460 

increased daily average neural activity in the control context.  For these mice, activity was 461 

higher in their preferred context 75.6 ± 4.3% of the time, a significant deviation from the average 462 

(p = .02, Welch’s t-test).  The remaining experimental mice, average neural activity did not 463 

show significant preference for either context. 464 

Additionally, we identified novel neural ensembles that exhibited a sustained (over 3-5 465 

days) increase in activity followed by return to a baseline level.   Across the three mice exhibiting 466 

global context preference, 32 ± 5.5% of all neurons exhibited stimulus-context dependent  467 
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 468 

Figure 4. Longitudinal analysis of hippocampal ensemble activities during contextual discrimination experiments 

A: (top) Visualization of the stimulus and control contexts, as well as the experimental process. Mice are placed in either the 

control or stimulus context for either 3 or 5 minutes (depending on context and experimental phase), then transitioned to a neutral 

context for twenty minutes, before being placed in the opposite context for another 3 or 5 minutes.  (bottom) Visual representation 

of contextual discrimination procedure. After habituation (hab.), the mouse receives a single mild footshock in the stimulus context  
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 469 

response changes in at least one context through the course of the experiment.  At the learning 470 

stage, 16.7 ± 5.4% of the cells exhibited increased activity in either the stimulus context (prior 471 

to footshock) or control context within 1-5 days of imposition of shock, descending to baseline 472 

levels before the next phase of the experiment (Fig. 4F, left, top and bottom panels), while 13.2 473 

± 1.6% and 8.9 ± 2.3% exhibiting increased activity in the extinction and relearning phases 474 

(Fig. 4F, middle and right), starting 1-5 days after experimental phase change, respectively.  475 

during two distinct periods (learning and relearning) separated by an extinction phase. In the stimulus context, the brief footshock 

is administered 3 minutes after being placed in the context. In the control context, no shock is administered. In panels c and d, 

freezing levels are measured for the 3-minute period after introduction to the context, and before the administration of footshock. 

B: Max projection image (left) and spatial footprints of extracted neurons (right) by SCOUT with data collected from a long-term 

contextual discrimination experiment for an individual mouse. For this mouse, 168 neurons were tracked across 38 sessions. C:  

During initial phases of training with footshock, mice exhibit behavioral generalization by increasing freezing in both contexts. 

After several days of training, mice exhibit contextual discrimination, which is evidenced by higher proportions of time freezing in 

the stimulus context as compared to the control context. During extinction, freezing decreases in both contexts, but shows a 

greater reduction in the stimulus context. Similar qualitative results occur during relearning (reinstatement) when footshock is 

applied again specifically in the stimulus context. Data shown is the mean time mice spent freezing in the first 3 minutes after 

placement in the respective context averaged for six mice (error bars indicate standard error of the mean). D: Each data point 

represents the area-under-curve (AUC) of the extracted neural calcium signals, averaged over all extracted neurons, for both 

contexts, for the specified day. Calculated AUC from the stimulus context does not include the time points after application of 

stimulus. Average neural activity indicates significant neural discrimination between contexts throughout the experiment. This 

effect is noted in three of the five mice. E: Freezing rates for a single mouse in stimulus (red) and control (blue) contexts, are 

compared with the mean cell activity across active neurons in the learning and extinction phases of the experiment (grey and 

black, respectively). Note the relative increase of neural activity during the peak of the acquisition and extinction phases, where 

changes in behavioral responses are most prominent. F: (top row) Each plotted point represents the smoothed daily area-under-

curve (AUC) of the calcium signal trace for a single neuron. Here we plot daily AUC for a subset of neurons that exhibit increased 

activity during different stages of the contextual discrimination experiment.  This panel demonstrates context-dependent neural 

activity changes observed across 3 of the mice (raw (unsmoothed) daily AUC is plotted in Supplementary Fig. 3B for reference). 

The data shows a clearly distinguishable increase in distributed activity with learning, extinction, and relearning. (bottom row) 

Raster plots of individual calcium signals for the corresponding neuron subsets show visually distinguishable increases in activity 

at the corresponding times above. Each row of the heatmap indicates the signal intensity for a single neuron, throughout the 

portion of the experiment indicated at the bottom. Signals were normalized to have the same maximum intensity for visualization 

purposes. 
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 During learning, 7.7 ± 4.0% of neurons exhibiting increased activity (in at least one 476 

context) exhibited increased activity in both contexts, while only 4.8 ± 2.6 of neurons exhibiting 477 

increased activity during extinction exhibited increased activity in both contexts. A proportion 478 

of active neurons during extinction (<10%) exhibited increased activity across contexts or 479 

across learning phases.  480 

   481 

Discussion 482 

In the present study, we have applied innovative concepts including spatial constraint 483 

priors and connected recording segments to develop a new method, SCOUT, for population 484 

single neuronal extraction and longitudinal tracking of their calcium responses across different 485 

recording sessions.  As shown above, we demonstrate that SCOUT overcomes existing issues 486 

of earlier methods such as CNMF-E and cellReg for longitudinal analysis of miniscope-based 487 

recordings of neural activity at the single-cell level with significantly better performance.   488 

Critically, SCOUT imposes spatial constraints on neuronal footprint extraction to control 489 

the number of false discoveries. This allows us to combine spatiotemporal correlation across 490 

recording sessions with a predictor-corrector methodology [Burden, et al. 1997] to develop a 491 

new method for the extraction of populations of single-cell neuronal data from long-term multi-492 

session imaging experiments. This method presents measurably significant advancements, 493 

and our software implementation facilitates large-scale imaging data processing in automated 494 

and high throughput manners. SCOUT is highly parallelizable and has been tested on High 495 

