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Abstract 

Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer’s disease 

(AD), are believed to spread through connected regions. Combining diffusion imaging 

and positron emission tomography, we investigated associations between Aβ, tau and 

white matter microstructure specifically in bundles connecting brain regions in which AD 

pathology accumulates. In 126 cognitively normal elderly at risk of AD, we focussed on 

free-water corrected diffusion measures in the cingulum, posterior cingulum, fornix and 

uncinate fasciculus. We found higher tissue fractional anisotropy and lower mean and 

radial diffusivity related to increased Aβ at the cortical endpoints of the cingulum and 

fornix. We observed similar but stronger associations in the uncinate fasciculus, but with 

increased Aβ and tau at the endpoints of this bundle. This consistent pattern of 

associations, with opposite directionality to the usual degeneration pattern in 

symptomatic individuals, suggests more restricted diffusion in bundles vulnerable to 

preclinical AD pathology. 

 

Keywords: diffusion MRI, PET, amyloid, tau, uncinate fasciculus, cingulum, free-water, 

fornix 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.27.266551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.266551


1. Introduction 

The progression of Alzheimer’s disease (AD) neurodegeneration includes a long 

asymptomatic phase, during which accumulating pathology is accompanied by various 

brain changes (Jack et al., 2013; Sperling et al., 2011). Beta-amyloid (Aβ) and tau 

proteins, the pathological hallmarks of the disease (Duyckaerts et al., 2009), start to 

accumulate decades before signs of cognitive impairment (Bateman et al., 2012; Jansen et 

al., 2015). Positron emission tomography (PET) can image both proteins in vivo (Johnson 

et al., 2016; Klunk et al., 2004; Schöll et al., 2016), and thus help identifying the earliest 

brain changes associated with such pathologies. Both Aβ and tau accumulate in a distinct 

pattern of deposition that follows canonical brain networks/organization. Aβ develops a 

widespread pattern of deposition that recapitulates a default mode network-like pattern, 

accumulating early in the frontal and parietal lobes (Mattsson et al., 2019; Villeneuve et 

al., 2015). Tau accumulates in a more localized pattern, starting in the medial temporal 

lobe in the preclinical phase of the disease, then spreading later to other parts of the 

temporal lobe and the rest of the brain in late stages (Braak and Braak, 1991). A 

prominent view is that pathology accumulates in functionally and/or structurally 

connected regions (Franzmeier et al., 2019; Seeley et al., 2009; Sepulcre et al., 2017; 

Vogel et al., 2020). Many studies have highlighted associations between AD pathology 

and brain functional activity early in the course of the disease (Berron et al., 2020; Jones 

et al., 2017; Mormino et al., 2011; Sepulcre et al., 2017).  However, relations between 

pathology and white matter measures, as assessed by diffusion magnetic resonance 

imaging (MRI), remain elusive in preclinical AD. While white matter degeneration is 

clearly apparent in the late symptomatic stages, how white matter microstructure is 
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affected early on in the disease process is less clear (Sachdev et al., 2013). Whole-brain 

diffusion MRI tractograms can represent the brain’s white matter architecture, but these 

are difficult to reconstruct because of extensive crossing of whiter matter fibres and the 

complexity of tracking algorithms (Rheault et al., 2020). Recent advances in modeling 

and available algorithms have facilitated robust extraction of white matter bundles with 

automated methods, thereby allowing their more precise investigation. As well, more 

specific measures have become available for analysis of white matter (Dyrby et al., 

2014). In particular, free-water corrected diffusion tensor measures may offer better 

estimates of white matter microstructure, yielding tissue-based fractional anisotropy and 

diffusivities after removing the free-water contribution to each voxel (Pasternak et al., 

2009).  

 

In 126 cognitively normal older adults at increased risk of AD, we investigated various 

diffusion-based measures of white matter microstructure in bundles that connect cortical 

regions vulnerable to Aβ and tau deposition. As both of these pathologic proteins are 

thought to accumulate in connected regions, we hypothesized that diffusion measures in 

white matter bundles would first associate with the amount of pathology specifically in 

grey matter areas connected by such bundles rather than with more global measures of 

pathology. We sought to expand upon the few studies linking preclinical AD pathology 

and white matter microstructure and focussed on a priori bundles connecting brain 

regions targeted early by AD pathology, notably the cingulum bundle (Jacobs et al., 

2018).  The latter is a large association bundle under the cingulate gyri that connects 

anterior to posterior cingulate regions and curves further into the parahippocampal gyri of 
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the temporal lobe. This bundle is typically affected in symptomatic AD dementia (Bubb 

et al., 2018; Jacobs et al., 2018; Kantarci et al., 2017; Roy et al., 2020; Wen et al., 2019) 

and given its location, could be preferentially affected by Aβ, particularly in its anterior 

segment. Also of interest is the uncinate fasciculus, reported to be affected at the stage of 

mild cognitive impairment (Mito et al., 2018; Roy et al., 2020). This bundle connects 

parts of the limbic system, such as the hippocampus and amygdala in the temporal lobe, 

with the orbitofrontal cortex (Von Der Heide et al., 2013), brain regions thought to be key 

regions for tau and Aβ propagation respectively (van der Kant et al., 2020). Lastly, the 

fornix, which originates in the hippocampus, is another key bundle for investigation that 

could be affected by tau (Oishi and Lyketsos, 2014; Strain et al., 2018).  

