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Abstract: A consensus virtual screening protocol has been applied to ca. 2000 

approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the 

virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual 

analyses of the predicted structures of their complexes with Mpro, 17 were chosen for 

evaluation in a kinetic assay for Mpro inhibition.  Remarkably 14 of the compounds at 

100-μM concentration were found to reduce the enzymatic activity and 5 provided 

IC50 values below 40 μM: manidipine (4.8 μM), boceprevir (5.4 μM), lercanidipine 

(16.2 μM), bedaquiline (18.7 μM), and efonidipine (38.5 μM). Structural analyses 

reveal a common cloverleaf pattern for the binding of the active compounds to the P1, 

P1’, and P2 pockets of Mpro. Further study of the most active compounds in the 

context of COVID-19 therapy is warranted, while all of the active compounds may 

provide a foundation for lead optimization to deliver valuable chemotherapeutics to 

combat the pandemic. 
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INTRODUCTION 

SARS-CoV-2, the cause of the COVID-19 pandemic,1 is a coronavirus  

(CoV) from the Coronaviridae family.  Its RNA genome is ~82% identical to that of 

SARS-CoV,2 which was responsible for the Severe Acute Respiratory Syndrome 

(SARS) pandemic in 2003.3 SARS-CoV-2 encodes two cysteine proteases: the 

chymotrypsin-like cysteine or main protease, known as 3CLpro or Mpro, and the 

papain-like cysteine protease, PLpro. They catalyze the proteolysis of polyproteins 

translated from the viral genome into non-structural proteins essential for packaging 

the nascent virion and viral repication.4 Therefore, inhibiting the activity of these 

proteases would impede the replication of the virus. Mpro processes the polyprotein 

1ab at multiple cleavage sites. It hydrolyzes the Gln-Ser peptide bond in the Leu-Gln-

Ser-Ala-Gly recognition sequence. This cleavage site in the substrate is distinct from 

the peptide sequence recognized by other human cysteine proteases known to date.5 

Thus, Mpro is viewed as a promising target for anti SARS-CoV-2 drug design; it has 

been the focus of several studies since the pandemic has emerged. 2,4–7 

An X-ray crystal structure of Mpro reveals that it forms a homodimer with a 2-

fold crystallographic symmetry axis.2,5 Each protomer, with a length of 306 residues, 

is made of three domains (I-III). Domains II and I fold into a six-stranded β-barrel 

that harbors the active site.2,4,5 Domain III forms a cluster of five antiparallel α-

helices that regulates the dimerization of the protease. A flexible loop connects 

domain II to domain III. The Mpro active site contains a Cys-His catalytic dyad and 

canonical binding pockets that are denoted P1, P1, P2, P3, and P4.2 The amino acid 

sequence of the active site is highly conserved among coronaviruses.8 The catalytic 

dyad residues are His41 and Cys145 and the residues playing key roles in the binding  
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Figure 1. Rendering of the residues near the catalytic site of MPro from a crystal 

structure at 1.31-Å resolution (PDB ID: 5R82). The catalytic residues are His41 and 

Cys145.  

 

of the substrate are Phe140, His163, Met165, Glu166, and Gln189 (Figure 1). These 

residues have been found to interact with the ligands co-crystallized with Mpro in 

different studies.2,4,5 Crystallographic data also suggested that Ser1 of one protomer 

interacts with Phe140 and Glu166 of the other as the result of dimerization.2,4 These 

interactions stabilize the P1 binding pocket, thereby, dimerization of the main 

protease is likely for its catalytic activity.2,4  

Drug repurposing is an important strategy for immediate response to the 

COVID-19 pandemic.9 In this approach, the main goal of computational and 

experimental studies has been to find existing drugs that might be effective against 

