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Abstract 

Puumala orthohantavirus (PUUV) causes a mild form of haemorrhagic fever with renal 

syndrome (HFRS) called nephropathia epidemica (NE), regularly diagnosed in Europe. France 

represents the western frontier of the expansion of NE in Europe with two distinct areas: an 

endemic area (north-eastern France) where PUUV circulates in rodent populations, with 

detection of many human NE cases, and a non-endemic area (south-western France) where the 

virus is not detected, with only a few human cases being reported. France is thus a relevant 

country in which to study the factors that influence the evolution of PUUV distribution. In this 

study, we describe for the first time the isolation of two PUUV strains from two distinct French 

geographical areas: Ardennes (endemic area) and Loiret (non-endemic area). To isolate PUUV 

efficiently, we selected wild bank voles (Myodes glareolus, the specific reservoir of PUUV) 

captured in these areas and that were seronegative for anti-PUUV IgG (ELISA), but showed a 

non-negligible viral RNA load in their lung tissue (qRT-PCR). With this study design, we were 

able to cultivate and maintain these two strains in Vero E6 cells and also propagate both strains 

in immunologically neutral bank voles efficiently and rapidly. Complete coding sequences of 
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the S and M segments were determined by Sanger sequencing from RNA extracted from 

positive bank voles (naturally and experimentally infected) and from supernatants of Vero E6 

cell extracts. For the M segment, nucleotide sequences were 100% identical for both strains. 

For the S segment, the amino-acid sequences from each strain revealed one mismatch between 

sequences obtained from tissue and from cell supernatants, revealing distinct “bank vole” and 

a “cell” molecular profile. High-throughput sequencing confirmed Sanger results, and provided 

a better assessment of the impact of isolation methods on intra-host viral diversity. 

Text 

Orthohantaviruses represent an increasing threat to humans due to their worldwide distribution, 

the increase in the number of infections and the emergence or re-emergence of new viruses (1). 

Puumala virus (PUUV) is the main orthohantavirus circulating in France. This tri-segmented, 

enveloped RNA virus, hosted by a rodent, the bank vole (Myodes glaerolus), causes a mild 

form of haemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE) 

(2). About 100 cases of NE are reported annually in north-eastern France (3). 

In France, PUUV sequences have been studied in bank vole samples (4) and more recently in 

human samples (5), but isolated strains have never been cultured or maintained until now. 

Considering the adaptation capacity of PUUV to cell culture conditions and changes in 

infectivity induced by cell culture passages (6), obtaining a “wild-type” virus is a crucial step 

towards a better understanding of the biology of this virus. Unfortunately, due to its slow growth 

in cell culture, PUUV is often very difficult to isolate (7).  

In this study, we set out to determine a method for selecting bank voles containing live virus 

from which to isolate PUUV strains. Seto et al. (8) isolated PUUV from bank voles that 

harboured the orthohantavirus nucleocapsid protein (NP) in their lungs, but showed no 

antibodies against PUUV. This detection of infection coupled with the absence of antibodies 

probably corresponds to an active viraemic phase. We adapted the Seto et al. approach by 

screening our collections of bank vole samples (composed of voles captured in various French 
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forests over the last 10 years (4) (9)) for seronegative animals with high amounts of viral RNA 

in their lung tissue. Serum samples were assayed using IgG ELISA as already described (9) and 

viral RNA was extracted from lung homogenates using the QIAamp Viral Mini Kit according 

to the manufacturer’s instructions (Qiagen). Quantitative RT-PCR was performed with 2.5 μL 

of viral RNA amplified using the SuperScript III One-Step RT-PCR system with Platinum Taq 

High Fidelity (Invitrogen) on a LightCycler 480 (Roche).  

More specifically, we screened bank voles captured in two distinct French geographical areas: 

(1) an NE endemic area: Ardennes, where PUUV circulates in rodent populations and where 

many cases of human NE are detected (3); (2) a non-endemic zone: Loiret, where PUUV 

circulates in rodent populations and where no or very few cases of NE are diagnosed (4). We 

selected seven bank voles captured in Ardennes during autumn 2011 (out of a total of 201 

animals captured during this trapping session) and one bank vole captured in Loiret in summer 

2014 (out of 44 animals). For our first isolation assays, we used a sample from Ardennes named 

Hargnies/2011 with the smallest cycle threshold value (Ct; i.e. 18.90 cycles) and a lung tissue 

sample from Loiret named Vouzon/2014 that showed a Ct of 23.65 cycles. 