 

2. Results 

2.1. Approach and participants 

Using state-of-the-art methods in diffusion MRI modeling, tractography and tractometry, 

we aimed to better understand the associations between white matter microstructure of 

key bundles in preclinical AD and deposition of Aβ and tau at their endpoints. We 

reasoned that the preclinical stage of AD should be the ideal point at which to study these 

questions, given that this is a period during which AD pathology is spreading but overall 

brain structure and function remain largely preserved. We therefore studied a subset of 

126 asymptomatic individuals at high risk of AD dementia from the PREVENT-AD 

cohort (Breitner et al., 2016). This cohort enrols cognitively normal older adults at risk of 

sporadic AD given their parental or multiple-sibling family history of the disease. At time 

of study, participants were on average 67.3 years of age, predominantly female and 
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highly educated (Table 1). Based on a threshold established previously using global 

cortical Aβ burden (McSweeney et al., 2020), we estimated that 20% of the participants 

would be considered Aβ-positive. All underwent diffusion MRI an average of 1.1 ± 0.8 

years prior to PET imaging (one completed MRI 5 years prior to PET, but results were 

unchanged when this participant was removed from analyses).  

 
 
Table 1. Demographics 

 PREVENT-AD participants (n=126) 
Age (years) 67.3 ± 4.8 (68.6-83.2) 
Sex F:M (%F) 94:32 (75%) 
APOE4 carriers (%) 50 (40%) 
Education (years) 15.2 ± 3.3 (7.0-24.0) 
Global Aβ SUVR  1.33 ± 0.33 (1.0-2.8) 
Meta-ROI temporal tau SUVR 1.18 ± 0.12 (0.87-2.0) 
Mini-Mental State Examination 28.8 ± 1.2 (24-30) 

Values represent Mean ± SD (Range). Participants with at least one ε4 allele were considered 
APOE4 positive. The Mini-mental state evaluation was administered at the same time as 
PET.  
Aβ: beta-amyloid; APOE: apolipoprotein E; SUVR: standardized uptake value ratio 
 

2.2. Methodology overview 

We extracted free-water corrected diffusion tensor measures and fiber orientation 

distribution function (fODF)-based measures in bundles of interest. We reconstructed 

each individual’s whole-brain tractogram using high angular resolution diffusion imaging 

and fODF, and employed automated tools to isolate the cingulum, the posterior cingulum, 

the uncinate fasciculus and the fornix (Garyfallidis et al., 2018; Rheault et al., 2018). 

Tractometry then generated bundle-specific quantification of six white matter properties 

(Cousineau et al., 2017; Rheault et al., 2017).  These were tissue fractional anisotropy 

(FAT), mean diffusivity (MDT), axial diffusivity (ADT), and radial diffusivity (RDT). In 

each, ‘T’ represents tissue in these free-water corrected diffusion tensor measures.  We 
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also report the free-water (FW) index, and total apparent fiber density (AFD). Free-water 

is thought to indicate a measure of neuroinflammation (Pasternak et al., 2009). AFD is 

thought to be more sensitive than FA and an indirect measure of axonal degeneration as it 

reflects the apparent number of axons (Raffelt et al., 2012). To investigate the local 

relationships with AD pathology, we measured the Aβ and tau levels specifically at the 

cortical endpoints of each bundle. This approach allowed direct comparisons of the 

bundles of interest and associated pathology in their connected grey matter regions. An 

overview of the processing steps is shown in Figure 1. We further evaluated whether 

associations were independent of atrophy in connected cortical regions, and whether 

similar associations could be detected with typical diffusion tensor measures, i.e. FA, 

MD, AD, and RD (not corrected for free-water). Finally, we repeated the main analyses 

using a global measure of Aβ and a temporal lobe measure of tau instead of testing for 

associations with AD pathology in grey matter areas connected by the respective white 

matter bundles. Our premise was that, if AD pathology propagates in connected regions, 

the associations between pathology and white matter measures should be evident 

specifically at the endpoints of these bundles.  
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Figure 1. Overview of the processing steps  

 
Whole-brain tractogram reconstructed using the TractoFlow Atlas-Based Segmentation pipeline 
and automated bundle extraction tools used to extract the four bundles of interest. Free-water 
corrected tensor measures and total apparent fiber density were calculated for each bundle. PET 
images were registered to the diffusion space in order to extract the Aβ and tau SUVR directly at 
the cortical endpoints of each bundle.  
Aβ: beta-amyloid; PET: positron emission tomography; SUVR: standardized uptake value ratio  
 

 
2.3. Associations in the cingulum and the fornix restricted to Aβ  

Examining the amount of pathology at the cortical endpoints along the cingulum, and in 

the temporal lobe with the fornix, we detected a similar pattern of association with white 
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matter measures and Aβ in both bundles. More specifically, in the right anterior cingulum 

and right fornix, higher FAT, lower MDT, and lower RDT were related to 

higher Aβ endpoint SUVR (Figure 2, Table 2 for the cingulum and Table 3 for the 

fornix). To evaluate whether such associations with Aβ were independent of tau 

pathology, we added tau SUVR at the corresponding endpoints as a covariate in these 

models.  We found increased associations with endpoint Ab in both bundles after 

adjusting for tau (Table 2 and 3). To evaluate whether association with Aβ was also 

affected by atrophy in endpoint brain regions, we added grey matter volume of the 

following:  anterior or posterior cingulate cortex in models with the cingulum; and 

hippocampal volume in models with the fornix. In both instances, associations increased 

with inclusion of terms for grey matter volume (Table 2 and 3). Note that for the 

cingulum, however, that this was true only with respect to volume of the anterior 

cingulate cortex. We found no associations between any white matter measures and tau in 

either the cingulum or the fornix (Supplementary Figure 1). Examining the same relations 

in the posterior cingulum, we found no associations between any diffusion measure and 

either Aβ or tau in this bundle (Supplementary Figure 2).  
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Figure 2. Associations between diffusion measures and Aβ in the cingulum and 
temporal fornix 

