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Highlight: 1 

Identification of genetic loci for phosphorus use efficiency in a multigenic population of Australian 2 

wheats grown on contrasting soils. 3 

Abstract: 4 

Phosphorus (P) is an essential plant nutrient and regular applications are essential in most farming 5 

systems to maintain high yields. Yet the P fertilizers applied to crops and pastures are derived from 6 

non-renewable resources. It is therefore important to find agronomic and genetic strategies for using 7 

this resource efficiently, especially since only a proportion of the applied P is absorbed by crops. The 8 

aim of this study was to identify Quantitative Trait Loci (QTL) for P use efficiency (PUE) in wheat using 9 

a Multiparent Advanced Generation InterCross (MAGIC) population grown in the field. The 357 10 

genotypes were arranged in paired plots with and without P fertilization. Yield and biomass were 11 

measured and PUE was calculated as either the performance of the genotype relative to the average 12 

response to fertilization, or the performance of the genotype relative to the average resilience in the 13 

absence of fertilization. Five trials were conducted over three years in Australia at three sites with 14 

contrasting clay and sandy soil types. 15 

Genotypic variation for response and resilience were identified in all trials with moderate to strong 16 

correlation with productivity with and without P between trials. Multiparent Whole Genome Average 17 

Interval Mapping (WGAIM) QTL analyses were conducted on the four traits (Biomass / Yield × P 18 

Response / Resilience) across the five trials and identified 130 QTL in total. QTL within 10 cM of each 19 

other were clustered into 56 groups that were likely to represent identical or linked loci. Of the clusters 20 

27 (48%) contained only a single QTL but 17 (31%) contained 3 or more in different trials or traits. This 21 

suggests multiple biological mechanisms driving PUE in different environments. Eight of the 56 groups 22 

collocated with QTL for seedling root hair length identified in the same MAGIC population in an earlier 23 

study. 24 
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Introduction: 32 

Phosphorus (P) is an essential macronutrient critical for many molecules and processes including 33 

nucleic acids, phospholipids, ATP, and phosphorylation reactions (Vance et al., 2003). P fertilizer is 34 

widely applied in Australia where soils are typically low in plant-available P. In 2016/17 2.4 MT of P 35 

fertilizers were applied to 23.8 million ha of land in Australia (Australian Bureau of Statistics, 2018). P 36 

fertilizers are a non-renewable resource because a large fraction of the world’s supply is derived from 37 

a few large deposits of rock phosphate.  The input costs associated with the production and delivery 38 

of P fertilizers are also rising and increasingly erode the profitability of crop production. The over-use 39 

of P fertilizers can lead to significant environmental harm as P enters waterways through soil erosion 40 

or leaching (Sharpley et al., 2001; Ulén et al., 2007). Hence improving the efficiency of P uptake and 41 

utilization by crops are important goals for breeders.   42 

Plants absorb P from the soil as soluble inorganic phosphate (Pi), mainly H2PO4
-  (Bieleski, 1973; Ullrich-43 

Eberius et al., 1984; Sakano, 1990; Schachtman et al., 1998). However, the concentration of soluble Pi 44 

in soils is often very low because Pi is rapidly adsorbed onto mineral surfaces, incorporated into 45 

organic compounds or bound by cations (e.g. Fe2+, Al3+, Ca2+) to form poorly soluble complexes. 46 

Consequently, Pi is poorly mobile and tends to accumulate in the upper layers of the soil. The 47 

absorption of Pi by plants can be limited by its slow rate of diffusion towards the root  (Shen et al., 48 

2011). Isotopic studies indicate that as little as 9-23% of applied Pi is utilized by wheat in the year of 49 

application (Mclaughlin and Alston, 1986; Sharpley, 1986; Mclaughlin et al., 1988). These sparingly-50 

available pools of P can be accessed by crops in subsequent years (Simpson et al. 2011) especially if 51 

plants have mechanisms to increase their solubility or to mine a greater volume of soil.  52 

Traits that improve the efficiency with which plants use Pi relate to Pi uptake, P utilization or P 53 

signalling pathways (Bovill et al., 2013). Therefore phosphorus-use efficiency (PUE) can be defined in 54 

various ways and at various scales depending on the constraints that restrict the uptake of Pi or its 55 

conversion into harvestable product. Pi uptake is influenced by root system architecture, symbiotic 56 

relationships with arbuscular mycorrhizal fungi, root exudates that improve P mobilisation in the soil, 57 

the expression of Pi transporters in the roots and xylem loading. An idiotypic root system architecture 58 

for maximizing Pi uptake might include shallow roots to enhance topsoil foraging, adventitious axial 59 

roots, more lateral roots and branching, and long root hairs. By contrast, traits that affect utilization 60 

enable plants to more efficiently convert the Pi absorbed into biomass and grain by recycling, 61 

remobilizing, and translocating the Pi to the most important tissues and prioritising metabolic 62 

processes. All these processes are controlled by signalling pathways that function at multiple levels 63 

including through gene expression with miRNAs and transcription factors; through protein 64 

modification (kinases, ubiquitination); and through sugar signalling. 65 

Consequently, the benefit of one strategy for improving PUE over another strategy depends on the 66 

nature of the constraint in each environment. Traits that improve Pi uptake efficiency will be more 67 

important for highly Pi-fixing soils (Manske et al., 2001), whereas traits that improve Pi utilisation 68 

efficiency will be more useful on soils where P availability in not limiting. Genetics and traits that 69 

improve PUE in an environment with one type of constraint may be of little benefit in another 70 

environment with a different constraint. Genetics and traits may even counteract each other since 71 

uptake and utilization can sometimes be negatively correlated (Wissuwa et al., 1998; Su et al., 2009; 72 

Rose et al., 2011). 73 

Varietal differences in the efficiency of nutrient uptake have interested researchers for many years, 74 

with studies on the “phosphorus feeding capacity” of maize genotypes appearing as early as 1936  75 

(Lyness, 1936). Bovill et al. (2013) suggested that breeding for yield potential under high P fertilizer 76 
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rates would passively increase PUE and there is some evidence that this occurs  (Batten, 1992; Ortiz‐77 

