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ABSTRACT 
 

Understanding the molecular mechanisms underlying age-related changes in the heart is 

challenging due to the contributions from numerous genetic and environmental factors. Genetically 

diverse outbred mice provide a model to study the genetic regulation of aging processes in healthy tissues 

from individuals undergoing natural aging in a controlled environment. We analyzed transcriptome and 

proteome data from outbred mice at 6, 12 and 18 months of age to reveal a scenario of cardiac 

hypertrophy, fibrosis, extracellular matrix remodeling, and reemergence of fetal gene expression 

patterns. We observed widespread changes in protein trafficking and sorting, and post-translational 

disruption of the stoichiometry of the protein quality control system itself. We identified genome hotspots 

of age-by-genetic effects that regulate proteins from the proteasome and endoplasmic reticulum stress 

response, suggesting that genetic variation in these modules may contribute to individual variation in the 

aging heart.  
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INTRODUCTION 
 

Cardiovascular (CV) diseases are the leading cause of death in elderly people. Improved 

understanding of the mechanisms underlying the changes that occur in the heart with aging could open 

new opportunities for prevention and treatment (1). As the heart ages, characteristic physiological 

changes occur, including increased arterial thickening and stiffness, endothelium dysfunction, valvular 

fibrosis and calcification, and a switch from fatty acid to glucose metabolism (2–4). Compensatory 

mechanisms may temporarily maintain heart function but can also contribute to progressive 

deterioriation and eventual heart failure (2). Thickening of the left ventricle and remodeling of the 

extracellular matrix may compensate for the loss in systolic function (2,3). However, in the long term, the 

increased wall stress causes the left ventricle to dilate, leading to a decline in the systolic function (5).  

Physiological measures of cardiac function that change with age, such as systolic blood pressure, 

have high heritability suggesting that genetic factors contribute to variability in aging (6).  Linkage and 

association studies in humans have identified a number of candidate genes and pathways underlying age-

related traits, though such studies have been limited by small sample sizes and confounding factors (6). 

Mouse models of aging recapitulate many of cardiac aging phenotypes in humans, such as increased atrial 

and ventricular dimensions and reduced diastolic function (7), and thus provide relevant tools for 

investigating aging processes in the heart. Recombinant mouse populations can be used to test the effects 

of specific genes on aging and lifespan (8). However, most previous studies have used mice descended 

from only a few isogenic strains that fail to capture the effects of genetic diversity found in human 

populations. The Diversity Outbred (DO) mouse population is derived from eight inbred founder strains: 

A/J (AJ), C57BL/6J (B6), 129S1Sv/ImJ (129), NOD/ShiLtJ (NOD), NZO/H1LtJ (NZO), CAST/EiJ (CAST), 

PWK/PhJ (PWK), and WSB/EiJ (WSB), representing genetic variation from classical and wild-derived strains 

and, as a result, display broad phenotypic diversity (9). The DO is a powerful tool for investigating the 

genetic drivers of aging due to its genetic and phenotypic diversity as well as its high mapping resolution.  

Despite the well-known physiological alterations in the aging heart, dissecting their cellular and 

molecular basis is challenging due to its complex dynamics, resulting from the number of genes involved 

as well as contributions from environmental factors (8,10). Age-related cellular dysregulation has been 

associated with genomic instability, loss of protein homeostasis, epigenetic alterations, mitochondrial 

dysfunction and inflammation (10). The investigation of the molecular mechanisms involved in aging 

becomes even more complex due to the possible uncoupled nature of transcripts and their corresponding 
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proteins. Waldera-Lupa et al (2014) found that 77% of the proteins changing with age in human fibroblasts 

were not linked to changes in their corresponding transcripts (11). We also recently found that age-related 

changes in protein abundance in the kidney of DO mice are not driven by corresponding changes in their 

mRNA (Takemon et al., companion paper). These findings indicate that post-transcriptional regulation 

may play a substantial role in aging. In addition, there are reports in literature describing the increase of 

transcript expression variability with age in mammalian tissues, including the heart (12,13). The age-

related dysregulation of some functional modules at the transcript level is accompanied by selective 

translation, therefore, the post-transcriptional machinery becomes crucial for achieving cellular 

homeostasis (14). For these reasons, investigating age-related changes using only transcriptional profiling 

may fail to reveal important influences on proteins and higher-order cellular processes. 

In this study we analyze RNA-seq and mass-spec shotgun proteomics data from DO mice aged to 

6, 12 and 18 months to uncover molecular changes in the heart that are associated with normal aging. At 

6 months of age, the mice have reached full maturity. At 18 months, the majority of the mice are healthy 

and not showing signs of age-related decline. Thus, we are looking at changes in transcripts and proteins 

that are not influenced by developmental programs and are not reflecting late-stage disease progression 

(15). We examine broad patterns of change in biological processes and in specific cellular compartments 

using gene-set enrichment analysis (16). We examine the maintenance of protein-complex stoichiometry 

at both the transcript and protein levels (17). We leverage the genetic diversity of DO mice to identify loci 

that are associated with genotype-specific change with age in transcripts and proteins to better 

understand how genetic variation modulates age-related changes in the heart.  
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RESULTS 

 

Transcriptomics reveals age-related changes in muscle cell differentiation, contraction, and 

inflammation  

We identified transcripts that increase or decrease their expression with age in whole heart tissue 

from a cross-sectional sample of 192 DO mice. Both sexes were approximately equally represented across 

age groups of 6, 12 and 18 months. We found 2,287 transcripts (out of 20,932 total) whose expression 

changes with age (false discovery rate (FDR) < 0.1). A complete list of these transcripts is provided in 

Supplemental Table 1. The list of significantly changing transcripts confirms many genes that are known 

to play a role in the aging heart. We also identified genes that have been implicated in aging but have not 

been previously reported as changing in the heart, or they have been shown to play a role in heart disease 

or heart development but have not been reported to change with age. In total, the transcripts that change 

with age are enriched for functional annotations across 85 biological processes (FDR < 0.1), the most 

significant of which are muscle cell migration, regulation of muscle cell differentiation, ion transport 

pathways and acute-phase response (Figure 1).  

Some of the transcripts possess functions relevant to cardiac pathological conditions and heart 

development (Table 1). Myocd is involved in both muscle cell migration and muscle cell differentiation 

pathways, and is an important regulator of cardiac function by maintaining cardiomyocyte cell structure 

and function (18). We observed a decrease in Myocd expression with age (log2 fold change per year of life 

(LFC) = -0.12). Ppara had decreased expression with age (LFC = -0.11), and plays a role in the regulation of 

cardiac fatty acid metabolism, contributing to several pathologic and physiologic heart conditions 

associated with aging (19,20). The gene Adamts1 (muscle cell migration pathway) has been described in 

cardiac aging (21) and, along with Serpine1 (ion transport pathways), increases with age (Adamts1: LFC = 

0.15; Serpine1: LFC = 0.19). These genes have been shown to induce collagen 1 deposition and fibrosis in 

the heart (21–23). Nov expression also increased with age (LFC = 0.18) and is known to participate in heart 

development, blocking terminal differentiation and increasing the proliferation rate of myoblasts (24,25). 