From these two animals, we tried to isolate live viruses from lung homogenates (5% w/v). We 

tested many conditions, such as centrifugation (with or without), filtration (0.22 µM) and 

dilution (10-1 to 10-4) for homogenate preparation; cell confluence and numbers of cell passages 

before infection (16 or 43) for cell culture and different infection methods between the three 

passages before isolation (supernatant, transposition or co-culture). The conditions that led to 

the in vitro isolation of the two viral strains consisted of the use of the lung homogenate 

centrifuged (300 rpm for 10 min), not filtered, diluted to 10-1 and applied to low-passaged Vero 

E6 cells (16 passages) in DMEM (Dulbecco′s Modified Eagle′s – Medium) supplemented with 

5% foetal calf serum (Gibco) and cultured to hyper-confluence (1x106 cells for one well in P6). 
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It was necessary to carry out three successive passages to reach a sufficient quantity of live 

viruses. These passages were carried out using “co-culture”: a quarter of the initially infected 

cells were transferred to a culture of non-infected cells (2x105 cells/well in P6) accompanied 

by 500 µL of the supernatant from the infected culture added to 2 mL of fresh media.  

The viral load measured in the supernatant of Vero E6 cells increased substantially: -15.2 Ct 

and -12.8 Ct for Ardennes - Hargnies and Loiret – Vouzon, respectively (Figure 1A). 

Moreover, at the end of cell isolation, viral titre was 1.6x104 focus forming units (FFU)/mL and 

1.5x104 PFU/mL for Ardennes - Hargnies and Loiret - Vouzon, respectively. After titration, 

their focus sizes were different to that of the PUUV control (Sotkamo strain) serially passaged 

in Vero E6 cells (Figure 1B). The focus size of cultivated viruses was smaller (in particular for 

Loiret - Vouzon) than Sotkamo foci. Phenotypic variations have already been described for 

PUUV titration assays (10). Altogether, these results show that we were able to select viral 

isolates from natural host tissue and cultivate them in cell culture.  

Furthermore, we carried out an in vivo isolation process that consists of biological assays on 

bank voles that were maintained at the ISS Institute (Rome, Italy). We used the same lung 

homogenates already used for the in vitro isolation process. We performed a subcutaneous 

injection of lung homogenate (5% w/v) on two animals for each strain. None of the inoculated 

animals showed clinical evidence of viral infection. Seven days after infection, we collected 

blood samples via retro-orbital sinus puncture and carried out PUUV serological detection and 

viral RNA analyses. We did not detect any anti-PUUV antibodies (Table 1), but we found viral 

RNA in all sera analysed. Viral loads were similar regardless of the PUUV strain (Ardennes - 

Hargnies and Loiret - Vouzon), indicating that our protocol led to the effective transmission of 

PUUV in these animals. Two days later, at nine days post-infection (D9), we euthanized the 

four bank voles by cervical dislocation. We found that all animals had seroconverted, with a 
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higher antibody titre observed for the Loiret - Vouzon strain (1/800) than for the Ardennes - 

Hargnies strain (animal 1: 1/200 and animal 2: 1/100). The RNA viral loads in sera had already 

decreased in all four animals analysed, but were still positive. We also analysed RNA viral 

loads in the lungs and liver, i.e. organs in which PUUV antigens have previously been detected 

(11, 12). We found high viral RNA loads (Table 2), which confirmed the effective infection of 

all animals by PUUV. 

Molecular analyses were carried out as already described (7) to assess PUUV levels during 

bank vole infection. RNA was extracted from lung tissue samples of positive bank voles 

(natural populations and experimentally infected) and from the supernatant of Vero E6 cells, 

then sequenced to obtain the complete coding sequence of the S and M segments (for a list of 

sequences and accession numbers, see Supplementary Table S1). RNA was amplified using 

RT-PCR and nested PCR as already described (4). PCR products were sequenced using the 

Sanger method. The S and M sequences from Ardennes - Hargnies and Loiret - Vouzon were 

aligned using the Clustal Omega alignment program implemented in Seaview 4.5.0 (13). 

