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Abstract

Despite sexual development being ubiquitous to vertebrates, the epigenetic
mechanisms controlling this fundamental transition remain largely undocumented in
many organisms. Through whole-methylome, whole-transcriptome and chromatin
landscape sequencing, we discovered global control mechanisms as well as specific
regulators of sexual maturation in Atlantic salmon. This large integrated study was
based on an experimental time course that successfully sampled the period when
Atlantic salmon commence their trajectory towards sexual maturation. Co-analysis of
DNA methylome and gene expression changes revealed chromatin remodelling
genes arid1b and smarca2 were both significantly hypermethylated and upregulated
in the ovary during the onset of maturation. We also observed changes in chromatin
state landscape occurred early in the transition and were strongly correlated with
fundamental remodelling of gene expression. Finally, we integrated our multiomics
datasets to identify trim25 and znf423 as key regulators in the pituitary that
underwent 60 fold change in connectivity during the transition to sexual maturation.
The study provides a comprehensive view of the spatiotemporal changes involved in
a complex trait and opens the door to future efforts aiming to manipulate puberty in

an economically important aquaculture species.
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Main

Epigenetic regulation of gene expression influences a vast spectrum of complex
traits, with examples spanning the onset and severity of human disease,
developmental transitions during growth and the expression of ecologically and
economically relevant traits across the animal kingdom. Our understanding of the
epigenetic contributions to trait variation remains low in comparison to causative
genes derived from approaches such as genome wide association studies. However,
the relatively recent development of sophisticated sequence-based assays for the
detection of chromatin state changes and methylation status have enabled the
landmark development of genome wide maps of regulatory elements in human 123,
mouse 4> and other model organisms such as the fruit fly (Drosophila
melanogaster) and the nematode (Caenorhabditis elegans) 8. These have provided
the impetus for a plethora of research focussed on understanding epigenetic

mechanisms and their role regulating gene expression.

Sexual maturation is a fundamental transition ubiquitous to vertebrates and provides
a model for the study of epigenetic regulation. The key tissues are known given the
reproductive cycle is regulated by activation across the brain, pituitary, gonadal
(BPG) axis in organisms spanning mammals to teleost fish. Further, upon maturation
these tissues undergo known and often profound transcriptomic remodelling
providing a large dynamic range to increase the likelihood of identifying regulatory
networks 2191112 The genetic architecture of sexual maturation has been
extensively studied using association studies in both wild and farmed Atlantic salmon

populations 13141516 Despite the importance of sexual maturation as a trait of
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interest it can be difficult to study, as the timing of onset varies widely in response to
both genetics and environmental factors and occurs prior to measurable phenotypic
change. To overcome this, we chose to investigate sexual maturation in Atlantic
salmon where photoperiod manipulation in an experimental system can be used to
synchronise animals and access tissues across the time period when animals first
commit to the onset of puberty. We also chose a multiomics approach, which has the
power to identify the control mechanisms underpinning complex traits "8, We
describe changes in gene expression, DNA methylation and chromatin accessibility
to identify epigenetic mechanisms associated with maturation in a commercially

important aquaculture species.

Results

Initiation of Atlantic salmon sexual maturation and a multiomic workflow

Fish were managed in a tank based experimental system to facilitate a long-light
photoperiod regime known to stimulate the onset of sexual maturation (Fig. 1a) 129,
Fish from a single management group were sacrificed at a timepoint immediately
before initiation of the long-light regime (throughout referred to as T1) and at three
timepoints afterwards (T2, T3 and T4). An increase in gonadal somatic index (GSlI)
of sampled fish across the time course confirmed an active response to the long
photoperiod (Fig. 1b). Significant increases were observed only at T4 (t-test P-value
= 0.021). Tissues from the brain — pituitary — gonad axis and liver were sampled at

each timepoint to form the basis of a multiomics workflow for data generation and
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integrative analysis spanning the transcriptome, DNA methylome and chromatin

state datatypes (Fig. 1c; Supplementary Fig. S1).

Maturation leads to significant transcriptome changes

We sequenced messenger RNA (mRNA) from four biological replicates of each
tissue before and after the onset of maturation. A total of 3.2 billion paired-end reads
were mapped against the Atlantic salmon reference genome with 72% mapping
efficiency to create an average depth of 50 million reads per library (Supplementary
Table 1). Consistency across biological replicates within each timepoint was high for
each tissue except for brain (see Supplementary Results; Supplementary Fig. S2).
To begin characterization of transcriptomic remodelling, we compared gene
expression levels in three post-maturation samples (T2, T3 and T4) to the control T1
(Fig. 2a). The pituitary gland showed comparatively few transcriptomic responses
that involved 543 differential expressed genes (DEGS) (Supplementary Table S2). In
contrast, more widespread remodelling was observed in both ovary (5,993 DEGS)
and liver (9,541 DEGs, adjusted P <0.05 (Fig. 2a, Supplementary Tables S3, S4).
The number of DEGs increased with elapsed time following the onset of the long
light photoperiod for the two BPG axis tissues (pituitary and ovary). Of these, the
ovary underwent the most dramatic remodelling over time with 403, 1,709 and then
3,497 DEGs observed at timepoints T2, T3 and T4 respectively. This increasing
trajectory of differential gene expression, coupled with the elevated GSI following the
light stimuli (Fig. 1b), strongly suggests the experimental approach successfully

initiated the onset of maturation.
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Upregulation of pituitary hormones

The pituitary is expected to play a key role in the early triggers for maturation onset
(21). Hierarchical clustering of the pituitary DEGs revealed two distinct groups, one
of upregulated genes (n=333; 60% of pituitary DEGs) and one of downregulated
genes (n=125). The upregulated group showed significant Gene Ontology (GO)
enrichment for maturation-related functions including G protein—coupled receptor
signalling and hormone activity (Supplementary Fig. S4 and Supplementary Table
S5). Pituitary DEGs were involved in several reproduction-related functions such as
steroidogenesis (cypl7al), hormone receptors (oxtr, pgr, doplrl, galrl), genes
coding for pituitary hormones (gh2, gthbl, gthb2, glha2), retinoic acid (RA) signalling
(cyp26b1l, rhd8-1/2) and sex-related transcription factors (TFs) (several sox genes
and gata?2). The upregulation of gonadotropins subunits is highly significant (Fig. 2b).
This included both gthbl and gthb2 that encode the gonadotropin subunits beta-1
and 2 as well as glha2 that encodes the glycoprotein hormone alpha chain.
Together, these form the heterodimeric gonadotropins gth-1 and gth-2 that have
previously been shown to stimulate gonadal growth in the juvenile stages of both
rainbow trout and coho/chum salmon 222324 Further, physicochemical
characterization of the salmon gonadotropins indicate they are functionally related to
follicle stimulating hormone (fsh) and luteinizing hormone (Ih) in vertebrates
(reviewed by 2%). We find glha2 (the common subunit present in gonadotropins)
was consistently upregulated in the pituitary throughout the experiment
(Supplementary Fig. S3). Our results directly confirm the action of these key
pituitary hormones in the onset of maturation. To characterize the transcriptomic
remodelling occurring in the ovary and liver, we assessed the DEG sets for GO

enrichment. Upregulated genes in the ovary revealed processes related to cell
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adhesion, immune/inflammatory response and development (Supplementary Fig.
S5; Supplementary Table S6), while gene families involved in organic acid metabolic
processes and mitochondrial transport were enriched among liver upregulated genes
(Supplementary Fig. S7 and Supplementary Table 7). Maturation-related functions
including steroidogenesis, hormonal receptors and follicular development were

identified in ovary (see Supplementary Results; Supplementary Fig. S6).

