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Abstract 

Environmental DNA barcoding technology is gaining innovative applications. The 

effectiveness of current DNA barcode reference libraries in identifying amphipod barcodes 

and/or strengthening the existing library was tested. From 2500 amphipod individuals we 

barcoded 22 amphipod species belonging to 17 genera, 13 families among which 13 species 

were first time barcoded. More than 80 percent of the species were new distributional 

records. The minimum and maximum inter-specific pair-wise distance values was 

respectively 0.16 and 5.51 percent. Defining family specific species threshold values would 

be imperative, rather than expecting a universal barcode gap for amphipod species. The 

overall mean pair-wise distance, nucleotide diversity and Tajima’s statistics were 3.59 

percent, 0.27 and 2.62, respectively. There is a strong need to increase the number of 
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amphipod species barcodes in the reference database. For better facilitation of environmental 

monitoring, the datasets could be exclusively accessed at BOLD through 

http://dx.doi.org/10.5883/DS-MAOI.  

 

Keywords: Marine amphipods; Environmental monitoring; COI; DNA barcoding; Amphipod 

barcoding. 

 

1. Introduction 

Amphipods (Phylum: Arthropoda, Class: Malacostraca, Order: Amphipoda) are a 

significant invertebrate fauna associated with coastal ocean environments which connects 

producers and consumers (such as fishes) in marine trophic webs (Sanchez-Jerez et al. 1999; 

Zakhama-Sraieb et al. 2006; Fernandez-Gonzalez and Sanchez-Jerez 2014). Amphipods have 

been used as key species in the assessment of environmental quality because they live in 

close proximity to marine and estuarine sediments (Chapman et al., 1992, Chapman et al., 

2013, Postma et al., 2002) and are used as a bio-indicator of contamination since they are 

responsive to changes in environmental conditions (Bellan-Santini 1980; Virnstein 1987; 

Conradi et al. 1997; Guerra-Garcia and Garcia-Gomez 2001). Example; oil spills affects 

growth and abundance of amphipod fauna (Gesteira et al., 2000; Andrade & Renaud, 2011; 

Joydas et al., 2012; Lotufo et al., 2016) and the bioaccumulation of hydrocarbons differs 

between families of amphipods (Lourenco et al., 2019). Amphipods are used to monitoring 

sediments acute toxicity which was proven to be species-specific (Ohji et al., 2002; Vacchi et 

al., 2019). Amphipods were also used to biomonitor the trace metal concentrations in coastal 

environments (Rainbow et al., 1998; Fialkowski et al., 2009; Morrison et al., 2017). By 

shredding plastic carrier bags, amphipod species were known to generate numerous pieces of 

microplastics which in turn significantly reduces amphipod’s algal consumption (Hodgson et 

al., 2018; Carrasco et al., 2019). Changes in algal nutritional quality due to ocean 

acidification was also known to modify amphipod’s feeding behavior (Benítez et al., 2016). 

Other environmental parameters such as light intensity and salinity influences the growth and 

the composition of amphipod assemblages (Navarro-Barranco & Hughes, 2015; de-la-Ossa-

Carretero et al., 2016). Therefore, the composition of the amphipod species typically 

represents the environmental conditions where they have been isolated.  

Conventional taxonomy tussles to classify amphipods as they were small sized with poor 

taxonomic descriptions and converging morphological characters (Knowlton, 1993, 

Radulovici et al., 2010), making them an ideal group for DNA barcoding application. DNA 
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barcoding involves sequencing a gene fragment from precisely identified specimens to form a 

database and enabling species identification (even by non-experts) by comparing the same 

gene sequences sequenced from unidentified specimens (Hebert et al., 2003, Mitchell, 2008). 

DNA barcode based identification was successful in marine amphipods of Arctic (Tempestini 

et al., 2018), Antarctic (Havermans et al., 2011), Atlantic (Costa et al., 2009) and Pacific 

(Jażdżewska and Mamos, 2019) Oceans. Such efforts, however are rare in Indian Ocean 

realms where amphipod diversity were relatively richer (Mondal et al., 2010, Raja et al., 

2013).  