Monasterio R. et al., 1997; Egle et al., 1999). Nevertheless, it is likely that PUE can be improved still 78 

further by targeted breeding for specific traits. 79 

Most genetic studies of PUE in wheat have used biparental populations in pot trials or hydroponic 80 

experiments and relatively few incorporated full-season field trials. Furthermore, most used winter 81 

wheats and low-density genetic maps. Nevertheless, these reports provide a useful basis for further 82 

work.  83 

Su et al. (2006) identified 39 QTL for “P deficiency tolerance” in a pot trial by screening a doubled 84 

haploid (DH) population generated from Lovrin10 and Chinese Spring parents. Three major QTL 85 

clusters were identified on chromosomes 4B, 5A, and 5D, the latter two being linked with the 86 

vernalisation genes Vrn-A1 and Vrn-D1. The winter alleles of VRN1 genes on 5A, 5B, and 5D were later 87 

implicated in shallower root angles in wheat (Voss-Fels et al., 2018). Su et al. (2009) subsequently 88 

performed pot experiments and field trials using DH lines from winter wheat parents Hanxuan 10 and 89 

Lumai 14. They measured P uptake and biomass in different P treatments and detected a total of 195 90 

QTL, seven of which were strongly linked with uptake efficiency and six with utilization efficiency. P 91 

uptake efficiency tended to be negatively correlated with utilisation efficiency in that study and only 92 

two loci on 3A and 3B positively influenced both traits. 93 

Guo et al. (2012) used hydroponic experiments to estimate nutrient-use efficiency for N, P, and K in a 94 

set of recombinant inbred lines (RILs) of winter wheat (Chuan 35050 and Shannong 483). Of the 380 95 

QTLs detected almost half co-located in 10 clusters some of which were associated with improved 96 

uptake and utilisation of all three nutrients. Zhang and Wang (2015) also used hydroponics to score 97 

three sets of RILs for a range of traits. They identified 110 QTL with 28 of the major QTL falling into 18 98 

clusters. Yuan et al. (2017) studied a range of traits on seedlings and mature plants in 184 RILs 99 

(TN18/LM6) in hydroponic screens and field trials at low and high P. A total of 163 QTL were identified, 100 

many of which co-located into 10 clusters on chromosomes 1A, 1D, 4B, 5D, 6A, and 6B. PUE was 101 

strongly correlated with various measures of biomass and yield in seedlings and mature plants and 102 

the authors concluded that some simple morphological indexes could be used by breeders to evaluate 103 

PUE on a large-scale. 104 

Ryan et al. (2015) screened two biparental populations for biomass in a series of glasshouse 105 

experiments using a highly P-fixing soil. Seven significant QTL were identified from a set of RILs (Chuan 106 

Mai 18/ Vigour 18), with the largest on 7A, and nine QTL were detected in a DH population (Kukri/Janz) 107 

with two located on chromosomes 4B and 4D (likely Rht-B1a and Rht-D1a) accounting for 25% of the 108 

total variance. The authors concluded that early vigour contributed positively to PUE in both 109 

populations.  110 

Yang et al. (2021) screened a DH population, derived from Yangmai 16 and Zhongmei 895, for seedling 111 

root and biomass traits in hydroponics in zero, low, and high P conditions. Using a ~10 k marker linkage 112 

map they identified 34 QTL in 7 clusters with pleiotropic effects on traits including root length, the 113 

number of root tips, and root surface area. 114 

The aim of the present study was to identify QTL for ‘P responsiveness’ and ‘P resilience’ in wheat, 115 

both of which are independent of the standard measures of productivity, biomass and grain yield. The 116 

benefit of being independent of absolute productivity at a given P level is that any QTL identified are 117 

likely to be specific for PUE. Explanations for these traits are provided later.  118 

We used a Multiparent Advanced Generation InterCross (MAGIC) population constructed from four 119 

successful Australian cultivars from different regions of the Australian wheatbelt (Huang et al., 2012, 120 
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2013). The MAGIC methodology enables the identification of many small effect QTL and is well-suited 121 

for studying PUE at multiple sites across Australia. The same population has previously been used to 122 

identify QTL for hair length (Delhaize et al., 2015), coleoptile and seedling growth (Rebetzke et al., 123 

2014), paired spikelet formation (Boden et al., 2015), grain dormancy (Barrero et al., 2015), and 124 

canopy architecture (Richards et al., 2019). Some of these traits may also affect nutrient efficiency. 125 

For instance, long root hairs have been identified as a PUE trait in controlled environment studies 126 

(Gahoonia and Nielsen, 1997, 2003), and simulations suggest root hairs may be responsible for 50% 127 

of plant P uptake (Ruiz et al., 2020).  128 

Methods 129 

Plant material 130 

The MAGIC population was constructed from four Australian wheat cultivars (Baxter, Chara, Westonia, 131 

and Yitpi) grown in different regions of the Australian wheatbelt. Used in conjunction with a high-132 

density genetic map and a 90K single nucleotide polymorphism (SNP) chip (Cavanagh et al., 2013; 133 

Wang et al., 2014) it is specifically designed for mapping many small-effect QTL (Huang et al., 2012, 134 

2013).  Our trials used a subset of the population comprised of 357 semi-dwarf genotypes (Huang et 135 

al., 2013) which were chosen to maximise allelic diversity. All genotypes in the population carried the 136 

Rht-B1 or Rht-D1 alleles and excluded tall and double-dwarf genotypes. Another group of wheat 137 

cultivars were included in the trails (usually 11 to 17) to calibrate the measurements of biomass 138 

between quadrat sampling and Light Detection and Ranging (LIDAR) instruments. 139 

Field Trials 140 

Trials were conducted on farmers’ fields at Ardlethan in New South Wales (NSW), Wallaroo in the 141 

Australian Capital Territory (ACT), and York in Western Australia (WA) (Table 1). The sites were 142 

identified as being P responsive for wheat growth as determined with a bioassay, with plant available 143 