 
Rpartial from regression models investigating associations between each diffusion measure (average 
diffusion measure in the bundle; independent variable) and Aβ pathology at the cortical endpoints 
of the bundle in the left (A) and right (B) hemispheres. Magenta bars correspond to associations 
in the cingulum and orange bars, in the fornix. Models included age, sex, bundle volume (divided 
by total intracranial volume) as covariates.  
* represents consistent associations at p<0.05 for each bundle when further adjusting for either 
tau pathology or grey matter volume. Associations between FAT and Aβ in the right cingulum (C) 
and right fornix (D) 
Aβ: beta-amyloid; FAT: tissue fractional anisotropy; MDT: tissue mean diffusivity; ADT: tissue 
axial diffusivity; RDT: tissue radial diffusivity; FW: free-water index; AFD: total apparent fiber 
density 
 
  
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.27.266551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.266551


Table 2. Associations between diffusion measures and pathology in the cingulum 

Rpartial and (p-values) from regression models investigating associations between each diffusion 
measure (average diffusion measure in the bundle; independent variable) and pathology at the 
cortical endpoints along the cingulum (dependent variable). Models included age, sex, bundle 
volume (divided by total intracranial volume) as covariates.  
* becomes significant (p=0.04) when adding tau endpoints SUVR as a covariate 
1 becomes significant (p=0.02) when adding anterior cingulate volume (divided by total 
intracranial volume) as a covariate, but remains unchanged when adding posterior cingulate 
volume as a covariate 
2 becomes significant (p=0.04) when adding anterior cingulate volume as a covariate 
Aβ: beta-amyloid; FAT: tissue fractional anisotropy; MDT: tissue mean diffusivity; ADT: tissue 
axial diffusivity; RDT: tissue radial diffusivity; FW: free-water index; AFD: total apparent fiber 
density 
 
 
Table 3. Associations between diffusion measures and pathology in the fornix 

Rpartial and (p-values) from regression models investigating associations between each diffusion 
measure (average diffusion measure in the bundle; independent variable) and pathology at the 
temporal endpoints of the fornix (dependent variable). Models included age, sex, bundle volume 
(divided by total intracranial volume) as covariates.  
* more variance was explained when adding tau endpoints SUVR as a covariate (R=0.27, 
p=0.003 for FAT; R=-0.18, p=0.05 for MDT; R=-0.22, p=0.02 for RDT) 
1 more variance was explained when adding hippocampal volume (divided by total intracranial 
volume) as a covariate (R=0.23, p=0.01 for FAT; R=-0.18, p=0.05 for MDT; R=-0.21, p=0.03 for 
RDT) 
+ remains significant (p=0.03) when adding tau endpoints SUVR as a covariate, but a trend when 
adding hippocampal volume (p=0.07) 
Aβ: beta-amyloid; FAT: tissue fractional anisotropy; MDT: tissue mean diffusivity; ADT: tissue 
axial diffusivity; RDT: tissue radial diffusivity; FW: free-water index; AFD: total apparent fiber 
density 

n=126 Left hemisphere Right hemisphere 
Associations with Aβ  
 FAT MDT ADT RDT FW AFD FAT MDT ADT RDT FW AFD 
Cingulum 
endpoints 

0.12 
(0.20) 

-0.12 
(0.20) 

0.15 
(0.11) 

-0.12 
(0.20) 

0.06 
(0.55) 

0.08 
(0.41) 

0.17 
(0.06)
*,1 

-0.17 
(0.06)
*,1 

0.11 
(0.25) 

-0.17 
(0.06)
*,1 

0.10 
(0.30) 

0.16 
(0.09)
2 

Associations with tau  
Cingulum 
endpoints 

0.05 
(0.58) 

-0.05 
(0.58) 

0.08 
(0.36) 

-0.05 
(0.57) 

0.06 
(0.50) 

0.09 
(0.33) 

-0.05 
(0.61) 

0.05 
(0.61) 

0.00 
(0.97) 

0.05 
(0.61) 

0.00 
(0.98) 

0.06 
(0.52) 

Left hemisphere (n=118) Right hemisphere (n=120) 
Associations with Aβ  
 FAT MDT ADT RDT FW AFD FAT MDT ADT RDT FW AFD 
Temporal 
endpoints 

0.08 
(0.38) 

-0.09 
(0.35) 

-0.05 
(0.62) 

-0.09 
(0.34) 

-0.04 
(0.67) 

0.23 
(0.01)
+ 

0.22 
(0.02)
*,1 

-0.15 
(0.11)
*,1 

0.07 
(0.48) 

-0.18 
(0.06)
*,1 

0.12 
(0.19) 

-0.03 
(0.78) 

Associations with tau  
Temporal 
endpoints 

-0.15 
(0.12) 

0.16 
(0.09) 

0.08 
(0.38) 

0.16 
(0.09) 

-0.10 
(0.29) 

0.15 
(0.13) 

-0.10 
(0.27) 

0.05 
(0.61) 

-0.08 
(0.40) 

0.07 
(0.46) 

-0.01 
(0.88) 

0.00 
(1.00) 
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2.4. Associations in the uncinate fasciculus with Aβ and tau 

Overall, a consistent pattern of associations between white matter microstructure and 

pathology was apparent across the uncinate fasciculus, anterior cingulum and fornix. 

The strongest relations between AD pathology and diffusion measures were observed in 

the uncinate fasciculus. Associations with both Aβ and tau were detected bilaterally at 

both its endpoints, i.e. in the frontal and temporal lobes (Figure 3, Table 4). More 

specifically, as in the cingulum and the fornix, higher FAT, lower MDT, lower RDT, and 

higher AFD related to higher Aβ (Figure 3A to C) and tau (Figure 3D to F) SUVR at 

bundle endpoints. Higher ADT also related to higher tau SUVR, and higher FW index  

related to higher tau endpoint SUVR for the right uncinate fasciculus only (Figure 

3D).  All associations with frontal tau endpoint SUVR survive correction for multiple 

comparisons (Table 4). To evaluate whether associations detected with Aβ or tau 

pathology were independent, we added tau SUVR in corresponding endpoints as a 

covariate in models with Aβ as the dependent variable, and vice versa. The original 

significant associations with Aβ appeared slightly less impressive (p=0.08) with insertion 

of the tau covariates (Supplementary Table 1). However, initial associations with tau 

remained after inserting covariates for Aβ at bundle endpoints (Supplementary Table 1). 