Environmental DNA (eDNA) is the DNA recovered from environmental substances such 

as water, soil, or sediment (Taberlet et al. 2012; Thomsen and Willerslev 2015) and eDNA 

barcoding refers to sequencing the DNA barcodes, amplified from DNA recovered in the 

environmental for discovering the taxonomy and biodiversity of the sampled area. eDNA 

barcoding technology is finding innovative applications for monitoring marine biodiversity 

(Nguyen et al., 2020), from deep sea hydrothermal vents (Cowart et al., 2020) to plankton gut 

materials (Oh et al., 2020) and also in tracking terrestrial biodiversity (Heyde et al., 2020). 

eDNA barcoding technology has also been shown to be useful in monitoring the marine 

ecosystem to detect invasive species (Kim et al., 2020) even from the DNA recovered from 

marine litters (Ibabe et al., 2020).  

eDNA technology has been shown to be useful in spatial and temporal monitoring in a 

wide variety of settings, as the methods are relatively inexpensive, reliable and quicker than 

conventional monitoring (Lecaudey et al. 2019; Preissler et al. 2019; Reinhardt et al. 2019; 

Sutter and Kinziger 2019; Sales et al. 2020). The breakthrough in eDNA barcoding 

technology is in its ability to monitor the ecosystem without causing unnecessary harm to 

ecosystem or their organisms by non-invasive sampling strategy (Antognazza et al. 2019; 

Mora et al. 2019; Leempoel et al. 2020) and to detect elusive, rare, and cryptic species 

effectively even in low density occurrences (Franklin et al. 2019; Shelton et al. 2019; 

Takahara et al. 2020). Single eDNA sampling could simultaneously monitor biodiversity in 

the given environment over a broad taxonomic spectrum (Sawaya et al. 2019; Thomsen and 

Sigsgaard 2019; Zhang et al. 2020). Large DNA barcode reference library that contains 

barcodes for a wide range of species is essential for successful monitoring of any 

environments using eDNA. For example; while monitoring marine ecosystems, a previous 

study could not assign more than 92 percent of the PCR amplified eDNA sequences to any 

known phyla and the sequences were classified as unassigned phyla (Jeunen et al., 2019; 

Sawaya et al., 2019). A comprehensive, parameterized reference library with barcodes of 
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most of the locally occurring species and its image data is critical for the reliable application 

of eDNA technology, and the success of such efforts has been witnessed in probing marine 

fish diversity (Stoeckle et al., 2020). Barcode of Life Database (BOLD) 

(www.boldsystems.org) were created with the objective of fulfilling above said requirements 

(Ratnasingham and Hebert, 2007).  

Since only 15 percent of animal species have been barcoded and available in reference 

libraries (Kvist, 2013), the purpose of this study is to classify amphipods that occur in Vellar 

estuary sediments using DNA barcoding. We have made considerable efforts in the past 

decade as part of the Indian Census of Marine Life (ICoML) to recover barcodes in 

reasonable numbers of marine phyla including fin and shell fishes, invertebrates (Khan et al., 

2010, 2011; PrasannaKumar et al., 2012; Thirumaraiselvi et al., 2015; Rajthilak et al., 2015; 

Rahman et al., 2013, Hemalatha et al., 2016; Palanisamy et al., 2020; PrasannaKumar et al., 

2020a, b; Manikantan et al., 2020; Thangaraj et al., 2020) and plants (Sahu et al., 2016; 

Prasanthi et al., 2020) occurring in and around the Vellar estuary, besides amphipods. This 

study also aims to test the efficacy of current DNA barcode reference libraries in identifying 

DNA barcodes, so as to implicitly explain the capacity of the reference library to monitoring 

environmental quality using eDNA barcodes of amphipods. 

 

2. Materials and methods 

2.1. Sample collection and identification 

During February 2012, sediment samples were obtained from the mangroves beds in 

the Vellar estuary (Latitude: 11° 29'N. Longitude: 79° 46'E.), Southeast coast of India. A total 

of 6 samples were sampled at multiple sites around the mangrove species; Rhizopora 

annamalayana (Seetharaman and Kandasamy, 2011) using a sterile plastic spatula within the 

sediment area of 50cm2 quadrat. The seaward salinity was 30ppt (measured using hand-held 

Brix refractometer). The sediment samples were passed with copious ambient seawater 

through a sieve of 0.5mm pore size and sewn at the site. The amphipods and other fauna were 

preserved in 95 percent molecular grade ethanol (Merck, India) along with residual sediments 

and transported to the laboratory. Whenever required, duplicate specimens were preserved for 

microscope analysis in 5 to 7 percent formaldehyde containing Rose Bengal. Using a Nikon 