DNA methylome maps of three Atlantic salmon tissues

To investigate the regulatory mechanisms controlling differential expression, the first
genome-wide CpG methylation maps were developed for Atlantic salmon using
whole-genome bisulfite sequencing (WGBS). Methylome data was collected from
two biological replicates at the terminal time points (T1 and T4, Fig. 1c) from three
tissues (pituitary, ovary and liver), generating 2.6 billion paired-end uniquely mapped
reads (average coverage of 11x) (Supplementary Table S8). We found a genome-
wide methylation rate of 81% per sample (Supplementary Fig. S8; Supplementary
Table S8), which is similar to the rate observed in vertebrate genomes (60-90%)
26.27 Methylome data was assessed based on coverage, read mapping and
consistency between biological replicates (see Supplementary Results;
Supplementary Table S8; Supplementary Fig. S8c, d). Among the different
dinucleotide contexts, CpG methylation contributed the vast majority (~ 99.5% on
average) compared to CHH or CHG methylation which were excluded from further

analysis (Supplementary Fig. S8a; Supplementary Table S8).

By comparing the CpG methylation patterns between T4 and T1 samples (Fig. 3a),

we identified 1902, 2982 and 1606 differentially methylated regions (DMRS) in the
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174  pituitary gland, ovary and liver respectively (Fig. 3b; Supplementary Fig. 9a, b;

175 Supplementary Tables 9, 10, 11). The average length of DMRs was short (251 bp)
176  and their distribution was both genome wide (Fig. 3b) and highly non-random, with
177  52% found to overlap protein coding genes and another 18% located within 5 kb
178  upstream or downstream (Fig. 3c; Supplementary Fig. 9¢). The location of DMRs
179  was also strongly tissue specific, with few regions shared between tissue pairs and
180 only 8 found in all three tissues (Supplementary Fig. 9b). Next, we investigated the
181 directionality of DMRs across tissues and found approximately equal rates of hyper-
182  methylation (increased methylation in T4) and hypo-methylation (decreased

183  methylation in T4) in both the pituitary and liver. Strikingly, the majority of DMRs in
184  ovary were hyper-methylated (2175 DMRs or 73%), independent of their genomic
185 location (genic regions, promotors, 5 kb downstream or intergenic) (Supplementary
186  Fig. 9d). This is consistent with DNA methylation having important roles during

187  epigenomic reprograming in embryo and stem cells development 28, compared to
188  highly stable methylomes in somatic cells 2°. This pronounced skew towards

189 increased methylation occurred in the tissue with both the highest total number of
190 observed DMRs and the largest increase in upregulation of gene expression. Of the
191 tissues investigated, the ovary also undergoes the most radical physiological change
192 during maturation as it transforms via vitellogenesis and oocyte development in

193  preparation for egg release during spawning.

194

195 Differentially methylated genes serve key roles in maturation

196  The gene catalogue present within differentially methylated regions (DMRSs) was
197  assessed for their function in relation to the trait. The majority of differentially

198 methylated genes (DMGSs) in ovary were hypermethylated (n=1165; 74%)
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(Supplementary Fig. S9d) and significantly enriched for three biological process
(GO-BP), one cellular component (GO-CC) and 24 molecular function (GO-MF)
terms including those with maturation-related functions such as
semaphorin/glutamate receptor activity (Supplementary Fig. S10; Supplementary
Table S12). Among these genes, at least 33 genes have demonstrated roles in the
biology of maturation including follicular development (plexnbl, sema4f coding for
Plexin-B1 and Semaphorin-4f) 20 and the control of gonadotropin-releasing hormone
excitability (grm8 coding for the glutamate receptor 8) 3%. We plotted the normalised
expression of these candidates from samples collected at T1 and T4 and found that
the majority were upregulated at T4, consistent with their hyper-methylated status

(Supplementary Fig. S11).

Co-analysis of DNA methylome and transcriptome reveals role for chromatin
remodelling during maturation

The identification of significant transcriptional and methylation changes allowed us to
explore the dynamic between these two processes by assessing the overlap of
genes declared as both DEG and DMG. The overlap was low and non-significant for
liver (38 / 616 or 6% of DMGs were also DEGs) and pituitary (11 / 762 or 1.4% of
DMGs were DEGS) (Supplementary Fig. S9e). However, 195 or 14% of ovary DMGs
(195 / 1357) were also differentially expressed, a number that exceeded random
expectation in 83.8% of 1000 permutations tests (Fig. 3d). This suggests changes in
methylation status may directly control gene expression in this subset of genes. If
true, we would expect to see correspondence between the directionality of the
expression and methylation changes. This appeared to be the case, as 82% of

upregulated genes (148 / 179; Binomial P-value = 8.727E-20) were hyper-
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methylated at T4 relative to T1 (Fig. 3e), matching the classical expectation of gene
body methylation mediated control of gene expression 3233, The 148 genes were
enriched for 3 GO-CC terms related to chromatin remodelling complexes (SWI/SNF
and nBAF) (Fig. 3f; Supplementary Table S13), and the associated genes displaying
coordinated expression and methylation status (Fig. 3g). For example, the arid1b
gene encodes AT-rich interactive domain-containing protein 1B and smarca2
encodes the global transcription activator snf2I2. Both proteins are involved in
chromatin remodelling as they are core components of the SWI/SNF remodelling
complexes3* that carry out enzymatic change to chromatin structure by altering DNA-
histone contacts 3. This opens the possibility they act as key control points, to
regulate a wide array of other genes during ovarian development. A final
examination was performed to search for evidence of a generalised and genome
wide association between gene expression levels and methylation status.
Expression for all genes with either differential gene body or promoter methylation is
shown in Supplementary Fig. S12. We found no correlation for either comparison,
consistent with previous studies that reported weak correlation between DNA
methylation and gene expression in humans 2637 and more recently in fish 8. Taken
together, the results confirmed that while methylation alone does not control
genome-wide patterns of gene expression, it plays a key role upregulating a defined

set of genes during the maturation process.

