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Abstract 

Interpersonal synchrony is a widely studied phenomenon. A great challenge is to statistically 

capture the dynamics of social interactions with fluctuating levels of synchrony and varying 

delays between responses of individuals. Windowed Cross-Correlation analysis accounts for 

both characteristics by segmenting the time series into smaller windows and shifting the 

segments of two interacting individuals away from each other up to a maximum lag. Despite 

evidence showing that these parameters affect the estimated synchrony level, there is a lack of 

guidelines on which parameter configurations to use. The current study aimed to close this 

knowledge gap by comparing the effect of different parameter configurations on two outcome 

criteria: (1) the ability to distinguish synchrony from pseudosynchrony by means of surrogate 

data analyses, and (2) the sensitivity to detect change in synchrony as measured by the 

difference between two within-subject conditions. Focusing on physiological synchrony, we 

performed these analyses on heartrate, skin conductance level, pupil size, and facial 

expressions data. Results revealed that a range of parameters was able to discriminate 

synchrony from pseudosynchrony. Window size was more influential than the maximum lag 

with smaller window sizes showing better discrimination. No clear patterns emerged for the 

second criterion. Integrating the statistical findings and theoretical considerations regarding 

the physiological characteristics and biological boundaries of the signals, we provide 

recommendations for optimizing the parameter settings to the signal of interest.  

Keywords: Windowed Cross-Correlation analysis; interpersonal synchrony; parameter 

optimization; surrogate data; time series analysis.  
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Introduction 

During social interactions, humans tend to synchronize on different levels: They 

mimic postures (Ramseyer & Tschacher, 2011), facial expressions (Chartrand & Bargh, 1999) 

and align their level of physiological arousal (Feldman, Magori-Cohen, Galili, Singer, & 

Louzoun, 2011; Levenson & Gottman, 1983; Prochazkova et al., 2018). Although this 

synchrony comes naturally and without effort, it is a great challenge for social scientists to 

measure it statistically. The current paper addresses this issue and proposes a Windowed 

Cross-Correlation (WCC) analysis to investigate the dynamic changes in heartrate, skin 

conductance level, pupil size, and facial expression (Boker, Xu, Rotondo, & King, 2002). 

Recommendations are provided on which parameter configurations to use to quantify 

synchrony of these four responses.   

Synchrony is a multifaceted phenomenon evident on the behavioral, physiological, and 

neural level. Not surprising then, the causes and consequences of synchrony have been 

studied in a broad range of contexts investigating the dynamic nature of social interactions 

from clinical (Galazka et al., 2019; Wehebrink, Koelkebeck, Piest, De Dreu, & Kret, 2018), 

developmental (de Klerk, Hamilton, & Southgate, 2018; Shih, Quiñones-Camacho, Karan, & 

Davis, 2019), evolutionary (Mancini, Ferrari, & Palagi, 2013; Palagi, Leone, Mancini, & 

Ferrari, 2009), neural (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Prochazkova et al., 

2018), social (Behrens et al., 2019; Tarr, Launay, & Dunbar, 2016), and cognitive (Kret, 

Fischer, & De Dreu, 2015; Kret & De Dreu, 2017) perspectives. Such fascination across 

disciplines has unraveled the far-reaching scope of synchrony: it has been demonstrated in 

different species, it occurs from birth on, and it influences a variety of interpersonal processes 

such as marital quality, cooperative success between strangers and outcomes of therapeutic 

interactions (Behrens et al., 2019; Feldman et al., 2011; Kret, Tomonaga, & Matsuzawa, 

2014; Levenson & Gottman, 1983; Ramseyer & Tschacher, 2011). Because of these 
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implications and this wide interest, it is of particular importance to establish solid statistical 

methods to quantify synchrony. 

A variety of methods have been proposed in previous literature to quantify synchrony 

including correlations, regressions, structural equation models and recurrence quantification 

analyses. These approaches differ in their assumptions, their operationalization of synchrony, 

and the type of synchrony they measure (for a review, see Gates & Liu, 2016; McAssey, 

Helm, Hsieh, Sbarra, & Ferrer, 2013; Schoenherr et al., 2018; Thorson, West, & Mendes, 

2017). In the current article, we focus on continuous time series measures in dyads. For this 

type of data, it is important that the method captures responses that happen “in sync” (e.g., 

two individuals react simultaneously to an external event), but also responses that occur with 

a slight time delay (e.g., one individual responds to another or at a different pace). 

Furthermore, the method needs to allow for changes in the level of synchrony as it will vary 

depending on the events happening in a conversation with moments of stronger and weaker 

synchrony. Moreover, we focus on the strength rather than the frequency of synchrony. Some 

methods first specify intervals of synchrony and subsequently compute the frequency of these 

intervals within a time series (Altmann, 2011). This method is particularly interesting for 

movement synchrony where people can either move or not. In the current study, on the other 

hand, we concentrate on physiological measures that constantly change, therefore 

categorizing intervals into synchronous and non-synchronous segments is theoretically not 

plausible. Instead, we are interested in obtaining a global estimate of the strength of 

synchrony in a conversation. A method that fulfills these different criteria is the Windowed 

Cross-Correlation analysis, the focus of the current study (Boker et al., 2002).  

The Windowed Cross-Correlation (WCC) analysis offers a neat method to account for 

dynamic changes in synchrony (Boker et al., 2002). This is achieved by extending a classical 

correlation estimate by two aspects: windows and lags. Specifically, instead of calculating a 
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correlation coefficient over the whole time series, the signals are broken into smaller 

overlapping segments or windows. Changes in synchronization can be captured because the 

degree to which two signals co-vary is estimated for each window separately. The lag is 

introduced to account for differences in the pace of individuals’ responses to one another and 

to track the follow-lead relationship between them. It might be that at some point Person A 

responds to Person B and a moment later the pattern is reversed. Consequently, allowing for 

varying time lags can account for such dynamics. Although this method offers an advanced 

way to quantify synchrony in naturalistic settings, it does not come without its challenge: 

parameters need to be specified to tailor the analysis to the signal of interest. In the original 

paper by Boker and colleagues (2002), the authors advised on parameters using data from 

motor movements. To this date, there are no guidelines on which parameter settings are most 

suitable for physiological measures. The goal of the current paper is to close that knowledge 

gap.  

The WCC analysis requires the specification of four parameters that tailors the method 

to the signal of interest: window size, maximum lag, window increment, and lag increment 

(see Figure 1). Carefully choosing the right parameter settings is crucial, because these 

settings can substantially affect the outcome of the WCC analysis (Schoenherr et al., 2018). 

First, the window size determines the number of observations (i.e., data points) in each sliding 

window across the time series. The window should be small enough to be sensitive to changes 

in the degree of synchronization and the lead-follow relationship between individuals. 

Disregarding fluctuations within a large window might undermine the strength of association 

at certain moments. Here, the biological nature of the signal of interest and its time course are 

of particular importance. A relatively slow signal such as skin conductance level requires a 

longer window than a fast signal such as facial expressions. Moreover, the window segments 

need to be small enough such that the assumption of stationarity is likely to hold (Boker et al., 
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2002). However, if the window size is too small, there are not enough data points left to 

provide reliable estimates of the relationship between the two segments. Whereas 50-70 

values have been proposed as “sufficient” (Cappella, 1996), more recent work performing 

Monte-Carlo simulations recommends 65 to 250 values, depending on the strength of the 

correlation (Schönbrodt & Perugini, 2013). Given the high sampling rates incorporated in 

many psychophysiological measurement devices, this range should be fairly easy to 

accomplish, if the window size is not overly small. Therefore, decisions on the window size 

should be based on both statistical and theoretical considerations.  

Second, the maximum lag indicates the maximum number of observations one 

window is shifted in relation to the other window and consequently determines the maximum 

lag two events are still considered reactions to one another. For example, if the maximum lag 

is three seconds, then if Person A smiles two seconds later in response to Person B, this would 

be captured with the three second window. However, if that smile occurs four seconds later, it 

would not be considered a response to the smile of the other person anymore. If the maximum 

lag is too long, synchrony might be attributed to two unrelated events. However, if the 

maximum lag is chosen too small, then important responses between two individuals are 

missed. Previous research suggests that the maximum lag between responses impacts on 

synchrony. Specifically, it has been shown that skin conductance responses within, but not 

beyond seven seconds correlate with the empathetic relationship between counselors and 

clients (Robinson, Herman, & Kaplan, 1982). The authors did not, however, directly compare 

whether the shorter latency could predict the relationship better than the longer latency. 