P measured using the Colwell P assay (Colwell, 1963). For the bioassay rows of wheat seedlings (cv. 144 

Scepter) were sown into a tray of topsoil (0-10 cm depth) with and without triple superphosphate 145 

(19% P; 100 mg kg-1 P where applied). They were grown in the glasshouse for 10 days and then seedling 146 

size was assessed to establish if there was a response to P fertilization. 147 

In the field, genotypes were sown in paired plots with and without the P fertilizer treatment (0 and 30 148 

kg P ha-1 respectively), applied as triple superphosphate which was added with the seed in runs of the 149 

plot seeder at sowing. The two P treatments were randomised to the runs within each successive pair 150 

of runs across the trial. Genotypes were randomised to the plots within each pair of plots formed by 151 

the intersection of ‘run pairs’ with ranges. The full set of genotype × treatment combinations were 152 

replicated across two blocks in each trial. The optimal randomisations for these designs were 153 

produced using the ‘od’ statistical software package (Butler 2019; Butler 2013) in the R statistical 154 

computing environment. 155 
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Table 1. Site Details 156 

 Ardlethan (NSW) Wallaroo 
(ACT) 

York (WA) 

Soil type Clay Clay Sand over Clay/Loam 

Phosphate 
Buffering 
Index (PBI) 

71 (Low) 50 (Very low) 28 (Very very low) 

Sowing 
Configuration 

6 m plots (5 m harvested). 100 
plants/m2 target. 6 rows, 0.33 
m spacing, 2 m centres. 

4 m plots (3 
harvested). 
180 
plants/m2 
target. 10 
rows, 0.18 m 
spacing, 2.2 
m centres. 

6 m plots (4 m harvested). 120 
plants/m2 target. 6 rows, 0.254 
m spacing, 1.75 m centres. 

 2017 2018 2018 2017 2018 

Latitude -34.142081° -34.134528° -35.174990° -31.939802° -31.940146° 

Longitude 146.854074° 146.855161° 149.044366° 116.898947° 116.903877° 

Sowing Date 2017-05-23 2018-06-05 2018-06-13 2017-06-06 2018-06-08 
 

Harvest Date 2017-11-23 2018-12-01 2018-12-19 2018-12-14 2018-12-17 

pH 4.6 5.3 4.7 5.1 4.6 

Colwell P (0-
10 cm) 

13.2 24.8 12.0 25.7 30.0 

 

Further details of the trials are found in Table 1. Nitrogen was supplied as urea prior to sowing and 157 

was top-dressed again at stem elongation with urea (timed with rainfall), or liquid N fertilizers (e.g. 158 

urea and ammonium nitrate liquid formulations - UAN). Muriate and sulphate of potash (KCl and 159 

K2SO4) were applied as required to ensure adequate K and S, as were micronutrients. Foliar diseases 160 

were managed with prophylactic fungicide and pesticide applications. Weeds were managed with 161 

district herbicide application practices at the recommended rates. 162 

The trial at York in 2017 was affected by Rhizoctonia. Damage to the plots was scored and the data 163 

used as a covariate in the spatial model of the trial to remove the effect on productivity. Affected parts 164 

of the plots were excluded from the measurement of biomass. 165 
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Figure 1. In-season weather relative to the climatic average. The top row shows the temperature and the bottom 166 

row shows the cumulative rainfall. The 30-year average (to 2017) is shown in blue, and the in-season 167 

observations are shown in pink. For temperature, the ribbon is the average daily maximum and minimum 168 

temperature, with the line the daily average with a loess smoother. 169 

Temperature and rainfall are summarised in Figure 1. Higher than average temperatures were 170 

experienced during grain filling for all trials except York 2018. A colder than average start was 171 

experienced at Ardlethan in 2017. The Ardlethan and Wallaroo trials experienced much lower than 172 

average in-season rainfall (rain events at the end of the season in Ardlethan 2017 and Wallaroo coming 173 

too late to contribute to productivity) whereas York experienced average rainfall. 174 

Phenotyping 175 

Biomass was measured using a terrestrial LIDAR phenotyping system, the Phenomobile-Lite, using a 176 

3D voxel index methodology (Jimenez-Berni et al., 2018). Four inner rows were sampled by quadrat 177 

from a subset of plots (between 44 and 84 plots were sampled per trial). Quadrat sizes varied from 178 

0.21 to 0.66 m2. A model of 301 quadrat cut biomass measurements (n=44–84 in each trial) and LIDAR 179 

biomass measurements was generated with a multiple R2 of 0.88; indicating that the two 180 

measurements were comparable. However, the LIDAR measurements integrated a larger area of the 181 

plot, were less susceptible to handling losses, and were faster to perform; factors that made LIDAR 182 

the method of choice. 183 

Yield was measured with a trial plot header. 184 

Statistical analysis and QTL mapping 185 

Analysis methodology followed that described in McDonald et al. (2015).  First, for each productivity 186 

measure (yield or biomass) a Multi-Environment Trial (MET) analysis of the combined data of the 5 187 

trials was conducted using a linear mixed model formulation. The analyses accounted for the blocking 188 

and unit structure in the design of each field trial through the inclusion of corresponding random 189 

effects. Spatial effects such as large length scale trends or random run/range effects could also be 190 

accounted for by including appropriate random or fixed effects, and the presence of autocorrelated 191 
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error structure across run/ranges could also be modelled. The impact of Rhizoctonia infection in the 192 

York 2017 trial was accounted for by the addition of fixed linear trend and curvilinear spline 193 

components, as per Verbyla et al. (1999).   194 

Genetic effects were captured by the inclusion of a genotype by P treatment by environment term in 195 

the model, allowing the estimation of the genetic variance-covariance matrix across the treatment-196 

environment combinations (as there are 5 trials and 2 P treatments, a 10 by 10 matrix) and the 197 

associated genetic effect Best Linear Unbiased Predictors (BLUPs). Since estimation of the full 198 

unstructured genetic variance matrix can be computationally difficult (55 parameters to be 199 

estimated), it was instead approximated using the factor-analytic approach proposed by Smith et al. 200 