Early and stable changes in the chromatin state
To deepen the characterization of the epigenomic features during maturation, we
performed ATAC-seq (assay for transposase-accessible chromatin sequencing®®) to

produce genome-wide maps of chromatin accessibility changes. ATAC-seq was

10
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performed for multiple tissues and peak enrichment around transcription start sites
used as the key quality control metric (TSS, Supplementary Figure S13). Following
data pruning, we took 12 liver libraries (3 replicates across all 4 timepoints) and a
total of 699 million uniquely mapped paired-end reads (Supplementary Table S14)
forward into joint analysis with RNA-seq and WGBS data. Principal component
analysis (PCA) of the 12 ATAC-seq samples revealed the T1 replicates formed a
tight cluster positioned separately from the T2 — T4 samples, which were less well
distinguished from each other (Fig. 4a). The first two principal components
accounted for 50% of variation, which is less than the comparative analysis of the
same tissue using RNA-seq (66% Fig. 4a). To characterise changes in chromatin
state following long light initiation, we defined differentially accessible regions
(DARs) where mapping counts differed significantly between T1 and other time
points. This revealed a strong early remodelling in the chromatin state landscape, as
most DARs were observed at T2 (n=1501) before decreasing in stepwise fashion at
T3 (n=477) and T4 (n=148; Fig.4b; Supplementary Table S15). The direction of
change was approximately balanced between DARs with increased and decreased
accessibility, broadly matching the balance between up and down regulated global
gene expression changes observed for liver (Fig. 2a). We next asked if the early
changes in chromatin state persisted throughout the time course using hierarchical
clustering. The majority of DARs (n=1036 or 57%) exhibit reduced accessibility at T2
compared with T1 and subsequently remained unchanged at later time points (Fig.
5a; Supplementary Figure S14). Similarly, regions that gained accessibility at T2
(n=696 or 38%) also remained unchanged at later timepoints. This left less than 10%
of DARs (n=99) that displayed an oscillating pattern following the onset of the

maturation. Together, this revealed the ATAC-seq signatures were predominantly

11
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stable chromatin state changes, as opposed to pulsatile epigenomic changes that

snapped back after a small number of days or weeks.

Differential chromatin accessibility strongly correlates with bidirectional
regulation of global gene expression

To begin exploring the relationship between chromatin accessibility changes and
gene expression, we first mapped the genomic location of DARs and found the
majority were located in genes (65%) or within 5 kb upstream (6%) or 5 kb
downstream (4%), affirming the quality of the ATAC-seq dataset. We also detected a
qguarter of DARs (25%) located on average 36 kb distal to their nearest gene, a low
proportion in comparison to domesticated terrestrial livestock #°. Starting with the
subset of DARs located in genes (exons and introns) we found the proportion of
variation in gene expression explained by chromatin accessibility changes was high
(Fig. 4c, d). For example, chromatin state changes at T2, compared with T1,
explained 56% of the variation in gene expression using linear regression. The
dynamic was bidirectional, with accessibility changes associated with both up and
down regulation of global gene expression, and strongest at the early timepoint T2
(Fig. 4c). We repeated the analysis for DARs located within 5 kb of transcription start
sites to assess the strength of association with physically proximal putative cis-
regulatory elements (CRES). These had even higher association, explaining
approximately 60% of the variation in global gene expression (Supplementary Figure
S15). Together, this clearly demonstrated chromatin state changes played a

dominant role in directing global changes in gene expression.

12
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Cis-regulatory elements regulate metabolism genes via chromatin state
changes

To examine the biological consequence of chromatin state changes, we focused on
CREs given their established role on transcriptional regulation via transcription
factors (TFs) binding (41). We focussed on the subset of CREs that underwent a
change in accessibility during the time course to evaluate i) the expression behaviour
of their closet gene; ii) the biological function of those genes, and iii) any enrichment
for transcription factor binding sites. We found a small subset of CREs (n = 65)
underwent increased accessibility early in the time course and the majority (n = 46;
79%’ X2 p < 8.0288) upregulated their nearest gene in a tightly coordinated manner
(Fig. 5a — c). It also appears CREs more tightly controlled the downregulation of
genes compared to DARs located in gene bodies, downstream regions or within
intergenic regions (Fig. 5b, red box; Supplementary Table S16). The gene set
associated with coordinated up regulation (Fig. 5c) exhibited significant GO
enrichment related to lipid metabolism and energy metabolism (AAcyl-CoA
biosynthesis) (Fig. 5d). Acyl-CoA are coenzymes involved in energy synthesis,
consistent with the expectation of liver function through an energetically costly

transition such as maturation.

To provide a fine-scale view of the coordinated response, a 15 kb region of Ssal5
spanning the CRE and exons of a gene that regulates hepatic lipid metabolism
(hmgcr) #? is provided in Figure 5e. The final analysis used HOMER to search for TF
motifs that bind master regulators driving gene transcription “3. Specifically, we
computed the enrichment of TF motifs in CREs that gained chromatin accessibility

against a background that remained inaccessible. This revealed significant
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323  enrichment of 13 motifs, corresponding to the preferred binding sites of specific
324  transcription factors present in 29 - 58% of targets following the onset of maturation
325 (Supplementary Figure S16). Among these, the most significant motif matched the
326  global transcriptional regulator E3 Ubiquitin-Protein Ligase CNOTA4 that regulates
327  essentially every aspect of gene expression, from mRNA synthesis to protein

328  destruction including the degradation of RNAPII 4. The results strongly suggest that
329 chromatin state changes at CREs directly control gene expression in liver and

330 upregulate energy metabolism genes via changes in TF activity.

331

332 Multiomics data integration using gene regulatory networks

333  The final component of our analysis sought to co-analyse all available data to infer
334  gene regulatory networks (GRNSs) responsible for the onset of maturation. GRNs
335 provide a platform for integrating multiomic data and can be used to characterize the
336 dynamics of perturbations during biological transitions such as puberty and other
337 complex traits 4546474849 Here, we used the approach to co-analyse genes with
338 evidence of differential behaviour using seven categories that included expression
339 (DEGSs), changed methylation at gene bodies (DMGs) or promotors (DMPs) and
340 differential chromatin accessibility (DACSs). To focus the analysis towards

341 investigation of key regulators, we also performed regulatory impact factor (RIF)
342 analysis. This used co-expression correlation between TFs and their target

343 differentially expressed genes to identify 305 significant regulators (Supplementary
344  Table S17; Supplementary Figure S17). Of the seven categories, the majority of
345 1,858 genes prioritised for GRN construction were DEG (n = 1,400) or DMG (n =
346  700). The overlap between categories, for example where genes were both DEG

347 and DMG (n = 442), is given in Fig 6.a. The gene set showed significant GO

14
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348 enrichment (1 GO-CC and 8 GO-MF terms) to hormone activity and steroid hormone
349 receptor activity (Fig. 6b) and their expression patterns showed clear tissue-specific
350 clustering (Supplementary Fig.S18a) suggesting biological relevance to the trait.