Performance Clusters (HPCs) for extraction and cell tracking through large datasets.  496 

Considering the general-purpose nature of our filtering and signal recognition algorithms, we 497 

expect SCOUT to extend to multi-photon imaging data sets and applicable to other imaging 498 

modalities with some appropriate further modifications.   499 
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The introduction of a spatial constraint is shown not only to decrease the rate of false 500 

discoveries in the extraction process, but to increase the quality of the extracted calcium signal 501 

traces, in both fixed footprint and shifted footprint conditions. We create an elliptical model 502 

(spatial constraint) of neuronal footprints for 1p data and treat each spatial footprint as a 503 

discrete probability distribution. Each footprint is then compared with a baseline distribution 504 

using the Jensen-Shannon divergence metric that changes the sensitivity of the algorithm and 505 

allows the user to optimize the tradeoff between false discoveries and true positives.  In our 506 

study, the addition of temporal similarity measures to spatial similarity, combined with a 507 

predictor-corrector methodology increases the number of detected neurons in longitudinally 508 

tracked neurons between sessions.  This makes it possible to effectively track large numbers 509 

of neurons across potentially very large numbers of recordings.  For proof of concept, we 510 

demonstrate this method utility across 60 days of consecutive recordings.  In addition, 511 

probabilistic modeling is essential for our SCOUT method, as it provides a principled method 512 

for scoring pairs of neurons between recordings based on their spatiotemporal similarity, 513 

without imposing hard thresholds for any given similarity metric.  We foresee that the new 514 

concepts and techniques used in SCOUT will improve many related cell registration and 515 

tracking methods. 516 

Our validation using actual experimental data from multiple brain regions confirms the 517 

strengths of SCOUT over existing techniques.  We have applied SCOUT to our longitudinal 518 

analysis of population neurons in a contextual discrimination to demonstrate its use for higher 519 

level neuronal transformations beyond simpler input/output functions. By tracking individual 520 

neurons throughout the experiment, we discovered evidence of population-wide differences 521 

that appear in relation to the application of shock stimulus as well as its removal. This provides 522 

evidence for pattern separation represented by evolving neural ensemble activities that are 523 

dependent on stimulus and context ([Czerniawski et al, 2014]). Our new methods enable robust 524 
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longitudinal analysis of long-term imaging experiments, providing significant new insight into 525 

contextual discrimination-associated neural ensemble dynamics.  526 

SCOUT code is publicly available on Github (https://github.com/kgj1234/SCOUT).  527 

Materials and Methods 528 

Simulated Recordings 529 

Neuron footprints were simulated as 2-dimensional Gaussians, with diagonal 530 

covariance matrices. Spatial footprint width was between 20 and 25 pixels. Spikes were 531 

simulated from a Bernoulli distribution with probability of spiking per timebin 0.01, and then 532 

convolved with a temporal kernel g(t) = exp(−t/τd) − exp(−t/τr), with fall time τd = 6 timebins, and 533 

rise time τr = 1 timebins. Local background spatial footprints were simulated as 2-D Gaussians, 534 

but with larger covariance entries than for the neuron spatial footprint. Blood vessel spatial 535 

footprints were simulated using a cubic function, that was convolved with a 2-D Gaussian 536 

(Gaussian width: 3 pixels). A random walk model was used to simulate temporal fluctuations 537 

of local background and blood vessels. 23 background sources were used throughout all 538 

simulated experiments, except for the Shift dataset, in which no background sources were 539 

present. 540 

Three sets of recordings were simulated for testing purposes. The Fixed footprint 541 

simulated dataset consisted of 14 recordings with 2000-10000 frames each, with a 256 x 256-542 

pixel FOV. Each recording was simulated using 50-200 neurons. We used two non-rigid 543 

footprint recording datasets, one for cell extraction consisting of 40 recordings having at least 544 

2000 frames, and one for cell tracking consisting of 39 footprint recordings having at least 2000 545 

frames. Each simulated spatial footprint was transformed with a non-rigid transformation for the 546 

cell extraction comparison and transformed every 2000 frames in the cell tracking comparison. 547 

Individually shifted footprint recordings consisted of 14 recordings with 6000 frames each, with 548 

a 100 x 100-pixel FOV. Each recording was simulated using 50 neurons. The individual spatial 549 
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footprints were shifted independently by between 5 and 7 pixels in the latter 3000 frames 550 

(creating two sub-recordings of length 3000 frames in which spatial footprints are consistent, 551 

for each recording). 552 

 553 

Animal experiments and miniscope recordings 554 

        All animal experiments were conducted according to the National Institutes of Health 555 

guidelines for animal care and use and were approved by the Institutional Animal Care and Use 556 

Committee and the Institutional Biosafety Committee of the University of California, Irvine.  557 

Viral injections 558 

        To perform viral injections, mice were anesthetized under 1.5% isoflurane for 10 minutes 559 

with a 0.8 L/min oxygen flow rate using a bench top unit (HME1-9, Highland Medical Equipment). 560 