Many of the transcripts associated with ion transport that decrease with age are associated with calcium 

flow. These genes, including Pln, Cacna1g and Dhrs7c, have functions associated with cardiac muscle 

contraction, play a role in cardiomyopathy, and are downregulated in heart failure models, but have not 

been previously described in the aging heart (26–28).  
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Acute phase response pathway genes, which are involved in inflammation, all increase with age 

with the exception Stat5b, which decreases. Although its function in heart is not established, STAT5B 

interacts with the insulin receptor, coordinating changes in gene expression through insulin signaling in 

yeast and myosarcoma cells (29,30). In addition, STAT5B was proposed to inhibit acute-phase response by 

modulating the activation of STAT3 (31). Other transcripts in the acute phase response pathway that 

change with age include Ahsg, that controls the binding of free fatty-acid to inflammatory receptors and 

protects against vascular calcification (32,33), and Tnfsf11, which is involved in aortic valve calcification in 

response to inflammation, a feature prevalent in the elderly (34).  
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Enriched pathways for transcripts changing with age 

 

Figure 1. Most significant pathways showing age-related change in transcript expression. Gene-set enrichment 
analysis reveals that transcripts that change with age are involved in muscle cell migration, regulation of muscle cell 
differentiation, ion transport and acute-phase response (FDR < 0.1). Major nodes indicate enriched pathways and 
adjacent nodes correspond to transcripts that change with age within each pathway. Transcripts involved in muscle 
cell migration, muscle cell differentiation and ion transport increase and decrease with age (colors represent the LFC 
for each gene), while transcripts from the acute-phase response only increase expression with age with the 
exception of Stat5b. 
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Transcripts significantly changing with age 

 

Table 1. Highlighted transcripts from differential expression with age analysis. 

 

 
  

Transcript symbol Direction of change Function highlights Reference index 

Naca Decreases Sarcomere organization (35–37) 

Myocd Decreases Cardiomyocytes survival (18) 

Ppara Decreases Fatty acid metabolism (38–40) 

Adamts1 Increases Cardiac fibrosis (21) 

Nov Increases Heart development (24,25) 

Olfm2 Increases 
Vascular smooth muscle cell 

regulation 
(41) 

Cacna1g Decreases Cardiac muscle contraction (42,43) 

Pln Decreases Cardiac muscle contraction (26) 

Serpine1 Increases Cardiac fibrosis (22,23) 

Bcl2 Increases Antiapoptosis (44) 

Stat5b Decreases Insulin signaling (29,30) 

Ahsg Increases Free fatty-acid signaling (32) 

Tnfsf11 Increases Aortic valve calcification (34) 
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Proteomics reveals age-related changes in mitochondrial metabolism and intracellular protein 

transport 

 

Of 192 DO mice with transcript data, we were able to obtain proteomics data from 190. We 

detected 1,161 proteins (out of 4,062 total) that change with age (FDR < 0.05). A higher proportion of 

proteins exhibited change with age when compared to transcripts, and thus we used a stricter FDR 

threshold to focus on the proteins with greatest change. These proteins are enriched for the following 

gene ontology terms (FDR < 0.05): positive regulation of cellular proliferation, intracellular protein 

transport and several mitochondria-related pathways (Figure 2). These pathways included proteins that 

both increased and decreased with age. None of the enrichment terms for proteins overlap with those 

found in the transcriptome analysis. Thus, the protein data are able to reveal unique features of the aging 

process that are not seen in the transcript level. A complete list of proteins that change with age is 

provided in Supplemental Table 2.  

The enrichment categories associated with mitochondria include proteins from the cytochrome C 

oxidase (COX) complex, i.e. the mitochondrial respiratory chain complex IV, which all increase with age 

(COX6B1: LFC = 0.4; COX4L1: LFC = 0.3). We quantified protein levels for 16 COX subunits of which 13 show 

increased abundance with age, suggesting an increase in oxidative mitochondrial metabolism 

(Supplemental Table 2). Interestingly, the ACTN3 protein decreases with age (LFC = -1.8). ACTN3 (alpha-

actinin-3) has not been described in the heart before, but its role is well documented in skeletal muscle, 

where it regulates oxidative metabolism (45,46). Studies show that depletion of ACTN3 results in 

overexpression of COX proteins and consequently leads to higher mitochondrial oxidative metabolism 

(45,46), which is consistent with the relationships we observe. Complexes I, II and III of the mitochondrial 

respiratory chain also reveal age-related changes. Proteins from the UQCR (ubiquinol-cytochrome c 

reductase complex – Complex III) and SDH family (succinate dehydrogenase complex – Complex II) all 

increase with age (UQCR10: LFC = 0.57; UQCRH:  LFC = 1.0; SDHC: LFC = 0.67; SDHD: LFC = 0.6). In contrast, 

subunits from the mitochondrial complex I, such as NDUF (NADH: ubiquinone oxidoreductase 

supernumerary subunits – Complex I), both increase and decrease with age (NDUFB6: LFC = 0.18; NDUFV3: 

LFC = 0.46; NDUFA1: LFC = -1.1; NDUFAB1: LFC = 0.55).  

The proteins AKT1 and AKT2 are serine/threonine kinases highly abundant in cardiomyocytes and 

regulate cellular proliferation and intracellular protein transport pathways. Both are significantly 

increasing their abundance with age (AKT1: LFC = 0.36; AKT2: LFC = 0.27). AKT1 and AKT2 respond 
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differently to growth factors and extracellular ligands (47), but they both participate in the regulation of 

cardiac hypertrophy in aging through interaction with Sirtuins (48). Knockout mouse models have shown 

that the lack of AKT1 constrains the ability of cardiomyocytes to respond to physiological hypertrophy. 

Alternatively, AKT2 mutant mice showed reduced glucose oxidation in heart cells, but normal response to 

exercise-induce hypertrophy, demonstrating that these two proteins regulate heart remodeling response 

to stress in distinct ways (47,49,50). Along with AKT2, other proteins associated with fetal metabolism also 

increase with age, including ACACB (Acetyl-CoA Carboxylase Beta), which inhibits fatty acid oxidation, and 

GYS1, which plays a role in glucose metabolism (49,51,52). 

Proteins from the RAB family are Ras-like GTPases that regulate protein trafficking by vesicle 

formation and fusion throughout the cell (53,54). Among the 22 RAB proteins that change with age, 19 

are increasing (Supplemental Table 2). Some RAB proteins are activated during mitophagy, which is 

mediated by RABGEF1 in mammalian cultured cells (55). Notably, RABGEF1 is the RAB family member with 

greatest age-related abundance increase (LFC = 0.74), suggesting that mitophagy may play a substantial 

role in the aging heart. Increased myocardial RAB abundance is associated with myocardial hypertrophy. 