SARS-CoV-2. For instance, a molecular docking study suggested remdesivir as a 

potential therapeutic that could be used against SARS-CoV-2,10 which was supported 

experimentally by an EC50 value of 23 μM in an infected-cell assay.11 However, a 

clinical trial showed no statistically significant clinical benefits of remdesivir on 
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adult patients hospitalized for severe COVID-19.12 Nonetheless, patients who were 

administered remdesivir in the same trial showed a faster time to clinical 

improvement in comparison to the placebo-control group.12 In another clinical trial, 

only patients on mechanical ventilation benefitted from remdesivir.13 An EC50 value 

of 27 μM was also reported for lopinavir11, suggesting it may have beneficial activity 

against SARS-CoV-2. However, neither lopinavir nor the lopinavir/ritonavir 

combination has thus far shown any significant benefits against COVID-19 in 

clinical trials. Chloroquine, hydroxychloroquine, and favipiravir have also been 

explored for repurposing against COVID-19; however, clinical studies with them 

have been controversial.14–17 These studies reflect the urgent need for systematic drug 

discovery efforts for therapies effective against SARS-CoV-2.    

Thus, we decided to pursue discovery of small-molecule inhibitors of Mpro.  

The aim of this initial work was two-fold: to identify known drugs that may show 

some activity, but also to identify structurally promising, synthetically-accessible 

substructures suitable for subsequent lead optimization. Our expectation was that 

existing drugs may show activity but not at the low-nanomolar levels that are typical 

of effective therapies. This report provides results for the first goal. The work began 

by designing and executing a consensus molecular docking protocol to virtual screen 

~2000 approved drugs. The predicted structures (poses) of the complexes for the top-

scoring 42 drugs received extensive scrutiny including consideration of 

intermolecular contacts, conformation, stability in molecular dynamics (MD) 

simulations, and potential for synthetic modification to arrive at 17 drugs, which 

were purchased and assayed for inhibition of Mpro.  The outcome was strikingly 

successful with 14 of the 17 compounds showing some reduction of Mpro activity at 

100 μM concentration, and with 5 compounds yielding IC50 values below 40 μM. 
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The most potent inhibitors of Mpro identified here, manidipine and boceprevir, have 

IC50 values of 4.8 and 5.4 μM, respectively. 

 

COMPUTATIONAL APPROACH 

 Selection of the Crystal Structure of Mpro. Our analyses of more than 50 

crystal structures of SARS-CoV-2 main protease in apo and holo forms showed small 

structural variations in the active site region. The overall root mean square deviation 

(RMSD) of all structures was ~0.8 Å for Cα atoms. The presence of a ligand in the 

crystal structure likely places the side chains of the active site residues in positions 

that are more suitable for performing molecular docking compared to the apo form of 

the enzyme. Thus, we chose to use a high-resolution (1.31 Å) structure of Mpro co-

crystalized with a non-covalent small fragment hit (PDB ID 5R82)18 for docking the 

approved drugs after removal of the fragment (Figure 1). The program Reduce19 was 

run on the structure for allowing side-chain flips, optimizing hydrogen bonds, and 

adding/removing hydrogen atoms. The pKa values of the ionizable residues of Mpro 

were predicted using the PROPKA320 and the H++ severs.21,22 Accordingly, lysines 

and arginines were positively charged, aspartic and glutamic acids were negatively 

charged, and all histidines were neutral. All histidines were built with the proton on 

Nε except for His80, which was protonated at Nδ. The resulting Mpro structure has a 

net charge of -4 e. Extensive visual inspection was carried out using UCSF Chimera.23   

 Consensus Molecular Docking. Most docking programs apply methods to 

generate an initial set of conformations, and tautomeric and protonation states for 

each ligand. This is followed by application of search algorithms and scoring 

functions to generate and score the poses of the ligand in the binding site of a protein. 

Scoring functions have been trained to reproduce a finite set of experimental ligand-
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binding affinities that are generally a mix of activity data converted to a free-energy 

scale. Therefore, the accuracy of the scores is dependent on multiple factors including 

the compounds that were part of the training set. To mitigate the biases, we performed 

four independent runs of protein-ligand docking with a library of ca. 2000 approved, 

oral drugs using Glide, AutoDock Vina, and two protocols with AutoDock 4.2. The 

results were compiled and further consideration focused on those compounds that 

ranked among the top 10% percent in at least 3 out of the 4 runs.   