(2001, see also 2005). 201 

P response in each trial is defined using the conditional distribution of the true ‘with P’ genetic effect 202 

given the ‘without P’ genetic effect for each trial.  Under the normality assumption in the linear mixed 203 

model, the mean of this distribution is a linear regression of the ‘with P’ genetic effect on the ‘without 204 

P’ genetic effect (with zero intercept), with the regression slope parameter being the ratio of the 205 

genetic covariance between the two treatments to the variance of the ‘without P’ treatment genetic 206 

effect. Under this model, the residual is then the difference between the ‘with P’ genetic effect and 207 

the regression coefficient multiplied by the ‘without P’ genetic effect.  The estimated residual is found 208 

by replacing the genetic effects by their BLUPs, and the covariance and variance in the regression 209 

coefficient by their estimates found in fitting the linear mixed model.  The estimated residual is a 210 

measure of the P response.   211 

The regression slope for ‘with P’ response represents the genetic productivity increase per unit 212 

increase in the genetic effect under the ‘without P’ fertilization.  Thus, the residual for a genotype is 213 

the difference in the ‘with P’ genetic effect from the appropriately adjusted ‘without P’ genetic 214 

effect.   A large positive predicted residual indicates that the genotype responds strongly to added P. 215 

The concept is illustrated in Figure 2.  216 

 

Figure 2. Cartoon illustrating how genotypic “response” to P fertilisation might not relate to overall productivity. Pairs “A” 217 

and “B” are less responsive, (“C” and “D” show an average response,) and “E” and “F” are highly responsive. The “resilience” 218 

can be thought of as the inverse of this change: i.e. how much does the productivity of a genotype decrease from a fertilized 219 

to an unfertilised state. Consequently, “A” and “B” are more resilient to the low P treatment than “E” and “F” which show low 220 

resilience to the low P treatment. Note that while the magnitude of the actual change for a given genotype is the same for 221 

resilience and response, how that change compares to the population average response or resilience (i.e. the residual upon 222 

which the metric is based) will be different because it is calculated relative to different axes. The only circumstances under 223 

which they would be the same is if the genetic variance of productivity at both P levels were equal. 224 

This study introduces a second criterion, “P resilience”.  The well-fertilized productivity is taken to be 225 

the norm (true in the case of conventional yield breeding for industrial agriculture) and we consider 226 

the loss in productivity under low P conditions, relative to the population average. Resilience 227 

represents the genetic productivity loss per unit decrease in the ‘without P’ genetic effect.  In this case 228 

0 kg P 30 kg P 0 kg P 30 kg P 0 kg P 30 kg P0 kg P 30 kg P0 kg P 30 kg P 0 kg P 30 kg P

Average response to fertiliser Above average response to fertiliserBelow average response to fertiliser

“A” “B” “C” “D” “E” “F”
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a positive residual indicates a higher than average productivity without P fertilization, i.e. greater 229 

resilience.  230 

In this paper, P resilience is defined similarly to response, by reversing the roles of the ‘with P’ and 231 

‘without P’ treatment genetic effects. Conceptually, resilience appears to be the inverse of response, 232 

but mathematically it is not because the residual is expressed in the units of the dependent variable 233 

and will hence be different. The same covariance is used in the regression coefficient in both cases, 234 

but for response it is divided by the variance of the ‘without P’ treatment, while for resilience it is 235 

divided by the variance of the ‘with P’ treatment (Figure 2). 236 

This approach can be contrasted with an alternative such as relative yield (e.g. Gong et al., 2016). 237 

Relative yield is simply the yield at low P expressed as a percentage of yield at high P. However, if 238 

every genotype has the same fixed yield response to fertilization then those genotypes with a smaller 239 

absolute yield with have a larger percentage decline, or smaller relative yield, than those with higher 240 

absolute yield. This means that relative yield is strongly reflective of absolute yield. 241 

Finally, each of the resulting 20 datasets (yield/biomass × resilience/response for each of five trials) 242 

were searched for QTL using the mpwgaim R package (Verbyla et al., 2014). 243 

The above analyses were conducted in the R (version 3.5.1) statistical computing environment (R Core 244 

Team, 2020), with the asreml package (version 3.1) for R used for all linear mixed model fits (Butler et 245 

al., 2009). 246 

Results 247 

Five field trials were performed at three sites with P-responsive soils over two years: Ardlethan in 2017 248 

and 2018, Wallaroo in 2018, and York in 2017 and 2018. The two measures of productivity calculated 249 

from the paired plots were anthesis biomass and grain yield. Measurements made on each plot were 250 

subject to a spatial analysis using mixed models that removed site trends from the data. The resulting 251 

measures are residuals that represent the deviation from the trial average genetic change in 252 

productivity between fertilization states of a measured genotype at a given site.  253 

Effect of P treatment on productivity. 254 

Figure 3 shows the distributions of productivity across the five trials at the two P fertilization levels. 255 

As expected, fertilisation with P increased both yield and biomass in all trials (Figure 3) indicating that 256 

P was a limiting factor and that the trials were appropriate for the assessment of PUE.  257 

The in-season rainfall and temperature (Figure 1) at the sites strongly influenced productivity: York 258 

was more productive than the other sites for both biomass and yield whereas Wallaroo was slightly 259 

more productive for biomass than Ardlethan (Figure 3). The population extremes for productivity 260 

typically exceeded the range of variation of the four parental cultivars, particularly for biomass (Figure 261 

3). Among the parents cv. Yitpi typically had the greatest biomass, while cv. Westonia yielded better 262 

at York and Ardlethan in 2018 (Figure 3). Cultivars Chara and Baxter typically had the lowest biomass 263 

and Baxter was the lowest yielding of the parents (Figure 3). 264 
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Figure 3. Effect of P on productivity across trials. The plot is faceted by trial from left to right, and by the productivity measures 265 

of biomass (top) and yield (bottom). Within each facet the fertilization treatment is on the x-axis and the measure of 266 

productivity is shown on a Log10 transformed y-axis. The spread of values across the population is shown in a “violin plot”, 267 

the width of the enclosed area reflects the density of the data located there. The logarithmically scaled y-axis shows the 268 

distribution within the trial, while allowing a meaningful comparison of the differences between trials. The performance of 269 

the cultivar parents of the 4-way MAGIC population, as a comparison to the overall population, is shown by way of coloured 270 

points. Productivity uses adjusted BLUPs, being the trial × P fertilizer applied mean plus the genetic response of the genotype. 271 