Carprofen and buprenorphine analgesia were administered preoperatively. Mice were then 561 

placed into a stereotaxic unit for mice (Leica Angle Two) with their heads secured and received 562 

continuous 1% isoflurane anesthesia. Core body temperature was maintained at 37.5°C using a 563 

feedback heating system. Eyes were coated with a thin layer of ophthalmic ointment to prevent 564 

desiccation. The skull was then cleaned with iodine and 70% ethanol. A small incision was made 565 

on the scalp and the skin was opened to expose the skull and the landmarks of bregma and 566 

lambda.   567 

A three-axis micromanipulator guided by a digital atlas was used to determine the position 568 

of bregma and lambda. Using the micromanipulator software, the injection site was calculated 569 

relative to bregma and lambda, using computerized coordinates in the digital atlas. The injection 570 

coordinated targeting bV1 are anteroposterior (AP) -3.4 mm, mediolateral (ML) 2.75 mm, and 571 

dorsoventral (DV) -1.20 mm (all values are relative to the bregma). At the injection site, a small 572 

drill hole was made in the skull, exposing the pia surface. Then, a glass pipette (tip diameter, ~20-573 

30 µM) loaded with virus, was lowered into the brain to the appropriate depth and coordinates. 574 

Virus was pulsed into the brain at a rate of 20-30 nL/min with 10ms pulse duration using a 575 
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Picospritzer (General Valve, Hollis, NH). Backflow of virus was prevented by allowing the pipette 576 

to remain in the brain for 5 min after the completion of the injection.  Upon withdrawal of the 577 

injection pipette, the mouse was removed from the stereotaxic frame, and the scalp was closed 578 

with tissue adhesive (3M Vetbond, St. Paul, MN). Mice were injected with 5mg/kg Carprofen to 579 

mitigate pain and inflammation. Mice were then taken back and recovered in their home cages. 580 

 581 

Miniscope imaging preparation, GRIN lens implantation, and baseplate placement  582 

        At two weeks after AAV1-CaMKII-GCaMP6f injection, a gradient refractive index (GRIN) lens 583 

was implanted at the injection site in CA .  A  .8 mm-diameter circular craniotomy was centered 584 

at the coordinates (AP -2.30 mm and ML +1.75 mm relative to bregma).  ACSF was repeatedly 585 

applied to the exposed tissue; the cortex directly below the craniotomy was aspirated with a 27-586 

gauge blunt syringe needle attached to a vacuum pump. The unilateral cortical aspiration might 587 

affect part of the anteromedial visual area determined using Allen Brain Atlas (www.brain-588 

map.org/), but the procedure left the primary visual area intact. The GRIN lens (0.25 pitch, 0.55 589 

 A,  .8 mm diameter and 4.3  mm in length, Edmund Optics) was slowly lowered with a 590 

stereotaxic arm to CA1 with a depth of -1.60 mm relative to the bregma.  Next, a skull screw was 591 

used to anchor the GRIN lens to the skull. Both the GRIN lens and skull screw were fixed with 592 

cyanoacrylate and dental cement.  Kwik-Sil (World Precision Instruments) was used to cover the 593 

lens.  Two weeks later, a small aluminum baseplate was cemented onto the animal’s head atop 594 

the existing dental cement.  A miniscope was fitted into the baseplate and locked in a position so 595 

that the field of view was in focus to visualize GCaMP6f expressing neurons and visible 596 

landmarks, such as blood vessels.  597 

        Please refer to www.miniscope.org/ for technical details of our custom-constructed 598 

miniscopes.  The head-mounted scope has a mass of about 3 grams and uses a single, flexible 599 

coaxial cable to carry power, control signals, and imaging data to custom open source Data 600 

Acquisition (DAQ) hardware and software.  Under our experimental conditions, the miniscope has 601 
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a 7   μm x 4   μm field of view with a resolution of 7 2 pixels x 48  pixels (~  μm per pixel).  602 

The electronics packaged the data to comply with the USB video class (UVC) protocol and then 603 

transmitted the data over Super Speed USB to a PC running custom DAQ software. The DAQ 604 

software was written in C++ and uses Open Computer Vision (OpenCV) libraries for image 605 

acquisition. Images were acquired at ~30 frames per second (fps) and recorded to uncompressed 606 

.avi files. The  AQ software simultaneously recorded animal’s behavior through a high definition 607 

webcam (Logitech) at ~30 fps, with time stamping both video streams for offline alignment. 608 

 609 

Contextual Discrimination 610 

Mice were trained to differentiate between two similar, but visually distinct, square open field 611 

environments; miniscope imaging of hippocampal CA1 excitatory neurons was simultaneously 612 

conducted in behaving mice during the tasks (Fig. 4A-B).  Mice were habituated for a two-week 613 

period, in which they allowed to free explore each environmental context daily.  At the end of 614 

this habituation phase, context discrimination training started by introducing a mild foot-shock 615 

stimulus after 3 minutes in the stimulus context but not in the control context.  The mice learned 616 

to freeze as a contextual discrimination response in anticipation of the stimulus.  Subsequently, 617 

a two-week extinction phase in which no shock was applied, led to reduction in discrimination 618 

and freezing behavior. We then reinstated the stimulus to study neural response during 619 

reacquisition of the discrimination behavioral response. 620 

  Each day, individual mice were introduced to a random context (either control context 621 

or stimulus context), followed by 20 minutes in a neutral context, after which the mice were 622 

introduced to the remaining context. Recordings were taken in both contexts. Mice spent 3 623 

minutes in the control context, and 5 minutes in the stimulus context. The recordings from the 624 

stimulus context were split into a 3-minute baseline recording, and a 2-minute stimulus 625 

recording, in which a 1s 0.25-0.5 footshock was applied, 30 seconds into the recording. During 626 

the habituation and extinction phases, no stimulus was delivered. Cages were thoroughly 627 
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cleaned between sessions involving different mice (Fig 4B; Supplementary Fig. 3A-B). 628 