Additionally, although this study provides an indication that the maximum lag indeed matters, 

the categorization of latencies (responses between 0 and 7 sec compared to responses between 

7 and 40 sec) does not allow for fine-grained conclusions about which maximum lag is 

optimal. To our knowledge, this is the only study investigating the impact of the maximum 
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lag on synchrony. Thus, a systematic comparison of different maximum lags is needed to 

make well-informed decisions on this parameter. 

Third, the window increment determines the size of the steps (i.e., the number of 

observations) when moving from one window segment to the next. If the increment is one, 

then the window is moved by one data point. If the window increment is the same size as the 

window size or greater, then adjacent windows are non-overlapping. Similarly, the fourth 

parameter, the lag increment, indicates how big the steps are between time lags. Both 

increment parameters regulate the resolution in terms of time lag and elapsed time. Ideally, 

the increment should be kept as small as possible to ensure the best resolution. However, at 

some point the estimates will stabilize and the limited additional information that can be 

added by pumping up the resolution does not weigh up to the heavy computational time. 

Comparing it to sampling rates, if one aims to measure heartrate changes, a sampling rate of 

1000 Hz gives a smooth signal. Increasing the sampling rate to 2000 Hz adds little 

information above and beyond a sampling rate of 1000 Hz because the heartrate does not 

change so fast resulting in very similar heartrate signals in both cases. Similarly, increasing 

the resolution of the increment of the moving windows and lags will eventually stabilize 

around a correlation estimate. The size of the increment will, of course, also depend on the 

sampling rate which represents the lower bound of possible increments. Therefore, setting the 

increment parameters for the windows and lags is a question of balancing the benefit of a 

better resolution and the drawback of increased computational time.  
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Figure 1. Schematic outline of the four parameters that are specified in the WCC analysis: 

window size (wSize), window increment (wInc), maximum lag (tMax), and lag increment 

(tInc). The abbreviations tMax and tInc originate from using “tau” (τ) to refer to the lags in the 

cross-correlation equation (see Equation 1).  

In order to determine the best parameter configurations, we used two criteria. The first 

criterion was the ability to discriminate synchrony from pseudosynchrony. Pseudosynchrony 

has been defined as “the amount of apparent and spurious synchrony between two individuals 

not engaged in information exchange with one another” (Moulder et al., 2018, p. 2). The 

reason for such spurious synchrony is that the signals of interest are restricted in their patterns 

and how they behave across contexts. For example, heartrate is constantly changing, 

decreasing and increasing depending on the person’s inner state and environmental 

circumstances (i.e., participating in a study with the same procedure across dyads). However, 

the changes stay in a certain range causing recursiveness and commonality within and 

between heartrate measures. As a consequence, to determine whether synchrony exists 

between two time series, the null hypothesis is not zero as for standard null-hypothesis 
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testing, but rather a fundamental value due to the similarities between the biological time 

series. It is therefore necessary to find an appropriate comparison between the level of 

synchrony of individuals engaging in an interaction and the level of synchrony that occurs due 

to the nature of the signals. One way to account for such pseudosynchrony is to perform a 

surrogate data analysis (Moulder et al., 2018). The idea is that the original time series is 

compared to the same time series where synchrony is destroyed while keeping all other 

properties constant. Specifically, the synchrony level from the original dyads engaging in an 

interaction is compared to the synchrony levels from newly generated dyads that never 

actually interacted. To generate these dyads, the time series from each participant is coupled 

with every other participant. That way it can be tested whether being in an interaction adds 

something over and beyond being in the same situation and investigating the same 

physiological measure. Therefore, being able to distinguish synchrony from pseudosynchrony 

offers an ideal criterion to test whether some parameter configurations are more sensitive to 

such distinction than others.  

The second criterion that is essential when it comes to research on synchrony is to be 

able to detect changes in synchrony. To study the underlying mechanisms of synchrony, its 

boundary conditions and individual differences, researchers are often interested in how 

synchrony changes in relation to experimental manipulations. For example, in a previous 

study, we observed that physiological synchrony promoted cooperative success, but only 

when partners could see each other and not when a cover prevented eye contact (our 

manipulation) (Behrens et al., 2019). Another study investigated the effect of emotional 

salience during storytelling on pupil mimicry and showed that physiological coupling between 

the speaker and the listener was stronger during emotionally intense moments compared to 

less salient moments (Kang & Wheatley, 2017). Storytelling is particularly interesting 

because it is a uniquely human and universal activity creating social bonds between people 
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(Smith et al., 2017). In Kang and Wheatley's (2017) study, listeners watched videos of 

speakers telling the story and therefore did not engage in an actual conversation. However, 

direct face-to-face interactions has been shown to affect synchrony levels (Behrens et al., 

2019). Therefore, in the current study, two individuals engaged in face-to-face storytelling 

and completed baseline measures, silent moments of eye-contact. In line with the findings by 

Kang and Wheatley (2017), we expected higher levels of synchrony when people engaged in 

storytelling compared to the baseline measure. Ideally, the analysis that measures synchrony 

is sensitive to detect changes in synchrony between the two (within-subject) conditions.   

The aim of the current study was to determine the best parameter configurations for 

the WCC analysis applied to different common physiological measures. The two criteria we 

used to decide on these configurations are (i) the ability to distinguish synchrony from 

pseudosynchrony and (ii) the sensibility to detect changes in synchrony (i.e., distinguish 

between two conditions). The reason to include two criteria is to investigate whether the 

purpose of the study (i.e., detect synchrony or change in synchrony) influences which 

parameters configurations are most suitable. We tested these criteria on data from dyadic 

interactions where two individuals told each other four stories. During the interaction, their 

heartrate, skin conductance level, pupil size, and contractions of the left zygomaticus major 

(muscle associated with smiling) were measured. For a range of window sizes and maximum 

lags that were tailored to each signal, we calculated a measure of distance for the comparison 

(i) between the original dyads and newly generated surrogate dyads, and (ii) between intervals 

of storytelling and baseline measures in the original dyads. The window and lag increments 

were not systematically compared, but were adjusted as a function of the window size and 

maximum lag, respectively. Based on the outcome of these comparisons, we provide 

recommendations on which parameter configurations are best for detecting synchrony and 

change in synchrony for the four physiological measures. With these recommendations, we 
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hope to help other researchers to make well-informed decisions in applying the WCC analysis 

and to increase the comparability of findings across studies.  

Method 

Participants 

In total, 34 same-sex dyads participated in the study of which six dyads had to be 

excluded due to technical problems (dyads included in analysis: Female = 22 [78%]; Mage = 

22.79; SDage = 3.23; Dutch = 17 [30%]). Participants were recruited via the Leiden University 

online recruitment system, flyers distributed around the university building, and through 

personal contacts. In the latter case, participants were tested by a researcher they did not 

know. Individuals had normal or corrected-to-normal vision wearing contact lenses. Glasses 

were not compatible with the eye-tracking glasses worn during the experiment. The duration 

of the study was about one hour and participants received two course credits or 6€, and 

chocolate for compensation. The study was approved by the local Psychology Ethics 

Committee of Leiden University (CEP19-0313/208).  

Design 

The design of the study is outlined in Figure 2. The study consisted of two parts. First, 

participants completed a breathing exercise where they were instructed to look at each other 

and synchronize their breathing. Second, participants engaged in storytelling with each 

participant telling a neutral and a positive story while the other participant was listening. 

Thus, participants told four stories in total with story 1 and story 3 always being told by 

participant 1 (sitting on the left side) and story 2 and story 4 being told by participant 2 

(sitting on the right side). Story 1 & story 2 and story 3 & story 4 were of the same valence, 

with the order of starting with the neutral or positive story being counterbalanced between 

dyads. The breathing and storytelling parts were both preceded by a 2-min baseline measure 

where participants were instructed to relax and look at each other. After the second baseline 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.27.269746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.269746
http://creativecommons.org/licenses/by-nc-nd/4.0/


QUANTIFYING PHYSIOLOGICAL SYNCHRONY                                                                  12 
 

 
 

measure and after each story, participants filled out the Positive And Negative Affect 

Schedule (PANAS; Watson, Clark, & Tellegen, 1988) to measure their current affect. Also, 

they rated each story with regard to its valence and intensity on a scale from 0 to 10. The 

PANAS and the story ratings are not discussed any further, but the descriptive statistics are 

provided in Table S1 (Supplementary Materials).  

