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The ubiquity of recombination (and sex) in nature has defied explanation since the time1

of Darwin1–4. Conditions that promote the evolution of recombination, however, are well-2

understood and arise when genomes contain more selectively mismatched combinations of3

alleles across loci than can be explained by chance alone. Recombination remedies this4

across-loci imbalance by shuffling alleles across individuals. The great difficulty in explain-5

ing the ubiquity of recombination in nature lies in identifying a source of this imbalance that6

is comparably ubiquitous. Here, we look to natural selection itself as a possible source of per-7

vasive imbalance, with the rationale that the ubiquity of natural selection approximates the8

ubiquity of sex and recombination in nature. Natural selection is fed by heritable variation9

which may be produced by any number of factors, such as drift, founder effects, migration10

and mutation. We ask how natural selection, acting on this variation, affects the across-loci11

imbalance and hence the evolutionary potential of recombination. Remarkably, we find that12

the effect of natural selection is to always promote the evolution of recombination, on average,13

independently of the source of the variation that feeds it. We show this is true for both across-14

and within-population recombination. Our findings suggest that recombination evolved and15

is maintained more as an unavoidable byproduct of natural selection than as a catalyst.16
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The ability to exchange genetic material through recombination (and sex) is a heritable trait5, 6
17

that is influenced by many different evolutionary and ecological factors, both direct and indirect,18

both positive and negative. Evidence from nature clearly indicates that the net effect of these factors19

must be positive: recombination across all levels of organismal size and complexity is undeniably20

the rule rather than the exception2–4, 7. Theoretical studies, on the other hand, have revealed a va-21

riety of different mechanisms and circumstances that can promote the evolution of recombination,22

but each one by itself is of limited scope2, 4, 8. These studies would thus predict that the absence of23

recombination is the rule and its presence an exception. The sheer abundance of these exceptions,24

however, can be seen as amounting to a rule in its own right – a “pluralist” view that has been25

adopted by some authors to explain the ubiquity of recombination3, 7, 9. The necessity of this plu-26

ralist view, however, may be seen as pointing toward a fundamental shortcoming in existing theory:27

perhaps some very general factor that would favour recombination has been missing3, 4, 8, 10.28

Existing theories of the evolution and maintenance of sex and recombination can be divided29

into those that invoke direct vs indirect selection on recombination. Theories invoking direct se-30

lection propose that recombination evolved and is maintained by some physiological effect that31

mechanisms of recombination themselves have on survival or on replication efficiency. Such the-32

ories might speak to the origins of sex and recombination but they falter when applied to their33

maintenance1. Most theories invoke indirect selection: they assume that any direct effect of recom-34

bination mechanisms is small compared to the trans-generational consequences of recombination.35

While differing on the causal factors involved, established theoretical approaches that invoke36
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indirect selection are unanimous in their identification of the fundamental selective environment37

required for sex and recombination to evolve: a population must harbour an excess of selectively38

mismatched combinations of alleles across loci and a deficit of selectively matched combinations.39

Recombination is favoured under these conditions because on average it breaks up the mismatched40

combinations and assembles matched combinations. Assembling selectively matched combina-41

tions increases the efficiency of natural selection: putting high-fitness alleles together can expedite42

their fixation11–15, and putting low-fitness alleles together can expedite their elimination16, 17. Under43

these conditions therefore, populations with recombination have an evolutionary advantage over44

populations without.45

Furthermore, competition among recombination-rate variants at a modifier locus under these46

conditions will tend to increase recombination rate6, 18. A modifier locus can be affected by short-47

term and long-term indirect selection13. In the long term, modifiers that increase the recombination48

rate, or up-modifiers, can in theory be favoured because of the fitness variation they augment13.49