Furthermore, the biomass has been converted from LIDAR index to g m-2 using the modelled relationship (see Methods). 272 

Productivity, Response and Resilience across environments 273 

PUE was assessed from the biomass and yield measurements in two ways: as “response” to 274 

fertilization, and “resilience” to the absence of fertilization. Consequently, the four traits measured 275 

were biomass resilience, biomass response, yield resilience and yield response. The spatial trends in 276 

the underlying productivity data across the five trials were modelled with two separate multisite 277 

mixed models for yield and biomass, leaving the genetic trends and unexplained variation (error). 278 
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Figure 4. Scatterplot of the genetic component of yield (BLUP) for each genotype at York in 2018. Yield at 30 kg P ha-1 is 279 

plotted against yield at 0 kg P ha-1. Lines for the average genetic yield response to fertilisation (solid) and average genetic 280 

yield resilience in the absence of fertilization (dashed) in this trial. The difference in response for each genotype from the 281 

population average is its vertical distance (y-axis) from the average, i.e. the solid line. The difference in resilience for each 282 

genotype from the population average is its horizontal distance (x-axis) from the average, i.e. the dashed line. Each genotype 283 

has been categorised and coded by shape. If it is responsive, i.e. above the solid line, it is a triangle; if it is resilient, i.e. right 284 

of the dashed line, it is an inverted triangle; if it is both resilient and responsive, i.e. above the solid line and right of the 285 

dashed line, it is a star; and if it is neither resilient nor responsive, i.e. below the solid line and left of the dashed line, it is a 286 

cross. The shading of the point indicates the degree of response and/or resilience, and highlights that the measure is 287 

independent of yield at either P level. For the genotypes that are neither or both responsive and resilient the shading is the 288 

average of the two measures and will increase with distance from the origin. The slope of the regression is derived from a 289 

factor analytic model fitted across all five trials in the study and represents the genetic component of the response; it does 290 

not reflect a regression of the BLUPs for the two P fertilization levels. 291 

There was a strong linear relationship between productivity with and without fertilisation (Figure 4, 292 

Supplementary Figure 1).  The meaning of P response and resilience, conceptually introduced in Figure 293 

2, is illustrated in Figure 4 using the genotype BLUPs for yield at York in 2018. The 30 kg P ha-1 BLUPs 294 

are plotted against those at 0 kg P ha-1. The BLUPs represent the genetic component of the variation 295 

in yield in that trial and fertilization level expressed relative to the population average yield; hence 296 

they can be positive or negative. While there is a clear relationship between productivity with the two 297 

fertilizer treatments across the whole population (Supplementary Figure 1), of interest are those 298 

genotypes that deviate from the relationship; hence those with large residuals, positive and negative, 299 

in the regression.  300 

It is important to note that the two regression slopes for response and resilience in Figure 4 are based 301 

on the genetic component of yield across all five trials and would differ from a linear regression 302 

performed on the BLUPs for any single trial. For response, the genotypes with a large positive residual 303 

had an above average response to fertilization with P and those with a large negative residual had a 304 

below average response to fertilization with P. Note that these residuals do not reflect absolute yield. 305 

The genotypes shaded in Figure 4 as having the highest response to P fertilization are not necessarily 306 

the genotypes with the highest yield with P; similarly those shaded with the highest resilience are not 307 

those with the highest yield without P. P-resilience is calculated from the inverse relationship; i.e. 308 

productivity at 0 kg P ha-1 when regressed against 30 kg P ha-1 and similar calculations can be made to 309 

identify the genotypes showing better and worse resilience compared to the population 310 
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(Supplementary Figure 1b). Biomass and yield were positively correlated for both response and 311 

resilience as discussed below.  312 

It is also important to note that the difference in regression slopes between response and resilience 313 

(Figure 4) creates “wedges” where a genotype could be both, or neither, responsive and resilient, but 314 

that these genotypes will be strongly correlated with performance at both P levels. 315 

 316 

 

Figure 5. Genotypic variation in PUE across trials. The plot is faceted by trial from left to right, and by productivity (biomass 317 

and yield) from top to bottom. Within each facet the PUE trait is on the x-axis and the trait value is shown on the y-axis. Note 318 

the variable y-axis is scaled to the extent of variation expressed in each trait. 319 

The calculated PUE values across trials for response and resilience are shown in Figure 5. A wider range 320 

of distributions were found for response compared to resilience. This reflects the axes on which the 321 

trait is expressed: response is expressed on the axis of “productivity at 30 kg P ha-1”, which is larger 322 

and has more variation than the axis of “productivity at 0 kg P ha-1” on which resilience is expressed. 323 

Similarly, the variation in yield and biomass were greatest at York which had the greatest productivity 324 

over both years.  325 
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Figure 6. A heatmap of selected correlations between measures. The plot is faceted by the relationship tested: Resilience and 326 

Productivity at 0 kg P ha-1, Response and Productivity at 30 kg P ha-1, and Response and Resilience. Within each facet, the 327 

productivity measured is on the x-axis, and the trial is on the y-axis. Each tile is coloured and labelled by the size and direction 328 

of the correlation (Pearson correlation coefficient). 329 

As noted earlier, response and resilience are distinct from productivity with and without fertilization, 330 

respectively, but they were inversely correlated as shown in Figure 6 (a full correlogram appears in 331 