Mice overexpressing RAB1A showed contractile depression with impaired calcium reuptake and 

developed hypertrophy that progressed to heart failure (53). RAB1A and RAB1B are mostly identical in 

terms of both structure and function (56) and RAB1B is one of the few RAB proteins that decreased with 

age in our dataset (LFC = -0.356).  
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Enriched pathways for proteins changing with age 

 

Figure 2. Pathways showing age-related change in protein abundance. Gene-set enrichment analysis reveals that 
proteins changing with age are involved in positive regulation of cell proliferation, intracellular protein transport, 
mitochondria membrane complex and respiratory chain complex (FDR < 0.1). Major nodes indicate enriched 
pathways and adjacent nodes correspond to proteins identified within each pathway. The majority of proteins 
increase their abundance with age (colors represent the log2 fold change per year (LFC)), notably including proteins 
involved in intracellular protein transport and positive regulation of cell proliferation. 
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Proteins significantly changing with age 

 

Table 2. Highlighted proteins from differential abundance with age analysis. 

  

Protein symbol Direction of change Function highlights Reference index 

CRIP2 Decreases 
Smooth muscle tissue differentiation and 

cardiomyocyte survival 
(57–59)  

ATP1F1 Decreases Inhibition of mitochondrial ATPase activity (60,61) 

TIMM29 Decreases 
Translocase of inner mitochondrial 

membrane (Complex 22) 
(62) 

AKT1 Increases Physiological cardiac growth (47,49) 

AKT2 Increases Cardiac glucose metabolism (47,50) 

ACTN3 Decreases Muscle anaerobic metabolism (46) 

UQCRH Increases 
Mitochondrial respiratory chain complex III 

cytochrome b subunit 
(63) 

SDHD Increases 
Mitochondrial respiratory chain complex III 

cytochrome b subunit 
(64) 

COX4I1 Increases 
Mitochondrial respiratory chain complex IV 

cytochrome c subunit 
(65) 

NDUFB6 Increases 
Mitochondrial respiratory chain complex I 

subunit 
(66,67) 

NDUFA1 Decreases 
Mitochondrial Respiratory Chain Complex I 

subunit 
(68) 

RABGEF1 Increases Mitophagy induction (55) 
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Dysregulation of protein-complex stoichiometry with age 

 Loss of stoichiometry in protein complexes has been shown to occur with age in a number of 

organisms (69,70). We asked how the balance of component proteins in key age-related complexes was 

regulated at both the transcript and protein level. Based on protein-complex definitions from the 

CORUM database (71), we identified 16 complexes likely associated with the aging process and whose 

transcripts and proteins are present in our dataset (26S proteasome, nuclear pore complex, cytoplasmic 

ribosomal small subunit, cytoplasmic ribosomal large subunit, mitochondrial ribosomal large subunit, 

coat protein I (COPI) vesicle transport, coat protein II (COPII) vesicle transport, mitochondrial ribosomal 

small subunit, mitochondrial respiratory chain complexes (I-V), mitochondrial pyruvate dehydrogenase 

complex, mitochondrial inner membrane presequence translocase complex, mitochondrial outer 

membrane translocase complex). We computed the Pearson correlations between all pairs of genes, at 

the protein and transcript levels, for each complex, and then estimated the age trend for each gene-pair 

correlation coefficients (Methods).  We evaluated the significance of the age trends using a permutation 

procedure (17).  

 At the protein level, we observed 123 gene-pairs out of 2074 whose correlations significantly 

change with age (FDR < 0.1) (Supplemental Table 3). Of which, 81 are in the 26S proteasome complex, 4 

are in the cytoplasmic ribosomal small subunit complex, 11 are in the COPII complex, and 27 are from 

the mitochondrial respiratory chain complexes (5 from mitochondrial complex I, 2 from mitochondrial 

complex II, 5 from mitochondrial complex III, 4 from mitochondrial complex IV and 11 from the 

mitochondrial complex V). The majority (115 out of 123 pairs) of correlations decrease with age at the 

protein level, suggesting a loss of stoichiometric balance in these complexes. 

  At the transcript level only 20 out of 2042 pairs showed significant change with age (FDR < 0.1), 

and all of them are part of mitochondrial complexes (3 from mitochondrial complex III, 15 from 

mitochondrial complex V, and 2 pairs from the mitochondrial pyruvate dehydrogenase complex). 

Interestingly, all of these pairs increase their correlation with age (Supplemental Table 3). Only two of 

these gene-pairs showed a significant change at the protein level as well (Atp5b – Atp5a1 Mitochondrial 

complex V: protein age regression coefficient (estimate) = -0.03; transcript estimate = 0.02, and Uqcrc2 – 

Uqcrh Mitochondrial complex III: protein estimate = 0.03; transcript estimate = 0.02). The figure 3(A-D) 

summarizes the age-trend findings for the 26S proteasome complex.  
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 In order to capture the whole picture of how the correlations change with age for each protein 

complex, we adjusted the modeling strategy. Considering that testing for age trends for each gene-pair 

comparison could fail in revealing major changes for the protein complexes, we also fit the overall 

correlation age trend for each complex, at both the transcript and protein levels, without testing for 

each gene-pair individually (Methods). The same permutation method was used to address the 

statistical significance (Methods).   

We found that the mitochondrial complex III is the only complex in which the overall 

correlations change only at the transcript level (transcript estimate = 0.02), while the complexes 

mitochondrial outer membrane translocase (protein estimate = -0.02), nuclear pore complex (protein 

estimate = -0.01), cytoplasmic ribosomal large subunit (protein estimate = -0.006) and 26S proteasome 

(protein estimate = -0.02) showed changes only at the protein level (Figure 3E). In addition, we found 

that the mitochondrial complexes IX and V change their correlations, for both transcript and protein 

levels, at the same rate (transcript estimate ˜ 0.02; protein estimate ~ -0.01). Despite the fact that nine 

complexes did not show a significant change (p < 0.05) in the overall correlation with age, the majority 

of them mapped on the low right corner of the plot (Figure 3E), which indicates a positive age trend at 

the transcript level, but a negative age trend at the protein level. This corroborates our previous findings 

for the gene-pair comparisons, in which the pairwise correlations tend to increase with age at the 

transcript level, but decrease at the protein level (Figure 3A-D). Furthermore, the decrease observed at 

the protein level for the 26S proteasome complex is notably larger than the other complexes, revealing 

that this complex might be the one that is mostly affected in the aging process.  
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Protein correlation plots and age trend 

  

Figure 3. Heatmaps of the correlation coefficients between pairs of genes in the 26S proteasome complex at 6 
months (A), 12 months (B) and 18 months (C) at the transcript level (1) and at the protein level (2). D) Heatmaps for 
the age trend in correlations between members of the 26S proteasome complex show that correlations at the 
transcript level are generally increasing with age but are not statistically significant (D1). At the protein level (D2) 
the majority of correlations are decreasing with age. Dots indicate significant age-trend for the pairwise correlations 
with age (FDR < 0.1). E) Standardized estimates of the change in correlation with age for all the protein complexes 
at the transcript (x-axis) and protein (y-axis) levels. Color indicates the significance of the age trend at the transcript 
level, protein level, both or neither. Even though many of the complexes do not show a significant trend with age, it 
is interesting to note that, in general, their age estimates tend to increase at the transcript level, but decrease at the 
protein level.  
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Genetic variants alter the age trajectory of functionally related groups of proteins 