But this relies on an unlikely – and somewhat inconsistent – supposition that the modifier remains50

linked to that variation. Under the more plausible supposition that modifiers themselves can be-51

come dissociated from fitness-related loci through the very recombination they modify, it is the52

short-term advantage or disadvantage of recombinants that determines the fate of a modifier. In the53

short term, recombinants formed from randomly-chosen parents harbouring the aforementioned54

imbalance have an advantage that is relatively immediate, thereby creating indirect selection for55

up-modifiers. If the imbalance is “chronic” such that recombinants are always advantageous on av-56

erage, then up-modifiers with only fleeting linkage to the recombinants they produce will increase57
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in frequency a notch with each such linkage, on average. Overall recombination rate in such a58

population will increase as a byproduct of chronic selection for recombinants.59

The great challenge in explaining the evolution of recombination has been to identify an60

evolutionary source of the aforementioned imbalance whose prevalence in nature is comparable to61

the prevalence of sex and recombination in nature. One feature of living things whose prevalence62

approximates that of sex and recombination is evolution by natural selection. In what follows,63

we assess the effects of natural selection on selective imbalance and hence on the evolution of64

recombination.65

We preface our developments with an essential technical point. In much of the relevant66

literature, the measure of selective mismatch across loci affecting the evolution of recombination67

is linkage disequilibrium (LD)8, 12, 13, 19–22, which measures bias in allelic frequencies across loci68

but does not retain information about the selective value of those alleles. Here, the objectives69

of our study require a slight departure from tradition: our measure of selective mismatch will70

be covariance between genic fitnesses. This departure is necessary because covariance retains71

information about both the frequencies and selective value of alleles, and it is convenient because72

the mean selective advantage accrued by recombinants over the course of a single generation is73

equal to minus the covariance (Methods and Fig. S1). Our results will thus be given in terms of74

covariance and we recall: negative covariance means positive selection for recombinants.75

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


Setting76

For our two-part study, we reduce the problem to what we believe is its most essential form: we77

ask how the selective value of haploid recombinants is affected when natural selection simply acts78

on standing heritable variation. We ask this: 1) when recombination occurs between individuals79

from two different populations, and 2) when recombination occurs between two individuals within80

the same population.81

To isolate the effects of natural selection, we consider large (effectively infinite) popula-82

tions, each of which consists of just two competing genotypes that differ in both of two genes (or83

two loci). This simple setting permits clean presentation and mathematical tractability and, more84

importantly, is biologically motivated by the observation that large clonal populations tend to be85

overwhelmingly dominated by one or two genotypes23. It further provides a connection to founda-86

tional evolution-of-sex studies: Fisher24 considered the case of a single beneficial mutation arising87

on a variable background, thereby effectively giving rise to two competing genotypes – wildtype88

and beneficial mutant – that differ in both the gene with the beneficial mutation (call it the x gene)89

and its genetic background (call it the y gene); Muller25 considered the case of two competing90

genotypes, one carrying a beneficial mutation in the x gene and the other in the y gene. Both of91

these approaches consider two competing genotypes that differ in both of two loci, and our en-92

compassing qualitative findings thus apply to these foundational models and others. Simulations93

further confirm the adequacy of this two-genotype setting: increasing the number of genotypes94

only accentuates the effects we describe (Fig. S2).95
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Figure 1 illustrates how the problem is posed analytically. We consider a clonal haploid96

organism whose genome consists of just two fitness-related loci labeled x and y. Genetically-97

encoded phenotypes at these two loci are quantified by random variables X and Y , both of which98

are positively correlated with fitness. In each large population of such organisms, two genotypes99

exist: one encodes the phenotype (X1, Y1), has fitness Z1 = φ(X1, Y1) and exists at some arbitrary100

initial frequency p; the other encodes phenotype (X2, Y2), has fitness Z2 = φ(X2, Y2) and exists101

at initial frequency 1− p. We note that, in the absence of epistasis or dominance, the scenario we102

describe is formally equivalent to considering a diploid organism whose genome consists of one103

locus and two alleles available to each haploid copy. The question we ask is this: Does the action104

of natural selection, by itself, affect covariance between X and Y , denoted σXY , and if so, how?105

Natural selection promotes recombination across populations106

Here, we assess how natural selection affects the evolution of recombination across populations.107

Figure 2 illustrates the problem by analogy to a set of canoe races. On the surface, one might108

suspect that natural selection would promote well-matched combinations in which large values of109

X are linked to large values of Y , thereby creating a positive association between X and Y . In110

fact, this notion is so intuitive that it is considered self-evident, explicitly or implicitly, in much111

of the literature1–3, 7, 9, 14, 26, 27. If this notion were true, recombination would break up good allelic112

combinations, on average, and should thus be selectively suppressed. Such allele shuffling has113

been called “genome dilution”, a label that betrays its assumed costliness. We find, however, that114

the foregoing intuition is wrong. To the contrary, we find that natural selection will, on average,115