Eclipse E200 compound microscope, the amphipods were sorted and classified to the lowest 

possible taxonomic ranking based on their morphological characters. For the identification of 

the specimens, the taxonomic keys of Vinogradov et al. (1996), Martin and Davis, (2001) 

Bousfield (1978), Balasubrahmaniyan and Srinivasan (1987), Lyla et al. (1999) and Lowry & 
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Myers (2017) which are publicly accessible via the World Amphipoda Database (Horton et 

al., 2019). Recommended data categories such as geographical co-ordinates, collector, and 

collection date, unique identifier for voucher specimens, etc., to meet basic data standards for 

creation of collection database (Evans & Paulay, 2012) was followed. Under the project 

"DNA barcoding marine amphipods" (tag; DBMA), the barcode data along with image and 

other meta-data of the present study was released for publically access in BOLD 

(www.boldsystem.org).  

 

2.2. DNA isolation, PCR and sequencing 

The DNA was extracted using the DNeasy Blood & Tissue Kits (Qiagen) following 

the manufacturer's protocols with 1/10th of actual volume of reagents being adjusted in use. 

Two or three pereopods were used for DNA extraction, when the individual amphipods were 

>12 mm in length, and the entire amphipod specimens when <12 mm in length. During the 

DNA extraction process, elution buffer provided with the kit was used as negative control. 

Using the primer pair; LCO1490 and HCO2198 (Folmer et al., 1994), the mitochondrial 

cytochrome c oxidase subunit I (COI) gene was amplified (approximately, 658 base pair). 

Polymerase chain reaction (PCR) was conducted using a 25µl reaction volume; 12.5µl Taq 

PCR Master Mix (Invitrogen, India), 11µl distilled water, 0.5µl forward (10 µM) & 0.5µl 

reverse primer (10 µM), and 0.5µl extracted DNA (50–80 ng/µl). PCR conditions were; 

initial 2 minute denaturation at 95 ºC, followed by 5 cycles at 94 ºC at 30 s, 46 ºC at 45 s, 72 

ºC at 45 s and 35 cycles at 94 ºC at 30 s, 51ºC at 45 s, 72 ºC at 45 s, and final elongation at 72 

ºC at 5 minutes. The negative control processed during DNA extraction used as a negative 

PCR control. Following PCR, the products were tested on a 1.5 percent agarose gel and 

commercially Sanger sequenced (bi-directionally) at Macrogen (Seoul, South Korea).  

2.3. DNA sequence analysis  

Sequencing efforts were repeated until at least one specimen in every species captured 

was sequenced. The sequences were read using ChromasLite ver.2.1 and manually double 

checked. DNA gaps were tested in BioEdit ver. 7.9 (Hall, 1999) by converting DNA 

sequences into putative amino acid sequences and aligned in Clustal X ver. 2.0.6 (Thompson, 

1997). Properly aligned sequences were submitted to GenBank and made available for public 

access through accession numbers MT184213-MT184234. Under the project title “DNA 

Barcoding Marine Amphipods” or by using the tag ‘DBMA’ in BOLD 

(http://www.boldsystems.org/), meta-data containing voucher information, taxonomy, 

specimen description and collection data (sample ID, collection date, geographical 
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information, etc.) could be accessed. One could access the dataset provided in the present 

study at http://dx.doi.org/10.5883/DS-MAOI.  

The Barcode of Life Data Systems (BOLD) (Ratnasingham and Hebert, 2007) and 

GenBank (Benson et al., 2018) were used as a reference library to identify the barcode 

sequences created in the present study. The comparison of COI sequences in BOLD was 

facilitated through ‘identification engine’ tool 

(http://www.boldsystems.org/index.php/IDS_OpenIdEngine) and in GenBank through Basic 

Local Alignment Searching Tool (BLAST) (Altschul et al., 1990) using a standard similarity 

search protocol (Hu and Kurgan, 2018). Molecular Evolutionary Genetic analysis (MEGA) 

version X (Kumar et al., 2018) was used for neighbour-joining (NJ) tree construction using 

Kimura 2 parameters (K2P). Calculations of the pair-wise distance were rendered using the 

K2P distance model (Kimura, 1980), nucleotide diversity and Tajima's statistical test 

(Tajima, 1989; Nei and Kumar, 2000) were carried out in MEGA X. All 3 codon positions 

were included in the analysis. For tree based identification, NJ tree was redrawn for better 

representation in Interactive Tree Of Life (iTOL) (Letunic and Bork, 2019).  