351  GRN construction using the 1,858 genes yielded 835,084 connections with a mean
352  of 449 connections per gene. For visualisation, we only considered genes with

353 significant correlations = £0.95 (929 gene with 17,708 connections) (Supplementary
354  Fig.S18b). Most network genes (N=777, ~42 %) belonged to pituitary compared to
355 33% and 25% in ovary and liver. These figures also were reflected in the number of
356  connections per tissue (Supplementary Fig.S18c). Genes with the highest change in
357 the number of connections are likely to be key regulators, and the top 20 included
358 five zinc finger proteins (Supplementary Table S18.) Two of these transcription

359 factors, znf664 and znf239, were expressed in pituitary suggesting their key role in
360 maturation onset. Interestingly, the most highly connected genes also included two
361 uncharacterised (dark) Atlantic salmon genes (106590493, 106612553) that

362 displayed maximum expression in ovary.

363

364  Differential GRN connectivity identifies key regulatory factors

365 Key regulators are likely to undergo substantial change in their number of

366  connections and identify gene networks driving the transition to maturation. This

367 prompted construction of separate networks using pre- and post-maturation stage
368 data, before identifying those genes that underwent the largest change in

369  connectivity (pipeline workflow is provided in Supplementary Figure S1b). For

370 visualisation purposes, we only included 10% of the most significant connections that
371 included 1,412 genes with 17,260 connections in the pre-maturation GRN and 1,310

372  genes with 22,059 connections in the post-maturation GRN (Fig. 6¢). Next, we
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373 computed the differences in the patterns among the tissues comprising the two

374  networks (Fig.6¢). The pituitary gland and ovary had the most abundance (~ 45%
375 and 32%, respectively) of connections compared to a lower percentage of

376  connections (~23%) in liver after maturation. We computed the differential

377  connectivity for all genes and identified the most differentially connected genes

378 (DCGs) (n=186 genes; 10%) (Supplementary Table S18) between the pre and post-
379  maturation networks with more connections: 80,536 in post-maturation compared to
380 pre-maturation network with 56,971. These were mainly expressed in pituitary (44%)
381  and most connections involved DEGs (74%) and DMGs (47%). Finally, we identified
382  regulators that gained the most connections post-maturation (Table 1, Fig. 6). The
383 top ranked regulator was trim25 (encodes a ubiquitin E3 ligase) and underwent a
384  profound change in connectivity (from 10 to 599). znf423 is a ZF-TF with multiple
385 roles in signal transduction during development. It was predominantly expressed in
386 pituitary and contributed to 3 categories in the network (DEG, TF, DAC) with multiple
387  roles in signal transduction during development and a salmon dark gene highly

388 expressed in ovary (Fig. 6d). Then, we focused on TFs contained among the top 10
389 regulators that were differential connected genes between the pre and post-

390 maturation networks. This revealed znf423 to be the most differentially connected TF
391 (from 58 to 576) and Krueppel-like factor 11 (kIf11) as the least differentially

392 connected TF (from 513 to 9) (Fig. 6e; Table 1). Enrichment of motifs for a ubiquitin
393 E3ligase (cnot4) and ZNF TF (Zic) among ATAC-seq signals at CREs confirms their
394  regulatory roles. Several studies have previously demonstrated roles for ZNF factors
395 in controlling onset of female puberty in many species including humans 50:51.52:53,
396

397
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Discussion

Identifying the biological mechanisms controlling complex traits is a sizable
challenge. We designed our study on the assumption that the dynamic network of
molecules coordinating the spatiotemporal changes driving sexual maturation would
be inaccessible to investigation using only a single layer of “omics”. We anchored the
study around the collection of tissue transcriptomes to visualize their changing
circuitry across the period where Atlantic salmon commence their trajectory towards
sexual maturation. Importantly, we also characterized the changing epigenomic
landscape through interrogation of DNA methylation and chromatin state changes.
Integration of the resulting multiomic dataset used rigorous quantitative approaches,
and when performed inside the context of a defined biological transition, has given
us an unprecedented ability to characterise the onset of maturation at the molecular

level in a non-model species of worldwide aquaculture and ecological importance.

The availability of dimensional data allowed us to identify the dominant epigenomic
changes controlling gene expression. We conclude that global changes in DNA
methylation had little predictive power to explain changing gene expression beyond a
small subset involved in chromatin remodelling. While methylation changes are a
striking feature of embryonic development, they appear not to have been responsible
for the rapid and numerous changes in gene expression documented here.
Conversely, we observed high correlation between chromatin state changes and
altered gene expression for the single tissue with ATAC-seq data (liver). The
correlation was highest for differentially accessible regions immediately adjacent to

coding genes, implicating cis-regulatory elements.
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The identification of key genes relied on characterisation of differential behaviour
using samples collected before, and after, fish were subjected to a
photomanipulation trigger designed to stimulate maturation. Multiple data patterns
confirm we successfully initiated early stage maturation. Increasing average
gonadosomatic index demonstrates a physiological response occurred, and this was
paralleled by significant global upregulation of gene expression in the ovary and a
more modest remodelling of the pituitary transcriptome. Together, this provided
confidence that the characterised DEG, DMG and DAC patterns are likely to
successfully implicate genes directly involved in maturation. We showed
upregulation of pituitary hormones including gonadotropins along with other pituitary
genes involved in a range of reproduction related functions including
steroidogenesis. Differentially methylated genes were enriched for follicular
development and the control of gonadotropin-releasing hormone excitability.
Integrated transcriptome and methylome analysis in ovary implicated chromatin
remodelling genes in controlling maturation. Finally, differentially accessible CREs in

liver were enriched for lipid metabolism and energy metabolism genes.

Despite the advantages of the multiomic approach used, limitations may be imposed
by the range of tissues, timepoints and technical features of the assays used. For
example, we treated tissues as homogenous entities in an approach that ignores the
spectrum of constituent cell types and their differentiated roles that single-cell
multiomic studies have begun to explore 1754, Further, suboptimal partitioning of the
brain at dissection hampered our ability to assign the role of the hypothalamus

separately from the brain stem, cerebellum and olfactory bulb. Consequently, the
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448  variation in whole brain transcriptomes among replicates within timepoint was so
449 large as to prevent meaningful analysis. Finally, we were unable to generate high
450 quality chromatin state data from ovary samples despite repeated attempts. An

451  incomplete compendium of tissues and datatypes has resulted in an imperfect view
452  of the changing epigenomic landscape.