Lastly, we added grey matter volume from the medial orbitofrontal cortex and from the 

parahippocampal gyri as a covariate in models assessing frontal and temporal endpoint 

SUVRs, respectively (Table 4). Apparently, atrophy has little influence on associations 

between white matter microstructure and pathology in this bundle as all associations 

remained.  
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Figure 3. Associations between diffusion measures and pathology in the uncinate 
fasciculus 

 
Rpartial from regression models investigating associations between each diffusion measure (average 
diffusion measure in the bundle; independent variable) and Aβ (A-B) or tau (D-E) pathology at 
the endpoints in the two ends of the uncinate fasciculus in the left and right hemispheres. Models 
included age, sex, bundle volume (divided by total intracranial volume) as covariates. 
Representative associations between FAT with Aβ and tau are shown in C and F. 
* represents p<0.05 and is black when associations at both endpoints were significant, and red 
when association at the frontal endpoints only was significant. 
Aβ: beta-amyloid; FAT: tissue fractional anisotropy; MDT: tissue mean diffusivity; ADT: tissue 
axial diffusivity; RDT: tissue radial diffusivity; FW: free-water index; AFD: total apparent fiber 
density 
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Table 4. Associations between diffusion measures and pathology in the uncinate 
fasciculus 

Rpartial and (p-values) from regression models investigating associations between each diffusion 
measure (average diffusion measure in the bundle; independent variable) and pathology at the 
cortical endpoints of the two ends of the uncinate fasciculus (dependent variable). Models 
included age, sex, bundle volume (divided by total intracranial volume) as covariates. Bolded 
associations survived FDR correction at q=0.05.  
* association remains unchanged when grey matter volumes (divided by total intracranial 
volume) at the endpoint of the bundles were added as covariates in the respective models.  
+ association becomes significant (p=0.05) when adding medial orbitofrontal cortex volume as a 
covariate 
Aβ: beta-amyloid; FAT: tissue fractional anisotropy; MDT: tissue mean diffusivity; ADT: tissue 
axial diffusivity; RDT: tissue radial diffusivity; FW: free-water index; AFD: total apparent fiber 
density 
 

2.5 Importance of advanced free-water measures to these results 

To evaluate the sensitivity of free-water corrected measures over the typical tensor 

measures, we tested whether similar associations with pathology exist with FA, MD, AD 

and RD (i.e. not corrected for free-water). We failed to observe most of the above-

described associations when using these classical diffusion tensor measures.  Specifically, 

no associations were found between Aβ or tau and any of the diffusion tensor measures in 

the cingulum or posterior cingulum. In the fornix, there was one isolated relationship 

between FA and the left temporal Aβ endpoints (Rpartial=0.24; p=0.01). In the uncinate 

n=126 Left hemisphere Right hemisphere 
Associations with Aβ  
 FAT MDT ADT RDT FW AFD 

sum 
FAT MDT ADT RDT FW AFD 

sum 
Frontal 
endpoints 

0.25 
(0.005
)* 

-0.25 
(0.005
)* 

0.14 
(0.12) 

-0.25 
(0.005
)* 

-0.10 
(0.28) 

0.25 
(0.005
)* 

0.17 
(0.06)+ 

-0.17 
(0.06)+ 

0.17 
(0.07)+ 

-0.17 
(0.06)+ 

0.11 
(0.21) 

0.16 
(0.09) 

Temporal 
endpoints 

0.20 
(0.03)
* 

-0.20 
(0.03)
* 

0.12 
(0.20) 

-0.20 
(0.03)
* 

0.02 
(0.84) 

0.19 
(0.04)
* 

0.14 
(0.14) 

-0.14 
(0.14) 

0.12 
(0.20) 

 -0.14 
(0.14) 

0.18 
(0.05) 

0.12 
(0.19) 

Associations with tau  
Frontal 
endpoints 

0.32 
(<0.00
1)* 

-0.32 
(<0.00
1)* 

0.24 
(0.01)
* 

-0.32 
(<0.00
01)* 

-0.06 
(0.51) 

0.26 
(0.005
)* 

0.26 
(0.005
)* 

-0.25 
(0.005
)* 

0.22 
(0.01)
* 

-0.25 
(0.005
)* 

0.25 
(0.006
)* 

0.08 
(0.36) 

Temporal 
endpoints 

0.21 
(0.02)
* 

-0.21 
(0.02)
* 

0.16 
(0.08) 

-0.21 
(0.02)
* 

0.06 
(0.54) 

0.13 
(0.14) 

0.21 
(0.02)
* 

-0.21 
(0.02)
* 

0.18 
(0.05)
* 

-0.21 
(0.02)
* 

0.29 
(0.001
)* 

-0.01 
(0.93) 
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fasciculus, only a few associations were detected, the main ones being higher FA and AD 

related to higher tau pathology (Supplementary Table 2). The directionality of the 

associations was the same as for the free-water corrected measures.  

 

2.6 No associations with global measures of Aβ or tau pathology 

Lastly, we found almost no associations between either Aβ or tau global scores and the 

diffusion measures in any of the bundles using either free-water corrected or classical 

tensor measures. The sole exception was one isolated association of higher FW index in 

the right uncinate fasciculus and higher tau SUVR, with Rpartial=0.23 (p=0.01).  