Procedure 

Upon arrival at the lab, participants were separated, received information about the 

study, and gave informed consent for participation. Afterwards, electrodes were attached to 

the torso, fingers, and face as preparation for the measurement of ECG, EDA, and EMG 

activity, respectively. Specifically, three electrodes were attached on the left and right side of 

the abdomen and on the thorax below the right collar bone to measure heartrate; two 

electrodes were attached to the non-dominant hand on the intermediate phalanges of the index 

and ring finger to measure skin conductance level; and three electrodes were attached to the 

left face on the zygomaticus major and behind the ear to measure facial expressions. The 

MP160 BIOPAC data acquisition system was used to record these measures at a sampling rate 

of 2000 Hz. After the preparation, participants filled out the Interpersonal Reactivity 

Inventory (IRI; Davis, 1980) and the Five Facet Mindfulness Questionnaire (FFMQ; Baer, 

Smith, Hopkins, Krietemeyer, & Toney, 2006) online. The descriptive statistics of both 

questionnaires can be found in Table S1 (Supplementary Materials). Next, participants were 

seated on the same table and participants were asked to wear the eye-tracking device Tobii 

Pro Glasses 2 which were subsequently calibrated. Afterwards, the experimenters left the 

room and started the recordings of the physiological measures and the pre-recorded 

instructions that were provided via speakers. The experiment started with a 2-min baseline 

measure where participants were instructed to relax and look at each other (Baseline 1). 

Afterwards, the breathing exercise started where participants were again asked to look at each 
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other, but this time synchronize their breathing for two minutes (not discussed in the current 

study). After this first part of the experiment, participants had time to think of a neutral and 

positive personal story. When they were ready to begin, another 2-min baseline (Baseline 2) 

was taken and participants filled out the first PANAS which was provided on the table. Then 

Participant 1 (the individual at the left side of the table) started with the first story. 

Participants were instructed to talk for at least three minutes till they heard a beep and were 

requested to finish up. Afterwards, both participants filled out the PANAS and rated the story 

based on its valence and intensity on a scale between 0 and 10. Then the next story began. 

Participants took turns in telling them and filled out the PANAS and the rating after each 

story. At the end, participants put all filled out papers in an envelope, read the debriefing, and 

the experimenters removed the electrodes. Finally, individuals were paid and thanked for 

participation. 

 

Figure 2. The time course of the study. The study was divided into two parts: breathing 

exercise (Part 1) and storytelling (Part 2). During the dark grey epochs, people interacted with 

each other; during the light grey epochs, they prepared the storytelling and filled out 
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questionnaires; P1/P2 = Participant 1 and 2; PANAS = Positive And Negative Affect 

Schedule; Story 1 & 2 and Story 3 & 4 were of the same valence (positive or neutral); the 

order of starting with the positive or neutral story was counterbalanced between dyads.  

Preprocessing of the physiological measures 

The physiological measures were pre-processed offline with the PhysioData Toolbox 

(Sjak-Shie, 2017). The heartrate data were preprocessed applying a band-pass filter between 

1Hz and 50Hz. R-peaks were detected and transformed to inter-beat intervals (IBI) and 

subsequently to heartrate (bpm) values. The skin conductance signal was low-pass filtered 

with a cut-off of 5Hz. The EMG signal was preprocessed with a low-pass FIR filter of 28Hz 

and a high-pass FIR filter of 500Hz and a Notch-filter of 50Hz. The rectified signal was 

subsequently smoothed with a Boxcar filter of 100ms. The pupil size data were preprocessed 

in multiple stages according to recommended guidelines described elsewhere (Kret & Sjak-

Shie, 2018). After applying the filters, each signal was visually inspected and if necessary, 

manually corrected. If missing or incorrect intervals were manually detected, the signals were 

linearly interpolated. Finally, all signals were down-sampled to 20Hz.  

Windowed Cross-Correlation analysis 

Researchers face the challenge to statistically represent the dynamics of an interaction 

and quantify the associated patterns in physiological responses between two individuals that 

might vary in the strength of association and the timing of the responses. Windowed Cross-

Correlation (WCC) analysis offers a method that addresses both challenges. Specifically, the 

two time series are broken into smaller, overlapping windows before the correlation is 

estimated for each window. This way, the strength of association can vary between these 

windows accounting for the non-stationarity of the signals. The overlap between windows 

prevents missing moments of strong synchronization that occur at the edge of non-

overlapping adjacent segments. Additionally, for each window, the two segments are lagged 
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away from each other up to a maximum lag such that the segment of either participant 1 or 

participant 2 precedes the other participant’s segment in time. This way the method accounts 

for the (varying) delay between two responses. This generates a result matrix r with 

correlations for the different segments and time lags defined as 

𝒓(𝑾𝒙, 𝑾𝒚) =  
𝟏

𝑻𝑾
෍

(𝑾𝒙𝒕 − 𝑾𝒙തതതതത)(𝑾𝒚𝒕 −  𝑾𝒚തതതതത)

𝒔𝒅(𝑾𝒙)𝒔𝒅(𝑾𝒚)

𝑻𝒘

𝒕ୀ𝟏

 

Where 𝑻𝒘 is the total amount of observations (i.e., data points) in each window 𝑾𝒙 

and 𝑾𝒚 consisting of observations 𝑾𝒙𝒕 and 𝑾𝒚𝒕 where 𝒕 Є {1, …, 𝑻𝒘), 𝑾𝒙തതതതത and 𝑾𝒚തതതതത are the 

means of the observations in each window, and 𝒔𝒅(𝑾𝒙) and 𝒔𝒅(𝑾𝒚) the standard deviations 

of each window. In the result matrix, each row represents one window, while each column 

represents one lag. Because the first window needs to have “enough space” to lag the 

segments up to the maximum lag and because the window includes more than one data point, 

the number of rows is given by (N – wSize – tMax) / wInc. Diving by wInc accounts for how 

many observations are skipped between one window and the next one. For example, if the 

window increment is one, then the number of rows of the result matrix will be equal to the 

number of observations of the time series (after accounting for the window size and maximum 

lag as just described). But if the increment is 10, then the steps are bigger between the 

windows, reducing the number of segments needed to cover the whole time series and 

therefore decreasing the number of rows in the result matrix. The number of columns in the 

result matrix is (tMax * 2)/tInc + 1 because the segments are shifted such that first Participant 

1 and then Participant 2 precedes the other participant up to the maximum lag (i.e., twice the 

tMax). The tInc accounts for the size of the steps between two lags. The extra column (+1) 

represents the case where the lag is zero.  

Peak picking. Following the WCC analysis, Boker et al. (2002) developed the so-

called peak-picking algorithm where the maximum correlation across different lags is 

(1) 
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determined for each window (i.e., the maximum correlation per row of the result matrix). The 

maximum correlation should be preceded and succeeded by lower correlation values. For 

example, if Participant 1 synchronizes with Participant 2 at a lag of 1 second, then the 

correlation should be highest (i.e., peaks) at that time lag and the correlation should be lower 

at both lag .5 and 1.5 seconds. This “peak” criterion is implemented to ensure that individuals 

indeed react to one another. If both individuals did nothing, they both would show more or 

less flat lines in their physiological responses and the correlation between their signals would 

be high for all lags. Requiring a peak in the correlation across lags prevents such events from 

being termed “synchrony”. The peak-picking algorithm outputs a matrix with the maximum 

(“peak”) correlation and its corresponding time lag for each window. In a last step, a summary 

statistic is computed by calculating the mean of the maximum correlations. This measure 

provides an indication of the overall level of synchrony between the two time series.   

Choosing values for parameter configurations 

As mentioned above, there are four parameters that need to be specified: window size, 

window increment, maximum lag, and lag increment. The window size (wSize) determines 

how long each window is, the window increment (wInc) indicates the size of the steps 

between two adjacent (overlapping) windows, the maximum lag (tMax) regulates how far the 

segments of the two time series are shifted away from each other, and the lag increment (tInc) 

determines the size of the steps with which the segments are shifted. 
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Figure 3. Examples of WCC analysis plots using heartrate data and a window size and a 

maximum lag of (a) 8 sec and (b) 20 sec, representing a “good” and “bad” example of 

parameter settings, respectively. Between around 100 and 200 seconds, people engage in a 

breathing exercise where they breathe synchronously which is reflected in the steadily high 

correlations around the time lag of zero.  

To choose the range of values we considered for the window size and maximum lag 

parameters, we employed a bottom-up approach by running preliminary WCC analyses on the 

whole time series (including all data of the study). Inspecting the result matrix plots, we 

examined the patterns seen in these plots. Examples of a “good” and “bad” parameter 

configurations are shown in Figure 3. Good parameter configurations show sharp contrasts 

a) 

b) 
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between regions of high and low synchrony. The bad choices show a more smoothed image 

and thus less contrast between these regions, making differences more difficult to detect. With 

regard to the maximum lag, we examined the plots inspecting whether the peak correlations 

fell within the range of lags or whether they fell outside the plots (not shown in Figure 3). For 

reasons of simplicity, the range of maximum lags was equal to the range of window sizes. In 

addition to the visual inspection, we ensured that the range of parameters included the 

parameters previously used in the literature. Finally, the minimum value for the window size 

was set to 3 sec to include at least 60 data points (20Hz sampling rate) per window size which 

is in line with previous guidelines for reliably estimating correlation coefficients 

(Schoeneberger, 2016). The window size and maximum lag parameters chosen for each 

physiological measure are listed in Table 1. For the window and lag increment parameters, we 

used 
ଵ

ଵ଴
th of the window size and the maximum lag, respectively.  