453

454  The promise of multiomic data will remain unfulfilled without methodological

455  approaches capable of identifying system perturbations associated with phenotypic
456 change. Here, we used a gene regulatory network approach which has proven

457  successful for investigation of puberty and other complex traits 474849, We identified
458  trim25, a gene encoding a ubiquitin E3 ligase, as the network element undergoing
459  the most dramatic change in connectivity and strongly suggests it plays a key role.
460 Looking forwards, it is tempting to speculate that a number of the genes identified
461 represent high value targets for manipulation via gene editing in an attempt to delay
462  or ablate sexual maturation. Among the range of putative targets identified, the core
463  components of the SWI/SNF chromatin remodelling complex (arid1B and smarca?2)
464  are appealing due to their ability to exert wide ranging change in gene expression.
465  The results described may therefore lead to better management of unwanted early
466  maturation within an aquaculture setting where the completion of maturation is

467  associated with reduced product quality and production inefficiencies.

468

469

470
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604

605 Methods

606

607 Induction of maturation through photoperiod manipulation and tissue

608 sampling

609 Animals were managed using photoperiod manipulation to synchronise the timing of
610 commitment into maturation. A population of female brood stock were used that were
611 ~ 36 months post fertilization in April 2017. The management of the animals and

612 associated timeline for sampling events is given in Fig.1a. In order to measure and
613  control for variation between individuals, 4 fish (biological replicates) at each of the

614  four time points (T1-T4) were used. The maturation status of animals (leading up to
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the long day photoperiod initiation) was monitored by ultrasound. Control samples at
T1 time point were collected on mid-June 2017 before induction of maturation
occurred late-June 2017. Following the application of the long photoperiod, tissues
were sampled at different three time points in 2 weeks intervals (T2-T4). At each
sampling event, the gonadosomatic index GSI was calculated from the ovary mass
as a proportion of the total body mass as follows: GSI = [ovary weight / total body

weight] x 100.

RNA isolation, RNA-seq library preparation and sequencing

Tissue samples were preserved in RNA-Later at -80 °C and total RNA was isolated
using RNeasy mini kit (QIAGEN) as previously described >°. Tissues were lysed
twice in 450 pL of lysis solution on a Precellys 24 homogenizer for 30s at 4.0 ms™.
RNA was bound to a column and washed twice before elution with 40 pL at room
temperature. RNA quantity and quality were assessed using a NanoDrop ND-1000
spectrometer, Qubit 2.0 fluorometer and Agilent 2100 bioanalyzer. Messenger RNA
(mRNA) was isolated from 1 pg of total RNA. 64 RNA-Seq libraries (4 time points x 4
tissues x 4 biological replicates) were prepared using the TruSeq RNA Sample
Preparation Kit (lllumina). Libraries were sequenced on Illumina Nova-Seq 6000
sequencing platform at the Australian Genome Research Facility (AGRF) in
Melbourne, Australia. Sequencing produced a total of 4.4 billion individual 150 bp

paired-end reads and ~ 70 million PE reads per library (Supplementary Table S1).

Transcriptomic data quality control (QC), genome mapping and read counting

lllumina reads were checked for quality using FastQC software. High quality reads

(Q>30) were mapped to the Atlantic salmon genome ICSASG_v2 56 using TopHat2
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version 2.1.1 57 with default parameters. Alignment files in BAM format were sorted
by read name and converted into SAM format using SAMtools version 1.4 %8, The
Python package HTSeq version 0.7.2 ° was applied to count unique reads mapped

to exons using default parameters except for “reverse” with the strandedness.

Differential gene expression and clustering analyses

Raw counts were analysed using the edgeR package ©° in the R statistical computing
environment to infer differential gene expression among tissues. The four tissues at
the long photoperiod time points (T2, T3 and T4) were compared to the control
samples at T1. P-values for differential gene expression were corrected for multiple
testing using the Benjamini and Hochberg algorithm 6. For further analyses of
differential expression, only genes with a false discovery rate (FDR) of < 0.05 and
have at least absolute logz(fold change) > 1 were considered significant. PCA was
conducted on the lists of significant DEGs using normalised expression data
(log2FPKM) using the function --prin_comp within trinity. Hierarchical clustering
analysis was conducted using trinity’s utility analyze_diff_expr.pl on significant DEGs
in each tissue where mean-centred normalized expression (logz-transformed
FPKM+1) were compared across time points 2. Gene clusters with similar
expression patterns were obtained using the Perl script
define_clusters_by_cutting_tree.pl within trinity to cut the hierarchically clustered

gene tree into clusters with similar expression using the --Ptree option.

Gene Ontology (GO) enrichment of the identified gene clusters

To infer the functions of the gene clusters, gene ontology (GO) enrichment was

performed to identify the enriched biological themes using the R package
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clusterProfiler version 3.9 using default settings 3. The ENTREZ gene identifiers of
up- and downregulated clusters per tissue were used as query gene list against the
background genes in each tissue. For the purpose of the enrichment analysis, GO
categories with a corrected P-value of < 0.05 were considered significant. Categories
of candidate genes implicated in maturation were visualised as heatmaps using their
normalised expression values with the R package pheatmap version 1.0.12

https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf.

Genomic DNA isolation, WGBS library preparation and sequencing

Tissue samples were snap frozen in liquid Nitrogen and stored at -80 °C until
genomic DNA (gDNA) was extracted using DNeasy blood and tissue kit (QIAGEN).
Tissues were lysed in 360 pL of lysis solution on a Precellys 24 homogenizer for 30s
at 4.0 ms™'. Samples were incubated with 40 pL of Proteinase K enzyme at 56 °C for
1 h. Following lysis, samples were treated with RNase (8 pL of RNase A incubated
for 2 min at room temperature). DNA was bound to the provided columns, washed
twice and eluted in 100 pL at room temperature. gDNA purity were assessed by gel
electrophoresis and NanoDrop ND-1000 spectrometer. DNA concentration and
integrity were assessed using Agilent 2100 bioanalyzer. gDNA was fragmented (200-
400bp) by sonication using Covaris S220, followed by end repair/adenylation and
adapter ligation. Bisulfite modification was performed to the DNA fragments using
the EZ DNA Methylation-GoldTM Kit (Zymo Research, Inc.). Twelve libraries
prepared from 3 tissues (pituitary, ovary and liver), 2 time points (T1 and T4) and 2
biological replicates. Libraries were sequenced on HiSeq 2500 sequencing platform

at Novogene, Hong Kong. Sequencing produced a total of 2.2 billion individual 150
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bp paired-end reads and 185 M PE reads per library. Bisulfite conversion rates

(percentage of C changed to T after bisulfite treatment) were consistently >99.8%.