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


promote an excess of mismatched combinations in which large values of X are linked to small116

values of Y , or vice versa, thereby creating a negative association between X and Y . Recombina-117

tion will on average break up the mismatched combinations created by natural selection, assemble118

well-matched combinations, and should thus be favoured.119

Figure 3 illustrates why our initial intuition was wrong and why natural selection instead120

tends to create negative fitness associations among genes. For simplicity of presentation, we as-121

sume here that an individual’s fitness is Z = φ(X, Y ) = X + Y , i.e., that X and Y are simply122

additive genic fitness contributions, and that X and Y are independent. In the absence of recom-123

bination, selection does not act independently on X and Y but on their sum, Z = X + Y . Perhaps124

counter-intuitively, this fact alone creates negative associations. To illustrate, we suppose that we125

know the fitness of successful genotypes to be some constant, z, such that X + Y = z; here, we126

have the situation illustrated in Fig. 3a and we see that X and Y are negatively associated; indeed,127

covariance is immediate: σXY = −σXσY ≤ 0. Of course, in reality the fitnesses of successful128

genotypes will not be known a priori nor will they be equal to a constant; instead, they will follow129

a distribution of maxima of Z as illustrated in Fig. 3b. This is because, in large populations, the130

successful genotype will practically always be the genotype of maximum fitness. If populations131

consist of n contending genotypes, then X(n) + Y(n) = Z [n], the nth order statistic of Z with genic132

components X(n) and Y(n) (called concomitants in the probability literature28, 29). In general, Z [n]
133

will have smaller variance than Z. Components X(n) and Y(n), therefore, while not exactly follow-134

ing a line as in Fig. 3a, will instead be constrained to a comparatively narrow distribution about135

that straight line, illustrated by Fig. 3b, thereby creating a negative association. Figure 3c plots ten136
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thousand simulated populations evolving from their initial (green dots) to final (black dots) mean137

fitness components; this panel confirms the predicted negative association.138

What we have shown so far is that, if recombination occurs across populations – or across139

demes in a structured metapopulation – the resulting offspring should be more fit than their par-140

ents, on average. This effect provides novel insight into established observations that population141

structure can favour recombination30–34 and may even speak to notions that out-crossing can create142

hybrid vigour (heterosis).143

Much of evolution indeed takes place in structured meta-populations providing ample op-144

portunity for cross-population (or cross-deme) recombination; it is thought, for example, that pri-145

mordial life forms evolved primarily on surfaces that provided spatial structure35, 36. It is also true,146

however, that much of evolution takes place within unstructured (or “well-mixed”) populations;147

primitive life forms, for example, also existed in planktonic form37. We now turn to the question of148

how evolution by natural selection affects the selective value of recombinants in such unstructured149

populations.150

Natural selection promotes recombination within populations151

Here, we assess how natural selection affects the selective value of recombinants within unstruc-152

tured populations. Here again, Fig. 1 shows how the problem is posed analytically. Natural selec-153

tion will cause the two competing genotypes to change in frequency, causing σXY to change over154

time (σXY = σXY (t)). Our measure of the net effect of natural selection on recombination is the155
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quantity
∫∞

0
σXY (t)dt; if positive (negative), natural selection opposes (favours) recombination.156

In Methods, we show that, in expectation, covariance over the long run is unconditionally157

non-positive, E[
∫∞

0
σXY (t)dt] ≤ 0, implying that the process of natural selection, on average, al-158

ways creates conditions that favour recombination. Remarkably, this finding requires no assump-159

tions about the distribution of allelic fitness contributions X and Y ; in fact, a smooth density is160

not required. Indeed, this distribution can have strongly positive covariance, and yet the net effect161

of natural selection is still to create negative time-integrated covariance. Put differently, this result162

is completely independent of the source of the heritable variation upon which natural selection163

acts – whether it be drift, migration, mutation, etc, or what the specific parameters, dynamics or164

interactions of these processes might be.165

Our analyses further show that natural selection creates recombinant advantage even when166

recombinants are present in the initial variation upon which natural selection acts. Put differently,167

even in the presence of recombination, the effect of natural selection is to promote increased recom-168

bination. The implication is that natural selection not only promotes the evolution of recombination169

but also its maintenance (Fig. S3).170

Finally, we show that it is primarily the additive component of fitness that causes time-171