Table 1 

Window size and maximum lag parameters used for each physiological measure 

Signal  Window size  Maximum lag 

Heartrate 4 – 12 sec in steps 

of ½ sec 

4 – 12 sec in steps 

of ½ sec 

Skin conductance level 5 – 25 sec in steps 

of 1 sec 

5 – 25 sec in steps 

of 1 sec 

Pupil size 3 – 9 sec in steps 

of ½ sec 

3 – 9 sec in steps 

of ½ sec 

Facial expression  3 – 9 sec in steps 

of ½ sec 

3 – 9 sec in steps 

of ½ sec 

Note. The window and lag increments were equal to 
ଵ

ଵ଴
th of the window size and the maximum 

lag, respectively. 
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Choosing the best parameter settings  

We conducted the WCC and peak-picking analyses for all combinations of the 

window size and maximum lag parameters with their corresponding increments as described 

in the previous section. For each parameter configuration, we calculated the mean peak 

correlation across window segments per dyad as the measure of synchrony. To determine the 

best parameter configurations for each physiological measure we used two criteria: (i) the 

ability to discriminate synchrony from pseudosynchrony, and (ii) the ability to detect change 

in synchrony. For the first criterion, we compared the original dyads consisting of the 

individuals who in fact interacted with each other during the experiment with the surrogate 

dyads consisting of all possible combinations of pairing individuals who did not interact 

during the experiment. If being in the specific social interaction evoked synchrony above and 

beyond the synchrony evoked by the fact of being in an actual interaction, synchrony levels 

are expected to be higher in the original compared to the surrogate dyads. Therefore, we 

calculated the mean peak correlation for both the original and the surrogate dyads and 

investigated whether specific parameter configurations were more sensitive to detect the 

difference between synchrony (original dyads) and pseudosynchrony (surrogate dyads). 

Sensitivity was quantified by the t-statistics of an independent t-test between the mean 

estimates of the two groups. A positive t-statistic indicates that the original dyads show higher 

levels of synchrony than the surrogate dyads. To determine the best parameter configuration, 

we located which configuration generated the largest t-statistic and inspected the pattern in 

changes of t-statistics across parameter configurations. Note that we used the t-statistic as a 

measure of distance between the two group means without running hypothesis testing (i.e., 

decide on whether the distance is significant or not). We therefore interpret the t-statistics in 

relative rather than absolute terms and do not draw any conclusions about whether the 

differences reveal significant results or not. The analysis was conducted with the data from 
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the first baseline measure (see Figure 1). To investigate whether the results of this analysis 

would replicate, we additionally conducted the same analysis again with data from the second 

baseline measure.  

For the second criterion, that is, which parameter configurations are most sensitive to 

detect change in synchrony, we concentrated on the original dyads and investigated which 

parameter configurations generated the biggest difference between two conditions of the 

experiment. We used the t-statistic based on a paired t-test as a measure of distance between 

the mean estimates of the two conditions. A positive t-statistic indicates higher levels of 

synchrony during storytelling than baseline. Similar to the first criterion, we identified the 

largest t-statistic and inspected the pattern in changes of t-statistics across parameter 

configurations. We also ran the analysis twice. First, we compared story 1 and story 3 with the 

two baseline measures. Second, we compared story 2 and story 4 with the two baseline 

measures (see Supplementary Materials for the reasoning behind the choice of these 

comparisons). To keep the length of the stories equal, we only used the first three minutes of 

each story. This way, both comparisons included a positive and a neutral story (a preliminary 

analysis yielded no differences between the positive and negative stories). The only difference 

was that in the first analysis, Participant 1 told the stories and in the replication analysis, 

Participant 2 told the stories. Being Participant 1 or 2 was based on the participant number 

and therefore should not have had any systematic impact on the synchrony level between the 

two individuals. Therefore, we could investigate whether specific parameter configurations 

were more sensitive than others to detect differences in synchrony levels when people just 

looked at each other compared to when they engaged in storytelling.    
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Results 

Synchrony versus pseudosynchrony 

Heartrate. There was a range of positive t-statistics indicating that multiple parameter 

configurations could differentiate between the original and the surrogate dyads (Figure 4a). 

The best discrimination (maximum t-statistic = 28.32) was evident for the smallest window 

size (4 sec) and a maximum lag of 7.5 sec (the most yellow combination in Figure 5a). When 

mapping the t-statistics distribution onto the parameter configuration space, a clear pattern 

emerged: the smaller the window size, the larger the t-statistics. This pattern was evident by 

the gradual changes in coloring from blue to yellow in Figure 5a when moving down the y-

axis (i.e., moving from large to small window sizes). When the window size became too 

large, the synchrony level dropped in the original dyads such that it became lower than the 

synchrony level apparent in the surrogate dyads (especially, when the maximum lag was 

small; dark blue coloring in Figure 5a).  

The maximum lag was less influential on differentiating between original and 

surrogate dyads than the window size, yet not trivial. The maximum t-statistic was evident for 

a maximum lag of 7.5 sec. The optimal maximum lag was therefore around twice the optimal 

window size (4 sec). Increasing or decreasing the maximum lag reduced the sensitivity to 

distinguish between the original and surrogate dyads as indicated by less yellow colors when 

moving left or right on the x-axis in Figure 5a. The replication analysis using data from the 

second baseline measure revealed similar results to the primary analysis and is depicted in 

Figure S1a-S2a. The maximum t-statistic (35.23) for a window size of 4 sec was replicated. 

The maximum lag differed slightly by 1.5 sec showing the highest t-statistic at 9 sec. 

However, the pattern was comparable with smaller window sizes and maximum lags around 

twice the window sizes yielding the largest difference between the original and surrogate 

dyads. In conclusion, if the aim of the study is to verify whether synchrony evolved as a result 
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of interpersonal processes during a conversation above and beyond the shared environment of 

two participant, the range of parameters able to detect that difference is rather wide. In 

general, we recommend using a small window size for heartrate synchrony. Regarding the 

maximum lag, the choice of parameters is less influential, however, we recommend using a 

maximum lag that is around twice the window size. 

Skin conductance level. As with heartrate synchrony, there was a range of parameter 

configurations with a positive t-statistic that was sensitive to distinguish the original from the 

surrogate dyads (see Figure 4b). The largest t-statistic of 37.71 was observed for a window 

size of 6 sec and a maximum lag of 24 sec (see Figure 5b). Similar to the heartrate data, the 

smaller the window size, the greater the distance in estimated means between the original and 

surrogate dyads. Also, the outcome flipped with higher synchrony levels for the surrogate 

compared to the original dyads when the window size was too large paired with a small 

maximum lag. In contrast to heartrate, the discriminative ability steadily increased when the 

small window size was combined with an increasingly larger maximum lag (around four 

times the window size). In the replication analysis, the same pattern emerged as for the 

primary analysis: the greatest discrimination was seen for a small window size and a large 

maximum lag (see Figure S1b-S2b). The largest t-statistic (48.71) was observed for a window 

size of 5 sec and a maximum lag of 21 sec. Again, when the window size became too large 

paired with smaller maximum lags, the analysis would estimate higher synchrony levels for 

the surrogate compared to the original dyads. Based on these results, we recommend using a 

small window size and a large maximum lag that is around four times the window size.  

Pupil size. The fair amount of positive t-statistics depicted in Figure 4c indicates that 

there was a range of parameter configurations that could differentiate synchrony from 

pseudosynchrony. The maximum t-statistic of 16.12 was associated with a window size of 3 

sec and a maximum lag of 9 sec. The general pattern as for the other measures was observed: 
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the smaller the window size, the greater the difference between the original and surrogate 

dyads (see Figure 5c). Again, when the window size became too large, the estimates of 

synchrony level would become larger for the surrogate compared to the original dyads. With 

respect to the maximum lag, it was less influential than the window size, but showed a slight 

tendency to larger maximum lags. A similar pattern was observed for the replication analysis 

with a maximum t-statistic (18.04) evident for a window size of 3 sec and a maximum lag of 

6.5 sec (Figure S1c-S1c). In conclusion, smaller window sizes were more sensitive to 

distinguishing synchrony from pseudosynchrony in pupil size data. The maximum lag did not 

have as much of an impact, but should be set to two to three times the window size.  