 

3. Result and discussion 

3.1. Species composition and history of its occurrences  

We retrieved a total of 2869 amphipod individuals with intact morphometric 

characteristics. Morphological descriptions assigned the entire collection to 22 species (Fig. 

1), 17 genera, and 13 families under the order Amphipoda. List of species described was 

given in table 1.  The Isaeidae family contributed the maximum number of species (n=3), 

followed by 2 species each in Ampeliscidae, Ampithoidae, Aoridae, Corophiidae, 

Gammaridae, Maeridae and Talitridae (Table S1). The families such as Deaxaminidae, 

Eriopisidae, Hyalidae, Melitidae and Photidae has contributed single species in the collection.   

Folmer’s primer (Folmer et al., 1994) effectively amplified all 22 species, eliminating 

the need for additional prime pairs such as those needed for barcoding Atlantic (Costa et al., 

2009) and deep sea Pacific amphipods (Jażdżewska and Mamos, 2019). All sequences have 

been positively confirmed as fragments of the Amphipoda COI gene through BLAST 

searches. Of the 22 species barcoded in this study, only 4 species viz., Ampelisca scabripes 

(Walker, 1904), Grandidierella sp. (Coutière, 1904), Orchestia sp. (Leach, 1814) and 

Talorchestia sp. (Dana, 1852) was reported previously in Vellar estuary (Mondal et al., 

2010). For the sampled area, more than 81 percent of the species were new records. Further 

investigation could be directed towards reasoning these new occurrences in Vellar mangrove 
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environment.  Hence we investigated previously recorded known habitats of these amphipod 

species, to perceive any recent notable environmental changes.  

 

Fig. 1: Circular NJ tree drawn using Kimura-2 parametric distance model employing the COI 

sequences represented by each species of amphipods barcoded. The images represent the 

duplicate specimens used for image analysis.  

 

Since 1975 (Rabindranath, 1975) till the date (Srinivas, 2019), Ampelisca scabripes 

(Walker, 1904) has been known to occur in Indian estuarine environment. While Ampithoe 

ramondi (Audouin, 1826) occurrences in South Pacific islands were recorded as early as 1986 

(Myers, 1986) and their active feeding on leaves and seeds of seagrasses were well known 

(Castejón-Silvo et al., 2019), their occurrences in the present study are not surprising, given 

the presence of seagrass patches in Vellar estuary (Ranjitham et al., 2008). Ampithoe 

rubricata (Montagu, 1808) are the most common amphipods previously recorded in kelp 

forest habitats (Norderhaug et al., 2003), an active red algae feeders (Norderhaug, 2004).  
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Chelicorophium madrasensis (Nayar, 1950) is the continuous feeder recently recorded 

to dominate amphipod composition of the Cochin estuary sediments along India’s 

southwestern coast (Rehitha et al., 2019). They have also been recorded elsewhere as a 

common inhabitant of mangrove forests (Wongkamhaeng et al., 2015). The barcoded 

Elasmopus rapax (Costa, 1853) in this study was previously identf2ied from the coast of 

Venezuela (Zanders and Rojas, 1992) and its invasiveness is realized in Australian waters 

(Hughes and Lowry, 2010). Possible invasiveness of this species in mangrove surroundings 

in Vellar can warrant more investigations. The barcoded Gammaropsis maculata (Johnston, 

1828) in this study is a good indicator of the complex hydrological forces in an ecosystem 

2(Conradi, 2001) and is known to occur in the Tunisian coast of North Africa (Zakhama-

Sraieb, 2017). The currently barcoded Gammarus locusta (Linnaeus, 1758) was noted for its 

cosmopolitan estuarine distribution and is expected to be more resistant ocean acidifications 

(Hauton, 2009). Grandidierella megnae (Giles, 1890) barcoded in this study was previously 

known to occur along Iraq’s Basrah coast (Naser et al., 2010) and on Thailand’s Songkhla 

Lake (Rattanama et al., 2010). Isaea montagui (H. Milne Edwards, 1830) was noted for 2its 

epibiotic link to crabs (where the amphipod obtains its food from detritus and crab faeces) 

(Parapar, 1997).  