We carried out genetic mapping analysis of transcripts and proteins to identify quantitative trait 

loci (eQTL and pQTL, respectively) that regulate their expression/abundance levels.  The additive effects 

of genetic variation on transcripts and proteins have been widely studied and documented (72–76) and it 

will not be discussed here. Our interest is to investigate how genetic variants influence the rate or 

direction of change with age of transcripts and proteins.  To identify these age-interactive QTL (age-QTL), 

we evaluate an age-by-genotype interaction term in a linear mixed model of genetic effects (Methods) for 

each transcript and protein. We computed genome-wide adjusted significance using a permutations 

strategy (Methods) and declare age-QTL when the age-interactive LOD score (LODint) > 7.75.   We have 

provided access to the data and webtools that can be used to explore both the additive and age-

interactive genetic effects on transcripts and proteins in the aging mouse heart 

(https://churchilllab.jax.org/qtlviewer/JAC/DOHeart).  

We found 824 significant transcript age-QTLs (age-eQTL). These are primarily mapped to locations 

that are distant from the coding genes, which implies that age-related changes are, largely, not a function 

of direct regulation of gene expression and are rather a response to other age-related changes. Only 5 of 

the age-eQTL are local.  A local age-eQTL for the gene Cluh (LODint = 7.9) is located on chromosome 12. 

This gene binds RNAs of nuclear-encoded mitochondrial proteins, regulating mitochondrial metabolism 

by translation control and mRNA decay (77,78). Interestingly, Cluh is also crucial in orchestrating 

mitochondrial metabolic switches, such as the shift from glycolysis to oxidative phosphorylation that 

happens after birth (78). Genetic variation in Cluh might influence the return to the fetal metabolism in 

the aging heart.   

For proteins, we found 463 significant protein age-QTLs (age-pQTL), none of which are local to 

the coding gene. The protein PARK7 mapped a distal age-pQTL on chromosome 9 (LODint = 10.5) at ~95Mb. 

PARK7 is a redox-sensitive chaperon that protects the murine heart from oxidative damage (79).  SIRT2, 

another protein with relevant function to the aging heart, has a distal age-pQTL on chromosome 13 at 

~111Mb (LODint = 9.6). SIRT2 regulates cardiac homeostasis and remodeling through activation of AMP-

activated protein kinase (AMPK) and repression of the nuclear factor of activated T-cells (NFAT), playing a 

protective role in the heart (80,81).   
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Genomic hotspots for age-interactive eQTL and pQTL  

 

Figure 4. Age-by-genetic effects are predominantly non-local and map to distinct hotspot region that affect many 
transcripts and proteins. Age-QTL are mapped by testing an age-by-genotype interactive term in genome scans for 
each transcript and protein. At these loci, the DO founder haplotypes influence the rate or direction of change with 
age of transcript or protein expression/abundance. Distal QTL hotspots represent small genomic regions where 
several transcripts or proteins have age-QTL at the same locus. Genetic variation at hotspot loci regulate the age-
related dynamics of multiple transcripts or proteins. Hotspots for the significant QTLs (LODint > 7.75) appear as 
vertical bands (upper panel) and peaks (lower panel). 
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We observed that many age-QTLs co-locate to the genome in hotspots. We identified an age-eQTL 

hotspot on chromosome 4 and three age-pQTL hotspots on chromosomes 3, 5 and 12, respectively 

(Methods). Genome-wide significant age-QTL meet stringent statistical criteria that can result in missing 

weaker but biologically relevant age-QTL. Therefore, at each hotspot, we also considered transcripts or 

proteins with suggestive QTL (LODint > 6). We then computed the correlation of all candidate transcripts 

or proteins within each hotspot and retained only those with absolute mean correlation greater than 0.3. 

This filter removed genes with age-QTL that are not tightly correlated with other genes at the hotspot and 

thus less likely to share common genetic regulators. For the age-eQTL hotspot on chromosomes 4, none 

of the transcripts met this criterion suggesting that the hotspot genes are regulated by multiple 

independent genetic variants. However, all three age-pQTL hotspots included highly correlated proteins, 

with 130 at the chromosome 3 locus, 110 at the chromosome 5 locus, and 161 proteins at the 

chromosome 12 locus (Supplemental Figure 1 and Supplemental Table 4). 

To determine if the proteins that map to the age-pQTL hotspots share common biological 

functions, we performed enrichment analysis. The proteins in the chromosome 3 hotspot are enriched 

(FDR < 0.05) for genes in the proteasome complex, including proteins from the PSM family (a subunit of 

the proteasome complex); myosin filament, including proteins such as MYH6 and MYH3 that are 

responsible for muscle cell structure; and the nucleosome pathway, composed by members of the histone 

families H1, H2 and H3 (Figure 5A). The proteins that mapped to the chromosome 5 hotspot are associated 

with a variety of pathways (24 in total with FDR < 0.05), but the two most significant are the endoplasmic 

reticulum lumen pathway, composed of proteins of the endoplasmic reticulum stress response, such as 

PDIA4, HSPA5 and HSP9B1, and the contractile fiber pathway containing proteins associated with the 

muscle contraction apparatus, such as Titin and Desmin (Figure 5B). Finally, for the chromosome 12 

hotspot, we found more than 40 significant pathways (FDR < 0.05) for which the most significant one is 

the muscle contraction pathway that includes proteins related to muscle cell organization, such as 

myosins and actin, as well as proteins involved in calcium transportation (CACNA2D1) and mitochondria 

energy generation (NDUFS6) (Figure 5C). Another pathway that was highly significant is the non-coding 

RNA (ncRNA) transcription pathway, associated with chromatin organization, and includes histone H2 

family members and a histone chaperone (NPM1) (Figure 5C).  
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Enriched pathways for proteins in the age-pQTL hotspots 

 

Figure 5. Most significant pathways for proteins mapping to the age-pQTLs hotspots. Enrichment analysis shows that 
the three hotspot regions each regulate proteins involved in distinct biological processes. Proteins that map to the 
chromosome 3 hotspot (A) are primarily associated with myosin filament, nucleosome and proteasome complex, 
while proteins that map to the chromosome 5 hotspot (B) participate in contractile fiber and endoplasmic reticulum 
lumen. Proteins that map to the chromosome 12 hotspot (C) are associated with muscle contraction and ncRNA-
transcription.  
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To investigate how change in protein abundance with age can vary due to genetic factors, we 

estimated the age-specific effects of each DO founder haplotype on the first principal component (PC 1) 

of the proteins that mapped to each hotspot (Figure 6). Each hotspot had a distinct pattern of founder 

allele effects. For the hotspot on chromosome 3, the effects of the B6 and PWK alleles exhibit clear 

opposing trends with age (Figure 6A). For chromosome 5, the effect of the AJ allele on protein abundance 

shows a pronounced trend with age compared to the other founder alleles (Figure 6B). At the 

chromosome 12 hotspot, the magnitude of the effects of 129 and NOD alleles increase with age, but in 

opposite directions (Figure 6C). 