Facial expression. All t-statistics were positive indicating that the level of synchrony 

was higher for the original compared to the surrogate dyads for all parameter configurations. 

However, compared to the other three measures, the distribution showed less variance with t-

statistics ranging from 1.68 to 5.14 (see Figure 4d). The latter was observed for a window size 

of 3 sec and a maximum lag of 5 sec. As shown in Figure 5d, the same pattern as for the other 

three measures emerged: the smaller the window size, the better the original dyads could be 

distinguished from the surrogate dyads. Furthermore, the maximum lag did not have a great 

impact on the discriminative ability, but the largest t-statistic was observed at almost twice the 

window size (5 sec). For the replication analysis, a similar pattern was observed (Figure S1d-

S2d) with a slightly wider range of t-statistics (maximum = 7.05; minimum = -.16). The 

maximum t-statistic was associated with a window size of 3 sec and a maximum lag of 8.5 

sec. Again, the smaller the window size, the greater the difference between synchrony and 

pseudosynchrony with limited impact of the maximum lag. In conclusion, we recommend 

using a small window size and a maximum lag that is two to three times the window size.  
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Figure 4. Distribution of t-statistics of the comparison between the original and surrogate 

dyads for each physiological measure. A positive value indicates higher synchrony level in 

the original compared to the surrogate dyads. Each data point represents one parameter 

configuration. For the analyses, data from the first baseline measure were used.  
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Figure 5. Distribution of the t-statistics of the comparison between the originate and surrogate 

dyads for all parameter configurations and each physiological measure. The color coding runs 

from the lowest (blue) to the highest (yellow) t-statistic. A positive t-statistic indicates that the 

original dyads showed higher synchrony levels than the surrogate dyads. The more yellow, 

the better the discrimination between the original and surrogate dyads. Data from the first 

baseline measure were used. Notice that the scaling of the axes and the color coding are 

adjusted to each physiological measure to increase comparability between parameters.  

Change in synchrony 

Heartrate. The largest absolute t-statistic was negative indicating that synchrony 

levels were higher during baseline compared to during storytelling (see Figure 6a). The 

highest absolute t-statistic of 4.86 was observed when the window size was set to 4 sec. 

Similar to the first comparison analysis, smaller window sizes could discriminate the two 
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conditions better than large window sizes (see Figure 7a). Also, the maximum lag was less 

influential than the window size parameter, but the best outcome was observed for the 

smallest maximum lag of 4 sec. The absolute t-statistic steadily decreased with increasing 

maximum lags. For the replication analysis, the results were similar to the primary analysis, 

with smaller window sizes showing the greatest discriminative power between the conditions 

(see Figure S3a-S4a). Specifically, the largest absolute t-statistic was again observed for a 

window size of 4 sec. The maximum lag increased from 4 to 7 sec in the replication analysis 

with only slight changes across maximum lags. Therefore, based on both analyses the 

conclusion is: if the aim is to distinguish synchrony levels in heartrate responses between two 

(within-subject) conditions, the smaller the window size, the better. The maximum lag is less 

influential, but should be equal to or twice the window size.  

Skin conductance level. All t-statistics were negative indicating that the level of 

synchrony was higher during the baseline measures compared to during storytelling (see 

Figure 6b). The highest absolute t-statistic of 4.37 was observed for a window size of 18 sec 

and a maximum lag of 25 sec. Interestingly, the previous pattern of smaller window sizes 

showing greater t-statistics was not evident (see Figure 7b). In fact, although there seemed to 

be a slight tendency for absolute t-statistics to become larger with larger window sizes and 

larger maximum lags, the pattern was rather weak. In addition, the difference between t-

statistics was small ranging from -1.61 to -4.37. For the replication study, the range was also 

rather narrow from -.19 to -2.56 (see Figure S3b-S4b). The maximum absolute t-statistic was 

observed for a window size of 5 sec and a maximum lag of 12 sec, deviating substantially 

from the primary analysis. Although the general pattern (i.e., the smaller window size, the 

higher the t-statistic) was observed to a stronger degree compared to the primary analysis, it 

was still weak. In conclusion, given the lack of clear patterns in the parameter configuration 

space and considerable discrepancies in the results between the primary and replication 
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analyses, we cannot draw strong conclusions about which parameter configuration is best to 

distinguish between two conditions when looking at skin conductance level synchrony.   

Pupil size. For this measure, the parameter configurations strongly influenced whether 

synchrony levels were higher during baseline or storytelling (see Figure 7c). Generally, if 

both the window size and the maximum lag were small, synchrony levels were higher during 

storytelling; if the window size and maximum lag were large, synchrony levels were higher 

during the baseline measures. Specifically, the largest positive t-statistic of 1.72 (storytelling 

showed more synchrony) was observed for a window size of 3.5 sec and a maximum lag of 3 

sec. However, the largest absolute t-statistic of 2.07 (baseline showed more synchrony) was 

associated with a window size of 8.5 sec and a maximum lag of 9 sec. A similar, but weaker 

pattern was evident for the replication analysis (Figure S3c-S4c). The window sizes and 

maximum lags associated with the largest (absolute) t-statistic were the same as for the 

primary analysis. Given the ambiguity across parameters, we refrain from providing any 

recommendations about the best parameter configurations when the aim is to detect change in 

pupil size synchrony between conditions and instead pinpoint to the great effect parameter 

choices can have on the outcome of a study.  

Facial expressions. All t-statistics were positive indicating that the level of synchrony 

was higher during storytelling compared to baseline (see Figure 6d). The largest t-statistic of 

3.99 was evident for a window size of 3 sec (see Figure 7d). Albeit weak, the general pattern 

emerged with larger t-statistics being associated with smaller windows sizes. The maximum 

lag associated with the biggest difference between conditions was 3.5 sec, but the differences 

across lags were trivial. The replication analysis revealed similar results with the largest t-

statistic (4.53) observed for a window size of 3 sec (Figure S3d-S4d). The maximum lag of 9 

sec deviated from the primary analysis, however, the differences across the maximum lags 

were again rather small. To conclude, if the aim is to detect change in synchrony between two 
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conditions in facial expressions, then the window size should be set to a small value. The 

effect of the maximum lag was negligible, however, to be consistent with the other measures, 

we recommend a maximum lag twice the window size. 

 

 

Figure 6. Distribution of t-statistics of the comparison between storytelling and baseline for 

each physiological measure. A positive value indicates higher synchrony levels during 

storytelling compared to baseline. Each data point represents one parameter configuration.  
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Figure 7. Distribution of t-statistics of the comparison between storytelling and baseline of all 

parameter configurations for each physiological measure. The color coding runs from the 

lowest (blue) to the highest (yellow) t-statistic. A positive t-statistic indicates that the level of 

synchrony was higher during storytelling than during baseline. Analysis was based on data 

from both baseline measures and the first and third stories. Notice that the scaling of the axes 

and the color coding are adjusted to each physiological measure to increase comparability 

between parameters. Also, the highest t-statistic was not always the highest absolute value 

with the latter value being discussed in the result section. However, the general idea of greater 

(absolute) t-statistics indicating better discrimination between the two conditions remains.  

 

Discussion 

The phenomenon that people synchronize each other’s emotional expressions and 

physiological states has enchanted many researchers in different disciplines. Studying this 
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phenomenon comes with the challenge of statistically capturing the dynamic nature of a social 

interaction. Over the years, several methods have been developed that address this dynamic to 

different degrees and in different ways. One such method is the Windowed Cross-Correlation 

(WCC) analysis (Boker et al., 2002). It accounts for changes in the strength of synchrony 

throughout an interaction and in the different paces in which people respond. The method 

requires researchers to specify parameters that allow us to tailor the method to the signal of 

interest. Albeit increasing the method’s flexibility, there is a lack of guidelines on which 

parameters to use for which signal, which can have an impact on the outcome of the analysis. 

The aim of the current study was to statistically determine the most suitable parameter 

settings applied to four different physiological measures: heartrate, skin conductance level, 

pupil size, and activity of the zygomaticus major muscle (associated with smiling). To that 

end, we systematically investigated the influence of a range of parameter configurations on 

two criteria: (1) the ability to distinguish synchrony from pseudosynchrony, and (2) the 

sensitivity to detect change in synchrony (i.e., distinguish two within-subject conditions).  

Regarding the first criterion, the results revealed that a wide range of parameter 

configurations could distinguish between the original dyads and dyads that participated in the 

study, but never engaged in an actual interaction (i.e., surrogate dyads). Additionally, a 

general pattern across all physiological measures emerged: the smaller the window size, the 

better the discriminative ability to tear apart the original dyads from the surrogate dyads. In 

contrast, if the window size became too large, the estimated synchrony level dropped to such 

an extent that it became lower than the synchrony level estimated for the surrogate dyads. 