Supplementary Figure 2). The strength of the correlations varied with sites and years, but the 332 

relationships were generally stronger for biomass than for yield. The strongest correlations occurred 333 

at York in 2017 for both biomass (-0.94) and yield (-0.86) but reduced the following year to -0.82 334 

and -0.54, respectively. 335 

Resilience is correlated with productivity without fertilization. This relationship was strongest for yield 336 

at York in 2018 and Ardlethan in 2017 and weakest at York in 2017. Resilience was only weakly 337 

correlated with productivity with fertilization (Supplementary Figure 2).  338 

A similar relationship emerged between response and productivity with fertilization. There was a 339 

strong correlation between response and yield at Wallaroo in 2018 and weaker correlations at York 340 

and Ardlethan in 2017. 341 

However, there were moderate, negative relationships between biomass resilience and yield response 342 

and yield resilience and biomass response in the two York trials and Ardlethan in 2018 (-0.27 to -0.48), 343 

but, with the exception of York in 2018, it was not based in an equivalent negative correlation in 344 

biomass and yield at either fertilization level.  345 
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Table 2. Heritabilities of PUE traits across trials. 346 

Trial Biomass 
Response 

Biomass 
Resilience 

Yield Response Yield Resilience 

Ardlethan 2017 0.36 0.36 0.27 0.27 

Ardlethan 2018 0.18 0.18 0.33 0.33 

Wallaroo 2018 0.25 0.25 0.41 0.41 

York 2017 0.06 0.06 0.11 0.11 

York 2018 0.17 0.17 0.5 0.5 

 

The heritability of the PUE traits ranged from 0.06 to 0.50 with a mean of 0.26 (Table 2). The lowest 347 

heritabilities for yield were obtained for the trials at York in 2017, and the highest for the trials at York 348 

in 2018. In 2017 York experienced an early season rainfall deficit, and the trial was affected by a 349 

Rhizoctonia outbreak. Damage was assessed on individual plots and although accounted for in the 350 

spatial modelling, it is possible that this reduced the heritability of the PUE traits. The difference in 351 

heritability between resilience and response was less than 0.001 and was rounded out (Table 2). Over 352 

all trials, yield was more heritable than biomass (0.32 vs. 0.20). 353 

QTL discovery 354 

Twenty univariate models were generated for the five trials and four traits and the resulting QTL were 355 

mapped with MPWGAIM. A total of 130 QTL were identified (Table 3, Supplementary Table 1). QTL 356 

were detected on all chromosomes (Figure 7). The most QTL identified for a single trait in a single trial 357 

was 14 QTL for biomass response at Ardlethan in 2017. No QTL were detected for yield resilience at 358 

Ardlethan in 2018. For the remaining trials the total variance of each trait explained by the QTL ranged 359 

from 12.8% (yield response, Ardlethan and York 2018) to 42% (biomass response, Ardlethan 2018) 360 

with an overall average of 25.6%  (Table 3). 361 

Table 3. QTL detected and total variance explained by them (in brackets) for each trial and trait combination. 362 

Trial Biomass 
resilience 

Biomass 
response 

Yield resilience Yield response 

Ardlethan 2017 5 (23.1%) 14 (42%) 7 (33.7%) 7 (20.1%) 

Ardlethan 2018 9 (27.8%) 9 (32.1%) 0 (0%) 2 (12.8%) 

Wallaroo 2018 7 (26.9%) 11 (36.7%) 4 (15.2%) 11 (40.2%) 

York 2017 7 (27.8%) 7 (27.2%) 4 (16%) 4 (17.9%) 

York 2018 9 (31.3%) 6 (26.6%) 5 (16.5%) 2 (12.8%) 

 

For breeding programs, the most useful genes are those that positively influence more than one trait 363 

over different trials. Furthermore, the most desirable PUE ideotype (Donald, 1968) would efficiently 364 

exploit P fertilizer when it was present and soil P when it was not; i.e. it would be both responsive and 365 

resilient. However, given the inverse correlation between response and resilience, we were concerned 366 

to identify those QTL associated with antagonistic pleiotropy. We considered instances where there 367 

were examples of pleiotropy associated with our QTL; i.e. where a QTL for a response at a trial has a 368 

collocated (in the same cluster) QTL for resilience. We only considered pleiotropy within the same 369 

productivity measure (i.e. biomass or yield) and trial to limit complexity. Where these pleiotropic QTL 370 

have founder effects that mirror each other, we can assume it represents a gene driving a mechanism 371 

that is antagonistic between response and resilience. 372 
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Therefore, we further grouped the 130 QTL into 56 clusters that were within 10 cM of each other on 373 

the genetic map as shown in Figure 7. The multiparent WGAIM methodology gives effect sizes for each 374 

of the four founders of the population, cv. Yitpi, Baxter, Chara, and Westonia, shown in Figure 8. Of 375 

the 56 QTL clusters 27 (48%) only contain a single QTL, and a further 12 (21%) contain only two. The 376 

largest cluster contains eight QTL.  377 

The 4-way MAGIC population used in this study has previously been scored for other traits including 378 

root hair length, seedling growth, and traits related to canopy architecture and dormancy (see 379 

introduction). Root hair length is of demonstrated value to PUE in both glasshouse and field studies 380 

(Gahoonia and Nielsen, 1997, 2003). Delhaize et al. (2015) scored two wheat MAGIC populations, 381 

including the 4-way population used in this study, for root hair length using rhizosheath size as a 382 

surrogate assay. They identified 18 loci linked with this trait. Six of the major QTL mapped to 383 

chromosomes 2B, 4D, 5A, 5B, 6A, and 7A and explained between 4.5 and 9.7% of the variation each 384 

(Delhaize et al., 2015). The QTL identified for root hair length were compared with the QTL in this 385 

study. They were clustered in the manner described above and are shown in Figure 7.   Five of these 386 

six major root hair length loci clustered with PUE QTL (the loci on 5B was the exception). Three other 387 

weaker QTL identified in the Delhaize et al. study (there were 18 in total) were also clustered with PUE 388 

QTL (Figure 7).389 
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Figure 7. Location (chromosome), occurrence (trial and trait) and strength (variation explained) of the 130 QTL identified for four PUE traits across five trials. The QTL were allocated to 56 groups 390 

each designated with a “PUE_” prefix, then grouped and numbered by chromosome. The plot is faceted by chromosome from left to right, and trait from top to bottom. Within each facet the 391 