Nucleotide sequences were translated into amino-acid sequences and analysed using SeaView 

4.5.0. For the M segment (3444 bp for coding region), the PUUV nucleotide sequences from 

Ardennes - Hargnies and Loiret - Vouzon were 100% identical for sequences obtained from 

lung tissue or cell supernatant. For the S segment (1304 bp for coding region), the amino-acid 

sequences from Ardennes - Hargnies and Loiret - Vouzon revealed one mismatch between the 

sequences from lung tissue and cell supernatant (Figure 2). Therefore, isolation protocols (in 

vitro or in vivo) seemed to have influenced the amino-acid sequences of both PUUV strains. 

We then performed high-throughput sequencing (HTS) analyses to investigate these genetic 

variations further. More specifically, we assessed whether the different isolation protocols 

maintained the initial intra-host viral diversity detected in the original samples. We thus 
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characterized the viral variants pool at each step of the isolation process. The PUUV S segment 

(1750 bp) was sequenced using MiSeq Illumina technology with 10 overlapping amplicons 

(named A to J) of about 250 bp (see Supplementary Table S2). To do so, 300 ng of viral RNA 

from supernatant of Vero E6 cells and 1500 ng from lung tissue of infected rodents were 

reverse-transcribed using the SuperScript III First-Strand Synthesis System (Invitrogen) 

according to the manufacturer's instructions. The reverse-transcription reaction was performed 

with 2 µM of primers PUU1F1 (5'-CCTTGAAAAGCTACTACGAG-3') and PUU1R1 (5'-

CCTTGAAAAGCAATCAAGAA-3') and with 50 ng of random hexamers provided in the kit. 

The sequencing libraries were prepared using a two-step PCR strategy adapted from Galan et 

al. (14) (see Supplementary information S3) and combined in a multiplex sequencing approach 

using unique dual indices (UDI) (15): each 9-bp i5 and i7 dual index was used only for one 

PCR sample without combinatorial indexing to ensure that libraries were sequenced and 

demultiplexed with the highest accuracy without any “leakage” between libraries (16). The 

libraries were sequenced on a MiSeq platform (GenSeq, Montpellier, France) with a 500-cycle 

reagent kit v2 (Illumina). A run of 250 bp paired-end sequencing was performed. The sequences 

were analysed with the data pre-processing tool FROGS (Genotoul) (17) and chimeric variants 

were removed using the isBimeraDenovo function of Dada2 R package (18). Each sample was 

analysed independently (qRT-PCRs, PCR amplifications and sequencing) using at least three 

PCR replicates to distinguish the true genetic variants and the artefactual mutations due to 

polymerase or sequencing errors. Mutations below a threshold of 0.32% were removed (see 

Supplementary information S4). Validated variants were aligned and analysed using SeaView 

5.0 (13). Two indices were used to compare the viral diversity between the two isolation 

protocols and the two strains: the number of polymorphic sites (19, 20) and the mean percent 

complexity (the number of unique sequence reads/total reads × 100) calculated on the 10 

amplicons (21). A Kruskal-Wallis test followed by a Dunn multiple comparison test was 
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conducted to compare the mean percent complexity between strains of different origin (in 

natura, in vitro or in vivo).  

In natura, the viral diversity of the Ardennes - Hargnies and Loiret - Vouzon strains were 

similar. We found no difference in the number of polymorphic sites or in the mean percent 

complexity between areas. After the in vitro isolation process, one variant of the Ardennes - 

Hargnies strain (R63), mostly found in natura, switch to another major variant, such as Q63. 

Nevertheless, R63 was still present at a high frequency (about 23%) instead of a Viral diversity 

decreased after the cell culture passages, regardless of the diversity index considered. The 

Loiret - Vouzon strain, as observed with Sanger method, showed a change in the major variant 

from A28 to S28. However, HTS results were contradictory: the number of polymorphic sites 

increased, but the mean percent complexity remained stable. The in vitro isolation process lead 

to a significant difference in viral diversity between PUUV strains, but not in the same way for 

both strains (Figure 3A).  

After the in vivo isolation process, we detected a lower number of polymorphic sites compared 

with the natural strains. However, we found no significant difference in the mean percent 

complexity between PUUV strains or in in natura and in vitro conditions (Figure 3B). The 

sequence of the majority variant did not differ between these two conditions, regardless of the 

isolation protocol considered. Results were similar in bank voles infected with the same strain. 