 

3 Discussion 

The notion that AD pathology spreads through connected regions in the brain has 

foundations in rodent models (Ahmed et al., 2014; Palop and Mucke, 2010), although it is 

gaining credence in human neuroimaging studies. The spatial overlap between key regions 

of Aβ accumulation and connectivity hubs is striking (Buckner et al., 2005; Sepulcre et 

al., 2016). Tau has been found to propagate in connected regions independently of 

distance between them (Franzmeier et al., 2020; Vogel et al., 2020). Bundle-specific white 

matter neurodegeneration has also been associated with increased tau accumulation 

(Jacobs et al., 2018). Combining Aβ- and tau-PET with recent advanced diffusion imaging 

analyses, we investigated AD pathology and white matter microstructure in a priori 

selected bundles that connect the brain regions where pathology accumulates. Our aim 

here was not to test the spreading hypothesis per se but, assuming that this hypothesis is 

correct, to focus on local effects of white matter bundle microstructure and pathology to 
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increase probabilities of capturing early alterations. To do so, we investigated 

microstructure – pathological associations in a cohort of asymptomatic older adults 

younger than most typical aging or AD cohorts and enriched for preclinical AD due to 

their family history of the disease. We characterized the association focussing at a macro-

level on key bundles of interest, and at a micro-level on diffusion measures in these 

bundles and their associations with Aβ and tau levels specifically at their cortical 

endpoints. We found a consistent pattern of more restricted diffusion across the cingulum, 

the fornix, and the uncinate fasciculus, with higher FAT, lower MDT, and lower RDT being 

related to greater endpoint pathology. For the cingulum and fornix such associations were 

restricted to Aβ, but they were found both with Aβ and tau in the uncinate fasciculus.  

 

There are two important take-homes related to the main results. First, the pattern of 

association between pathology and microstructure was only detected using local Aβ and 

tau at the bundle endpoints and not when using global AD burden scores. This finding 

suggests topographical relationships between pathology and white matter microstructural 

alterations in the early stage of AD. This “bundle-specific” approach through tractography 

and tractometry complements the typical approach of voxel-wise analyses (Harrison et al., 

2020; Zhang et al., 2019) and yielded specific associations between white matter and 

pathology. Similarly, using more precise tissue measures with free-water corrected as 

opposed to classical diffusion tensor measures was critical to our findings, further 

highlighting the relevance of novel methods. Second, the directionality of the observed 

pattern of association opposes the classical pattern of degeneration. The classical 

degeneration pattern accompanying disease progression is characterized by lower 
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anisotropy and higher diffusivity, representing loss of coherence in the white matter 

microstructure with AD progression (Caso et al., 2016; Sexton et al., 2011). This pattern 

of white matter degeneration develops invariably along the AD spectrum (Amlien and 

Fjell, 2014; Pereira et al., 2019), with associations often becoming detectable only in the 

mild cognitive impairment and dementia stages (Mito et al., 2018; Song et al., 2018; 

Wang et al., 2019; Wen et al., 2019), and very few in Aβ-positive cognitively normal 

participants (Rieckmann et al., 2016; Vipin et al., 2019). However, our consistent pattern 

of more restricted diffusion (higher FA and lower MD) being associated with more 

pathology in three bundles suggests that microstructural alterations captured with 

diffusion MRI might differ in the preclinical vs. the symptomatic phase of AD, during 

which severe and irreversible atrophy has occurred. Supporting this biphasic relationship, 

in the Alzheimer Disease Neuroimaging Initiative dataset, FA increased from the Aβ-

negative participants to those with intermediate Aβ levels and decreased in those with 

high Aβ (Dong et al., 2020). In another cohort of older adults with intact cognition and a 

family history of AD, those with high levels of Aβ also had higher FA and lower MD 

compared to the Aβ-negative participants, notably in the cingulum and the fornix (Racine 

et al., 2014). This possible biphasic relationship (Fortea et al., 2010; Montal et al., 2018) 

has important implication as it might obscure some association in the early disease stages. 

 

Although more restricted diffusion with the presence of pathology was unanticipated, 

different biological mechanisms might underlie this phenomenon. For example, a loss of 

crossing fibres occurring as pathology accumulates could account for increased FAT in 

the early disease stage (Mito et al., 2018). Further, higher anisotropy and lower 
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diffusivity might be due to hypertrophy, glial activation, neuronal or glial swelling in the 

asymptomatic phase (Fortea et al., 2010; Montal et al., 2018). Extracellular Aβ plaques 

typically accumulate in the grey matter but have often been associated with gliosis 

(Spires-Jones and Hyman, 2014), which could restrict diffusion in the microstructural 

environment, as reported here with higher FAT and lower MDT and RDT. Tau, on the 

other hand, is a microtubule-associated protein that stabilizes the axons. With disease 

progression, tau becomes hyperphosphorylated and detaches from the microtubules 

(Higuchi et al., 2002; Iqbal et al., 2009). We can hypothesize that the increasing presence 

of hyperphosphorylated tau along axons early on in AD pathological processes could 

restrict the diffusion, even more so when looking at tissue measures specifically.  

 

We were surprised to find no associations between AD pathology and diffusion measures 

in the posterior cingulum, as this is a key bundle in AD (Agosta et al., 2011; Caso et al., 

2016; Zhuang et al., 2012). This bundle is certainly altered in the symptomatic stage, but 

it is possible that the microstructure of the posterior part of the cingulum is not affected 

early by pathology. Alternatively, this region might have already entered a shift toward 

the classical degeneration pattern (lower FAT and AFD, higher MDT and RDT) that would 

be related to higher AD pathology in some individuals. This opposite direction of 

associations that switches with disease severity would make linear findings impossible to 

detect in individuals that are slowly progressing from cognitively normal to cognitively 

impaired. On the other hand, the strongest and more numerous associations were detected 

in the uncinate fasciculus. This bundle has an interesting anatomy, connecting regions at 

the intersection of both Aβ (frontal lobe) and tau (temporal lobe) deposition patterns. We 
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speculate that the particular localization of the uncinate fasciculus with regards to Aβ and 

tau deposition might confer early vulnerability to pathological insults. Its possible 

vulnerability might also be increased due to retrogenesis. This concept postulates that 

late-myelinated fibres, from temporal and neocortical regions, are affected first in the 

disease course, whereas thicker fibres myelinated earlier in development are more 

resistant to neurodegeneration/disease (Alves et al., 2015; Bartzokis, 2004, 2011). For 

instance, the orbitofrontal cortex is not only a region where Aβ pathology accumulates 

early but is also a highly plastic late-developing region, typically affected in aging (Fjell 

et al., 2014; Pichet Binette et al., 2020).  