 Glide. Schrödinger’s Protein Prep wizard utility was used for preparing the 

protein. A 20-Å grid was then generated and centered on the co-crystallized ligand, 

which was subsequently removed. The drug library members were neutralized and/or 

ionized via Schrödinger’s LigPrep.24 The Epik program25 was used for estimating the 

pKa values of each compound. Plausible tautomers and stereoisomers within the pH 

range of 7 ± 1 were generated for each compound using the OPLS3 force field.26 

These conditions resulted in a total of 16000 structures, which were then docked into 

Mpro using Schrödinger’s standard-precision (SP) Glide.27,28 

 AutoDock. The AutoDockTools (ADT) software29 was used for creating 

PDBQT files from SDF and PDB files of compounds and the protein, respectively. 

Non-polar hydrogen atoms were removed and Gasteiger–Marsili charges were 

assigned for both the protein and the ligands using ADT. The AutoGrid 4.2 program29 

was used for generating affinity grids with a spacing of 0.375 Å and with a box size 

of 74 × 80 × 62 Å. The affinity grids were centered at two different points of the 

active site for performing two sets of runs. In the first run, the grid box was centered 

at Cβ of Cys145 of monomer A. In the second run, the grid center was displaced 

toward the geometric center of the active site. The AutoDock 4.2 program29 was 

applied for docking the ligands into Mpro. The Lamarckian genetic algorithm (LGA) 
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was used for ligand conformational searching. LGA was iterated 15 and 50 times in 

the first and the second run, respectively, for each compound. The maximum RMS 

tolerance for conformational cluster analysis was 2.0 and 0.5 Å in the first and second 

runs, respectively. The number of generations was set to 27000 with 300 individuals 

in each population in both runs. The maximum number of energy evaluations was 30 

× 106 for all compounds and 40 × 106 for re-docking of the selected consensus 

compounds. Other parameters were set to their default values.  

 AutoDock Vina.  The PDBQT files generated by ADT for the protein and 

library compounds also used for running AutoDock Vina.30 Non-polar hydrogen 

atoms were removed. An affinity grid box with a size of 18 × 21 × 18 Å was 

generated and centered on the active site. The default docking parameters were used, 

except for the number of modes that was set to 9.  

 Molecular Dynamics Simulations. The GROMACS software, version 2018a 

compiled in double precision, was used for performing all molecular dynamics (MD) 

simulations.31 The protonated Mpro dimer, with a net charge of -8 e, was represented 

by the OPLS-AA/M force field.32 TIP4P water was used as the solvent.33 Sodium 

counterions were added to neutralize the net charge of each system. The selected 

ligand candidates were represented by the OPLS/CM1A force field,34 as assigned by 

the BOSS software35 (version 4.9) and the LigParGen Python code.36 The parameters 

were converted to GROMACS format using LigParGen.36 For neutral ligands, the 

CM1A partial atomic charges were scaled by a factor of 1.14.34  

Each Mpro-ligand complex was put at the center of a triclinic simulation box 

with 10-Å padding. An energy minimization was then performed until the steepest 

descent algorithm converged to a maximum force smaller than 2.4 kcal mol-1 Å-1. A 

cutoff radius of 12 Å was used to explicitly calculate non-bonded interactions. Long-
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range electrostatic interactions were treated using the Particle Mesh Ewald (PME) 

algorithm.37 The PME was used with an interpolation order of 4, a Fourier spacing of 

1.2 Å, and a relative tolerance of 10-6. The van der Waals forces were smoothly 

switched to zero between 10 and 12 Å. Analytical corrections to the long-range effect 

of dispersion interactions were applied to both energy and pressure. All covalent 

bonds to hydrogen atoms were constrained at their equilibrium lengths using the 

LINCS algorithm38 with the order of 12 in the expansion of the constraint-coupling 

matrix. Each system was subsequently simulated for 1 ns in the canonical ensemble 

(NVT) in order for the solvent to relax and the temperature of the system to 

equilibrate. Initial velocities were sampled from a Maxwell-Boltzmann distribution at 