We confirmed these effects for individual proteins that mapped to the hotspots, considering that 

proteins that are positively correlated to each other have similar allele effects and proteins that are 

negatively correlated show the opposite direction of change (Figure 6). The chromosome 3 hotspot 

includes members of the histone families (H2AFY and H3F3B), that participate in chromatin structuring 

and are positively correlated (Supplemental Table 4). For these proteins, B6, CAST or WSB alleles drive 

decreasing abundance with age, while the PWK allele has the opposite effect (Figure 6A).  

Proteins HSPA5 and PDIA4, that mapped to the chromosome 5 hotspot, participate in the 

physiological endoplasmic reticulum (ER) stress response and are positively correlated (Supplemental 

Table 4). These proteins and others involved in ER stress response are negatively correlated with TTN, a 

protein responsible for sarcomere structuring and muscle contraction.  For mice with the A/J allele, HSPA5 

and PDIA4 increase with age and TTN abundance decreases with age (Figure 6B).  

The chromosome 12 hotspot includes proteins related to chromatin structuring, such as H2AFY 

(that also mapped to the chromosome 3), H2AFY2 and NPM1. The histones proteins, H2AFY and H2AFY2, 

are positively correlated to each other and display similar allele effects, in which the 129 allele induces a 

decrease in abundance with age. The protein NPM1, which encodes a histone chaperone, is negatively 

correlated to both H2AFY and H2AFY2 and shows opposite allele effects (Figure 6C).  

Since distal QTL hotspots represent genetic variation that locally effect an intermediate gene that 

regulates many downstream targets, we looked for genes within the intervals of the hotspots that could 

be the genetic drivers. Contiguous to the hotspot on chromosome 3 (145 – 150Mb), we identified a non-

significant local pQTL (LODint = 7) for the protein SH3GLB1, known as BIF-1. The gene is located between 

144.68 – 144.72Mb and has a similar age-by-genotype effects pattern to the PC 1 (Figure 6A). In addition, 

BIF-1 plays a role in autophagy regulation (82,83), an important component of protein quality control 
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system that was shown in multiple studies to decline with age (84). Even though the local pQTL for BIF-1 

did not show statistical significance, the additional biological information supports it as a potential 

candidate driver for the age-related changes in proteins that mapped to the chromosome 3 hotspot. 
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Allele effects of founder haplotypes on protein abundance at age-interactive pQTL hotspots 

 

Figure 6. Founder allele effect changes with age for the first principal component (PC 1), representing a hotspot 
summary, and for selected individual proteins that mapped at each age-pQTL hotspot. Proteins H2AFY and H3F3B in 
the chromosome 3 hotspot participate in the same biological process (nucleosome complex) and are positively 
correlated to each other, and so share the same directionality of change with age (A). Protein SH3GLB1, that also 
mapped to the chromosome 3 hotspot, is negatively correlated to H2AFY and H3F3B, and thus has inverted alleles 
pattern when compared to these proteins (A). In addition, the allele effects of each founder for SH3GLB1 and for the 
PC 1 are quite similar, suggesting SH3GLB1 as a candidate genetic driver (A). HSPA5 and PDIA4 mapped age-pQTL to 
the chromosome 5 hotspot and they participate in the endoplasmic reticulum stress response. These proteins are 
positively correlated to each other, thus possess a similar alleles effect pattern (B). These proteins are negatively 
correlated to TTN, involved in sarcomere structure, and so, show opposite allele effects (B). H2AFY and H2AFY2, both 
associated with chromatin structuring, mapped age-pQTL to the chromosome 12 hotspot, and are positively 
correlated to each other, sharing similar allele effects pattern (C). These proteins are negatively correlated to NPM1, 
also involved in chromatin structure (histone chaperone), thus they show opposing directions of allele effects with 
age (C). 
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DISCUSSION 

By analyzing both the transcriptome and the proteome of the aging mouse heart we were able to 

detect distinct biological processes that are altered through the course of natural aging.  We found that 

transcriptional changes with age are not necessarily followed by a change in their corresponding proteins 

and likewise, changes with age in proteins are not preceded by corresponding transcriptional changes.  

Our analysis reveals that transcripts decreasing in expression with age are associated with cardiomyocyte 

contraction and survival, and fatty-acid metabolism. These findings are consistent with previous reports 

describing disrupted Ca2+ handling, progressive loss of myocytes, and metabolism switch in the aging 

heart, which may reflect a compensatory mechanism to improve contractility (3,4,85). Transcripts 

increasing their expression with age are involved in the acute-phase response and cardiac fibrosis, which 

suggest chronic inflammation and loss of cardiomyocytes that stimulate extracellular matrix remodeling 

during the aging process (86–88).  

Proteomics reveals major features of the aging heart that are not detected at the transcript level. 

We saw changes in mitochondrial respiratory chain proteins, as well as intracellular protein and vesicular 

transport pathways, in agreement with previous proteome analysis of the aging mouse heart (89,90). We 

observed that most of the proteins from the RAB and AKT families increase their abundance with age, 

suggesting physiological growth of cardiomyocytes and increased cellular synthesis, which is commonly 

observed in hypertrophic hearts (1). Proteins of the mitochondrial respiratory complexes II, III and IV 

increase with age while proteins from Complex I change in both directions. It seems likely that the up-

regulation of proteins from the other mitochondrial complexes acts as a compensatory mechanism in 

response to an input deficiency from early steps in oxidative phosphorylation.  

We also found that the abundance of protein ACTN3, involved in the structuring of sarcomeric Z 

line and the regulation of the contraction apparatus, decreases with age. Actn3 expression has been 

observed in the skeletal muscle, but has not been reported previously in the heart of either mice or 

humans (91). In knockout mice, the deficiency of ACTN3 in the skeletal muscle promotes a switch from 

fast-anaerobic metabolism towards a more efficient aerobic metabolism, leading to better exercise 

performance (45,46). The same study also speculated that the Actn3 null allele has been under positive 

selection in modern humans, suggesting that aerobic metabolism boosting may confer a fitness advantage 

(46). In humans, ACTN2 and ACTN3 appear to have functional redundancy, and Actn2 was recently linked 

to heart failure in a multi-omic analysis (91,92). Our data suggests that ACTN3 may participate in the 
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regulation of metabolic efficiency not only in the skeletal muscle, but also in the mouse heart, and might 

contribute to the physiological changes in muscle efficiency during the aging process.  