integrated covariance to be negative. This fact stands in contrast to some previous indications that172

non-additive effects, specifically negative or fluctuating epistasis, are an essential ingredient in the173

evolution of recombination19, 21, 38–41.174

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


Discussion175

Some authors2, 42 have argued that negative associations build up within a population because pos-176

itive associations, in which alleles at different loci are selectively matched, are either removed177

efficiently (when they are both similarly deleterious), or fixed efficiently (when they are both sim-178

ilarly beneficial), thereby contributing little to overall within-population associations. Genotypes179

that are selectively mismatched, on the other hand, have longer sojourn times, as the less-fit loci180

effectively shield linked higher-fitness loci from selection. The net effect, it is argued, should be181

that alleles across loci will on average be selectively mismatched within a population. The find-182

ings from part one of our study differ from these arguments: we find that even genotypes that183

are ultimately fixed carry selectively mismatched alleles. The findings from part two of our study,184

however, are entirely consistent with these arguments; indeed, these arguments provide an intuitive185

way to understand our remarkable Proposition 7 (Methods).186

We have identified a phenomenon that is an inherent consequence of natural selection and187

gives rise to selectively mismatched combinations of alleles across loci. Generally speaking, this188

pervasive phenomenon is an example of counter-intuitive effects caused by probabilistic condition-189

ing. For example, “Berkson’s paradox”43, 44 arises when a biased observational procedure produces190

spurious negative correlations. In the original context, among those admitted to hospital due to ill-191

ness, a negative correlation among potentially causative factors was observed because those with192

no illness (who tended to have no causative factors) were not admitted to the hospital and hence193

not observed. Similarly, negative correlations arise across genic fitnesses in part because genotypes194
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in which both loci have low genic fitness are purged by selection; here, however, the bias is not195

observational but actual, as these low-fitness genotypes no longer exist in the population.196

Many previous studies, in one way or another, point to the increase in agility and efficiency197

of adaptation that recombination confers as the primary cause of its evolution. Here, we invert198

the perspective of those earlier studies, asking not whether recombination speeds adaptation, but199

whether adaptation via natural selection generally creates selective conditions that make recombi-200

nants directly and immediately advantageous. If so, as our findings indicate, then: 1) the ubiquity201

of recombination in nature might be less enigmatic than previously thought, and 2) perhaps recom-202

bination arose and is maintained more as an unavoidable byproduct than as a catalyst of natural203

selection.204

Methods205

Notes. In the main text, we employ the shorthand σXY to denote covariance. In what follows,206

however, we use σXY and Cov(X, Y ) (for clarity) interchangeably. Some of the results presented207

here rely on some simplifying assumptions for compact presentation; generalized results that relax208

these assumptions are presented in the Supplementary Information (SI). Several of the proofs here209

are abridged; full proofs are in the SI, as well as alternative and supplemental proofs. Here, we210

restrict our analyses to the case of 2 loci and 2 alleles per locus; in the SI, we extend some of these211

analyses to m loci and n alleles per locus.212

Covariance and recombinant advantage. Much work on the evolution of recombination employs213
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linkage disequilibrium (LD) as the measure of across-loci associations. It is straight-forward to214

estimate LD from genomic sequence data, which likely explains the popularity of this measure.215

LD, however, contains no information about the selective cost of such associations. Covariance,216

on the other hand, retains all of the information regarding both the prevalence of linkage and its217

selective cost (i.e., recombinant advantage), and is thus the measure we employ. We note that218

when the fitness function is a bivariate Bernoulli distribution (φ(X, Y ) = P{X = i, Y = j} =219

pi,j, i, j ∈ {0, 1}) then covariance and disequilibrium are equivalent (σXY = D = p1,1− p1,•p•,1).220

Recombinants are formed from two randomly-chosen contemporaneous parents such that their221

genetic makeup is simply an unbiased random sampling of the pool of available alleles at the x and222

y loci. As such, their instantaneous advantage is zero on average: ER[X + Y ] − E[X + Y ] = 0,223

where subscript R denotes recombinant and no subscript denotes wildtype. Recombinants and224

wildtype, however, gain fitness at different rates: ∂tER[X + Y ] = σ2
X + σ2

Y and ∂tE[X + Y ] =225

σ2
X +σ2

Y + 2σXY . A first order expansion thus reveals that the selective advantage of recombinants226

after a single generation of growth is ∂tER[X + Y ]− ∂tE[X + Y ] = −2σXY . A single-generation227