 

The direct investigation of pathology at the cortical endpoints of white matter fiber 

bundles and microstructure in such bundles was possible due to recent advances in 

diffusion imaging modeling, tractography, bundle extraction and tractometry 

quantification. However, there are several limitations to these techniques and to our study. 

First, there are no common standards (yet) to extract pre-defined bundles from 

tractograms, and bundles with high curvature such as the uncinate fasciculus and the 

fornix are challenging to extract. To mitigate this challenge, we mostly relied on 

algorithms that use priors to help generate fuller bundles. Still, to extract all bundles of 

interest, we needed to use multiple automated algorithms and perform rigorous visual 

inspection to make sure all algorithms yielded comparable bundles. The diffusion 

sequence relied on only one b-value, and future acquisitions with multiple b-values could 

further improve capturing fine-grained changes (Pines et al., 2020). Given the partial 

volume effect of PET, pathology at the cortical endpoints might be slightly affected with 
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white matter uptake. To diminish this potential confound, we took advantage of the high 

2-mm resolution of the scanner (HRRT) and did not smooth the SUVR images. This 

cohort is followed yearly on cognition and imaging, so future longitudinal studies will 

help clarify the potential biphasic relationship, as a proportion of participants will progress 

to mild cognitive impairment.  

 

Overall, we used state-of-the-art analytical techniques to study associations between 

white matter microstructure and pathology in key bundles affected in AD in the 

PREVENT-AD cohort of cognitively normal older adults whose strong family history of 

AD suggests a two- to three-fold increased risk of subsequent dementia (Cupples et al., 

2004; Devi et al., 2000).  We suggest that our reliance on this cohort was important 

because AD pathology starts depositing in the asymptomatic phase of the disease, but 

extensive cortical pathology and atrophy are apparent by the time an individual develops 

cognitive impairment. PREVENT-AD and similar samples represent the sorts of groups 

that may be useful for clinical trials of preventive interventions (Meyer et al., 2019). As 

more studies highlight that white matter changes might precede changes in grey matter 

(Caso et al., 2016; Sachdev et al., 2013), studying the associations between pathology and 

microstructure in the early stages of AD will help understand better of the complex 

pathogenesis of the disease. 
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4 Materials and Methods 

4.5 Participants 

We studied cognitively unimpaired participants at risk of sporadic AD dementia from the 

PRe-symptomatic EValuation of Experimental or Novel Treatments for AD (PREVENT-

AD) study. PREVENT-AD is a longitudinal study that started in 2012 (Breitner et al., 

2016) and enrolled 386 participants. Inclusion criteria were as follows: (1) having intact 

cognition, (2) having a parent or two siblings diagnosed with AD-like dementia, and 

therefore being at increased risk of sporadic AD, (3) being above 60 years of age, or 

between 55 and 59 if fewer than 15 years from their affected family member’s age at 

symptom onset, (4) being free of major neurological and psychiatric diseases. Intact 

cognition was based on the Montreal Cognitive Assessment, a Clinical Dementia Rating 

of 0, and a standardized neuropsychological evaluation using the Repeatable Battery for 

the Assessment of Neuropsychological Status (Randolph et al., 1998). The cognitive 

status of individuals with questionable neuropsychological status was reviewed in 

consensus meetings of neuropsychologists (including SV) and/or psychiatrists. Annual 

visits include neuropsychological testing and a MRI session. Since 2017, Aβ and tau PET 

scans were integrated to the study protocol for interested participants. The present study 

includes participants who had structural and diffusion-weighted MRI and who underwent 

PET, for a total of 126 participants. All participants included in the current study were 

cognitively normal at the time they underwent diffusion-weighted MRI. 

 

4.6 Image Acquisition 

4.6.1 Magnetic resonance imaging 
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T1-weighted structural and diffusion-weighted MRI were acquired on a Magnetom Tim 

Trio 3 Tesla (Siemens) scanner at the Douglas Mental Health University Institute prior to 

PET imaging. Structural scans were acquired yearly, and thus we selected the closest scan 

prior to PET (average time between PET and structural MRI: 8 ± 4 months). Diffusion-

weighted MRI was not acquired every year, and again the diffusion scan closest to PET 

was chosen for analysis (average time between PET and diffusion-weighted MRI: 1.1 ± 

0.8 years). Structural scans were acquired using a MPRAGE sequence with the following 

parameters: TR=2300 ms; TE =2.98ms; FA=9°; FoV=256 mm; slice thickness=1mm; 

160-170 slices. Diffusion-weighted scans were acquired with the following parameters: 

TR=9300 ms, TE: 92 ms, FoV=130 mm, slice thickness=2 mm. One b0 image was 

acquired and 64 diffusion-weighted volumes were acquired with a b-value of 1000 

s/mm2. 