We observed that proteins associated with fetal metabolism increase with age. A return to 

embryo/fetal gene program occurs in some pathological heart conditions and it is thought to play a 

protective role (93,94). The fetal heart is under constant stress conditions, including hemo-dynamic load 

and hypoxia, and thus uses carbohydrates as a primary energy source to maintain cardiac efficiency 

(93,95). The aging heart also undergoes different types of stress including the accumulation of reactive 

oxygen species, cardiomyocyte loss, mitochondria dysfunction and possibly hypoxia (85,96). These 

stressors are even more pronounced when they co-occur with other age-related comorbidities, such as 

diabetes mellitus and hypertension. Studies have demonstrated a return to the fetal gene program in 

diabetic rats with cardiac diseases (97,98). We propose that a return to the fetal program also happen in 

mice during the normal aging process and may play an adaptive role to compensate for decline in other 

biological functions of the heart. 

The protein data revealed changes in the balance between members of protein-complexes with 

age. In general, the correlations between proteins within complexes decrease with age. In contrast, 

correlations at the transcript level tended to increase with age, although these trends were less 

pronounced. This dynamic suggests that stochiometric regulation in protein-complexes is largely post-

transcriptional, and it seems plausible that changes at the transcript level could be a compensatory effect 

to balance the age-related erosion of regulation at the protein level. This is largely consistent with previous 

studies that have shown that the production of protein-complex subunits is not always perfectly 

stoichiometric and post-translational mechanisms play an essential role in removing extra subunits and 

promoting the balance of these complexes (70).  

In addition, several studies also showed that aging and the progressive decline of the proteasome 

activity can lead to a loss of protein-complex stoichiometry and increased protein aggregation (99–101). 

Here, we show an age-related decline in the correlation between protein subunits from mitochondrial 

complexes, suggesting that loss of stoichiometry may contribute to mitochondrial dysfunction in the aging 

heart. This finding is further corroborated by the observed changes in abundance of members of the 

mitochondrial Complex I described earlier, in which some proteins increase their abundance with age, 

while others decrease. However, the most striking finding is the observed loss of stoichiometry in the 26S 

proteasome and the COP II complexes, which, likely disrupts the processes of protein trafficking and 

sorting in the cell. The proteasome system plays a crucial role in regulating the abundance and 
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stoichiometry of proteins in the cell (102), and several studies have attempted to understand why 

proteasome activity declines with age (103). Here, we show that aging disrupts the regulation of the 

proteasome system itself, which, potentially, contributes to a vicious cycle of progressive protein quality 

control breakdown during the aging process.  

We found age-pQTL hostpots that modulate the dynamics of proteins involved in protein quality 

control. Most of the age-QTLs found were distal, indicating that the genetic variation has a weak age-

effect on the regulation of its proximal genes, which further supports the importance of post-

transcriptional mechanisms in regulating homeostasis during aging (11,14). The implication is that genetic 

variation is directly influencing one or more genes at the hotspot locus. In turn these gene products 

interact in higher-order molecular networks that influence age-related changes of functionally related 

groups of proteins.  

Enrichment analysis of the hotspots on chromosomes 3 and 5 identified proteins that function in 

the proteasome complex and endoplasmic reticulum (ER) lumen, respectively (Figure 5A/B). These 

modules are part of the protein quality control system that coordinates proteostasis and cell survival 

(104). The ER contains transmembrane proteins that sense the presence of misfolded proteins, which then 

activates transcription factors that up-regulate the expression of ER stress response genes (104). Some 

misfolded proteins are marked by ubiquitination and transferred to the cytosol, where they are degraded 

by the proteasome complex (104). The proteins HSPA5, HSP90B1 and PDIA4, present in the chromosome 

5 hotspot (Figure 5B), are known to be downstream targets of the ATF6 branch of the ER unfolded protein 

response and this pathway was found to be adaptive and cardioprotective in several studies (105–108). 

Enrichment analysis of the hotspots on chromosomes 3 and 12 identified proteins associated with 

chromatin structure (Figure 5), including histones and histones chaperones, such as NCL and NPM1 (Figure 

6C). Loss of chromatin structure was previously reported in aging models for yeast and human fibroblasts 

(109,110), and leads to dysregulation of global gene expression, increased genomic instability, and 

promiscuous access of DNA damaging agents to the chromatin (111,112). It is interesting to note that all 

histone proteins in our data decrease with age (Supplemental Table 2), suggesting that a loss of chromatin 

structure with age also occurs in the heart.  

Proteostasis decline and chromatin structure loss are known to occur in the aging process. We 

found that genetic variation in different regions of the genome might alter the trajectory of these events, 

demonstrating that each founder strain allele of the DO mice contributes in a specific way, and sometimes 
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in opposite ways, to protein abundance changes with age. For example, while the B6 allele at chromosome 

3 (between 145 and 150Mb) seems to induce a decrease in the abundance of histones H1F0, H2AFY and 

H3F3B with age, the PWK allele at this same locus has the opposite effect on these proteins.  

We identified the protein SH3GLB1 (BIF-1) as a potential driver of the age-related dynamics of 

proteins that mapped at the chromosome 3 hotspot. SH3GLB1 is a member of endophilin protein family 

that plays a role in mitochondrial fission, vesicle formation and autophagy (82,113,114). As mentioned 

earlier, the protein quality control system contributes to the aging process and studies suggest that 

increased autophagy may be a compensatory effect when the proteasome complex is disrupted (115,116). 

In addition, autophagy plays an important role in maintaining chromosomal stability, and loss of both 

Sh3glb1 and its associate Beclin-1 were shown to induce DNA damage due to metabolic stress (117,118). 

Autophagy is crucial for maintaining cardiac function - mice with disrupted autophagy show anomalies in 

sarcomere and mitochondria structure (119). Our findings suggest that genetic variation among the 

founder strains near the Sh3glb1 locus influences individual rates of change with age of proteins involved 

in the proteasome complex, chromatin structuring and muscle apparatus organization.  

In summary, we have described changes that occur with normal aging in heart tissue from DO 

mice that suggest a scenario of mitochondrial dysfunction, physiological hypertrophy, and a return to 

the fetal gene expression program. The proteome data revealed aspects of aging in the heart that are 

not seen at the transcript level, including the remarkable loss of stoichiometry of protein-complexes 

involved in protein trafficking and sorting. This finding suggests that the proteasome disruption itself 

may play a causal role in the progression of protein quality control breakdown during the aging process. 

The contribution of the protein quality control system in the aging heart is further demonstrated by the 

identification of age-pQTL hotspots that modulate abundance of proteins involved in the proteasome 

and the ER stress response, demonstrating how genetic variation acts on functional modules and 

contributes to individual variability in the aging heart.   
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MATERIAL AND METHODS 

 

Study cohort and tissue collection 

The initial cohort consisted of 600 DO mice (300 of each sex) bred at The Jackson Laboratory (stock 

no. 009376) across five waves (representing generations 8-12 of the DO). Mice were maintained on a 

standard rodent chow (LabDiet 5K52, St. Louis, MO) in an animal room that was free of pathogens, had a 

set temperature ranging from 20-22°C, and a 12-hour light/dark cycle. Subsequently ~100 animals from 

each sex, split approximately evenly into 6, 12, and 18 month-aged groups, were randomly selected for 

total heart collection, which were then flash-frozen. Frozen heart samples were pulverized and aliquoted 

for RNA-seq and shotgun mass spectrometry for 192 of the samples with approximately equal 

representation of both sexes and age groups. The Jackson laboratory’s Institutional Animal Care and Use 

Committee approved all the experiments used in this study.  