Moran model (Fig. S1) shows this prediction to be accurate and that covariance increases linearly228

in the first generation, implying that the mean selective advantage of recombinants over that first229

generation is−σXY . We note that a generalized linear relationship between fitness and phenotypes230

X and Y , i.e., Z = k0 + kXX + kY Y , yields a recombinant advantage of −kXkY σXY . A full231

treatment of the relation between covariance and recombinant advantage is found in the SI, as well232

as the relation between our approach and classical population genetics.233

Natural selection promotes recombination across populations. The setting for this problem is234
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shown in Fig 1. No hypothesis on the fitness function φ is made at this point, apart from being235

measurable. For the sake compact presentation we assume here (relaxed in SI) that (X1, Y1, X2, Y2)236

are i.i.d.; departures from this and other simplifying assumptions are dealt with in the SI. As defined237

in Fig 1, Zi = φ(Xi, Yi), Z [i] = φ(X(i), Y(i)), and Z [2] > Z [1].238

PROPOSITION 1. Let ψ be any measurable function from R2 into R. Then: 1
2
E(ψ(X(1), Y(1))) +239

1
2
E(ψ(X(2), Y(2))) = E(ψ(X1, Y1)) . In particular, the arithmetic mean of E(X(1)) and E(X(2)) is240

E(X1).241

PROOF: Consider a random index I ∈ {1, 2}, and for now P(I = 1) = P(I = 2) =242

1/2, and I is independent of (X1, Y1, X2, Y2). The couple (XI , YI) is distributed as (X1, Y1).243

Hence, E(ψ(XI , YI)) = E(ψ(X1, Y1)) , however, E(ψ(XI , YI)) = E(E(ψ(XI , YI) | I)) =244

1
2
E(ψ(X(1), Y(1))) + 1

2
E(ψ(X(2), Y(2))) . �245

246
PROPOSITION 2. We have: Cov(X(1), Y(1)) + Cov(X(2), Y(2)) = −(Cov(X(1), Y(2)) +247

Cov(X(2), Y(1))) = −1
2
E(X(2) −X(1))E(Y(2) − Y(1)) .248

PROOF: The couples (X(I), Y(I)) and (X(I), Y(3−I)) are both distributed as (X1, Y1). There-249

fore their covariances are null. These covariances can also be computed by condition-250

ing on I (see e.g. formula (1.1) in 45). For (X(I), Y(I)) we have: Cov(X(I), Y(I)) =251

E(Cov(X(I), Y(I)|I)) + Cov(E(X(I)|I),E(Y(I)|I)) . On the right-hand side, the first term252

is: E(Cov(XI , YI |I)) = 1
2
Cov(X(1), Y(1)) + 1

2
Cov(X(2), Y(2)) . The second term is:253

Cov(E(XI |I),E(YI |I)) = 1
4
E(X(2)−X(1))E(Y(2)−Y(1)) . Similarly, we have: Cov(X(I), Y(3−I)) =254

E(Cov(X(I), Y(3−I)|I)) + Cov(E(X(I)|I),E(Y(3−I)|I)) . The first term in the right-hand side is:255

E(Cov(X(I), Y(3−I)|I)) = 1
2
Cov(X(1), Y(2)) + 1

2
Cov(X(2), Y(1)) . The second term in the right-256
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hand side is: Cov(E(X(I)|I),E(Y(3−I)|I)) = −1
4
E(X(2) −X(1))E(Y(2) − Y(1)) . Hence the result.257

�258

259
PROPOSITION 3. Assume that the fitness function φ is symmetric: φ(x, y) = φ(y, x). Then the260

couple (X(1), Y(2)) has the same distribution as the couple (Y(1), X(2)).261

As a consequence, X(1) and Y(1) have the same distribution, so do X(2) and Y(2). Thus: E(X(2) −262

X(1)) = E(Y(2) − Y(1)) = 1
2
E(Z [2] − Z [1]) . Another consequence is that: Cov(X(1), Y(2)) =263

Cov(X(2), Y(1)) . Thus by Proposition 2: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) = 1
16
E2(Z [2] −Z [1]) .264