310 K. The V-rescale thermostat with a stochastic term39 was used for keeping the 

temperature at 310 K. The stochastic term ensured that the sampled ensemble was 

canonical.39 The coupling constant of the thermostat was set to 2.0 ps. The system 

was then equilibrated for 1.5 ns in the isothermal-isobaric ensemble (NPT) for 

obtaining a density consistent with the reference pressure. The pressure was kept at 1 

bar by the Berendsen barostat40 with a coupling constant of 4.0 ps and a 

compressibility factor of 4.5 × 10-5 bar. A harmonic position restraint with a force 

constant of 2.4 kcal mol-1 Å-2 was applied to the protein backbone and to all solute 

heavy atoms during the equilibration steps. A 70 ns unrestrained run was then 

performed in the NPT ensemble with the Parrinello−Rahman barostat41 using a 

coupling time of 4.0 ps.  
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EXPERIMENTAL DETAILS 

 Expression and Purification of SARS-CoV-2 Mpro. A PGEX-6p-1 vector 

containing the gene for SARS-CoV-2 Mpro harboring a His6 tag followed by a 

modified PreScission cleavage site was used to produce recombinant protein.5 

Recombinant Mpro with authentic N- and C-termini was expressed and purified as 

previously described.5  

 Kinetic Assays of SARS-CoV-2 Mpro Activity and Analysis. All assayed 

compounds were obtained from commercial sources except cinnoxicam, which had to 

be synthesized, and had purity >95% based on HPLC analysis. Kinetics of SARS-

CoV-2 Mpro were measured as previously described.5,7 Briefly, 100 nM Mpro in 

reaction buffer (20mM Tris, 100 mM NaCl, 1 mM DTT, pH 7.3) was incubated with 

or without compound in DMSO at varying concentrations to a final DMSO 

concentration of 6% for 15 minutes with shaking at room temperature. The reaction 

was initiated by addition of substrate (Dabcyl-KTSAVLQ↓SGFRKM-E(Edans-NH2); 

GL Biochem) in reaction buffer, which is cleaved by Mpro, generating a product 

containing a free Edans group. Fluorescence was monitored at an excitation 

wavelength of 360 nm and emission wavelength of 460 nm. All measurements were 

performed in triplicate and averaged. IC50 plots and values were generated using 

Prism 8.0 (GraphPad).  

 

RESULTS AND DISCUSSION 

 Virtual Screening. The docking scores obtained for all compounds range 

from -10.85 to -0.59 for Glide, from -12.33 to -2.30 for AutoDock run 1, from -10.74 

to -0.40 for AutoDock run 2, and -8.50 to -2.10 for AutoDock Vina. As expected, the 

range of scores is wide and it is different from one docking program to another. The 
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complete list of compounds and docking scores is provided in the SI. Compounds 

were ranked based on their docking scores and the top 200 hits from the four docking 

runs were compared. As the result, 42 compounds with a consensus count of 4 or 3 

were selected. This means that these compounds were among the top-200 ranked 

compounds in all 4 or at least 3 out of the 4 docking runs. The indications and 

mechanisms of action for the 42 drugs are shown in Table 1, and the structures of 

some of the ones that turned out to be most interesting are shown in Figure 2. The 

primary indications include bacterial and viral infections, hypertension, psychosis, 

inflammation, and cancer. Their mechanisms of action are also broad ranging from 

kinase and protease inhibitors to dopamine receptors agonists/antagonists, and 

calcium channel blockers. It is not surprising that peptidic protease inhibitors are 

well-represented in view of the peptide substrate and prior discovery of peptidic 

inhibitors for Mpro and its SARS-CoV relative. 7,42,43  

In almost all cases the predicted poses for the 42 compounds from the 

different docking programs agreed well. The poses from Glide were then subjected to 

extensive visual scrutiny to check for unsatisfied hydrogen-bonding sites, 

electrostatic mismatches, and unlikely conformation of the ligand.  About half of the 

compounds were ruled out for further study due to the occurrence of such liabilities 

and the presence of multiple ester groups (e.g., methoserpidine and nicomol) or 

overall size and complexity (e.g., bromocriptine and benzquercin). A repeated motif 

was apparent with high-scoring ligands having a cloverleaf pattern with occupancy of 

the P1, P1’, and P2 pockets, as illustrated in Figure 3 for the complex of azelastine. 