With respect to the second parameter, the maximum lag was generally larger than the 

corresponding window size. How much larger differed between physiological measures: the 

optimal maximum lag was two, four, and two to three times the window size for heartrate, 

skin conductance level, pupil size and facial expressions, respectively.  
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Regarding the second criterion, that is, the sensitivity to detect change in synchrony, 

the results were less clear cut. Here, we compared two baseline measures where people 

looked at each other in silent with periods where participants engaged in storytelling. For 

heartrate and facial expressions, the general pattern was visible with better discriminative 

ability between storytelling and baseline with smaller window sizes. For facial expressions, 

this pattern was, however, weak at best. Interestingly, differences across measures emerged of 

whether synchrony levels were higher during storytelling or baseline. (Almost) all parameter 

configurations for the heartrate and skin conductance level measures indicated higher levels 

of synchrony during baseline. For pupil size, both patterns emerged with small window sizes 

and maximum lags showing more synchrony during storytelling, whereas large window sizes 

and maximum lags revealed more synchrony during baseline. For facial expressions, 

storytelling showed higher levels of synchrony for all parameter configurations. Besides these 

differences between measures, the range of t-statistics within each measure was considerably 

smaller than for the surrogate data analysis, suggesting less variance between parameters. In 

the following, we will discuss our findings in depth and integrate them with theoretical 

considerations. In Table 2, we summarize the global recommendations on determining the 

parameter configurations. We hope that these guidelines provide researchers with information 

that assist them to make well-informed decisions about the optimal parameters for their WCC 

analysis. 

Synchrony versus pseudosynchrony - Window size  

We observed that a wide range of window sizes was able to distinguish between 

synchrony and pseudosynchrony. However, in general smaller window sizes were better. On 

the contrary, if the window size became too large, synchrony levels dropped to the extent that 

the levels became lower for the original dyads than the surrogate dyads. How can this general 

pattern across measures be explained? To understand it, let us quickly recapture the purpose 
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of the surrogate data analysis. As introduced above, the aim is to destroy any synchrony that 

is the result of interpersonal processes while preserving all other statistical properties by 

generating new dyads that participated in the study, but never actually interacted. 

Table 2 

Summary of global recommendations per parameter of the WCC analysis 

Parameter        Recommendations  

Window size - Lower bound: large enough to capture meaningful information and 

variance within the signal of interest 

- Upper bound: the response duration of the signal of interest; 

assumption of stationarity is met   

Maximum lag - Lower bound: at least as long as the window size 

- Upper bound: at most twice as long as the window size 

Window and lag 

increment 

- Lower bound: 1 datapoint 

- Upper bound: same as the window size / maximum lag 

- Balance computational time and resolution: 1-5% of the window 

size / maximum lag 

 

This way we know that the null hypothesis that there is no synchrony between participants is 

true. As the null hypothesis will be true independent of the parameter configurations, the 

distribution of cross-correlations stays constant across all parameters. In contrast, for the 

original dyads, synchrony does emerge, which we expected based on prior research. During a 

dynamic interaction, there are moments when dyads are in sync, but also out of sync (Boker 

& Rotondo, 2002). If the window size becomes too large, both moments of synchrony and 

“anti-synchrony” are likely to be included into one window segment, substantially reducing 

the strength of synchrony. This causes a drop in overall synchrony that can be lower than in 

the surrogate dyads with no synchrony at all (i.e., no synchrony and no “anti-synchrony”). On 

the other hand, decreasing the window size decreases the variance within a window causing 

the overall synchrony level to increase. Specifically, as seen in Equation 1, the cross-
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correlation is calculated by dividing the distance between each datapoint and the mean of the 

window segment by its standard deviation. The smaller the window size, the less chance for 

variation to occur within a window (i.e., the smaller the standard deviation), which causes the 

correlation to increase. Thus, while the distribution of correlation estimates stays constant for 

the surrogate dyads, the estimates for the original dyads increase with smaller window sizes. 

Consequently, the distance between the mean of these two groups becomes increasingly 

larger, causing the general pattern we see across the physiological measures. This pattern is 

therefore an intrinsic characteristic of the way the cross-correlation is estimated applying to 

all types of time series.  

The question then arises whether steadily decreasing the window size will also steadily 

increase the ability to distinguish synchrony from pseudosynchrony. This short answer is no. 

Imagine the extreme case, where the window size consists of two datapoints. These two 

datapoints hold very little information and would only allow possible correlation values of -1 

and 1. This reduces the sensitivity for measuring synchrony and therefore for distinguishing 

synchrony from pseudosynchrony. Consequently, somewhere between a window size 

containing two datapoints and the smallest window sizes we examined, there will be a turning 

point, where the two types of dyads will become distinguishable.   

Although statistically possible, making the window size as small as possible (but 

above the turning point) is not advisable for two reasons: (1) a sufficient number of data 

points are needed to reliably estimate correlation coefficients (Schönbrodt & Perugini, 2013), 

and (2) the window should capture a meaningful response. As outlined earlier, in order to 

reliably estimate a correlation coefficient, a recent study showed that 65 to 250 datapoints are 

necessary depending on the strength of the correlation. With a sampling rate of 20Hz across 

all measures, we therefore used a window size of at least 3 seconds (60 datapoints). If 

researchers want to decrease the window size, they should increase their sampling rate 
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accordingly. However, tapping into the second reason, a window size should include 

meaningful responses constricted by an upper and lower bound.  

In the current study, we have narrowed down the possible values for the window size 

parameter by showing a range of parameters that qualify as potentially suitable parameters. 

How can researchers choose between these options given by the current study? To answer this 

question, let us go back to the aim of cutting the time series into segments in the first place, 

namely, reducing the non-stationarity in the signals. A stationary signal has constant statistical 

properties with, among others, a constant mean and standard deviation within that signal. In a 

dynamic interaction, the strength of synchrony (our statistical property of interest) will vary 

with moments of strong and weak synchrony. The window size needs to be small enough such 

that the synchrony level stays constant within that window. Determining how small the 

window must be, depends on the nature of the signal and is contained by an upper and lower 

bound.   

Imagine smiles of two interaction partners are coded during a conversation such that a 

person either smiles or not. If the two participants smile at the same time for the same 

duration, there will be perfect synchrony between them for the entire duration of the two 

smiles (given an appropriate correlation measure for categorical variables). In this case, the 

window size could be as large as the duration of the smile because the level of synchrony is 

constant during that interval. However, if the smiling response occurs in a real conversation 

and is measured continuously reflected in the activity of the zygomaticus major (as in the 

current study), there are variations in latency, magnitude and duration of the smiles within and 

between individuals. In this case, the level of synchrony is likely to change even within the 

window that would have been categorized as a “smile” in the artificial categorical scenario 

just described. For example, one person might show a long, pronounced smile, while the other 

person might smile later and shorter. Then the synchrony would only occur during the short 
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time where both people smile simultaneously. Therefore, the window size should be smaller 

than the duration of a “typical” smile to capture these variations. More specific, we 

recommend a window size that is at most half the response duration, such that at least two 

estimates of the level of synchrony will be computed for that response capturing changes in 

synchrony that are twice the speed of the overall response.  

Besides the upper bound of choosing a window size smaller than the response duration 

of interest, there is a lower bound as well. In particular, the window size should be large 

enough to capture meaningful variations within a response. For example, if the signal of 

interest is skin conductance level, a window size of 1 second would contain straight lines in 

most windows. This produces extreme cross-correlations without capturing meaningful 

changes in the signal. On the other hand, applying the same window size to facial expressions 

might be considered a medium to large window given that a smile has been shown to last 

500ms to 4 seconds (Frank, Ekman, & Friesen, 1993). Both the upper and lower bound 

therefore determine the potential values for the window size.  

When talking about “the duration of a response” we realize that this can be difficult to 

define as physiological measures show great variations within and between individuals. In the 

section “physiological boundaries” below, we provide an overview of the “typical” temporal 

characteristics of each physiological measure realizing that this overview is far from being 

exhaustive. It is beyond the scope of the current paper to provide concrete guidelines for this 

matter and it is up to the researcher to decide on which responses she is interested in. As the 

most suitable (range of) window size(s) likely differs across situations and conditions, 

choosing a window size should be seen as a hypothesis that is tested, namely, that responses 

synchronize that are equal to or longer than the window size chosen. Although faster 

responses are still included in the window segments, they are likely to be averaged out and 

refined changes in the faster responses will be undermined. On the other hand, responses that 
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take longer are “cut-off”, so these slower responses are consequently not properly represented 

in the analysis. If the researcher has no strong a priori hypotheses, multiple window sizes can 

be tested across a range of possible values taking a data-driven bottom-up approach to 

determine the best parameter choice. Obviously, it is not realistic that researchers perform 

such elaborated analyses as in the current study, however, comparing two to three potential 

values can shed light on the rate at which synchrony occurs in a particular context. Of course, 

it is unlikely that people will synchronize on one specific response duration only, so one 

would expect more similar results for window sizes closer together. However, referring to 

“skin conductance synchrony” based on one parameter setting is likely an overgeneralization 

and needs more detailed investigation. 