PROOF: Since φ is symmetric, the change of variable (X1, Y1, X2, Y2) 7→ (Y1, X1, Y2, X2) leaves265

unchanged the couple (Z1, Z2). �266

267 PROPOSITION 4. Assume that the ranking function φ is the sum: φ(x, y) = x+y. Then: E(X(1)) =268

E(Y(1)) , E(X(2)) = E(Y(2)) , and E(X(1)) < E(X(2)) .269

PROOF: The first two equalities come from Proposition 3. By definition, E(X(1)+Y(1)) < E(X(2)+270

Y(2)). Hence the inequality. �271

272 PROPOSITION 5. Assume that the ranking function φ is the sum, and that the common distribution273

of X1, Y1, X2, Y2 is symmetric: there exists a such that f(x− a) = f(a− x). Then (a−X(1), a−274

Y(1)) has the same distribution as (X(2) − a, Y(2) − a). As a consequence, Cov(X(1), Y(1)) =275

Cov(X(2),Y(2)).276

PROOF: The change of variable (X1, Y1, X2, Y2) 7→ (2a−X1, 2a− Y1, 2a−X2, 2a− Y2) leaves277

the distribution unchanged. It only swaps the indices i and s of minimal and maximal sum. �278
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279
If we summarize Propositions 1, 2, 3, 4, 5 for the case where the ranking function is the sum, and280

the distribution is symmetric, one gets:281

Cov(X(1), Y(1)) = Cov(X(2), Y(2)) < 0

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) > 0

|Cov(X(1), Y(1))| = Cov(X(1), Y(2)) =
1

16
E2(Z [2] − Z [1]) .

Natural selection promotes recombination within populations. We recall that recombinant ad-282

vantage is −σXY . Here, we study how the selection-driven changes in types (X1, Y1) and (X2, Y2)283

within a single unstructured population change σXY = σXY (t) over time. We are interested in284

the net effect of these changes, given by
∫∞

0
σXY (t)dt; in particular, we are interested in know-285

ing whether this quantity is positive (net recombinant disadvantage) or negative (net recombinant286

advantage).287

PROPOSITION 6. Within-population covariance integrated over time is:288 ∫ ∞
0

σXY (t)dt = qE[
(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
] (1)

where q is the initial frequency of the inferior genotype. No assumption about the distribution of289

(X, Y ) is required. And Zi = φ(Xi, Yi) where fitness function φ can be any function.290

PROOF: We let p denote initial frequency of the superior of the two genotypes, and we let q = 1−p291

denote initial frequency of the inferior genotype. Time-integrated covariance is:292 ∫ ∞
0

σX,Y (t)dt = E[(X(2) −X(1))(Y(2) − Y(1))

∫ ∞
0

pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2dt]

Integration by parts yields:293 ∫ ∞
0

σXY (t)dt = qE[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
]
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where q in Prop 6 is written as 1− p0. We observe that:294

(X(2) −X(1))(Y(2) − Y(1)) = (X(1) −X(2))(Y(1) − Y(2)) = (X2 −X1)(Y2 − Y1)

and that295

Z [2] − Z [1] = |Z2 − Z1|

from which we have:296

E[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
] = E[

(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
]

�297

298

PROPOSITION 7. We define spacings ∆X = X2 − X1, ∆Y = Y2 − Y1, and ∆Z = Z2 − Z1 =299

∆X + ∆Y . If the pairs (Xi, Yi) are independently drawn from any distribution, then ∆X and ∆Y300

are symmetric about zero, and time-integrated covariance is unconditionally non-positive:301 ∫ ∞
0

σX,Y (t)dt = E[
∆X∆Y

|∆Z|
] ≤ 0

PROOF: There is no need to assume that (∆X,∆Y ) has a density. This proof also reveals that the

result also holds for discrete random variables. Let ∆X , ∆Y be two real-valued random variables
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such that: (−∆X,∆Y ) has the same distribution as (∆X,∆Y ). We have:

E[∆X∆Y/|∆X + ∆Y |] = E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |] + E[1∆X∆Y <0∆X∆Y/|∆X + ∆Y |]

= E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |] + E[1−∆X∆Y <0(−∆X)∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |]− E[1∆X∆Y >0∆X∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y (1/|∆X + ∆Y | − 1/|∆Y −∆X|)]