Mouse freezing behavior, as evidenced by a lack of movement except that necessary for 629 

respiration, was manually measured offline from video recordings of the session. 630 

 631 

Evidence for Localization of Cell Response after Introduction or Removal of Stimulus 632 

The initial K-means clustering applied to daily neural activity (as measured by AUC) implied 633 

the existence of a sustained activity increase occurring within 1-5 days of the initiation of the 634 

learning, extinction, and relearning phases in a significant subset of neurons, in both contexts, 635 

for nearly all mice. In order to test this theory, and demonstrate that directly after introduction 636 

and removal of stimulus were the only three probable stages in the learning process where a 637 

significant, sustained increase in activity occurs among a large subset of extracted neurons, 638 

we created a comparison template of length 11 days, with behavior similar to the detected 639 

behavior (namely increase in activity over four days, followed by 3 days holding steady, 640 

followed by decrease in activity). The number of neurons exhibiting similar activity patterns 641 

(based on a correlation of 0.65 with the template) starting at each day of the trial was counted, 642 

and significantly more neurons followed this activity pattern within two days of the imposition 643 

or removal of stimulus, than the average at other time periods in the experiment, indicating that 644 

the responses were stimulus dependent. Modifying the template in terms of activity rate 645 

increase and sustained activity intensity did not significantly alter the results, though decreasing 646 

the template length resulted in the detection of additional neurons with characteristic activity 647 

starting at each day, diluting the uniqueness of the effect.  648 

 649 

Preprocessing recordings 650 

In vivo recordings were preprocessed using NoRMCorre image registration for motion correction 651 

[Pnevmatikakis and Giovannucci, 2017]. For experiments taking place over more than one 652 

recording, alignment between sessions was performed either manually, by using max projections 653 
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in imageJ [Schindelin et al., 2012], or automatically using image registration libraries created for 654 

Matlab [Forsberg, 2015]. SCOUT provides an interface for automatic image registration, as well 655 

as manual feature selection-based registration. 656 

 657 

Optical recording extraction algorithms 658 

One class of methods for signal extraction involves semi-manual ROI selection. Such methods 659 

include manual ROI selection of individual neuron footprints, and subsequent deconvolution of 660 

the neural trace, as well as methods such as convolutional neural networks (CNNs) which use a 661 

corpus of identified footprints to train a neural network to identify footprints in future experiments 662 

[Apthorpe et al., 2016], followed by a second step in which temporal fluorescence traces are 663 

extracted based on the proposed footprints. However, such methods become computationally 664 

intractable when considering large cell population and become less accurate when considering 665 

neurons exhibiting strong spatial overlaps between footprints.  666 

Another class of methods involves automated ROI construction, where both fluorescent 667 

traces, and spatial footprints are extracted simultaneously. The simplest such example is 668 

PCA/ICA [Mukamel et al., 2009], in which PCA and ICA are successively used to isolate and 669 

extract spatial footprints and spike trains from optical recordings. These methods rely on linear 670 

demixing and can produce significant error when neuron footprints exhibit strong spatial overlaps 671 

[Pnevmatikakis et al., 2016].  672 

The most recent major advance in 1-photon optical recording extraction (as far as the 673 

authors are aware) is CNMF-E [Zhou et al., 2018]. As this is the primary method adapted in this 674 

paper, we will briefly describe the algorithm.  675 

Given a recording, let d represent the number of pixels in the field of view, T the number 676 

of frames observed, and K, the number of neurons in the field of view. Then let 𝑌 ∈ ℝ+
𝑑×𝑇 represent 677 

the initial calcium fluorescence recording; let  𝐴 ∈ ℝ+
𝑑×𝐾, the spatial footprints of the neurons, with 678 

each column representing the footprint of a single neuron; let the rows of 𝐶 ∈ ℝ+
𝐾×𝑇 represent the 679 
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fluorescent signal of each neuron at each frame; and let 𝐵 ∈ 𝑅+
𝑑×𝑇 represent the background 680 

fluctuation. The goal is to find A,B,C such that ||𝑌 − (𝐴𝐶 + 𝐵)||
𝐹
 is minimized, which can be 681 

interpreted as determining the optimal  spatial footprints, fluorescence traces, and background 682 

noise, in order to reconstruct the recording. 683 

The ith row of C is represented as an autoregressive process, where 𝑐𝑖(𝑡) =684 

∑ γ𝑗
(𝑖)𝑝

𝑗=1 𝑐𝑖(𝑡 − 𝑗) + 𝑠𝑖(𝑡), and 𝑠𝑖(𝑡) represents the number of spikes fired by the i-th neuron in 685 

the tth frame, and S, the matrix of spikes, is constrained to be sparse. The footprint matrix A is 686 

also constrained to be sparse, and B is constrained to be a nonnegative matrix decomposable 687 

as 𝐵 = 𝐵𝑓 + 𝐵𝑐 where 𝐵𝑐  models the constant baseline background, and 𝐵𝑓  models fluctuating 688 

background activity. Initialization for neuron centers uses a greedy algorithm, such that a 689 

proposed pixel satisfies two criteria: a minimum threshold on peak-to-noise ratio (calculated as 690 

peak signal strength divided the standard deviation of the noise), and a sufficiently high 691 

temporal local correlation (implying strong similarities in temporal signal for pixels surrounding 692 

the proposed center) ([Smith et al, 2010], Supplementary Fig. 1B-D). Initialization of variables 693 