The effectiveness of amphipod DNA barcodes in identifying invasive and delineating 

cryptic species has been well established (Witt et al., 2006; Bradford et al., 2010; Ros et al., 

2015; Lipinskaya et al., 2018). Barcoded in the present study, Melita nitida (Smith, 1873) 

was confirmed to be an invasive species for the Western Scheldt estuary (in Netherlands) that 

was possibly transported by shipping (Faasse and van Moorsel, 2003). By forming irregular 

brood plate setae in their bodies (Borowsky et al., 1997), they were known bio-indicators of 

toxic and petroleum contaminants in sediments. Biomass of molluscan species of Vellar 

estuary were known to contain significant concentration of petroleum hydrocarbons 

(Veerasingam et al., 2011). Microdeutopus stationis (Della Valle, 1893) barcoded in this 

study is known to occur in the Tunisian coast of North Africa (Zakhama-Sraieb, 2017) and is 

abundantly reported in Isles of Scilly seagrass beds (Bowden, 2001).  

 

Table 1: Identification of amphipod COI sequences using GenBank and BOLD databases 
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Herbivorous nature of M. stationis may be the explanation for its preference of Vellar 

mangrove habitat. The barcoded Platorchestia platensis (Krøyer, 1845) was previously 

reported from the Swedish coast and the Baltic Sea (Persson, 2001). P. platensis’s ability to 

reproduce in the warm temperature waters across the South African estuary was argued as 

one of its characteristics for its invasiveness (Hodgson et al., 2014). Othomaera othonis (H. 

Species identified in 
the present study 

Closest species 
match in 
GenBank 

BLAST 
similarity 
(%) 

Accession 
numbers of 
closest 
match 

BOLD best match  Highest  
similarity 
in BOLD 

Ampelisca scabripes Ampelisca 
macrocephala  

95.92 MG313065 No match  

Ampelisca sp. Ampelisca sp. 98.21 KX223977 Ampelisca sp.  100 
Ampithoe ramondi Ampithoe ramondi 99.26 KP316300 Ampithoe ramondi 100 
Ampithoe rubricata Ampithoe 

rubricata 
98.53 HQ987379 Ampithoe rubricata 100 

Chelicorophium 
madrasensis  

Chelicorophium 
robustum 

93.11 KM009063 No match  

Dexamine sp. Dexamine thea 97.89 KT209114 Dexamine sp.  100 
Elasmopus rapax Elasmopus rapax 98.69 KX224028 Elasmopus rapax 100 
Gammaropsis 
maculata 

Gammaropsis 
maculata 

100 MG935019 Gammaropsis 
maculata 

100 

Gammarus locusta Gammarus locusta 99.35 MG935024 Gammarus locusta 100 
Grandidierella 
megnae 

Grandidierella 
chaohuensis 

92.82 KT180187 No match  

Isaea elmhirsti  Dulichiidae sp. 90.51 MN346579 No match  
Isaea montagui Dulichiidae sp. 88.87 MN346579 No match  
Isaea sp.  Dulichiidae sp. 93.29 MN346579 No match  
Leptocheirus sp. Leptocheirus 

pinguis 
96.07 MG318679 Leptocheirus sp.  100 

Melita nitida Melita nitida 97.88 KF273656 Melita nitida 97.35 
Microdeutopus 
stationis  

Microdeutopus sp.  98.21 KX224078 Microdeutopus 
chelifer 

97.54 

Platorchestia 
platensis 

Platorchestia sp. 93.63 MH279725 Platorchestia 
platensis 

100 

Othomaera othonis Othomaera 
othonis 

97.72 MG935257 No match  

Pectenogammarus 
sp. 

Pectenogammarus 
planicrurus 

92.21 MK159963 No match  

Protohyale 
honoluluensis 

Protohyale cf. 
jarrettae 

95.43 MG319374 No match  

Talorchestia 
martensii  

Talorchestia 
martensii  

98.85 KC578515 Talorchestia 
martensii 

100 

Victoriopisa 
chilkensis 

Victoriopisa 
chilkensis 

100 MK526894 No match  
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Milne Edwards, 1830) barcoded in this study is known to occur in northern Atlantic Ocean in 

the Portuguese continental shelf (Sampaio et al., 2016) and in the Algerian, Mediterranean 

Sea continental shelf (Bakalem et al., 2020). However its occurrences in shallow mangrove 

sediments were unknown until now and requires further investigation. The barcoded 

Protohyale honoluluensis (Schellenberg, 1938) in this study was known to occur in the Hong 

Kong Island marine caves of (Horton, 2008).  