Other common elements are an edge-to-face aryl-aryl interaction with His41 and 

placement of a positively-charged group in the P1 pocket in proximity to Glu166, 

e.g., the methylazepanium group of azelastine, the protonated trialkylamino group of  
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Table 1. The Consensus Count (CC), Indication and Mechanism of Action of the Top 42 

Drugs Selected from Virtual Screening.  Assayed Compounds are in Bold. 
 

Compound CC Indication Mechanism of Action 

avatrombopag maleate 3 Thrombocytopenia Thrombopoietin receptor agonist 

azelastine 4 Allergic rhinitis Histamine H1-receptors antagonist 

azilsartan Medoxomil 4 Hypertension Angiotensin II receptor antagonist 

bedaquiline 3 Tuberculosis ATP synthase inhibitor 

benzquercin 4 Inflammation Flavonoid drug 

boceprevir 3 Hepatitis C Protease inhibitor 

bromocriptine 4 Hyperprolactinemic disorders Dopamine D2 receptor agonist 

cabergoline 4 Hyperprolactinemic disorders Dopamine D2 receptor agonist 

carindacillin 4 Bacterial infection  Penicillin-binding protein 

cinnoxicam 4 Inflammation Prostaglandin synthesis inhibitor 

clofazimine 4 Lepromatous leprosy Destabilizing bacterial membrane  

dexetimide 3 Neuroleptic parkinsonism Muscarinic antagonist 

dihydroergocristine 4 Peripheral vascular disease  Serotonin receptors antagonist 

dihydroergocryptine 4 Parkinson’s disease Dopamine receptor agonist 

efonidipine 4 Hypertension Calcium channel blocker 

elbasvir 3 Hepatitis C Protein 5A inhibitor 

idarubicin 4 Acute myeloid leukemia Topoisomerase II inhibitor 

indinavir 3 HIV infection Protease inhibitor 

ketoconazole 3 Fungal infection 14-α-sterol demethylase inhibitor 

lapatinib 4 Breast and lung cancer Kinase inhibitor 

lercanidipine 4 Hypertension Calcium channel blocker 

lomitapide 3 Hypercholesterolemia Triglyceride transfer inhibitor  

lurasidone 4 Schizophrenia Dopamine D2 receptor antagonist 

macimorelin 3 Adult growth hormone deficiency Ghrelin receptor agonist 

manidipine 3 Hypertension Calcium channel blocker 

metergoline 4 Psychosis Dopamine agonist 

methoserpidine 3 Hypertension Monoamine transport inhibitor 

naldemedine 3 Opioid induced constipation  Opioid receptor antagonist  

nelfinavir 3 HIV infection Protease inhibitor 

nicomol 3 Hyperlipidemia - 

nicomorphine 4 Analgesic Opioid agonist 

nilotinib 4 Chronic myeloid leukemia Kinase inhibitor 

perampanel 4 Partial-onset seizures Glutamate receptor antagonist 

periciazine 3 Psychosis  Dopamine D1 receptor antagonist 

pipamazine 3 Psychosis Dopamine receptor antagonist 

saquinavir 4 HIV infection Protease inhibitor 

simvastatin 3 Hyperlipidemia HMG-CoA reductase inhibitor 

talampicillin 3 Antibacterial Cell-wall synthesis inhibitor 

telaprevir 3 Hepatitis C Protease inhibitor 

tipranavir 3 HIV infection Protease inhibitor 

tropesin 3 Inflammation Prostaglandin synthesis inhibitor 

zafirlukast 4 Asthma Leukotriene receptor antagonist 
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Figure 2. Selected high-scoring compounds from the consensus docking. 

 

 

 

 

 

Figure 3. Glide docking pose for azelastine in space-filling (left) and stick (right) 

renderings. All illustrations are oriented with the P1 pocket to the left and P2 to the 

right, and all carbon atoms of ligands are in yellow. 
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bedaquiline, and protonated piperazine of periciazine. However, Glu166 forms a salt-

bridge with the terminal ammonium group Ser1B (Figure 1). The electrostatic balance 

seems unclear in this region, so our final selections included a mix of neutral and 

positively-charged groups for the P1 site.  