C and B, as well as updates for the background B are discussed in the original paper. [Zhou et 694 

al., 2018]. 695 

 696 

 697 

False discovery removal via SCOUT 698 

Regarding false discovery removal, after each iteration of the extraction method, an initial 699 

pre-processing begins in which proposed spatial footprints are thresholded based on 700 

maximum pixel intensity, removing low intensity (<10% of maximum intensity) pixels. Each 701 

footprint is normalized so that the sum of pixel intensities in each footprint equals 1, allowing 702 

us to view each spatial footprint as a discrete probability distribution. Each footprint is then 703 

compared with a baseline distribution, using Jensen-Shannon (JS) divergence as a metric 704 
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[Kullback. S, 1997] (Supplementary Fig. 1E-F). Subsequently, the footprints with similarity 705 

exceeding the baseline of a specified JS threshold are removed, and the remaining footprints 706 

are updated either by averaging with the baseline, or by setting the pixel intensities of all points 707 

not in the support of the baseline to 0.  Using an iterative process employed by the CNMF-E, 708 

the spatiotemporal traces corresponding to each footprint are then updated by removing any 709 

non-zero intensity levels not in the support of the comparison footprint, after which the 710 

remaining intensity values are rescaled to their original magnitude (Fig. 1C-D). Note that 711 

varying the JS threshold changes the sensitivity of the algorithm (Supplementary Fig. 1D-E, 712 

Fig. 2C), allowing the user to optimize the tradeoff between false discoveries and true 713 

positives. Baseline neurons footprints are sampled from a user determined probability 714 

distribution, with parameters sampled from the proposed distribution. 715 

While the construction of the baseline is customizable, we consider several options for 1p 716 

data (Supplementary Fig. 1E). One option is a Gaussian model. Mean and covariance are 717 

sampled from the normalized, thresholded footprint P, and used to construct a comparison 718 

footprint Q.  We found that Gaussian models overestimated the rate of decrease in signal 719 

intensity when moving from the center of the proposed neuron to its boundary.  Another is an 720 

elliptical comparison created by calculating the centroid from the footprint P and the rate of 721 

signal strength intensity decrease along the major axis of the footprint. The intensity values of 722 

the footprint are interpolated along the major axis using a fractional polynomial model, and the 723 

fractional polynomial is rotated around the centroid of the footprint, linearly scaled so as to 724 

decrease to the width of the minor axis after a rotation of 90o, to create an elliptical model for 725 

the neurons spatial footprint. This is the method used in the experimental results discussed in 726 

the main body, as it appeared to show greater differentiation between true and false 727 

discoveries, than the Gaussian model.  728 

 729 

Comparison of spatial filter with alternative methods 730 
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While machine learning algorithms have previously been used to classify false discoveries 731 

derived from neural extraction, there are two significant issues for their usage.  732 

First, they frequently require additional training on a labeled dataset. For example, we 733 

tested both CaImAn (which only has a network trained on 2p data), and an AutoML curation 734 

algorithm [Tran et. al., 2020], and neither gave decent results without retraining (treating them 735 

as binary classifiers, the ROC curve had AUC less than ½). The AutoML algorithm advised a 736 

training time of two days and required a specific data input format that did not easily generalize 737 

to different magnifications.  738 

 Second, both networks required significant additional software to run. The AutoML 739 

algorithm was implemented only in python, making it difficult to include in MATLAB pipelines, 740 

and CaImAn requires the neural network toolbox, as well as some additional open source 741 

software. Our spatial filter runs in base MATLAB. 742 

 One benefit of using a spatial filter over a machine learning algorithm is in 743 

interpretability. For each neuron, we can identify the closest member in an associated 744 

probability distribution and measure the distance between them. This allows us to precisely 745 

identify why the algorithm classifies each entry as positive or negative.  746 

 747 

Cell Tracking via SCOUT 748 

Given two registered recordings, we construct a connecting segment between the two 749 

recordings, consisting of frames from the end of the first recording and the beginning of the 750 

second, to form a recording overlapping portions of the initial recordings (Fig. 1C). Next, we 751 

extract the neural activity from all three recordings. The connecting recording, though typically 752 

having lower extraction quality, can be used to identify temporal traces between sessions, via 753 

correlation on the overlap.  754 

 After these preliminary steps, we perform a predictor step, in which initial identification 755 

probabilities are assigned between neurons in the two initial recordings, using spatial and 756 
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temporal criteria. Spatial footprint similarity between neurons can be calculated using metrics 757 

such as centroid similarity, spatial overlap, and JS. Temporal metrics, such as correlation on 758 

the overlap, signal-to-noise ratio, and decay rate, can be used to provide additional 759 

differentiation for spatially similar neurons. 760 

 Methods such as mixture models are used to assign probabilities to the identification 761 

based on the spatial and temporal correlation between identified neurons in the initial sessions 762 

for each chosen metric, similar to cellReg [Sheintuch et al., 2017]. The probabilities are 763 

weighted and used to create a single identification probability between each neuron pair, 764 

creating an ensemble probabilistic classifier. 765 

 Next, we apply a stochastic process as follows to adjust identification probabilities, so 766 

that the greatest number of neurons would be detected. Initially, we construct a transition matrix 767 

consisting of identification probabilities between all possible neuron pairs between sessions. 768 

This is divided into connected components, consisting of interconnected neuron identifications. 769 