 

4.6.2 Positron emission tomography 

PET was performed using [18F]NAV4694 to assess Aβ burden and flortaucipir 

([18F]AV1451) to assess tau deposition. PET scanning took place at the McConnell Brain 

Imaging Centre at the Montreal Neurological Institute using a brain-dedicated PET 

Siemens/CT high-resolution research tomograph (HRRT) on two consecutive days. Aβ 

scans were acquired 40 to 70 minutes post-injection (≈6 mCi) and tau scans 80 to 100 

minutes post-injection (≈10 mCi). All scans were completed between March 2017 and 

April 2019. 
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4.7 Positron emission tomography processing 

PET scans were processed using a standard pipeline (see 

https://github.com/villeneuvelab/vlpp for more details). Briefly, Aβ- and tau-PET images 

were realigned, averaged and registered to the T1-weighted scan of each participant, 

which had been segmented with the Desikan-Killiany atlas using FreeSurfer version 5.3 

(Desikan et al., 2006). The same structural scan was used in the diffusion and the PET 

pipelines. PET images were then masked to remove the scalp and cerebrospinal fluid, to 

reduce contamination by non-grey and non-white matter voxels. Standardized uptake 

value ratios (SUVR) images were obtained using the whole cerebellum as reference 

region for Aβ-PET (Jagust et al., 2015) and the inferior cerebellar grey matter for tau-

PET (Baker et al., 2017). A global Aβ burden was calculated from the average bilateral 

SUVR of medial and lateral frontal, parietal and temporal regions. A global score of 

temporal tau was calculated by taking the average bilateral SUVR from the entorhinal, 

amygdala, fusiform, inferior and middle temporal gyri (Ossenkoppele et al., 2018). 

However, the main interest was to extract Aβ and tau SUVR at the cortical endpoints of 

the fibres forming each anatomical bundle of interest, and thus we registered the PET 

SUVR images to the diffusion image using ANTS (Avants et al., 2011). We also took 

advantage of the high 2-mm resolution of the PET-HRRT scanner and did not smooth the 

SUVR images. By doing so, we aimed to diminish mixing grey and white matter signal in 

each voxel, so that the SUVR values at the cortical endpoints of the fibres are more 

precise. 
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4.8 Diffusion MRI processing 

An overview of the processing steps is displayed in Figure 1. 

4.8.1 Preprocessing steps 

The diffusion-weighted images were processed using the TractoFlow Atlas-Based 

Segmentation (TractoFlow-ABS) pipeline. TractoFlow-ABS is an extension of the recent 

TractoFlow pipeline (Theaud et al., 2020a; Theaud et al., 2020b) publicly available for 

academic research purposes (https://github.com/scilus/tractoflow) that uses Nextflow (Di 

Tommaso et al., 2017) and Singularity (Kurtzer et al., 2017) to ensure efficient and 

reproducible diffusion processing. All major processing steps are performed through this 

pipeline, from preprocessing of the structural and diffusion images to tractography. The 

pipeline computes typical diffusion tensor imaging maps, fiber orientation distribution 

function (fODF) and a whole-brain tractogram. The pipeline calls different functions 

from various neuroimaging software, namely FSL (Jenkinson et al., 2012), MRtrix3 

(Tournier et al., 2019), ANTs (Avants et al., 2011), and DIPY (Garyfallidis et al., 2014). 

For a detailed description of the different steps see (Theaud et al., 2020a). 

4.8.2 Diffusion measures 

After the preprocessing steps, different diffusion measures can be generated as part of 

TractoFlow or TractoFlow-ABS. The following diffusion tensor imaging (DTI) metrics 

were computed using DIPY: fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD) and axial diffusivity (AD). Along with typical DTI modeling, fiber 

orientation distribution functions (fODFs) were also computed using constrained 

spherical deconvolution (Descoteaux et al., 2007; Tournier et al., 2007) and the fiber 

response function from the group average. The fODF metric used in the current study was 
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the sum of the apparent fiber density (AFD), which can be seen as an indirect measure of 

axonal density (Raffelt et al., 2012). Along with the typical tensor metrics, we also 

generated free-water corrected DTI metrics, which were the main diffusion metrics of 

interest in this study. Free-water correction has been proposed has a way to remove the 

contamination of water from the tissue properties by modeling the isotropic diffusion of 

the free water component (Pasternak et al., 2009). Free-water modeling was performed 

using the accelerated microstructure imaging via convex optimization (Daducci et al., 

2015) to calculate free-water index (FW) and free-water corrected metrics, namely FAT, 

MDT, ADT and RDT. Removing the contribution of free water is thought to better 

represent the tissue microstructure (hence the subscript T for tissue) and might be more 

sensitive than the non-corrected metrics (Albi et al., 2017; Chad et al., 2018; Pasternak et 

al., 2012).  

4.8.3 Tractography 

The last step of the pipeline is tractography. This is where Tractoflow and Tractoflow-

ABS differ. The former uses a more sophisticated algorithm, particle filtering 

tractography, that takes into account anatomical information to reduce tractography 

biases (Girard et al., 2014). Such an algorithm requires probabilistic maps of grey matter 

(GM), white matter (WM) and cerebrospinal fluid to add additional constraints for 

tracking. However, with aging, probabilistic maps in “bottleneck” areas of WM fibres, 

for example where the uncinate fasciculus bends, show poorer distinction between GM 

and WM voxels. Furthermore, increasing white matter hyperintensities and general 

atrophy with aging also complicate the use of more advanced algorithms. As a result, the 

performance particle filtering tractography was affected and failed to generate bundles 
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suitable for analysis. Instead, as implemented in TractoFlow-ABS, we opted for local 

tracking with a probabilistic algorithm to reconstruct whole-brain tractograms. The inputs 

for tracking were the fODF image for directions and a WM mask for seeding. The mask 

was computed by joining the WM and the subcortical masks from the structural image 

that had been segmented with the Desikan-Killiany atlas in FreeSurfer version 5.3 

(Desikan et al., 2006). For tracking, seeding was initiated in voxels from the WM mask 

with 10 seeds per voxel. The tractograms had between 2 and 3 million streamlines.  

 

4.9 White matter bundles extraction 

From the tractogram, we extracted different bundles of interest. We focussed on bundles 

connecting the main brain region where Aβ and tau accumulate in the early phase of AD, 

namely the uncinate fasciculus, the cingulum, the posterior cingulum, and the fornix. To 

extract the uncinate fasciculus and the cingulum, we used RecoBundles X (Rheault, 

2020), an automated algorithm to segment the tractograms into different bundles. This 

algorithm is an improved and more stable version of RecoBundles (Garyfallidis et al., 

2018). Briefly, the method is based on shape priors to detect similarity in streamlines. 