 The barcoded Talorchestia martensii (Weber, 1892) in this study is generally referred 

to as equatorial sandhoppers occurring in African beach sand (Ugolini, 2016) and Kenyan 

coast (Ugolini and Ciofini, 2015). T. martensii was widely used astronomical orientations 

researches (Ugolini and Ciofini, 2015; Ugolini, 2016). Victoriopisa chilkensis (Chilton, 1921) 

barcoded in the present study was known to occur on Malaysian coast (South China Sea) and 

was used as feed in Thailand’s shrimp cultures (Yokoyma et al., 2002). Neither traditional 

nor molecular approaches could resolve the four taxa viz., Ampelisca sp., Dexamine sp., 

Isaea sp., Leptocheirus sp., and Pectenogammarus sp. recorded in this study to species level 

identification. In near future, these barcodes in the public databases may be resolved to 

species level when the respective barcodes of the species were obtained elsewhere.  

 

3.2. Sequence analysis and species identification   

The COI sequences represented by the families viz., Ampeliscidae [Ampelisca sp. 

(Krøyer, 1842), A. scabripes (Walker, 1904)], Corophiidae [Chelicorophium madrasensis 

(Nayar, 1950), Leptocheirus sp. (Zaddach, 1844)], Aoridae [Grandidierella megnae 

(Coutière, 1904)], Talitridae [Platorchestia platensis (Krøyer, 1845), Talorchestia martensii 

(Weber, 1892)), Hyalidae (Protohyale honoluluensis (Schellenberg, 1938)] and Isaeidae 

[Isaea sp. (H. Milne Edwards, 1830), I. elmhirsti (Patience, 1909) and I. montagui (H. Milne 

Edwards, 1830)] were barcoded for the first time (59% of the sequences). Over 59% of the 

barcoded species in this study was missing in the reference libraries. The COI sequences of 

the Isaeidae family produced in the present study were found to be sequenced for the first 

time, because previously no COI barcodes of this family were found in the GenBank library. 

Even when the COI barcodes where referred across in the BOLD database, BOLD declared 

the first time barcoded species as “no match” in their database (Table 1). In general, 

significant amounts of barcode records were resolved up to family level in the reference 

database, partly because 90% of multicellular organisms remain undescribed (Kwong et al., 

2012; Curry et al., 2018) and the Vellar estuary could be hot spot for marine fauna and flora 
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yet to be barcoded (Khan et al., 2010; PrasannaKumar et al., 2020a, c; Manikantan et al., 

2020; Prasanthi et al., 2020).  

Since 18 species among the 22 barcoded species were not recognized to occur during 

previous study (Mondal et al., 2010), the development of this local barcode library would 

help in the near future to monitor amphipod species diversity and composition through eDNA 

barcoding surveys. As seen in few marine amphipod species of Canadian waters (Tempestini 

et al., 2018), we detected no stop codons in the COI sequences. Mean GC content was 

39.25+0.93% which is slightly higher than the Arctic amphipod’s GC content of (32.9%) 

(Tempestini et al., 2018). Table 2 provides descriptive statistics for the distribution of 

nucleotide frequencies.  

Of the 22 species barcoded, least inter-specific pair-wise distance of 0.16% was 

observed between Isaea elmhirsti and I. montagui (Table S2). The maximum inter-specific 

distance of 5.51% was observed between Victoriopisa chilkensis and Orchestia platensis 

(Table S2). The inter-specific maximum (0.16%) and minimum (5.51%) values observed 

were lower than what those reported in Canadian amphipods (0.6% and 18.07%, 

respectively) (Tempestini et al., 2018). The interspecific values observed for deep-sea 

amphipod species (13%) (Knox et al., 2012) was also higher than the maximum interspecific 

values observed in this study. Although a 16% threshold has been suggested for the 

delineation of amphipod species (in Gammaridae or Niphargidae) (Lefébure et al., 2006; Flot 

et al., 2010; King et al., 2011; Fiser et al., 2015), lower values have also been recorded for 

Talitridae (8 - 17%) (King et al., 2011) or for Hyalleidae (4%) (Witt et al., 2008). 