 

Bulk RNA extraction 

The total heart samples were lysed in Ambion TRIzol reagent (Thermo Fisher Scientific #15596026, 

Waltham, Massachusetts). Bulk RNA was isolated using the miRNeasy Mini kit (Qiagen Inc. #217004, 

Germantown, MD), according to the manufacture’s protocols with the DNase digest step. RNA 

concentration and quality ratios were assessed using the Nanodrop 2000 spectrophotometer (Thermo 

Fisher Scientific) and RNA 600 Nano LabChip assay (Aligent Technologies, Santa Clara, CA).  

 

RNA sequencing and quantification 

Poly(A) RNA-seq libraries were generated using the TruSeq Stranded mRNA Library Prep Kit 

(Illumina, San Diego, CA). Libraries were pooled and sequenced 100 bp single-end on the HiSeq 2500 

(Illumina) using TruSeq SBS Kit v4 reagents (Illumina). 

Expectation-Maximization algorithm for Allele Specific Expression (EMASE) was used to quantify 

multi-parent allele-specific and total expression from RNA-seq data (120) using the Genotype by RNA-seq 

(GBRS) software package (https://gbrs.readthedocs.io/en/latest/). 
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Transcripts were removed if they did not have at least one read in at least half of the samples, 

resulting in a total of 20,932 transcripts for further analysis. 

 

Protein quantification 

Tissue from the total heart samples were homogenized in 1 ml lysis buffer, which consisted of 1% 

SDS, 50 mM Tris, pH 8.8 and Roche complete protease inhibitor cocktail (Roche # 11697498001, Clifton, 

NJ), and analyzed as previously described (74). Protein abundances were estimated from their component 

peptides identified through mass-spectrometry (MS) followed by a database search of MS spectra. Prior 

to protein abundance estimation, we filtered out peptides that contained polymorphisms relative to the 

mouse reference genome in order to minimize false pQTL signals that can occur due to failure to detect 

polymorphic peptides.  

To estimate and normalize protein abundance from component peptides, we followed Huttlin et 

al. (2010) (121) and calculated:  

Equation 1 

Protein() = log- .
∑ Peptide(23

𝑠(
+ 17 

where 𝐾	represents the set of observed peptides that map to protein 𝑗 for mouse 𝑖 and 𝑠(  is a scaling 

factor for standardizing samples within a batch. 𝑠( = 	
∑ Peptide<=>

max( ∑ PeptideC=	|C	Î	E[<])>
, where 𝐿 is the set of all 

peptides observed for a sample, 𝑏[𝑖] denotes the batch of sample 𝑖, and max(∑ PeptideKL ∶ 	𝑄	Î	𝑏[𝑖])O  

is the maximum sum of peptides for all the samples in batch 𝑏[𝑖]. Protein abundance levels that were 

missing (NA) were imputed to be zero. Proteins with zeros for more than half the samples, resulting in a 

total of 4,062 proteins for further analysis. 

The MS experiment was performed in batches of 10 samples processed and quantified 

simultaneously. Batch effects were removed using a linear mixed effect model (LMM) fit with the lme4 

package (122). The batch effect, estimated as a best linear unbiased predictor (BLUP), was subtracted 

from each protein abundance, while age (as a categorical variable with three levels) and sex were included 

as fixed effect covariates in the model. 
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Differential transcript expression analysis by age 

We used the DESeq2 package (123) to test for transcripts whose expression changed with age. 

Briefly, we fit the following generalized linear model (GLM) using the negative binomial distribution in 

DESeq2:  

Equation 2 

Transcript( = 	Sex[𝑖] + Gen[𝑖] + Age[𝑖] 

where Transcript( is the total count for each transcript from mouse 𝑖, Sex[𝑖] is the effect corresponding 

to the sex of mouse 𝑖, Gen[𝑖] is the effect corresponding to the generation of mouse 𝑖, and Age[𝑖] is the 

effect corresponding to the age of mouse 𝑖, fit as a continuous variable at the month scale (6, 12, 18). The 

effect of age was tested using its Wald statistic. Transcripts with a significant age effect on expression 

were determined after FDR adjustment to account for multiple testing (FDR < 0.1). 

 

Differential protein abundance analysis by age 

To detect proteins with age effects, we fit a log-normal linear model with predictors similar to 

Equation 2:  

Equation 3 

Protein( = 	Sex[𝑖] + Gen[𝑖] + Age[𝑖] +	e(  

where Protein( is the log-scale abundance of each protein from mouse 𝑖, as defined in Equation 1, e(  is 

the residual, and all other terms as previously defined. Proteins with significant age effects were identified 

after FDR adjustment (FDR < 0.05). 

 

Age trends in the correlation of genes coding for protein-complexes 

To investigate the stoichiometry of known protein complexes (71) (CORUM database) we adapted 

a method described in McKenzie et al (2016) (17). We computed the Pearson correlation between the 

expression of each gene-pairs members of the protein complexes for both transcript and protein, at each 

age group. Then for each protein complex and data type (transcript and protein), we regressed the 

correlation coefficients of each gene-pair on age and recorded the slope, as exemplified in Equation 4: 
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Equation 4 

Correlation2
(,) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 	𝐴𝑔𝑒[𝑘] +	e2 

Where Correlation2
(,)  is the correlation between proteins 𝑖 and 𝑗 at age 𝑘, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 is the overall 

intercept, 𝐴𝑔𝑒 is the age effect, fit from a continuous encoding of age, 𝐴𝑔𝑒[𝑘] = 	𝛽bcd ∗ 𝑘, and e2	is the 

residual at age 𝑘. In order to determine significance, we shuffled the mouse IDs and repeated the slope 

estimation 1,000 times to obtain FDR estimates using the DGCA package (17). Significant age-trends were 

declared at FDR < 0.1.	

We also fit a model to compute the overall age trend for each protein complex, without fitting 

separate models per gene-pair. We fit a linear mixed model using the R/lme4 package to jointly model 

gene-pairs with a random effect, allowing the intercept and age slope for each gene-pair:  

Equation 5 

Correlation()2 = 	𝜇 + 	𝑢[𝑖𝑗]	+	(βAge	+	𝑣Age[𝑖𝑗])𝑥2 +	𝜀()2		 

where Correlation()2  is the correlation between proteins 𝑖 and 𝑗 at age 𝑘,  𝜇 is the overall intercept, 

𝑢[𝑖𝑗] is the random deviation on the intercept specific to the pairing of proteins 𝑖 and 𝑗, βAge is the 

overall age effect, 𝑣Age[𝑖𝑗] is the random deviation on the age effect specific to the paring of proteins 𝑖 

and 𝑗, 𝑥2 is the age (6, 12, or 18 months), and 𝜀()2 is random noise on the correlation for proteins 𝑖 and 𝑗 

at age 𝑥2. The protein pair-specific random terms are modeled as u	~ N(0,	I𝜏-) and vAge	~ N(0,	I𝜏Age- ), 

and the error as 𝜀()2	~ N(0,	I𝜎-). We also used the permutations procedure from McKenzie et al (2016) 

to determine significance, using a p-value cut-off of 0.05. 