The analysis of the high-scoring 42 compounds also considered structural 

variety and potential synthesis of analogs. In the end, we settled on 17 compounds, 

which are highlighted in Table 1, for purchase and assaying. Sixteen were 

commercially available, mostly from Sigma-Aldrich. The seventeenth, cinnoxicam, 

was not available, but it was readily prepared in a one-step synthesis from the 

commercially-available ester components. It may be noted that three calcium channel 

blockers, efonidipine, lercanidipine, and manidipine were purchased (Figure 2). This 

was not done owing to the characteristic dihydropyridine substructure, since this end 

of the molecule protrudes out of the P1’ site in the docked poses. It was for the 

variety in the left-sides of the molecules in Figure 2, which form the cloverleaf that 

binds in the P1, P1’, and P2 pockets, as illustrated in Figure 4 for manidipine. The 

steric fit in this region appears good, though the only potential hydrogen bond is 

between the nitro group and the catalytic Cys145. 

 

 

 
 

Figure 4. Glide docking pose for manidipine in space-filling (left) and stick 

(right) renderings.  
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 Protease Assay Results. The 17 known drugs were screened using the FRET-

based assay monitoring the fluorescence generated from the cleavage of a peptide 

substrate harboring an Edans-Dabcyl pair by recombinant SARS-CoV-2 Mpro. 

Remarkably, fourteen of the drugs at 100 μM decreased Mpro activity (100 nM), as 

shown in Figure 5 and Table 2. Five drugs decreased Mpro activity to below 40%. The 

top five hits from the kinetic assay were manidipine, boceprevir, efonidipine, 

lercanidipine, and bedaquiline. Dose-response curves were obtained to determine IC50 

values, when possible, as shown in Figure 6 for the five most potent inhibitors, with 

the raw data as a function of time and concentration given in Figure S1.   

 The calcium channel-blockers manidipine, lercanidipine, and efonidipine 

inhibit Mpro activity with IC50 values of 4.8 μM, 16.2 μM, and 38.5 μM, respectively. 

As suggested from Figure 4, the variation likely arises primarily from differences in 

binding of the left sides of the molecules (Figure 2) in the P1, P1’, and P2 pockets.  It 

has previously been proposed that such compounds might be useful for treatment of 

SARS-CoV-2 infection for their role as calcium channel blockers, not as Mpro 

inhibitors.44 Boceprevir, a hepatitis C virus protease inhibitor, inhibits Mpro with an 

IC50 of 5.4 μM; its IC50 has been previously reported as 4.13 μM.7 Bedaquiline, 

approved for the treatment of multi-drug-resistant tuberculosis, inhibits Mpro with an 

IC50 of 18.7 μM. The IC50 of nelfinavir, an HIV protease inhibitor, was estimated to 

be between 250 and 600 μM. Vatansever et al. have previously reported an IC50 for 

nelfinavir of 234 μM.45 Perampanel appears to be the sixth most active compound at 

100 μM, though its IC50 could not be calculated reliably, as its intrinsic fluorescence 

interfered with the fluorescence measurements.  

 The computed structures for the complexes of boceprevir and bedaquiline are 

illustrated in Figure 7. For boceprevir, the dimethylcyclopropyl subunit is predicted to  
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Figure 5. Ranking of the 17 compounds by percent residual enzyme activity 

monitored by cleavage product fluorescence following a one-hour incubation of 100 

nM Mpro with 100 μM compound. Compounds are ranked from most (blue) to least 

(green) active. 