For each such connected component, we initialize the resulting neuron identifications using a 770 

greedy algorithm (i.e., we identify the strongest identification probability, and identify the 771 

corresponding neurons between sessions, then delete all probabilities associated with the 772 

identified neurons, and continue the process till all possible neurons are identified). We assign 773 

a negative penalty probability to any unidentified neurons and calculate the sum of probabilities 774 

for this identification. Finally, we perform several hundred iterations in which we randomly 775 

delete identification probabilities between neurons, to maximize the total sum of probabilities 776 

for this component. Deletion of certain identification probabilities has been shown to increase 777 

the total number of detected identifications using the greedy algorithm, decreasing connecting 778 

probabilities between some neurons, but increasing the overall sum of probabilities for the 779 

component. This showed the greatest effect on the individually shifted data, as occasionally, 780 

the nearest neuron (using the weighted similarity metrics) was not the correct identification. 781 
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Subsequently, probabilities are normalized. For a given neuron N1, if multiple 782 

identifications to neurons in the second recording exist, labeled 𝑁2
𝑖, with associated probabilities 783 

𝑃2
𝑖, we calculate the new identification probability as 𝑃2

�̂� = 𝑃2
𝑖/ ∑ 𝑃2

𝑗
, where the sum is taken over 784 

all possible identification probabilities for that neuron. 785 

Using pairwise identifications for successive recordings, we track neurons through 786 

multiple sets of recordings by creating a connecting segment of recordings between each 787 

consecutive pair of recordings followed by the application the previous method to obtain 788 

probabilities for each pair of recordings, constructing chains of identified neurons across the 789 

recordings. 790 

Next, a corrector step is used to eliminate neurons identified in multiple chains.  Each 791 

neuron chain is assigned an occurrence probability, based on the similarity of consecutive 792 

neurons. If more than one chain contains a given neuron from a recording, the chain that is 793 

most probable is accepted, with the duplicated elements in the remaining chain deleted. Partial 794 

chains are merged to create new chains, and the probability of the new chains are calculated. 795 

The process continues until no possible neuron chains are left. All chains with probability below 796 

a user set probability threshold (typically between 0.3 and 0.7) are removed from consideration 797 

(Fig. 1D). 798 

To enhance identification and tracking of neurons between consecutive recordings, we 799 

may use spatiotemporal similarities to identify remaining neurons across sessions that are not 800 

temporally adjacent (i.e. at least two sessions apart in our ordering). While temporal correlation 801 

on overlap cannot be used in this case, as extracting this many connecting recordings would 802 

be prohibitively expensive, considering identifications across all pairs of recordings allows us 803 

to detect neurons that may be inactive in some sessions. However, this requires probability 804 

assignments across all pairs of recordings, requiring significant additional computations (O(n2) 805 

in the number of recordings).  Occurrence probabilities are calculated using pairwise scores 806 
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between each neuron in the chain. Using spatiotemporal similarity between all chain members 807 

typically results in a significant increase in the number of detected neurons, as well as cell 808 

tracking accuracy (assuming accurate initial registration of sessions), though it requires more 809 

time and computational resources.  We apply this approach in the experimental results 810 

discussed in the paper. 811 

  812 

Calculation of temporal correlation across sessions 813 

Given two preprocessed optical recordings R1 and R2, we construct a connecting 814 

recording Rc by concatenating the last n frames the first recording, with the first n frames of the 815 

second, where n is some number less than the number of frames in R1 and R2. Next, we extract 816 

spatial and fluorescence traces from R1, R2, and Rc. At this point, spatial overlap, and 817 

correlation on the overlapping frames, are used to track neurons through multiple recordings, 818 

as follows.  819 

Given N1, a neuron from Ri, and N2, a neuron from R2, we start by setting a maximal 820 

distance threshold m, that defines neighboring neurons. If the distance between the centroids 821 

N1 and N2 exceeds m, N1 and N2 would not be considered neighbors. Only neighboring neurons 822 

can be identified as the same between sessions. Next, given a similarity metric, we calculate 823 

the distance between N1 and N2 for every set of neighbors N1 from Ri, and N2 from R2. Examples 824 

of spatial similarity metrics include centroid distance, overlap, and JS divergence. 825 

For temporal correlation similarity, a similarity score is obtained for each neighboring 826 

neuron pair (N1 and N2) in the two recording sessions, by ranging over the full set of neighboring 827 

neurons (Nc) in the connecting recording (i.e. across the set of Nc coming from Rc such that N1 828 

is a neighbor to Nc, and Nc is a neighbor to N2). The choice Nc that maximizes the average of 829 

the correlation distance between N1 and Nc, and Nc and N2, is considered the connecting 830 

neuron, and the distance between N1 and N2 can be considered as the mean of the maximal 831 

correlation across choice of connecting neuron Nc. Use of temporal correlation is not necessary 832 
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for application of the algorithm, but there is some indication that using the correlation metric 833 

increases the percentage of correctly determined identifications, particularly on the individually 834 

shifted data (p = 0.08). For long term experiments, concatenation, and extraction of multiple 835 

recordings, followed by cell tracking via SCOUT provided the best results, and replaced the 836 

requirement for the separate extraction of Rc by using overlapping concatenated batches of 837 

recordings. 838 

 839 

 840 

Spatial similarity measures for calculating neuron similarity across sessions 841 

Currently, three methods for spatial similarity are included with SCOUT: centroid distance, 842 

spatial overlap, and Jensen-Shannon divergence. Centroids of neuron spatial footprints are 843 

calculated using the usual formulae �̅� = ∑ 𝑥𝑖𝑖,𝑗 𝑎𝑖𝑗, �̅� = ∑ 𝑦𝑗𝑖,𝑗 𝑎𝑖𝑗, where i,j range across the 844 

number of pixels in the field of view, in the horizontal and vertical directions respectively, and 845 