WGBS data QC, genome mapping and methylation calling
Raw data quality control was performed using Trim Galore v0.5

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to filter bases (Q

scores < 30) and remove both universal and indexed adapter sequences. Processed
high-quality data were mapped to into a bisulfite-converted version of the Atlantic
salmon reference genome ICSASG_v2 %8 using BSseeker2 v2.1.8 56 with default
parameters for aligning paired-end libraries using Bowtie2 (Langmead & Salzberg
2012). PCR duplicates were detected and removed using Picard MarkDuplicates

(http://broadinstitute.qgithub.io/picard/). Filtered (duplicates-free) reads (110 M PE

reads) were retained for downstream methylation analysis with an average genome
coverage of 11x in pituitary, ovary and liver. Methylation calling was conducted using
the Python script call-methylation.py within BSseeker2. CGmap files were used for
subsequent exploratory and differential methylation analyses. The mstat command
within CGmap tools was used to generate global and CG context (CG, CHG, CHH)

DNA methylation levels ©8.

DNA methylome exploratory analyses

As CG methylation contributed to the bulk of methylated Cs, average methylation
levels of genome-wide CpG positions were calculated in 50 kb bins across the
genome using mbin command within CGmap tools and plotted as Violin plots using

the R package vioplot, https://cran.r-project.org/web/packages/vioplot/index.html. To

begin assessment of the quality of our libraries, common CpGs with minimum 10x
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coverage among the 12 samples were used in PCA using prcomp implemented in R.
Correlation matrices (based on Pearson coefficient) were prepared using the R
package corrplot (https://cran.r-project.org/web/packages/corrplot/index.html).
Hierarchical clustering analysis was conducted with hclust implemented in R using

compute linkage and Euclidean distances.

Differential CpG methylation analysis

The R package DSS was used to identify differential methylation regions using
common CpGs ¢’. In each tissue, two replicates at T4 were compared to the control
samples at T1 based on CpG methylation levels. At each CpG site, the methylation
(M) level was calculated as a proportion of the total counts (coverage) as follows: M
levels = [methylated counts / total counts] x 100. DSS was selected as it takes into
account the biological variation among replicates (characterized by a dispersion
parameter) and the sequencing depth. Differentially methylated loci (DMLS) were
identified by estimating mean methylation for all CpG sites followed by estimating
dispersion at each site and conducting a Wald test (P < 0.001). Smoothing
(combining information from nearby CpG sites to improve the estimation of
methylation levels) was utilised to obtain mean methylation estimates in WGBS data
where the CpG sites are dense. Based on the DML results, regions with statistically
significant CpG sites were identified as a differentially methylated regions (DMRSs)
with minimum length/distance of 50 bp and minimum CpG coverage of 3. Mean
methylation between groups of greater than 10 % (delta = 0.1) and P < 0.001 was
considered significant. A circos plot was produced to visualize multi-tissue genome-

wide DMRs using Circos (http://circos.ca/software/). Individual DMRs were also

visualized using the showOneDMR function within the DSS package to plot both the
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methylation percentages (including a smoothed curve) as well as the coverage

depths at each CpG site.

DMR annotation, DMGs and DEGs correspondence analysis

Differentially methylated regions were compared against the protein coding gene set
annotated on reference ICSASG_v2 using custom Perl scripts. This classified DMRs
as overlapping a gene body (genic), 5kb upstream of a transcription start site TSS
(putative promoter), 5 kb downstream of TSS (5kb downstream), or otherwise
intergenic. The distance between each DMR and nearest gene is provided in
Supplementary tables 9 — 11. The overlap between significant genes from differential

expression and methylation was checked using the intersect function within bedtools

68

GO enrichment of DMGs

GO enrichment analyses were conducted on both the sets of hypermethylated genes
(n=1,156) and genes found to be hypermethylated and upregulated in ovary (n=
148) using the R package clusterProfiler. Genes driving GO enrichment were plotted

as a heatmap using the R package pheatmap as above.

Nuclei extraction, ATAC-seq library preparation and sequencing
ATAC-seq libraries were prepared from frozen tissues using the Omni-ATAC method
69 with the following modifications. Frozen tissue (20 mg) was ground in liquid

nitrogen using a mortar and pestle. The pulverized tissue was transferred to a pre-
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764  chilled 2 ml dounce homogenizer containing 1mL cold 1x homogenisation buffer and
765 homogenised with the pestle to form a uniform suspension (10-20 strokes). The

766  homogenate was filtered with a 40uM nylon cell strainer (BD Falcon) before layering
767  onto the iodixanol solution as described previously 6°. The ratio of nuclei to enzyme
768  concentration was optimised for each sample by performing transposition reactions
769  containing 50000, 100000 and 200000 nuclei with 2.5ul of tagment enzyme in 50ul of
770  transposition mix . The transposed DNA was amplified with custom primers as

771  described elsewhere 7°. before libraries were purified using Agencourt AMPure XP
772  beads (Beckman Coulter) and quality controlled using a Bioanalyser High Sensitivity
773 DNA Analysis kit (Agilent). Twelve liver ATAC-seq libraries arising from 3 biological
774 replicates x 4 time points (T1-T4) were sequenced at the IMB sequencing facility

775  (University of Queensland) on an Illumina NextSeq 150 cycle (2 X 75 bp).

776

7

778 Chromatin accessibility data QC, genome mapping and peak calling

779  Sequencing produced a total of 1.2 billion individual paired-end reads

780 (Supplementary Table 14). Raw reads were mapped to the Atlantic salmon reference
781 genome ICSASG_v2 %8 using BOWTIE2 version 2.3.5.1 with the --very-sensitive

782  parameter 'L, Duplicate reads were removed using the MarkDuplicates function in

783  Picard (http://broadinstitute.github.io/picard/). Multi-mapped reads and mitochondrial

784  reads were filtered out and only uniquely mapped reads (MAPQ > 10) were extracted
785  from alignment files using SAMTOOLS for downstream analyses.

786

787  For peak calling, the model-based analysis of ChIP-seq (MACS2)

788  (https://github.com/macs3-project/MACS) was used to identify read enrichment

30


http://broadinstitute.github.io/picard/
https://github.com/macs3-project/MACS
https://doi.org/10.1101/2020.08.28.272286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.272286; this version posted August 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

789  regions “peaks” using default parameters. Only peaks detected in at least two

790 replicates per condition were used for downstream analyses, and peaks across

791 timepoints were merged to generate a unique peak list per tissue. The number of
792  raw reads mapped to each peak was quantified using the Python package HTSeq
793  version 0.11.1 *°,

794

795 Differential accessibility and clustering analyses

796  Samples from the long photoperiod time points (T2, T3 and T4) were compared to
797  control samples (T1) for each tissue. Raw counts were analysed using the R

798 package edgeR and P-values were corrected for multiple testing using the Benjamini
799 and Hochberg algorithm. Peaks with FDR < 0.05 and log2FC > + 1 were considered
800 significantly differentially accessible regions (DARs). PCA of significant DARs used
801 normalised accessibility data (log2CPM) prepared using the function --prin_comp
802  within trinity. Hierarchical clustering analysis was conducted using

803 analyze_diff_expr.pl where mean-centred normalized accessibility (log2CPM+1) were
804 compared across time points 2. Gene clusters with similar accessibility patterns

805 were obtained using the Perl script define_clusters_by cutting_tree.pl to cut the

806 hierarchically clustered gene tree into clusters with similar accessibility patterns as
807 described above.