Taking the whole-brain tractogram and templates from the bundles of interest as inputs, 

RecoBundles X extracts bundles based on the shape of the streamlines from the 

templates. The difference between RecoBundles and RecoBundles X resides in that the 

latter can take multiple templates as inputs and multiple parameters, which refines which 

streamlines are included or excluded from the final bundle. RecoBundles X is typically 

run 80 times and the output is the conjunction of the multiple runs, yielding more robust 

bundles. RecoBundles X does not include templates for the posterior cingulum or the 
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fornix, and thus we used different methods to extract them. We used TractQuerier 

(Wassermann et al., 2016) to extract the posterior cingulum. This method works with 

customizable queries to extract bundles based on anatomical definitions. Using inclusion 

and exclusion regions of interest based on the FreeSurfer parcellation, we implemented a 

query specifically for the posterior cingulum. The query was also used in another recent 

study (Roy et al., 2020) and can be found in Supplementary material. The last bundle of 

interest was the fornix. The fornix is a difficult bundle to extract, given its high curvature, 

its proximity to cerebrospinal fluid increasing susceptibility to partial volume effects, and 

its location in regions prone to atrophy in aging and AD,. Therefore, we used a 

combination of different steps to generate this bundle. First, we ran Bundle-Specific 

Tractography (Rheault et al., 2019). This algorithm helps to increase the number of 

plausible streamlines, yielding a better spatial coverage and a more accurate 

representation of the full shape of the fornix. Bundle-Specific Tractography takes as input 

a template representing the fornix derived from 23 participants used in another study 

(Roy et al., 2020). This template, in the form of streamlines, generates spatial and 

orientational priors to enhance the fODF map and facilitate reconstruction of the fornix. 

Using Bundle-Specific Tractography to extract the fornix specifically is further detailed 

elsewhere (Rheault et al., 2018). Applied to cognitively normal older adults such as the 

PREVENT-AD participants, the algorithm yielded fornices with a very high number of 

streamlines and we implemented further steps to filter out the fornix tractograms: we 

excluded any streamlines going through the thalamus and through an eroded mask of 

CSF, and only retained streamlines going through the hippocampus. Finally, we removed 

the streamlines forming loops.  
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After extracting all bundles, each one was inspected visually in MI-Brain 

(https://www.imeka.ca/fr/mi-brain/) to make sure the shape, location and size were 

adequate. Only for the fornix did some participants have bundles that were too small. We 

excluded from analyses fornices containing less than 50 streamlines.  

 

4.10 Bundle-specific quantification with tractometry 

The last step required to put together the different white matter measures and bundles of 

interest was tractometry (Cousineau et al., 2017). Tractometry is a way to extract the 

measures of interest specifically in each bundle. It takes as input the maps of all 

microstructure measures and the bundles in which we want to extract them. In our case, 

we extracted the average bundle tissue measures (FAT, MDT, RDT, ADT and FW index) 

and AFD as a fODF metric for each bundle (uncinate fasciculus, cingulum, posterior 

cingulum, fornix). For complementary analyses we also extracted typical tensor measures 

(average FA, MD, RD and AD) in each bundle. For the Aβ and tau measurements, we 

extracted the average SUVR from the cortical endpoints of each bundle. By doing so, we 

have an average Aβ/tau SUVR of all voxels specific to each bundle and participant. In the 

cingulum, the endpoints lie along the cingulate cortex. In the posterior cingulum, we 

extracted SUVR at both ends of the bundle, i.e. in the posterior cingulate and the medial 

temporal lobe. In the fornix, we extracted SUVR at the endpoints in the temporal lobe 

only. We did not consider the endpoints around the mammillary bodies, as they are 

regions with off-target binding in PET. In the uncinate fasciculus, we extracted SUVR at 

both ends of the bundle, i.e. in the frontal and temporal lobes. The overall approach, done 
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entirely in native space, has the advantage of generating bundles specific to each 

individual and of capturing the amount of pathology specifically in the grey matter 

connected by such bundles.  

 

4.11 Statistical Analysis 

Linear regression models were performed to evaluate the relationships between Aβ or tau 

and the different microstructure measures in each bundle. In primary analyses, the 

diffusion measures investigated as independent variables were FAT, MDT, RDT, ADT, 

FW index and AFD. Regression models were performed separately for Aβ and tau in the 

left and right bundles separately. Age, sex, and bundle volume (divided by total 

intracranial volume) were included as covariates in each regression model. We focused 

on the Aβ and tau SUVR specifically at the endpoints of each bundle. In the bundles 

where associations were found between pathology and microstructure, we further 

adjusted for grey matter volume (divided by total intracranial volume) of cortical regions 

connected by the bundle to evaluate whether associations were also influenced by 

atrophy. For the uncinate fasciculus, GM regions of interest were medial orbitofrontal 

cortex and the parahippocampal gyrus; for the cingulum, regions were the anterior and 

posterior cingulate; for the posterior cingulum, regions were precuneus and 

parahippocampal gyrus; for the fornix, we used hippocampal volume. Lastly, when we 

found associations between different microstructure measures and one pathology (Aβ or 

tau), we further corrected for the SUVR of the other protein at the same endpoints, to 

assess whether associations were specific to one protein. We also performed similar 

analyses with the typical tensor measures (FA, MD, AD and RD) to evaluate whether the 
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free-water corrected metrics were more sensitive. As a last step, we evaluated 

associations between global Aβ SUVR and tau meta-ROI SUVR and white matter 

microstructure. Associations with a p-value < 0.05 were considered significant, but we 

also report associations that would survive false-discovery rate (FDR) correction for each 

bundle with q-value of 0.05, accounting for 6 tests (i.e. the number of diffusion measures 

assessed per bundle). Analyses were conducted using SPSS version 20 (IBM, N.Y., USA) 

and R version 3.6.3 (Vienna, Austria) (2020). 
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