𝑎𝑖𝑗 is the footprint intensity at the ith horizontal pixel, and the jth vertical pixel. Centroid distance 846 

between to footprints is calculated as the Euclidean distance between their centroids. Spatial 847 

overlap between footprints a, b is calculated as 
𝑎⋅𝑏

||𝑎||
2

||𝑏||
2

, where a and b, are  binarized column 848 

vectors representing whether each footprint has positive pixel intensity. Jensen-Shannon 849 

divergence between two (normalized) footprints P,Q, is calculated as 
1

2
(DKL(P||M) + DKL(Q||M)), 850 

where M = 
1

2
(P + Q), and DKL is the Kullback-Liebler divergence: DKL(P||Q)=E(log[dP/dQ]), 851 

where dP/dQ is the radon-nikodym derivative of P with respect to Q. 852 

 853 

Temporal similarity measures for calculating neuron similarity across sessions 854 

In addition to temporal correlation on connecting recordings, several additional temporal 855 

similarity measures can be deduced from properties of the fluorescence traces of each neuron. 856 

SCOUT has implemented temporal similarities based on signal-to-noise ratio (calculated as the 857 
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average of the square of the signal strength, over the standard deviation of the estimated noise 858 

near the associated spatial footprint for each neuron), and the fluorescence trace decay rate 859 

for each neuron. Frequently, such similarities are preserved across recordings, and can be 860 

used to distinguish between possible identifications.  861 

  862 

Assigning Identification Probabilities with SCOUT 863 

 To assign probability scores between sessions for a given metric, we detail two approaches. 864 

First, we can simply assign the percentile as the probability score for each metric. If the distance 865 

between N1 and N2 for a given a metric, is less than p% of distances between all possible 866 

neighbor pairs, then p is the percentile assigned to the pairing. This method has several 867 

drawbacks. First, it is sensitive to the choice of maximum distance parameter. If the parameter 868 

governing the maximum distance between neighbors is increased, the probability assigned to 869 

any neighboring pair will increase. Second, when few neuron pairs exist, similarity metric values 870 

can accumulate near 0, so that even relatively small metric values can be associated to low 871 

probabilities. To avoid this problem, the distribution of metric values is approximated via kernel 872 

density estimation before the percentiles are calculated.  873 

Another paradigm is to assume that for each metric, the distances between neighboring 874 

pairs come from a mixture of distributions: a distribution of distances corresponding the neurons 875 

that should be identified between sessions, and a set of neighbors that are distinct. Before 876 

fitting the mixture of distributions, a probability density function is constructed, by applying 877 

kernel density estimation to the normalized histogram of distances, using reflected boundaries 878 

near theoretical maximum and minimum values (such as 0 or 1 for correlation metrics). Next, 879 

we construct a model consisting of the weighted sum of two probability distribution functions, 880 

which is then fit to the approximated pdf, using nonlinear regression (Matlab nlinfit). We have 881 

implemented three cluster mixture models using Gaussian-Gaussian, Gaussian-Exponential, 882 
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and Gaussian-Log Normal distributions [Everitt, 2014]. The default behavior is to approximate 883 

the pdf with each mixture model and choose the model that best approximates the pdf.  884 

Given a mixture model consisting of a weight w,  a model for identified neurons between 885 

sessions, f,  and a model for unidentified neurons between sessions, g, the mixture model 886 

approximates the probability distribution function h,  obtained via kernel density estimation from 887 

the initial distribution of distances, as ℎ(𝑥) = 𝑤𝑓(𝑥) + (1 − 𝑤)𝑔(𝑥). Given a proposed distance 888 

x,  the probability that x is sampled from the distribution with pdf f, is given by 
𝑤𝑓(𝑥)

𝑤𝑓(𝑥)+(1−𝑤)𝑔(𝑥)
, 889 

using Bayes theorem. 890 

Another probabilistic clustering algorithm, soft K-means clustering [Dunn, 1973], an 891 

adaptation of K-means in which data points are assigned identification probabilities for each 892 

cluster, and a “fuzzifier” is introduced to govern the spread of identifications probabilities, 893 

adjusting the crispness of the clusters (Fig 1D). This algorithm frequently identified the most 894 

neurons, but with a higher false discovery rate.  895 

   896 

 897 

Probability Assignment for Neuron Chains in SCOUT 898 

SCOUT provides several options for assigning probabilities to neuron chains. If only 899 

consecutive recording sessions are scored, then average (or minimum) probability between 900 

sessions are used to assign probability scores for each chain. When probability scores between 901 

all recording sessions are used, empirical results suggest a two-step method: first, a probability 902 

threshold is assigned, and occurrence probability is calculated as the minimum number of 903 

neurons any given neuron in the chain is connected to with probability higher than the 904 

probability threshold. Then, average chain probabilities across neuron pairs in the chain is used 905 

as a tiebreaker if multiple chains with the same connectivity scores are found.   906 

 907 
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Long-term cell tracking with SCOUT 908 

For long term cell tracking, we propose a combination of concatenation and cell tracking. In this 909 

methodology, recordings are concatenated into batches of uniform length, with overlapping 910 

portions of each batch used to calculate spatiotemporal similarity. For the contextual 911 

discrimination experiment, batches were composed of eight sessions, with an overlap of two 912 

sessions between batches. This method decreases the number of connecting recordings 913 

required. This method requires spatial footprint stability over each batch. 914 

 915 

Algorithm Parameter Settings 916 

Cell Extraction 917 

CNMF-E parameters were set as min_pnr = 5, min_corr = 0.8 (0.1 for unrestricted 918 

initialization), merge_thr = [1,1,-1] ([.65,.7,-1] on in vivo recordings), and dmin=0 ([1.5, 15] on in 919 

vivo recordings). All other parameters were left as defaults. 920 

Cell Tracking 921 

For cell tracking via cellReg on the simulated recordings, we set p_same_threshold = 922 