808

809 Genomic distribution of DARs within clusters

810 Hierarchical clustering identified both accessible and inaccessible DAR clusters.
811 DARs per cluster were annotated in a genomic context (genic, promoter, 5 kb

812 downstream or intergenic) as previously done for annotation of DMRs.

813
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ATAC-seq and RNA-seq correspondence analysis

Only DARs co-located with genes and promoters were used for co-analysis with
gene expression data. The relationship between accessibility of DARs and gene
expression was visualised by overlying information of significant DARs to genome-
wide normalised expression estimates in liver samples and plotted as a MA-biplot. A
linear regression analyses were performed to assess correlations between
accessibility and expression abundance and the effect of changes in accessibility
and changes in gene expression across time. Chromatin accessibility and gene
expression data were visualised using Gnuplot version 5.0.7
(http://www.gnuplot.info) by overlying accessibility data of significant DARs at genes

and promoters to genome-wide normalised expression estimates at each timepoint.

Multiomic heatmap analysis per time and genomic regions

All heatmaps were produced using the R package pheatmap. GO enrichment
analyses have been conducted on the set of nearest genes to accessible promoters
using the R package clusterProfiler as described above. The integrated genome
viewer (IGV) was used to visualise the relationship between accessibility and gene

expression in a 15kb region that contains hmgrc gene and its promoter region.

Motif enrichment analyses
The function findMotifsGenome.pl within Homer software version 4.11

(http://homer.ucsd.edu/homer/) was used with default parameters to find sequence

motifs significantly enriched among accessible DARs vs inaccessible DARs located
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within promoter regions.TF motifs that are highly enriched (P value < 1 x 10-1%) were

selected.

Inference of master regulators

Master regulator analysis was performed using regulatory impact factor (RIF) metrics
described by 72 to identify key regulators contributing to the differential expression in
the T4 vs T1 comparison in each tissue. Data for potential transcription factors (TFs)
in Atlantic salmon were taken from Mohamed et al., 2018. As most of the
transcriptional changes were detected at T4, RIF was applied to the T4-T1
comparisons for each tissue. Briefly, RIF exploits the differential co-expression
concept where regulators were contrasted against unigue lists of genes that were
differentially expressed at T4 in each tissue. Genes with a mean expression FPKM
< 0.2 were excluded. Those scores deviating + 2.57 standard deviation from the
mean were considered significant at P < 0.01. We identified a total of 305 significant
regulators (113, 68 and 123 in pituitary, ovary and liver, respectively at P > 0.01).
Most of these regulators (n=298; 97.7%) were unique to each tissue leaving only 7
that were shared among tissue pairs (Supplementary Table S17; Supplementary
Figure S17). The regulators identified were used as input for construction of gene

regulatory networks as summarized in Supplementary Figure S1b.

Gene regulatory network (GRN) analysis

Genes from different omics analyses (DEGs, DMGs, DMPs, DACSs) along with key
transcription factors identified by RIF (TFs), as well as information for tissue-specific
(TS) genes and gene-harbouring GWAS SNPs (SNPs) were selected based on

overlap (at least once) and mean normalised expression (at least 0.2 FPKM) for
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network construction. The R package UpSetR (https://cran.r-

project.org/web/packages/UpSetR/vignettes/basic.usage.html) was used to

investigate the cross-talk among genes from different sources.

For gene network inference, genes were used as nodes and significant connections
(edges) between them were identified using the Partial Correlation and Information
Theory (PCIT) algorithm 73, considering all samples. PCIT determinates the
significance of the correlation between two nodes after accounting for all the other
nodes in the network. Connections between gene nodes were accepted when the
partial correlation was greater than two standard deviations from the mean (P <

0.05). The output of PCIT was visualized using Cytoscape Version 3.7.2 74,

In order to explore differential connectivity during maturation onset, two networks
were created; one using 12 samples at T1 (pre-maturation) and a second using 36
samples at T2, T3 and T4 (post-maturation). The number of connections of each
gene in each network was computed, making it possible to compare the same gene
in the two networks to identify differentially connected genes (DCGs). From these
networks, we explored a series of subnetworks. First subnetworks based on the top
trio genes and the top regulators (TFs) based on their differential connectivity
between pre-and post-maturation. Pre- and post-maturation networks were
constructed from the 12 control samples at T1 and 36 post-maturation (T2-T4)

samples.
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Fig.1 Multi-tissue transcriptomic and epigenomic changes associated with
onset of salmon maturation. a, Induction of maturation through photoperiod
manipulation and sampling time points. Animals were managed via photoperiod
manipulation to synchronise the timing of commitment into maturation. 4 fish were
sampled at each of the T1 (before long day photoperiod signal) and T2-T4 time
points (during maturation) in 2 weeks intervals to control for variation between
individuals. b, Gonadosomatic index (GSI) throughout the time-course
experiment. GSI increased gradually from T2 till the last sampling event at T4
indicating active response towards maturation in these animals. The variability in GSI
measures during maturation decreased compared to that of T1. c, Tissue
collection, multi-omics integrated analyses and gene regulatory networks
(GRNs). Samples from the pituitary gland, ovary and liver were collected at each
sampling event. High-throughput sequencing was utilised to profile genome-wide
changes in transcriptomes, DNA methylomes in the three tissues along with
chromatin accessibility in liver. These genome-wide results were integrated with
knowledge of key regulators (TFs) and other results from previous work that
identified maturation associated-SNPs and tissue-specific genes. PCIT algorithm
was then utilised to construct gene regulatory networks (GRNs). Pre- and post-
maturation GRNs were constructed to identify differentially connected genes
(DCGs).
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Fig.2 Significant transcriptome remodelling driving onset of salmon
maturation. a, 9 MA plots showing differentially expressed genes (DEGS) in
pituitary, ovary and liver (FDR < 0.05 and logzfold change >+ 1) at T2, T3 and T4
during maturation compared to control samples at T1. Transcriptomic results reveal
gene upregulation in both pituitary gland and ovary during maturation. b, Heatmap of
pituitary candidate genes with significant expression. The hierarchical clustering was
obtained by comparing the logz-transformed and mean-centred FPKM values.
Upregulated genes in the pituitary include several genes with reproduction-related
functions such as steroidogenesis (cypl7al), hormone receptors (oxtr, pgr, doplrl,
galrl), genes coding for pituitary hormones (gh2, gthb1l, gthb2, glha2), retinoic acid
(RA) signalling (cyp26b1l, rhd8-1/2), sex-related TFs (several sox genes and gata2).
The upregulation of gonadotropins subunits (gthbl, gthb2 and glha2) is highly
significant in the context of maturation onset. gthbl and gthb2 encoding
gonadotropin subunits beta-1 and 2 and glha2 encoding glycoprotein hormones