QTL group is on the x-axis and the trial is on the y-axis. The percentage of the genetic variation for the trait explained by the QTL is shown by the colour of the tile. The bottom facet is also a trait, 392 

root hair length, from the published data of Delhaize et al. (2015), also from the 4-Way MAGIC population for the purposes of showing co-location. 393 
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Figure 8. Founder (allele) effects for each of the 130 QTL identified for four PUE traits across five trials in 56 groups each designated with a “PUE_” prefix, then clustered and numbered by 394 

chromosome. The plot is faceted by QTL cluster from left to right, and trait from top to bottom. Within each facet the QTL is on the x-axis and the effect size is on the y-axis. The effect size of the 395 

allele is on the scale of the trait (i.e. the marginal change in biomass index or yield in t ha-1).396 
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We assume the clusters represent a single gene, and that where the cluster contains multiple QTL it is 397 

a single gene influencing multiple traits in multiple environments. Therefore, a cluster would not 398 

include more than one QTL for the same trial × trait combination. However, PUE_4B_3 has two 399 

proximate QTL (pue_071 and pue_072, Figure 8) for the same trait and trial, biomass response at 400 

Ardlethan 2018, that have founder effects that are different suggesting that there may be two genes 401 

in proximity. QTL pue_072 was excluded from subsequent analyses of allele effects as it had smaller 402 

effect sizes. Note that the assumption that the clusters represent a single gene can only be confirmed 403 

by subsequent sequencing and/or cloning, which is beyond the scope of this study. 404 

The founder effect sizes were used to classify the founder alleles effect as “positive”, “negative”, or 405 

“neutral” (the range between the maximum, positive, value and the minimum, negative, value was 406 

split into thirds – the middle third being “neutral”). The four traits were then considered in terms of 407 

the “productivity” measured, i.e. yield or biomass, and the trait measured, response or resilience. 408 

Within the 56 QTL clusters, if there were pleiotropic QTL where the positive founder for response 409 

was also a negative founder for resilience then it was considered to be “antagonistic”. Thirteen of 410 

the 56 QTL clusters had an example of pleiotropy of which three clusters had two examples and one 411 

had three examples for a total of 18 examples; three for yield and 15 for biomass. All 18 examples 412 

had an allele that was antagonistic (i.e. positive for response but negative for resilience). However, 413 

because there are four parents to the population there were alternative alleles, and hence 15 of the 414 

18 pleiotropic QTL had alleles that were not antagonistic, including two of the three examples of 415 

yield. Note that this approach uses arbitrary assumptions and a very limited definition of 416 

“antagonism” and “pleiotropism” to illustrate the extent to which the collection of QTL and clusters 417 

is independent with respect to response and resilience. 418 

The effect of combinations of alleles on the four traits in the different trials can be calculated, 419 

although the selection of those combinations for the purposes of breeding requires value 420 

judgements beyond the scope of this paper (see discussion). For example, the predicted change in 421 

trait and trial values for the 6 alleles associated with the greatest root hair length in Delhaize et al. 422 

(2015) is shown in Figure 9. The change is measured in terms of the percent of the variation 423 

attributable to genetics (to normalise for biomass and yield being on different scales: i.e. “lidar 424 

index” vs. t ha-1). If the effect is due to longer root hairs, then the impact is mixed. For example, it is 425 

positive for yield resilience at York in both years and, to a lesser extent, Ardlethan in 2017, and it is 426 

also positive for yield response in Ardlethan in 2017. It was negative for response at York 2017, but 427 

not 2018, and a negative for yield resilience in Wallaroo.  428 

 

Figure 9. The calculated effect on the variation for traits and trials of the alleles conferring the greatest root hair length in 429 

Delhaize et al. (2015). The variation is calculated as the percentage of the trait variation that could be attributed to QTL 430 

effects. 431 
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Discussion 432 

Response and Resilience 433 

This study took an agnostic approach to the mechanisms driving an improvement in PUE. PUE is an 434 

aggregate of traits, and from a practical perspective it is not essential to understand what traits 435 

underly the QTL. However, by comparing productivity with 0 and 30 kg P ha-1 fertilization the response 436 

and resilience traits are likely to be associated with distinct physiological mechanisms. For instance, 437 

plants that forage the topsoil will be more resilient in soils with low levels of available Pi, whereas 438 

plants able to better exploit narrow bands of concentrated P are likely to be the more responsive in 439 

fertilized soils.  440 

Response and resilience traits might be antagonistic, particularly from a “rhizoeconomic” perspective 441 

(see Lynch et al., 2005). An expansive foraging root system may be advantageous under severe 442 

deficiency but, where P is abundant, the same trait might represent an unnecessarily high cost to the 443 

plant, potentially reducing productivity. The negative correlation of response and resilience in this 444 

study is evidence of antagonistic effects of some traits on these two different aspects of PUE; though 445 

the trait agnostic approach used does not give insight into which traits are antagonistic. However, 446 

there were relatively few examples of antagonistic QTL in this study and they were largely associated 447 

with biomass (15 examples) rather than yield (three examples). 448 

One example of antagonistic QTL is associated with root hair length. The cv. Westonia allele associated 449 

with cluster PUE_2B_1 was positive for yield resilience at York in 2018 (pue_027) and 2017 (pue_026), 450 

but was negative for yield response in 2017 (pue_024, Figure 8). The same allele was also a major 451 

positive influence on root hair length in Delhaize et al. (2015). This suggests that root hair length had 452 

a positive effect on P uptake particularly when foraging, but it is less clear why it would have had a 453 

negative impact on yield response and only in 2017. It should be noted that while the effect of 454 

Rhizoctonia at York in 2017 was scored and accounted for in its effects on yield and biomass if there 455 

were any effects that were not associated with the barepatch symptoms they may not have been 456 

accounted for. One could speculate that there might be a relationship between root hair length and 457 

disease. For example, root hairs are the site of infection for Pythium root rot species in wheat (Bruehl, 458 