 

Table 2. Measured Activities of the 17 Compounds Tested for Inhibition of Mpro 

 

Compound % Activity  

at 100 μM 

 

IC50 (μM) 

manidipine 1 4.81 ± 1.87 

boceprevir 6 5.40 ± 1.53 

lercanidipine 8 16.2 ± 2.94 

efonidipine 18 38.5 ± 0.41 

bedaquiline 28 18.7 ± 4.20 

perampanel 43 100-250a,b 

periciazine 55 250a 

nelfinavir 64 250-600a 

tipranavir 65 >600a 

azelastine 69 20-100a 

cinnoxicam 75 >600a 

idarubicin 82 250-600a 

clofamizine 88 >600a 

talampicillin 90 250-600a 

indinavir 100 NA 

cabergoline 100 NA 

lapatinib 100 NA 
a Estimate due to incomplete inhibition at 600 μM. b Fluorescence of compound 

interfered with assay.   
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Figure 6. IC50 plots and values for the top five compounds active against SARS-CoV-

2 Mpro from in vitro FRET-based assay. IC50 plots were generated from averaged 

kinetic data in triplicates for (A) manidipine, (B) boceprevir, (C) lercanidipine, (D) 

efonidipine, and (E) bedaquiline. 

 

 

 

 

 
 

Figure 7. Renderings of Glide docking poses for (left) boceprevir, and (right) 

bedaquiline.  

 

sit in P1, the sidechain with the cyclobutyl and terminal ketoamide groups is in P1’, 

the t-butyl group is in P2, and there are hydrogen bonds with the NH of Gly143  and 

carbonyl oxygen of Thr26. For bedaquiline, the three pockets are occupied by the 

ammonium containing sidechain, the naphthyl group, and the phenyl group, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.28.271957doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271957


respectively, while the quinoline fragment extends towards the solvent, and there are 

no clear protein-ligand hydrogen bonds. The activity of this compound does suggest 

that positively-charged groups may be acceptable in the P1 site.  

 MD Analyses for the Mpro-ligand Complexes. Before the assaying was 

carried out, the 70-ns MD simulations were run for complexes of 14 of the promising 

compounds starting from the Glide poses. The idea was to obtain insight on which 

compounds gave more stable complexes and were, therefore expected to be more 

active inhibitors. In addition to visualization of the evolving structures, the all-atom 

RMSD of each ligand was computed over the course of the simulation time with and 

without least-square (LS) fitting of the ligand’s atoms onto the initial orientation of 

the complex (Figure 8). The LS-fit RMSD monitors only the ligand’s conformational 

changes, whereas the no-fit RMSD also reflects rotational and translational 

movements. The LS-fit RMSD converged relatively quickly to 2-3 Å for all ligands, 

except for carindacillin, which converged to 4 Å. However, as expected, no-fit RMSD 

values are larger than the LS-fit RMSD values for all ligands, demonstrating the 

contribution of rotational and translational movements. The no-fit RMSD value 

converged for bedaquiline, idarubicin, indinavir, and perampanel after about 10 ns, 

while it converged for efonidpine after 60 ns. The no-fit RMSD values steadily 

fluctuated about an average value of 4 Å for lapatinib and periciazine. In general, 

most ligands showed some displacement from their initial position, whereas they 

remained close to their initial conformation.  Clear correlation of the results with the 

measured activities is not obvious, perhaps because 70 ns is too short a timeframe. 

For example, the RMSDs for bedaquiline and perampanel converge well, while they 

are more erratic for the more active boceprevir and efonidipine. More sophisticated 

MD procedures for gauging stability are known such as metadynamics, steered-MD,  
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Figure 8. RMSD in Å of all ligand atoms with and without Least-Square fitting to the 

original complex structure during the course of 70-ns MD simulations. 

 

and random-accelerated MD,46-49 which would be interesting to apply retrospectively 

to the present experimental results.  

 

CONCLUSIONS 

 The present virtual screening study was highly successful in identifying 14 

known drugs as showing inhibitory effect on the main protease of SARS-CoV-2. The 

consensus scoring approach using three docking programs and four protocols was 

effective in narrowing down ca. 2000 candidate drugs to 42 of high interest. The final 

17 compounds that were selected for assay did reflect additional human visualization 

and analyses, though assaying of all 42 top compounds would not be burdensome. 

Five compounds were identified with IC50 values below 40 μM with manidipine, 
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boceprevir, lercanidipine, and bedaquiline having values of   4.8, 5.4, 16.2, and 18.7 

μM. Further study of these compounds in the context of COVID-19 therapy is 

warranted, while all of the active compounds reported here may provide a foundation 

for lead optimization to deliver valuable chemotherapeutics to combat the pandemic. 
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