alpha chain that constitutes the salmon gonadotropins (gth-1 and 2).
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Fig.3 Multi-tissue DNA methylome maps reveal methylated genes with key
roles in salmon maturation. a, Hierarchical clustering of the common CpGs in the
12 methylome libraries reveals clustering by tissue type and grouping pituitary and
ovary in a cluster and liver in the other. This shows variation in methylation is much
lower between replicates of the same sample compared with variation among tissues
as expected for high quality data. b, Circos plot shows genome-wide distribution of
the significant differentially methylated regions (DMRs) detected in T4 samples
compared to the control T1 in pituitary, ovary and liver (from the outer circle
inwards). ¢, Genomic distribution of ovary DMRs across gene models in the salmon
genome shows the majority co-located within genes, promoter defined as genomic
regions located 5kb upstream of transcription start sites (TSSs). d, Significant
overlap between ovary DMGs and DEGs. e, DNA methylation and expression
directionality at gene bodies confirms that gene body methylation positively affects
gene expression. f, Enriched gene ontology (GO) terms (hypergeometric test,
Bonferroni-adjusted P < 0.05) among the list of 148 hypermethylated genes in ovary.
g, Heatmaps showing significant upregulation of genes driving GO enrichment
shown in part f, mean CpG methylation levels of upregulated genes before and after
maturations and CpG methylation profiles for the arid1b gene. The methylation plot
shows percentages of methylated CpGs along with coverage depth at each CpG
site. Pink rectangles represent the differentially methylated regions. Genomic

coordinates are indicated below the density plot and DMR details are also indicated.
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Fig.4 Genome-wide maps of chromatin accessibility and gene expression
changes. a, Combined ATAC-seq and RNA-seq analysis. Principal component
analysis (PCA) conducted using normalised (log2CPM) values of the lists of
significant differentially accessible regions (DARSs) and significant differentially
expressed genes (DEGSs) at T2, T3 and T4 during maturation compared to control
samples at T1, the same significance thresholds were applied (FDR < 0.05 and
logzfold change >+1). b, Strong and early remodelling in the chromatin state
landscape, the volcano plots show differentially accessible regions (DARS) where
mapping counts differed significantly between T1 and other time points. c,
Regression analysis conducted on significant DARs located at gene bodies
and the corresponding gene expression data. The table shows that accessibility
at T2 explains the majority of the observed differential expression throughout the
experiment. d, Chromatin accessibility and gene expression are positively
correlated. 9 MA biplots showing genome-wide gene expression and overlain
differentially accessible regions dynamics at gene bodies in liver at T2, T3 and T4
compared to T1. Chromatin accessibility levels are shown in red-blue spectrum
reflecting open- to closed chromatin at gene bodies and the corresponding gene
expression in grey colour. Note that R? values are the highest when using gene
expression and accessibility from the same time point.
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Fig.5 Dynamics of chromatin accessibility and gene expression as a function
of genomic location reveals strong association with putative cis-regulatory
elements (CRES). a, co-accessibility analysis reveals stable chromatin states
following the onset of the maturation. The majority of DARs exhibited either reduced
(n=1036 or 57%) or increased (N=696 or 38%) accessibility at T2 and remained
unchanged at later timepoints. Less than 10% of DARs (n=99) displayed an
oscillating pattern. The y-axis in each graph represents the mean-centered
log2(CPM+1) value across time points on the x-axis. Accessibility of single DAR is
plotted in grey, while the mean accessibility of each cluster is plotted in blue. b,
Genomic distribution of DARs across gene models in the salmon genome, promoter
defined as genomic regions located 5kb upstream of TSSs and multi-omic heatmaps
showing mean accessibility and expression at each of the four time points per
genomic location. ¢, Heatmaps 65 DARSs located 5kb upstream of TSSs representing
cis-regulatory elements (CRES) that exhibit increased accessibility at T2 along with
gene expression of their target (nearest) genes. This showed upregulation of the
majority of the associated genes in a tightly coordinated manner (n = 46; 79%’ X2 p <
8.0288). d, Enriched gene ontology (GO) terms (hypergeometric test, Bonferroni-
adjusted P < 0.05) among the list of the CREs- regulated genes. This list includes
genes involved in hepatic lipid metabolism (hmgcr) and energy metabolism (elovI5b
and elovl6). e, IGV visualisation of a 15 kb region of Ssal5 spanning the CRE and
exons of the hmgcr gene provides fine-scale view of the coordinated gene

expression response to increased accessibility.
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Fig.6 Gene regulatory networks (GRNs) constructed via integrating multi-
omics results. a, UpSet plot showing the intersection among the 1,858 genes
selected for network analyses. Genes were selected when represented at least
once and have a mean normalised expression of at least 0.2 FPKM. Network genes
were divided into 7 categories: differentially expressed genes (DEG), differentially
expressed genes/promoters (DMG, DMP), differentially accessible regions (genic
and promoter regions as DAC), genes harbouring SNPs reported in literature as
being associated with salmon maturation (SNP), tissue-specific genes (TS) and key
regulators identified by RIF (TF). The nature of a given intersection is indicated by
the dots below the bar plot. For example, the 442 genes in the second column are
both differentially methylated and differentially expressed but not found in other
categories. b, Enriched gene ontology (GO) terms (hypergeometric test,
Bonferroni-adjusted P < 0.05) among the list of 1,858 network genes along with the
gene ratio for the genes that map to each term. The majority of the enriched terms
are related to hormone and receptor activities. ¢, GRNs constructed using the
PCIT algorithm for the pre- and post-maturation samples. For visualisation
purpose, only the most significant 10% of correlations their respective genes were
considered. This shows increases in the connections in the pituitary that constituted
45% of the post-maturation network connections. All nodes are represented by
ellipses except for genes coding key regulators (TFs) have diamond shape. Nodes
with yellow borders are differentially methylated, whereas nodes with white labels
are differentially accessible between pre- and post-maturation samples. Node
colours are relative to the tissue of maximum expression with blue represents the
pituitary, red represents ovary and green represents liver. The size of the nodes is
relative to the normalized mean expression values in all samples. d, Subnetworks
of top differentially connected genes, the networks created with the most trio
genes differentially connected between pre- and post-maturation networks. This
revealed TRIM25, a E3 Ubiquitin ligase as the key regulators with the greatest
number of gained connections in the post-maturation network. TRIM25 was highly
expressed in the pituitary and underwent changes in DNA methylation. e,
Subnetworks of top differentially connected TFs, networks created with the most
differentially connected TFs between pre- and post-maturation networks showed zinc

finger protein 423 (ZNF423) as the key regulator with the greatest number of gained



connections and Kruppel-like factor 11 (KLF11) as the regulator with the least

number of gained connections going from pre- to post-maturation.
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