To conclude, the results of the current study indicate that a range of window sizes is 

able to detect synchrony that occurs as a result of interpersonal processes with a preference 

for shorter window sizes. From a theoretical perspective, the range of potential window sizes 

is contained by (i) an upper bound defined by the length of the duration of the responses under 

investigation and (ii) a lower bound defined by sufficient variation within the window. Rather 

than searching for that one most suitable parameter for each physiological measure, choosing 

a window size should be seen as a hypothesis being tested. Importantly, researchers need to be 

specific about what aspect of a signal they investigate which should be clearly stated in both 

their hypothesis and conclusions. 

Synchrony versus pseudosynchrony: maximum lag  

Our results revealed that the maximum lag was less influential than the window size, 

yet not trivial. In contrast to the window size, the optimal maximum lag differed between the 

physiological measures. For heartrate, pupil size, and facial expression, the optimal maximum 

lag was around 5-10 seconds. Skin conductance level deviated from the other measures with 

the optimal parameter being around 20-25 seconds. This is consistent with the fact that skin 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.27.269746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.269746
http://creativecommons.org/licenses/by-nc-nd/4.0/


QUANTIFYING PHYSIOLOGICAL SYNCHRONY                                                                  37 
 

 
 

conductance level is a considerably slower signal compared to the others. However, it 

contrasts the finding reported by Robinson and colleagues (1982) who showed that synchrony 

in skin conductance response within, but not outside the range of 7 sec was associated with 

the empathetic relationship between therapists and clients. Such discrepancy can be explained 

by the fact that while these authors concentrated on the phasic response, we have focused on 

the tonic, slower responses. This underscores the importance of being specific about what 

aspect of a signal the researcher is interested in and shows again the importance of the 

theoretical consideration for choosing the parameter configurations for the WCC analysis. In 

the following, we aim to provide the reader with a sense of how the maximum lag influences 

the analysis.  

Essentially, the maximum lag indicates how far responses between participants can lie 

apart that can still be considered a response to one another. Thus, similar to choosing the 

window size, the maximum lag considerably depends on the interest of the researcher. Given 

their link, it seems reasonable to choose the maximum lag in relation to the window size. In 

line with our findings, we recommend using a maximum lag that is equal to or twice the size 

of the window. For simplicity, let us assume that stationarity is met for the length of a full 

response, all response cycles have the same length and the window segments start at the 

beginning of a new response. If the maximum lag is the same length as the window size, the 

window segment of Person A will be shifted away from the segment of Person B (and vice 

versa) until the two segments succeed one another with no overlap in time. When Person A, 

now later in time, shows a response, then Person B reacts right after the response of Person A. 

Thus, over the range of all considered lags, synchrony can happen between people being in 

sync (lag = 0) and people responding to each other in direct succession. In a similar vein, 

setting the maximum lag to twice the window size means that there can be up to a full 

response duration between the responses of the interacting individuals. For example, imagine 
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the measure of interest is facial activity and the window size is 2 seconds. If the maximum lag 

is 4 seconds, then two smiles that occur simultaneously up to the situation that they are 4 

seconds apart from each other are considered synchronized responses. The latter situation 

seems still reasonable in the context of a real conversation, yet on the upper limit. Therefore, 

expanding the maximum lag to 6 seconds likely increases the chance of linking two unrelated 

events to one another. The decision to set the maximum lag equal to or twice the window size 

depends on the researcher’s preference of what she considers reasonable in the context of 

interest. In a controlled environment with straightforward, stereotypical displays of emotions, 

a person should react rapidly and a smaller maximum lag might be sufficient. However, in a 

natural interaction where ambiguous expressions and verbal conversations require more 

elaborated processing, a response might take longer and therefore a larger maximum lag 

might be appropriate. In addition, the latency of a response itself is important, especially in 

relation to the response duration. For example, if a response is expected to be initiated rapidly, 

but last relatively long, a small maximum lag is sufficient. However, if the latency of a 

response is long and the duration of the response short, then a longer maximum lag is 

required. In sum, as a general rule of thumb we recommend a maximum lag of at least equal 

to and at most twice the size of the window size. 

We would like to point out that the results considerably deviated for the skin 

conductance level. While the three other measures showed the largest discrimination between 

synchrony and pseudosynchrony for a maximum lag that was about twice the window size, 

for skin conductance level it was four times (around 20-25 seconds). As described above, this 

is consistent with the fact that skin conductance level is a substantially slower response 

compared to the other signals. One might therefore argue that the associated window size of 5 

seconds might be too small capturing mostly responses with little meaningful variation. 

Increasing the window size might therefore be advisable, which then align with our 
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recommendation of choosing a maximum lag that is at most twice the window size. In 

conclusion, our findings revealed that from a statistical point of view, the maximum lag is less 

influential than the window size. Nevertheless, this does not safeguard the researcher from 

using any parameter and tailoring it to the nature of the signal of interest is essential. Here, we 

have provided more information about the meaning of the maximum lag and recommended to 

specify the maximum lag equal to or twice the window size. 

Window and lag increments 

In the current study, we have adjusted the increments such that the windows and lags 

moved by 10% of the window size and maximum lag, respectively. This was a choice of 

practicality, reducing the computational time in light of the huge amount of analyses run 

while keeping the resolution sufficiently high. As already mentioned at the beginning of the 

paper, both parameters determine the resolution of the changes occurring between window 

segments and lags. Ideally, the increments should be as small as possible (i.e., 1 data point). 

However, the increments heavily influence the computational time which is why researchers 

might want to increase these parameters. Nevertheless, the increments should never be set 

higher than the window size and maximum lag themselves. In case the lag increment is equal 

to the maximum lag, three situations are analyzed: people responding in sync (lag = 0), 

Person A responds to Person B with a delay of the maximum lag, and Person B responds to 

Person A with a delay of the maximum lag. For the window size, two adjacent segments 

would not overlap. If the increment would be greater than the window size, there would be a 

gap between two adjacent segments. This is problematic because moments of synchrony 

occurring during that gap are missed. Generally, unless researchers are specifically interested 

in one particular time lag, we recommend keeping the increment small in relation to the 

window size. Using the 10%-rule of thumb was fine for the current study, however, we 

needed to account for an enormous amount of analyses. We believe that reducing the 
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percentage to 1 to 5% offers a good balance between analysis sensitivity and computational 

time.  

Change in synchrony  

Besides the ability to detect synchrony, we also investigated the effect of the 

parameter configurations on the sensitivity to detect change in synchrony. The results were 

less clear-cut here. While for heartrate and facial expression synchrony, the general pattern of 

smaller window sizes increasing the discrimination ability was (weakly) apparent, it was not 

observed for skin conductance level and pupil size. Additionally, the primary and replication 

analyses sometimes showed large deviations. For example, for the skin conductance level, the 

greatest differences between conditions was apparent for a window size of 5 seconds in the 

primary analysis and 18 seconds in the replication analysis. On top of that, there were 

differences between measures and parameters in whether synchrony levels were higher during 

storytelling or baseline. In particular, for heartrate and skin conductance synchrony, (almost) 

all parameter configurations suggested higher levels of synchrony during baseline, whereas 

the reverse was evident for facial expressions. Such discrepancy might be explained by the 

function of the signal. Facial expressions are displayed for communicative purposes which is 

particularly important during storytelling where people react to one another more than during 

silent moments of eye-contact during baseline. While arousal levels also play a crucial role 

during conversations, during the baseline measure people could concentrate on each other 

nonverbally and were not “disturbed” by engaging in conversations, overall leading to higher 

synchrony during baseline. On top of that, the baseline condition consisted of two baselines 

measures with the second being preceded by the breathing exercise where participants were 

instructed to synchronize their breathing. This might have influenced the second baseline 

measure leading to higher overall synchrony levels. In general, given the lack of clear patterns 
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and inconsistencies between the primary and replication analyses, we refrain from giving 

recommendations for parameter configurations based on these results.  