Conclusion 

In this study, we were able, for the first time, to cultivate and maintain in cell culture two PUUV 

isolates from two distinct French areas. Molecular analyses of the S and M segments of PUUV 

originating from natural isolates, from experimentally infected bank voles and from cell 

cultures revealed only one amino-acid mismatch for the Ardennes – Hargnies and Loiret - 

Vouzon strains. Both mismatches were identified in cell culture. HTS confirmed this result, 
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thereby leading to the definition of a “bank vole” and a “cell culture” molecular profile. Having 

these two types of PUUV wild strain cultures is an important asset.  Cell-adapted strains provide 

well-characterized viruses that can be used for antiviral candidate studies or cell-level 

experiments to assess the role of apoptosis, PUUV propagation or control (22). Furthermore, 

wild strains maintained in their natural host can help contribute to improving our knowledge of 

PUUV ecology and evolution (23). The bank voles used in the in vivo experiments came from 

a “neutral” origin, i.e. not from Ardennes or Loiret. For the moment, bank vole-PUUV 

interactions are poorly documented, but may be a key point in viral diversity. 

This study also provides new evidence for a better understanding of regional epidemiological 

differences regarding the circulation of these PUUV strains in humans and in bank voles (4). 

Previous studies showed that there is significant inter-regional viral genetic diversity (4, 5, 24), 

which may explain, at least in part, the regional differences in NE epidemiological status in 

France. Here, we showed that the viral diversity of PUUV circulating in the NE endemic area 

(Ardennes) and in the NE non-endemic area (Loiret) evolve differently when passaged on Vero 

E6 cells. Further research dedicated to the characterization of the now-available French 

Puumala strains will help further our knowledge on the NE epidemiological situation. 
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Figure and table legends 

 

Figure 1: PUUV isolation with Vero E6 cells. 

Kinetics of PUUV RNA quantity during isolation process (A). Circles represent supernatants 

sampling. Picture of viral titration results (B) for Hargnies and Vouzon compared to Sotkamo 

referential strain. 

 

Figure 2: Comparison of S and M segment sequences. 

Synthesis of Sangers sequencing of S and M segments for Natural Isolates (sequence as 

reference), cell cultivated viruses and experimentally infected bank voles. 

Bank vole and cells drawing were designed by brgfx / Freepik 

 

Figure 3: 

Comparison of viral diversity after (A) in vitro and (B) in vivo isolation process. 
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Table 1: Serological results. 

Serological results of bank vole experimentally infected with lung homogenates from animals 

trapped from Hargnies and Vouzon. 

OD: Optical Density – ND: Not Defined 

 

Table 2: RNA detection results. 

RNA detection results of bank vole experimentally infected with lung homogenates from 

trapped animals at Hargnies and Vouzon. 
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Table 1 

Titration

OD Conclusion
Last + dilution 

(OD)

D7 811 0.09 - ND

D7 812 0.058 - ND

D9 811 0.14 + 200 (0.102)

D9 812 0.117 + 100 (0.104)

D7 791 0 .032 - ND

D7 792 0.029 - ND

D9 791 0.23 + 800 (0.105)

D9 792 0.227 + 800 (0.106)

Ardennes - 

Hargnies

Loiret - 

Vouzon

Capture area
Day post-

infection

Animal 

number

Antibody IgG-NPuu

IgG-ELISA
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Table 2 

Lung Liver Sera - Day7 Sera - Day 9

811 16.5 19.7 29.2 32.1

812 19.1 20,0 30.6 32.7

791 19.0 21,0 30.7 31,0

792 19.1 20.8 29.9 30.5

RT-PCR (mean Ct)

Ardennes - Hargnies

Loiret - Vouzon

D9

D9

Strain
Day post-

infection

Animal 

number

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.08.27.270181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.270181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ardennes - Hargnies 

S segment : R63 

S: Q63 

M: 100% 

S: R63, 100% 

M: 100% 

Naturally infected 

Loiret - Vouzon 

S segment : A28 

S: S28 

M: 100% 

S: A28 

M: 100% 

Naturally infected 

Figure 2 
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Figure 3 
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