1953; Royle and Hickman, 1964), although there are no studies examining root hair length and 459 

infection density. Furthermore, these alleles had a positive impact on response at Ardlethan in 2017, 460 

where there was a substantial deficit in early rainfall and indeed any rainfall. The hairs may have 461 

helped take up fertilizer in dry top-soil conditions. 462 

Achieving the economic optimum. 463 

The goal of breeding for enhanced PUE is not to abolish the application of P fertilizers, but rather to 464 

reduce the rate of Pi application. Bovill et al. (2013) advocate the economic optimum as a goal of PUE 465 

breeding: assessing the point at which the marginal cost of applying additional fertilizer meets the 466 

marginal increase in profit. As the cost of P fertilizer increases, the economic optimum decreases and 467 

therefore the goal of PUE breeding should be to both improve the response to the application of P 468 

and improve the ability of the crop to exploit residual soil P. Australian farmers typically band P 469 

fertilizers at sowing, a response to the generally P deficient soils. While high fertilizer prices and 470 

drought conditions are seeing this practice reduced, it is still likely that fertilizer will be applied to 471 

compensate for P removed by the previous year’s crop and at rates that reflect the poor efficiency of 472 

uptake. The idiotypic genotype would combine both response and resilience traits; efficiently utilizing 473 

a reduced rate of fertilization.  474 

The response of productivity to increasing P fertilization is not linear but a saturating curve. Finding 475 

the point of inflection is challenging (Simpson et al., 2014, 2015; Haling et al., 2016), requiring multiple 476 
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rates of P application. QTL mapping requires large populations to be meaningful, so treatment 477 

numbers must be minimized for trials to be practical. A follow up study could select optimised 478 

combinations of response and resilience QTL alleles for particular environments (avoiding and/or 479 

compensating for antagonistic effects). Smaller subsets of genotypes in the MAGIC population with 480 

these desirable combinations (“tails” similar to the phenotypic approach proposed by Rebetzke et al. 481 

(2017)) could be assembled and grown at a wider range of intermediate P rates to confirm whether 482 

these QTL can be combined to reduce the economic optimum rate of P while maintaining productivity. 483 

Improving PUE through breeding. 484 

Bovill et al. (2013) concluded that the lack of a consistent definition of PUE is hampering the genetic 485 

improvement of the trait. The response approach of McDonald et al. (2015), employed in this study 486 

and extended with the concept of resilience, aims to separate the measurement of PUE from absolute 487 

productivity.  488 

Nevertheless, response and resilience were positively correlated with productivity with and without 489 

fertilizer, respectively. This suggests that response is increasing passively through yield breeding 490 

where non-limiting P is provided (as is typically the case). Passive gains in fertilizer use efficiency 491 

through yield breeding have been demonstrated (Batten, 1992; Ortiz‐Monasterio R. et al., 1997). The 492 

correlation between 0 kg P ha-1 productivity and resilience suggests a breeder with interest in 493 

resilience traits could breed for productivity in the absence of P fertilizer. However, it is worth noting 494 

that performance in low-input conditions will not necessarily be undermined by breeding and 495 

selection in high-input conditions (Voss-Fels et al., 2019) 496 

However, as the range of correlations shows, there is also scope for breeding directly for PUE traits. 497 

Given (a) the pipeline for the development and release of a new wheat variety can be 5-10 years and 498 

(b) long term fertilizer price increases can be predicted with some certainty it may be profitable to 499 

breed specifically for improved PUE. A QTL study, like this one, also allows for the development of 500 

marker assisted selection approaches within breeding programs. Breeders are adopting genomic 501 

selection strategies, as sequencing and mapping costs drop. PUE QTL can help to define the breeding 502 

values for a marker matrix, developing a variety optimized not for current fertilizer prices, but the 503 

prices expected 10 years hence when the variety comes to market. Trait relevant markers have been 504 

shown to increase prediction accuracy when paired with genomic selection in maize (Liu et al., 2019).  505 

Future directions and conclusion 506 

Improving crop PUE is an intrinsically valuable goal considering the increasing cost and importance of 507 

P as agricultural input. However, a breeding program focused on PUE will have to compete with other 508 

priorities such as disease resistance and adaptation to climate change. The identification of QTL allows 509 

the development of trait relevant markers that can be integrated into marker assisted selection or 510 

genomic selection approaches. Trialling “tail” combinations of these QTL at a wider range of 511 

fertilization rates could help to establish the effect on the economic optimum P fertilization rate. 512 
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Supplementary Information 659 

 

Supplementary Figure 1. An expansion of Figure 4 to include all trials (vertical facets) and productivities (horizonal facets). 660 

Yield at 0 kg P ha-1 is plotted against yield at 30 kg P ha-1. Lines for the average genetic yield response to fertilisation (solid) 661 

and average genetic yield resilience in the absence of fertilization (dashed) in this trial. The difference in response for each 662 

genotype from the population average is its vertical distance (y-axis) from the average, i.e. the red line. The difference in 663 

resilience for each genotype from the population average is its horizontal distance (x-axis) from the average, i.e. the blue line. 664 

Each genotype has been categorised and coded by shape. If it is responsive, i.e. above the solid line, it is a triangle; if it is 665 

resilient, i.e. right of the dashed line, it is an inverted triangle; if it is both resilient and responsive, i.e. above the solid line 666 

and right of the dashed line, it is a star; and if it is neither resilient nor responsive, i.e. below the solid line and left of the 667 

dashed line, it is a cross. The shading of the point indicates the degree of response and/or resilience, and highlights that the 668 

measure is independent of yield at either P level. For the genotypes that are neither or both responsive and resilient the 669 

shading is the average of the two measures and will increase with distance from the origin. The slope of the regression is 670 

derived from a factor analytic model fitted across all five trials in the study and represents the genetic component of the 671 

response; it does not reflect a regression of the BLUPs for the two P fertilization levels. 672 
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Supplementary Figure 2. Correlograms for each BLUP faceted by each trial. Each tile is coloured and labelled by the size and direction of the correlation (Pearson correlation coefficient). 673 

Correlations marked with a cross are insignificant. 674 
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