Table 2: Summary statistics for nucleotide frequency distribution. 

Nucleotide composition (%) Minimum Mean Maximum Standard error 

Guanine (G) 12.89 19.83 26.92 0.7789 
Cytosine (C) 14.19 19.69 26.1 0.5526 
Adenine (A) 21.21 25.46 31 0.5843 
Thymidine (T)  29.85 35.03 39.8 0.5434 
GC (all codon positions) 31.65 39.52 46.82 0.9315 
GC-Codon Position 1 37.25 45.83 51.96 0.8605 
GC-Codon Position 2 39.02 42.22 43.9 0.302 

GC-Codon Position 3 13.24 30.48 45.59 2.0274 

 

When we averaged the pairwise distance of each species to the rest of the species 

barcoded in this study, we found Melita nitida and Victoriopisa chilkensis had the maximum 

pairwise average distance (0.45) (Fig. 2). By including COI sequences from 13 families, we 
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show that the threshold of 16% was too high to delineating most of the species barcoded in 

this study and proposed inter-specific values of 26.8% for Gammaridae species (Costa et al., 

2009) was more than 4 times the maximum inter-specific values observed among the species 

in this study. Similar observations were also reported in Canadian amphipods (Tempestini et 

al., 2018). The interspecific divergence among the species of Gammarus genera was found to 

be more than 20% (Hou et al., 2009). 

Hence, it is becoming clearer that each amphipod family have differential species 

threshold as genetic variability among amohipods depends on family traits such as habitat 

preferences and geological history (Knox et al., 2020). At the same time family traits alone 

cannot be reasoned, as there exists a contrasting genetic structure even among closely related 

amphipod species (Baird et al., 2011). Hence defining family specific species threshold for 

delineating amphipod species is necessary.  

The overall average pair-wise distance was 3.59%. Nucleotide diversity and Tajima's 

statistics were 0.27 and 2.62, respectively. We found that 34.86% were conservative sites and 

58.2% was parsimonious from the final alignment. 

 

Fig. 2: Average pair-wise distance between each species versus rest of the amphipod species 

barcoded.  

Though the percentage of conservative sites were slightly higher than Canadian 

amphipods (23.5%), percentage of parsimonious sites were slightly lower when compared to 
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Canadian amphipods (69.25%) (Tempestini et al., 2018). Using a single gene for species 

identification may introduce bias in different steps of sample processing (Radulovici et al., 

2010), lack of established barcode gap (Meier et al., 2008), and superficial increase in species 

threshold estimates by 'COI-like' sequences (Buhay, 2009). Hence we also conducted tree-

based species identification using clustering analysis. 

 

3.3.Tree based identification 

Based on the statistical significance (percentage of identity, query coverage, e-value), 

reference sequences for tree based identifications were retrieved from GenBank. Details of all 

sequences obtained during BLAST analysis was listed in Table S3. The first time sequenced 

species which did not had significant match in the database were used as such in the 

construction of the NJ tree without any reference sequence (Fig. 2). All COI sequences 

generated in this study (n=22), clustered with the reference sequences (n=24) of respective 

species in the same branch (Fig. 3). Most of the branches (>90%) in the NJ tree were backed 

by maximum (>75) bootstrap values. The references sequences precisely clustered with its 

corresponding species barcoded in this study, suggesting the success of tree based 

identification. The NJ tree constructed using COI sequences generated 3 major clades (Fig. 

3). A minor clade consisting of two genera (M. nitida and V. chilkensis) was the first and top 

most clade in the tree. There are 3 genera (Ampithoe, Ampelisca and Othomaera) in the 

second and middle clade.  

The largest clade consisting of 14 genera was the bottom-most and the third clade. 3 sub-

clades were evident within the third clade, where the genera Dexamine constituted the 

smallest sub-clade. The second sub-clade contained the members of Ampithoidae, Aoridae, 

Corophiidae, Isaeidae and Photidae. The bottom-most and third sub-clade contained the 

members of Corophiidae, Gammaridae, Hyalidae, Maeridae and Talitridae. While certain 

members of the same family (example; Gammaridae, Corophiidae) or the same genera 

(example; Ampithoe) did not cluster together, sequences of same taxa cluster together suggest 

the efficacy of COI sequences in species delineation. There was also evidence that the 

members of the same family (example, Isaeidae) forming single cluster. 
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Fig. 3: NJ tree was drawn using COI sequences with Kimura-2 parametric distance model. 