 

Additive QTL mapping 

Although the results of additive QTL mapping are not reported here, it is useful to describe the 

methods used as a prelude to the description of age-interactive QTL mapping analysis. For each transcript 

or protein, we transformed the data to rank-normal scores and fit the following model at ~64,000 equally 

spaced loci across the genome: 

Equation 6 

y() = 	QTLw[i]	+	Sex[𝑖] + Age[𝑖] + 𝑢w() +	e() 
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where y() is the transcript or protein 𝑗 expression/abundance for mouse 𝑖, QTLw[i] is the expected dosage 

of founder haplotype alleles for mouse 𝑖 at locus 𝑚, 𝑢w()  is a random kinship effect that accounts for the 

correlation between individual DO mice due to shared genetic effects excluding the chromosome of locus 

𝑚. The kinship effect is modeled as 𝐮	~	Nz𝟎,𝐊tK-~, where K is a realized genomic relationship matrix and 

tK
-  is the variance component underlying the kinship effect (124). The log10 likelihood ratio (LOD score) 

was determined by comparing the QTL model (Equation 4) to the null model without the QTL term.  

  

Age-interactive QTL mapping 

 We performed a second set of genome scans to identify age-interactive QTL loci where the rate 

or direction of change of a transcript or protein is dependent on genotype. Genome scans for age-QTL are 

based on the following model: 

Equation 7 

y() = 	QTLw[i]×Age[i]	+	QTLw[i]	+	Sex[𝑖] + Age[𝑖] + 𝑢w() +	e() 

where QTLw×Age[i]	is the interaction effect between the QTL genotype and age of mouse 𝑖. All other 

terms are as previously defined. The null model for the age-interactive genome scans is the model from 

Equation 4, thus only the interaction term is being tested. To determine significance thresholds for age-

QTL we required a more elaborate permutation procedure than the standard used for additive QTL (125). 

For each transcript or protein, we fit the following model: 

Equation 8 

y() = 	Sex[𝑖] + Age[𝑖] + 𝑢() +	e() 

Where the kinship term uij includes effects of all loci, including the additive effect of the locus under 

evaluation. We then computed the residuals by subtracting the fitted values of model predictors: 

Equation 7 

e() = 	y()	-	Sex[i]� + Age[i]� + 𝑢���  

To construct a permutation test, we generate null data by summing the fitted effect values with 

a randomly permutated of the residuals from Equation 7. We repeated the age-interactive scans on the 

residual-permuted phenotypes 1000 times to obtain a null distribution sample of the LODint statistic. 

Signficance thresholds for the maximum LODint scores were based on the 95th percentile of this 
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distribution and a suggestive threshold was determined using the 37th percentile. Transcript and protein 

age-QTLs were considered significant when LODint > 7.75 and suggestive when LODint > 6.0. All QTL 

analyses were performed with the R/qtl2 package (126).  

 

Distal QTL hotspot analysis 

Using a sliding window of 4 Mb, we counted the density of suggestive age-QTL (LODint > 6) for 

transcripts and proteins (Figure 4). We defined a genomic region as a hotspot based on having more than 

40 age-QTLs. We used the hotspots to defines sets of transcripts and proteins that mapped to these 

regions. We further refined the hotspot sets by filtering out transcripts or proteins with a mean Pearson 

correlation coefficient < 0.3 with the other hotspot members, removing genes that were inconsistent with 

other members of the hotspot.  

 

Age-specific allele effects 

Transcripts or proteins with shared genetic drivers, which could cause distal age-QTL hotspots, 

should have similar genetic effects. To investigate this, we computed the principal components (PC) from 

the refined hotspot transcripts/proteins. We then estimated age-specific allele effects for the PC1, and 

also for the specific transcripts and proteins at the hotspot position. We included age and sex as additive 

covariates, and categorical age as the interactive term in the model. Using this model, we estimated allele 

effects at the age-QTL specific to the three age groups.  

 

Functional enrichment analysis  

   We performed functional enrichment analysis for transcript/protein sets defined by having 

significant age effects and the members of the refined distal age-QTL hotspots. We used the 

ClusterProfiler package (127) to identify enriched gene ontology terms (biological processes, cellular 

compartments and molecular functions) for each set. We used stringent (FDR < 0.05) and lenient (FDR < 

0.1) cut-offs to defined enriched categories for reporting. 

 

Software 
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All data analysis and figures were generated using R v3.6.0 with the following packages: tidyverse 

v1.3.0, dplyr v0.8.5, tibble v2.1.3, ggplot2 v3.3.0 and gridExtra v2.3. The R Scripts used for all the analysis 

performed on this work can be found on Github ( 

https://github.com/isabelagyuricza/Aging_Heart_DO_analysis) and on Figshare (DOI: 

10.6084/m9.figshare.12430094.v1).  

 

Data access 

The RNA fastq files can be found on on NCBI SRA repository under bioproject PRJNA510989. The 

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE partner repository (http://www.proteomexchange.org/ - accession number pending). Both raw and 

normalized transcript expression matrices, as well as the protein abundance data have been deposited to 

Figshare (10.6084/m9.figshare.12378077). Genotype data is deposited the DODb database 

(https://dodb.jax.org/). All data and QTL results are available for download and interactive analysis using 

the QTLViewer for user driven queries (https://churchilllab.jax.org/qtlviewer/JAC/DOHeart). Raw and 

normalized quantification of transcripts and proteins and the genotype data are included in the download 

in a Rdata format suitable for further analysis.  
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Supplemental material legends 

Supplemental Figure 1. Heatmaps for the Pearson correlation coefficients between transcripts or proteins that 
mapped to the age-QTL hotspots. A) Correlations between transcripts that mapped to the chromosome 4 age-eQTL 
hotspot show that there is no evidence for correlation in this group of transcripts. B) Correlations between proteins 
that mapped to the chromosomes 3 (B1), 5 (B2) and 12 (B3) age-pQTLs hotspots identify tightly correlated groups 
of proteins (positive or negative) that are potentially regulated by shared genetic variation. 

 

Supplemental Table 1. List of transcripts that significantly change with age. 

 

Supplemental Table 2. List of proteins that significantly change with age.  

 

Supplemental Table 3. List of gene-pairs members of age-related protein-complexes that have a significant (FDR < 
0.1) change in their pairwise correlations with age at the transcript or at the protein level.  

 

Supplemental Table 4. List of age-pQTLs and age-eQTLs that mapped at the identified hotspots and their overall 
mean expression/abundance correlation with the other transcripts/proteins on the hotspot. 
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