The inconclusiveness of the results might be attributed to two potential explanations: 

(1) the difference between the two conditions was negligible and the sensitivity to detect such 

small differences was barely affected by the parameters; (2) there were differences between 

the two conditions, but the method was not sensitive to detect them. In support of the first 

explanation, in two previous studies, we have used parameters included in the current analysis 

with which we were able to detect differences in within-subject conditions and could link it to 

interpersonal outcomes (Behrens et al., 2019; Prochazkova, Sjak-Shie, Behrens, Lindh, & 

Kret, 2019). The method therefore has been shown to be sensitive in other contexts. However, 

future studies are needed to address this question using either simulated data or more extreme 

conditions where the difference is more pronounced and possible differences between 

parameters are more likely to show. 

Physiological boundaries 

Every physiological measure has its temporal characteristics and we will give a short 

overview for each of the four measures considered in the current study. First, the time course 

of heartrate is controlled by several physiological processes that can operate to varying 

degrees depending on the situation and psychological process of interest. Generally, 

parasympathetic nervous system activity slows the heartrate down, while sympathetic activity 

increases heartrate. While parasympathetic activity is associated with fast changes in heartrate 

and is predominantly related to breathing (changes within millisecond to second range), 

sympathetic activity takes more time to show and is attributed to changes in arousal levels 

(changes within second range) (Berntson, Cacioppo, & Quigley, 1991). The pace of the heart 

can change on a beat-by-beat interval and the peak of heartrate acceleration has been shown to 

occur within the first 4 seconds (Critchley et al., 2005). The duration of a response to an 
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external event (e.g., stimulus presentation) usually takes around 5-8 seconds, although full 

recovery from stressful events can take several minutes (Berntson et al., 1991; Bradley, 

Codispoti, Cuthbert, & Lang, 2001; Bradley, Miccoli, Escrig, & Lang, 2008; McAssey et al., 

2013).  

Skin conductance measures are indications of arousal resulting from sympathetic 

nervous system activity and are divided into tonic (skin conductance level) and phasic (skin 

conductance response) components. The tonic activity consists of gradual changes over time 

that vary considerably between and within individuals. It decreases during rest and increases 

more quickly in response to new events (Dawson, Schell, & Filion, 2000). The phasic activity, 

the high-frequency component of the skin conductance measure, is faster than the tonic 

response and reflects responses directly linked to an external or internal event. The latency of 

a response is usually between 1-3 seconds and the time to reach the peak amplitude takes 

between 1-4 seconds. The duration of a full response from stimulus presentation to 50% 

recovery of the amplitude after the response peak varies between 4 to 16 seconds (Dawson et 

al., 2000). This is consistent with a power spectral analysis showing that the sympathetic 

activity is reflected in frequencies between .045 - .25 Hz, corresponding to response durations 

of 22 and 4 seconds, respectively (Posada-Quintero et al., 2016).  

Changes in pupil size can result from both parasympathetic and sympathetic activity. 

Specifically, pupil constriction is mainly controlled by parasympathetic activity, whereas 

pupil dilation is an indication of sympathetic activity. Pupil size changes in response to light 

are rapid showing a constriction response 200ms after turning on the light (Mathôt, 2018). 

Pupil size changes in response to psychosensory processes are slower and vary with, among 

others, mental effort and saliency of the stimulus (for a review, see Beatty & Lucero-

Wagoner, 2000). The typical response is characterized by an initial constriction in response to 

the stimulus and subsequently, a more pronounced dilation of the pupil with a peak after 2 to 
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3 seconds and a total response duration of 4 to 6 seconds (Bradley et al., 2008; Kret et al., 

2015; Oliva & Anikin, 2018). 

Facial expressions consist of changes in facial muscles such as the zygomaticus major, 

associated with smiling, and the corrugator supercilii, associated with frowning. The duration 

of a facial response depends on whether researchers investigate subtle, rapid changes or full-

blown smiles in a natural conversation. For example, a facial response can occur as fast as 

200-300ms in response to stereotypical, controlled stimuli (Achaibou, Pourtois, Schwartz, & 

Vuilleumier, 2008). In a more natural setting, Frank, Ekman, and Friesen (1993) showed that 

a Duchenne smile of enjoyment lasts between 500ms to 4 seconds. Accordingly, response 

windows used in previous studies greatly differ ranging from 1.4 – 5 seconds after stimulus 

onset showing static images (Achaibou et al., 2008; Drimalla, Landwehr, Hess, & Dziobek, 

2019; Lang, Greenwald, Bradley, & Hamm, 1993), to 15 second intervals investigating facial 

activity in real-life interactions (Hess & Bourgeois, 2010). This section gives a brief glimpse 

into the temporal characteristics of the physiological measures we have focused on in this 

paper. However, we would like to emphasize that this overview is far from being exhaustive 

and researchers need more elaborated knowledge to make well-informed decisions about the 

signal of interest.  

Limitations 

 There are a few limitations that we would like to point out. First, in the current study 

we concentrated on the window size and maximum lag parameters, while setting the window 

and lag increments to 10%. A systematic investigation of the effect of changing these 

parameters is needed. As mentioned earlier, estimations of the level of synchrony will 

stabilize with smaller increments such that decreasing the increments even further will add 

little information at the cost of extra computational time. Although we propose to set the 

increments to 1-5 % of the window size and maximum lag, this suggestion is not based on 
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statistical analyses and future research is needed to determine the optimal balance between 

sensitivity and computational time. Second, the general guidelines we propose in Table 2 may 

not be generalizable to other measures of synchrony and may not be applicable to other 

biological time series. Researchers should therefore be careful with making any inferences 

about other statistical analyses and time series than used in the current study. Third, all data 

come from a single study and is subject to method variation. To reduce such variation, we ran 

all analyses twice with different data from the same study. However, this does not address 

method variations that are the result of the study itself and future studies should replicate our 

findings in a different dataset. Finally, we changed the original plan for the comparison of 

time intervals as outlined in “Choice of comparisons” in the Supplementary Materials. A 

more tailored study design may have observed more specific results, in particular with the 

regard to the sensitivity to detect change in synchrony.   

Future directions and conclusions  

The most important lesson the current study teaches us is that researchers need to be 

precise in what they (aim to) investigate as defined by the parameters specified in the 

analyses. In the current study, dyads synchronized on a range of response windows. However, 

this might not always be true, especially, if the aim is to link it to specific psychological 

processes that might be influenced by only particular physiological processes. Future studies 

are therefore needed that make more refined distinctions of which components of a particular 

physiological signal is involved in the process of interest and how the different components 

interact. This will facilitate making well-informed decisions about the response windows and 

shed more light on the biological underpinnings of psychological processes.  

Before making well-informed decisions on the parameter configurations within a 

particular method, it is important to realize what the differences are between methods. WCC 

analysis is one of many possible methods and each method has its strengths and weaknesses. 
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While one method might be appropriate for one, it might not be for another depending on, 

among others, the type of data (e.g., continuous or categorical measures) and the measure of 

interest (e.g., strengths versus frequency of synchrony; global versus time-sensitive measure 

of synchrony) (Gates & Liu, 2016; Schoenherr et al., 2018). For example, we chose to treat 

facial muscle activity as a continuous measure. However, researchers might also be interested 

in investigating concrete events of, for example, smiling and its synchrony in a conversation. 

Here, the analysis developed by Altmann (2011) might be appropriate where time series are 

first categorized into intervals of synchrony and intervals of no synchrony before measures of 

the strength and frequency of synchrony are computed. Despite using the same data, the 

outcomes can be somewhat different as demonstrated by Schoenherr and her colleagues 

(2018). Performing an exploratory factor analysis on seven linear time series analyses and 

different outcome variables (among others the WCC analysis), they reported that all these 

methods measure the overall phenomenon of synchrony, but could be categorized into three 

correlated, yet distinct facets of synchrony: the strength of synchrony of the total interaction, 

the strength of synchrony during synchronization intervals, and the frequency of synchrony 

(Schoenherr et al., 2018). The WCC analysis as performed in the current study reflects the 

first facet. Researchers should therefore refine which facet of synchrony they are interested in 

and choose the appropriate methods accordingly.  

The aim of the current study was to optimize the parameters for the WCC analysis 

from a statistical point of view. The initial idea was to provide researchers with concrete 

guidelines on which specific parameters would be most appropriate for the four physiological 

measures. However, the results show that when the aim is to detect synchrony, the parameters 

follow a general pattern that is not specific to the signal of interest, but rather a result of 

intrinsic characteristics of how the cross-correlation is calculated. That does not mean that the 

parameters should not be tailored to the signal of interest. Instead, theoretical considerations 
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should be integrated with the findings observed in the current study. Here, there is no one-fits-

all solution, which might not be surprising given that we aim to capture a highly complex 

process. The current study narrows down the range of possible parameters and we provide 

guidelines on how to tailor the parameters further to the interest of the researcher. Being 

specific and transparent about these choices will increase the comparability across studies and 

add more and more pieces to the puzzle of understanding the phenomenon of synchrony.  
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