0.5, and performed 18 total cell tracking procedures, with varied parameters.  maximal_distance 923 

(maximal distance between neighbors) varied between 10 and 50 by increments of 5.  924 

 For SCOUT, corr_thresh = 0.6, probability_assignment_method=Kmeans, chain_prob = 925 

0.5, min_prob = 0.4. We performed 18 total cell tracking procedures with varied parameters. 926 

max_dist (maximal distance between neighbors) varied between 10 and 50 by increments of 5. 927 

 On in vivo recordings, the same parameters were used for cell tracking, but SCOUT was 928 

performed only once, with max_dist set to 45, and registration_method set to non-rigid, session 929 

registration for cellReg was set to non-rigid.  930 
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Code Availability 931 

Code is publicly available on Github (https://github.com/kgj1234/SCOUT).  932 
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1086 

Supplementary Figure 1: A: Examples of false discoveries detected by CNMF-E on in vivo recordings of the CA1 hippocampus. B-1087 

D: The local correlation image (C) and peak-to-noise ratios (B) are used as initialization points for neurons in CNMF-E and SCOUT. 1088 
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Extracted footprints (using SCOUT, D) show strong fidelity to the initialization values, and filter out most of the background activity. E: 1089 

Examples of Jensen-Shannon divergence between Gaussian probability distributions which are (1st row) gradually translated apart or 1090 

(2nd row) stretched in orthogonal directions. F: A true (top row) and false (bottom row) footprint discovery is shown compared with the 1091 

elliptic comparison (2nd column) and a Gaussian comparison (3rd column). The elliptic comparison shows a stronger differentiation 1092 

between the false and true discovery. G: Here we consider the effect adding an additional neuron (red), when extracting neural signals 1093 

from a true neuron (green). On the right, we see a significantly altered neural signal (green) is reported than originally (black), when 1094 

a spurious neuron is included during signal extraction. This illustrates the importance of removing false discoveries before the final 1095 

signal update. H: We consider the extracted neural signals of several false discoveries obtained by CNMF-E on a recording in the 1096 

Non-rigid dataset and compare with correctly detected neurons in the same dataset. On average, significantly fewer calcium signal 1097 

events are detected in the false discoveries (top traces, red), as such signals are generated by background noise. I: Here we consider 1098 

a correlation plot of extracted neurons, from one of the recordings in the Fixed dataset. Each point represents a neuron, with 1099 

coordinates representing the maximal spatial and temporal similarities with ground truth neurons.  The plot indicates that SCOUT has 1100 

fewer false discoveries than CNMF-E. The footprint update procedure of CNMF-E can cause lower spatial correlation due to trimming 1101 

of low intensity pixels. This effect can be adjusted by the user. 1102 
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 1108 

Supplementary Figure 2: A: We consider the corresponding false discovery rates to cell tracking discussed in Figure 3A. In general, 1109 

comparable false discovery rates are seen across all methods, though SCOUT has a significantly lower false discovery rate on the 1110 
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Non-rigid dataset. B: Top row figures show the density of neighboring cells using various distance metrics. Using Jensen-Shannon 1111 

divergence, a clearer delineation between identified neighbors and non-identified neighbors between sessions is seen, viewed as low 1112 

density in the middle regions of the plot, in both the second and third column. Bottom row figures show the probability density function 1113 

created by applying a Gaussian mixture model to each density figure. C: (top) Initial probabilities between neuron pairs are used to 1114 

create neuron chains across multiple recordings. This is followed by deletion of duplicate neurons based on which chains are identified 1115 

as most probable. (middle and bottom) Plotting potential identified neighbors between sessions using their JS divergence and overlap 1116 

distance demonstrates the predictor-corrector nature of the algorithm. Using simulated data an initial prediction is made, using a 1117 

Gaussian mixture model, with a 0.5 cutoff for acceptance of probability. Following this, a correction is applied in which neurons in the 1118 

initial session identified with more than one neuron in the secondary session, are eliminated based on aggregate probability, in this 1119 

case, removing a single false discovery, forming a non-linear decision boundary. The corrected result identified all neurons in the 1120 

recording, with no false discoveries.  1121 
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1139 

Supplementary Figure 3:  A: Neural activity from a single day during the learning phase of the experiment is split into three sections: 1140 

control context (left column), stimulus context (before stimulus, middle column), and stimulus context (containing stimulus, right 1141 

column). Calcium signal activity of individual neurons indicates little correlation between neural activity in the control and stimulus 1142 

contexts. Neural activity shows a marked increase after application of the foot-shock stimulus, though this did not occur in all mice.  1143 

B: Raw (unsmoothed) daily activity averages show experimental stage-related activity, though the effect is less differentiated before 1144 

smoothing. (The activity shown here is the raw activity corresponding to Fig. 4F (top)). 1145 
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 1151 

Supplemental Videos 1152 

 Video 1: A simulated recording (left) is extracted by SCOUT into a product of spatial footprints 1153 

and temporal traces (middle), forming a reconstruction of the recording with noise removed. 1154 

The colored footprints in the extracted video (middle) have intensity given by their 1155 

corresponding traces (right).  1156 

Video 2: SCOUT overcomes the difficult issues of non-rigid changes in spatial footprint size 1157 

and location for consistent identification of neurons across sessions. Example tracked 1158 

neurons are represented by colored ovals through 7 recording sessions.  1159 
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