The sequences retrieved from GenBank were represented by “accession-number_species-

name”. Example; “MG935024_Gammarus locusta”. The sequences of the present study were 

represented with species name only. Time scale and bootstrap legends were given at the top 

left corner of the tree. More than 90% of the branches were supported by >75% of bootstraps 

values.  
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3.4.Environmental monitoring 

Amphipods are commonly used to assess sediment quality in marine and estuarine 

environments (Chapman 1992, 2013; Postma et al., 2002). High throughput sequencing has 

enabled the identification of array of species present in the environment by means of its 

eDNA presence in the environmental substances (Cristescu, 2014; Deiner et al., 2014; 

Braukmann et al., 2019). This eDNA barcoding approach reveals species composition of 

entire trophic levels, from complex bulk environmental samples, gut or faeces content in soil 

and in aquatic environments or from ancient samples collected within permafrost or in 

sediments (Cristescu, 2014; Deiner et al., 2017). Thus the composition of amphipod species 

revealed by such approach will in turn disclose the environmental quality (polluted, non-

polluted, toxic compounds, etc.). The eDNA barcoding begins by collecting a large number 

of sequences from one or more standard barcode region targeting a specific groups or taxa 

(Hebert et al., 2018), followed by comparing these sequences with the reference sequences in 

the databases like GenBank and BOLD.  

More species coverage in the reference database is strongly required, as the sequencing 

costs of next generation sequencing are reducing (Hebert et al., 2003; Shokralla et al., 2014; 

Cruaud et al., 2017) and sequences from museum and type specimens could be obtained 

(Prosser et al., 2016). Since 59% of the species barcoded in this study were first time 

sequenced and released for public access, the present data set will aid to improve species 

coverage in the databases and encourage better monitoring of the environment. The reliability 

of environmental and meta-DNA barcoding studies depends on validated reference library 

generated through taxonomic expertise, accessible image data, voucher specimens and their 

genetic materials. The dataset developed through this study has been made available in both 

GanBank and BOLD. For the present study dataset, a unique digital object identifier has been 

created in BOLD, which can be accessed at http://dx.doi.org/10.5883/DS-MAOI. The 

voucher specimens were accessible through the Centre Advanced Study in Marine Biology, 

Annamalai University’s Marine Museum, which will allow future referencing analysis or 

avoid identification error cascades (Bortolus, 2008). Cryopreserved genetic materials were 

also accessible upon request, as we realised the values of such materials in construction of 

reference library (Hanner and Gregory, 2007; Gonzalez et al., 2018).  
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4. Conclusion 

We show that, reference libraries (GenBank and BOLD) have to be strengthened for 

improved barcode based amphipod species identification, as small sequencing effort such as 

ours discovered 13 species as first time barcoded. While our data set represents local custom 

library for the identification of amphipod species with limited taxonomic reach (n=22 

species), with meta-data ready for accession, they have become less prone to errors (Machida 

et al., 2017; Heller et al., 2018). The current study provides a valuable reference library 

particularly for those species that were first time barcoded, against which barcodes of marine 

amphipods from different regions can be referred in the near future, as these parameterized 

reference libraries will be crucial to species identification (Ekram et al., 2007; Wilson et al., 

2011). Since amphipods are widely used as a universal taxonomic screening tool in 

environmental monitoring, amphipod barcodes along geographic and ecological data, may 

not only promote our knowledge on taxonomy, phylogeography, and species crypticism, but 

also serve as a powerful tool for environmental monitoring and health assessment. It should 

be noted that the DNA barcoding technology is growing beyond systematic or taxonomic 

study. At the same time, the developing high-throughput sequencing technologies massively 

alters environmental surveys and bio-monitoring applications (Fonseca et al., 2010; 

Hajibabaei et al., 2011; Leray et al., 2015). As a result, reference datasets such as ours will 

become important for health assessment and environmental monitoring using amphipod 

barcodes. Although the creation of a comprehensive amphipod barcode library with extensive 

species coverage was an ultimate goal (example; Zahiri et al., 2017) this study represents a 

small step towards it.  
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