≤ 0

When ∆X and ∆Y have the same sign as imposed by the indicator function in the last expectation,302

we have |∆X + ∆Y | > |∆Y −∆X|, from which the inequality derives. �303

304

COROLLARY 1. Proposition 7 holds for divergent expectations.305

PROOF: Set U = |∆X| and V = |∆Y |; M = Max(U, V ), m = Min(U, V ). Then you can rewrite

the expectation as:

E[UV {1/(U + V )− 1/(|U − V |)}] = E[mM{−2m/(M2 −m2)}]

= −2E[Mm2/(M2 −m2)] ≤ 0

Indeed, if the expectation is divergent, then it is always −∞. This approach removes the need to306

make the argument that U +V > |U −V | and avoids the need to take a difference of expectations.307

An alternative approach is given in an expanded statement and proof of Proposition 7 in the SI. �308

309
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SELECTION
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Fig 1
∣∣ Two loci, two alleles. Here, a large (infinite) population consists of individuals whose

genome has only two loci x and y, each of which carries one of two alleles: genotype 1 encodes
quantified phenotype X1 at the x locus and Y1 at the y locus, and genotype 2 carries quantified
phenotype X2 at the x locus and Y2 at the y locus. Fitness is indicated by color. An individual’s
fitness is a function of the two phenotypes: Z = φ(X, Y ); here we make the simplifying assump-
tion that φ(X, Y ) = X + Y , so that the fitnesses of genotypes 1 and 2 are Z1 = X1 + Y1 and
Z2 = X2 + Y2, respectively. The fitter of these two genotypes has total fitness denoted Z [2] (i.e.,
Z [2] = Max{Z1, Z2}) and genic fitnesses X(2) and Y(2) (i.e., Z [2] = X(2) + Y(2)). Similarly, the
less-fit of these two genotypes has total fitness Z [1] = X(1) + Y(1). We note: Z [2] > Z [1] by defi-
nition, but this does not guarantee that X(2) > X(1) or that Y(2) > Y(1), as illustrated in the lower
box. The population labeled A consists of two distinct genotypes but selection acts to remove the
inferior genotype leaving a homogeneous population in which individuals are all genetically iden-
tical (with fitness Z [2]) as illustrated in the population labeled B. We derive selective mismatch
measured by covariance σXY : 1) across populations (among different B), given by σX(2)Y(2)

, and
2) within populations (going from A to B), given by

∫∞
0
σXY (t)dt.
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0.88 0.57
0.59 1.23

Race 1

Race 2

Race 3

Paddler strength

1.74 0.92
0.87 0.53

1.16 0.73
1.67 0.43

Fig 2
∣∣ Canoe race analogy. Each canoe contains two paddlers. The strength of each paddler is

measured and reported in the table. In any given canoe race, there is no correlation between paddler
strengths A (green) and B (red). In each race, paddler strengths are recorded (tables on right), and
the winning canoe is that in which the sum of the strengths of the two paddlers is the greatest
(highlighted). Three such canoe races are conducted. We ask: what is the covariance between the
strengths of paddlers A and B among winning canoes only? While it seems reasonable to suppose
that winning canoes would carry two strong paddlers thereby resulting in positive covariance, the
counter-intuitive answer we find is that the covariance is, for all practical purposes, unconditionally
negative in expectation. By analogy, paddlers are genes, paddler strength is genic fitness, and
canoes are genotypes. Natural selection picks the winner.
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X

Y

X X

Y Y

Fig 3
∣∣ Natural selection promotes negative associations. In the absence of recombination,

selection does not act independently on X and Y but organismal fitness which, for simplicity, we
here assume to be their sum, Z = φ(X, Y ) = X + Y . Perhaps counterintuitively, this fact alone
creates negative associations. As discussed in the main text, this fact gives rise to a correlation of
exactly negative one when the sum is a constant (a) and something intuitively negative when the
sum is distributed as expected (b), i.e., as an order statistic. (c), Ten thousand simulated populations
move from their initial (green dots) to final (black dots) mean fitnesses. Here, the predicted negative
covariance in the final state is apparent. The heatmap bars indicate variance in Y along the x-
axis and variance in X along the y-axis, a manifestation of Hill-Robertson interference8, 17, 30, 46–48:
larger genic fitness at one locus relaxes selection on the other locus allowing for larger fitness
variance at the that locus.
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